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1 Introduction

One of the remarkable aspects of gravity is the fact that classical black hole solutions have

a finite entropy. The question of how this entropy is encoded in the geometry of the black

hole solution is a longstanding problem which has motivated much recent research. In

Einstein gravity, the answer to this question is given in terms of the celebrated Bekenstein-

Hawking formula S = A
4G

N
which gives a simple way of reading off the entropy of a black
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hole solution from its horizon area. Despite a variety of efforts, a formula of such generality

is not yet known for higher derivative gravity.

A formula applicable to specific limits is however known — an important progress in

this direction is the Wald formula [1–7] applicable to time-independent geometries which

is constructed by demanding the first law of thermodynamics.1 Wald gave a particular

prescription in the context of the Noether procedure2 whereby he identified an appropriate

Noether charge at the horizon as the entropy. The Wald formula has had many successes:

microscopic computations of entropy (via say Sen’s entropy function formalism for extremal

black holes [16–18]) reduce to Wald entropy in appropriate limits. Entanglement entropy

computations in AdS/CFT exhibit Wald-like formula with corrections [19, 20] thus giving a

geometric realization of the interplay between thermal entropy and entanglement entropy.

Attempts to generalize the Wald formula to time-dependent situations however runs into

various ambiguities and the physical principle to resolve these ambiguities are still unknown.

The main obstacle to using AdS/CFT to resolve these questions is the fact that time-

dependent entropies are difficult to compute even in field theory. It thus seems essential that

we find simple time-dependent situations where we can study how entropy is geometrized in

gravity. A simple situation which might be tractable is the entropy associated with anoma-

lies in field theory. The robustness of anomalies could allow us to understand quantitatively

the associated anomaly even in time-dependent cases [21]. AdS/CFT then maps this situa-

tion to the case of gravitational solutions in the presence of Chern-Simons terms. One thus

hopes that understanding Wald-type entropy that arises from Chern-Simons terms might

lead us to a better understanding of the geometric entropy and the way to generalize it.

The original derivation by Wald assumes covariant Lagrangians and hence excludes

Chern-Simons terms. The Lee-Iyer-Wald formalism for constructing Noether charge was

later extended to theories with Chern-Simons terms by Tachikawa [22] (this proposal was

then worked out in detail by Bonora-Cvitan-Prester-Pallua-Smolic [23]) which we will re-

view when we compare with our results. This Tachikawa’s extension, however, is not man-

ifestly covariant and it runs aground with issues of covariance [23] in dimensions greater

than three.3

In this work, we will trace these issues to the use of a non-covariant pre-symplectic

structure on the space of solutions. Our main motivation in this work is to demonstrate

that, with higher dimensional Chern-Simons terms, one can instead choose a manifestly

covariant pre-symplectic structure and implement the Noether procedure in a manifestly

covariant way.4 Using our pre-symplectic current we will then re-derive the final entropy

1Whether Wald entropy obeys the second law of thermodynamics is however still an open question.
2By this we mean the collection of various formalisms which rely on some version of Noether charge

— apart from the treatment by Lee-Iyer-Wald [4, 8], there are related methods commonly attributed to

Abbott-Deser-Tekin [9–12] and Barnich-Brandt-Compère [13–15].
3Most of the applications of Tachikawa’s prescription has been for the pure gravitational Chern-Simons

term in AdS3 where the covariance of the final results can be easily demonstrated. In fact, the three

dimensional gravitational Chern-Simons term has been widely studied [24–30] in the context of topologically

massive gravity. See [23, 31–35] also for discussions on higher dimensional Chern-Simons terms.
4We remind the reader that the issue of covariance of charges in the presence of Chern-Simons terms is

often a subtle issue [36]. What we are interested in roughly corresponds to what Marolf calls the ‘Maxwell

charge’. From the dual CFT point of view, we want a Noether procedure that would compute for us the

covariant currents.
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formula proposed in [22] without having to choose special gauges/coordinates systems (as

is necessary in the method described in [22, 23]).

In fact, this is a general lesson which underscores why Chern-Simons terms serve as

stringent tests for any generalized entropy proposal: most constructions and ideas about

how the Wald formula should be generalized often do not work for Chern-Simons terms

because of covariance issues. Our hope is that our analysis in this paper would help us tease

out the essential features of the Noether procedure that survive this ‘Chern-Simons’ test

so that we can be guided as to how we should go about generalizing it in time-dependent

situations.

We will divide the rest of this introduction into four different subsections. In the subsec-

tion that follows we begin by introducing Einstein-Maxwell-Chern-Simons system à la [37].

The aim is to introduce notation as well to present the reader with a specific context where

our results can be used. In the subsequent subsection we quickly introduce the essential

ideas of the Noether formalism that the reader would need to understand the third subsec-

tion summarizing of our results. In the final subsection, we provide the outline of this paper.

System under study. A main motivation for this paper is our recent work in [37] where

using fluid/gravity correspondence, we constructed a class of AdS black hole solutions

for Einstein-Maxwell-Chern-Simons equations in AdS2n+1. That construction was in turn

motivated by recent advances in the field theory side on how Lorentz anomalies enter into

hydrodynamics [38–47]. Since we will develop our covariant prescription in the context of

this system, we begin by reviewing it.

We consider the simplest class of gravitational systems in AdSd+1 with Chern-Simons

terms with an action
∫

dd+1x
√
−G

[

1

16πG
N

(R− 2Λcc)−
1

4g2
EM

FabF
ab

]

+

∫

ICS [A,F ,Γ,R] , (1.1)

where the Chern-Simons part of the Lagrangian is denoted as ICS which is a d + 1 form.

Since Chern-Simons terms are odd forms, this necessarily implies that d = 2n with n an

integer. This action then leads to the equations of motion:

Rab −
1

2
(R− 2Λcc)Gab = 8πG

N
[(T

M
)ab + (TH)ab] ,

DbFab = g2
EM

(JH)a ,
(1.2)

whereGab is an asymptotically AdSd+1 metric with d = 2n, Fab is the Maxwell field strength

defined from the vector potential Aa via Fab ≡ ∂aAb − ∂bAa. All our expressions in this

work equally well apply to the Yang-Mills system where Fab ≡ ∂aAb − ∂bAa + [Aa, Ab] .

With this in mind, we use Db to denote the gauge covariant derivative. Here, G
N
and g

EM

are the Newton and Maxwell couplings respectively. The cosmological constant is taken to

be negative and is given by Λcc ≡ −d(d− 1)/2 where the AdS radius is set to one.

The Maxwell energy-momentum tensor (T
M
)ab in the above equation takes the form

(T
M
)ab ≡ 1

g2
EM

[

F acF b
c −

1

4
GabFcdF

cd

]

, (1.3)
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whereas (TH)ab and (JH)a are the energy-momentum tensor and the Maxwell charge cur-

rent obtained by varying the Chern-Simons part of the action. We will call these currents

as Hall currents. The bulk Hall currents are more conveniently written in terms of the

formal (d + 2)-form PCFT = dICS , the anomaly polynomial of the dual CFT. We note

that the anomaly polynomial depends only on the Maxwell field strength two-form F and

the curvature two-form Ra
b, both of which are covariant. On the other hand, the Chern-

Simons form ICS depends on F and Ra
b as well as non-covariant quantities, i.e. the gauge

field one-form A or the connection one-form Γa
b . We define the spin Hall current (ΣH)cba

and the charge Hall current (JH)c corresponding to ICS as

(⋆ΣH)ba ≡ (ΣH)cba
⋆dxc ≡ −2

(

∂PCFT

∂Ra
b

)

,

⋆JH ≡ (JH)c ⋆dxc ≡ −
(

∂PCFT

∂F

)

.

(1.4)

By varying the Chern-Simons Lagrangian ICS with respect to the metric Gab, we can

obtain the energy-momentum tensor associated with the Hall current (sometimes called

the generalized Cotton tensor [48]) which is written as (TH)ab = ∇c(ΣH)(ab)c.

In [37], we found charged rotating black hole solutions of this system of equations in

a fluid/gravity expansion. In this paper, we will construct a Noether charge prescription

which will allow us to assign energy, charge and entropy for these solutions. While this

paper deals with the formal aspects of this construction including the crucial issue of

covariance, in an accompanying paper [49] we utilize this construction to compute the

charges and entropy of our solutions and match them against CFT predictions.

Noether formalism. Let us begin by reviewing how the Noether formalism allows us

to compute energy, entropy etc. Since we will be discussing this formalism extensively in

the main text (with an eye towards Chern-Simons terms), we will be necessarily brief just

outlining the main ideas needed for the rest of this introduction. Further, we will phrase

the formalism in a language well-adopted to AdS/CFT and fluid/gravity correspondence.

Associated with every diffeomorphism or gauge transformation parametrized by

{ξa,Λ}, there is a co-dimension two form /δQ
Noether

which is linear in variations of AdS

fields: we will call it the differential Noether charge. The symbol /δ denotes that it is linear

in variations of the fields and that it is not necessarily an integrable variation, viz., in

general, /δQ
Noether

6= δQ for any Q.

Further, the Noether formalism implies that the exterior derivative of the differen-

tial Noether charge d/δQ
Noether

associated with a {ξa,Λ} is proportional on-shell to Lie

derivatives of the fields along that {ξa,Λ}. The tensor of proportionality is given by a

co-dimension one form called the pre-symplectic current /δ
2
ΩPSympl. The pre-symplectic

current is proportional to the product of two field variations as its notation indicates

and it is antisymmetric under the exchange of the field variations. We can then write

d/δQ
Noether

= −/δ/δχΩPSympl where the subscript χ indicates that the second variation has

been converted into a Lie-derivative along {ξa,Λ}.
The differential Noether charge /δQ

Noether
when restricted to a hypersurface in AdS

becomes a co-dimension one form. We first consider /δQ
Noether

associated with a diffeomor-
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phism/gauge transformation {ξa,Λ} which acts on the dual CFT as a symmetry trans-

formation {ξµCFT,Λ
CFT}, i.e., {ξa,Λ} fall off slowly enough near the boundary of AdS that

they act non-trivially on the boundary. We have

{ξa,Λ}|∞ = {ξµCFT,Λ
CFT} .

Here |∞ denotes that the evaluation is carried out at the boundary. The /δQ
Noether

of such

a {ξa,Λ} is then restricted to a radial slice near the boundary of AdS and evaluated on-

shell, i.e., we evaluate it on a solution to the gravity equations with the field variations

satisfying linearized equations. This on-shell differential Noether charge then encodes the

information about the energy-momentum and charge differences in the neighborhood of

the state under consideration. More precisely, we have

/δQ
Noether

|∞ = − [ηνσξ
σ
CFTδT

µν
CFT + (ΛCFT + ξαCFTA

CFT

α ) δJµ
CFT]

⋆CFTdxµ + d(. . .) , (1.5)

where {Tµν
CFT, J

µ
CFT} are the (expectation values of) energy-momentum tensor and the charge

current of the dual CFT, {ηνσ, ACFT
α } are the corresponding metric/gauge field sources in

the CFT and ⋆CFT represents the CFT Hodge-dual operator acting on forms.5 Here δTµν
CFT

for example, is to be understood as the difference in (the expectation value of) energy-

momentum tensor in the neighborhood of the dual CFT state. The term d(. . .) at the end

of eq. (1.5) indicates that eq. (1.5) is supposed to be valid up to an addition of an exact form.

The essential insight due to Wald is that, at least as far as time-independent solutions

go, the same differential Noether charge for an appropriate {ξa,Λ} evaluated at the horizon

gives the entropy of the solution. To give a more precise statement, we begin with the

time-like Killing symmetry/gauge transformation {βa,Λ
β
} which leaves invariant the time-

independent state under question. We will assume further that the black hole horizon is

a Killing horizon for {βa,Λ
β
} with βa having a surface gravity normalized to 2π. This

implies that βa = 0 at the bifurcation surface and

{ Gabβ
aβb = 0, βb∇bβ

a = 2πβa, Λ
β
+ βaAa = 0 } at the horizon, (1.6)

where {Gab, Aa} represent the bulk metric/gauge field. Roughly, one can think of βa as

the ‘inverse temperature’ vector — more precisely its norm gives the length of the thermal

circle in the corresponding Euclidean solution. Thus, it is null at the horizon where the

Euclidean solution caps off and near the AdS boundary it is a time-like vector whose norm

gives the inverse temperature of the dual CFT.

For a time-independent solution in fluid/gravity correspondence, {βa,Λ
β
} can be com-

puted in a boundary derivative expansion. In the usual ingoing Eddington-Finkelstein

coordinates used in fluid/gravity correspondence, we get the expansion:

{βa,Λ
β
+ βbAb}|∞ = {βµ

CFT,Λ
CFT

β
+ βα

CFTA
CFT

α } =

{

uµ

T
,
µ

T

}

+ . . . ,

where {uµ, T, µ} are the velocity, temperature and chemical potential fields of the CFT

fluid. Wald argued that the on-shell /δQ
Noether

corresponding to such a {βa,Λ
β
} gives the

5For details regarding our conventions for differential forms, the reader can consult appendix B.1.
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entropy of the solution when restricted to the horizon,viz.,

/δQ
Noether

|hor = δJµ
S,CFT

⋆CFTdxµ + d(. . .) , (1.7)

where Jµ
S,CFT

is the entropy current of the dual CFT. Here the symbol |hor represents an

evaluation of /δQ
Noether

corresponding to {βa,Λ
β
} at the horizon on-shell, followed by a

pullback of the answer to the boundary along ingoing null geodesics (in accordance with

the usual fluid/gravity prescription for the CFT entropy current [50]). This expression

then provides us with a way of computing the entropy current for higher derivative

fluid/gravity correspondence.

The advantage of assigning entropy via differential Noether charge is that the first

law of thermodynamics follows immediately as a consequence of the Noether formalism.

Since for time-independent solutions the differential Noether charge is closed on-shell, viz.,

d/δQ
Noether

= 0, eq. (1.7) can equally well be evaluated near the boundary of AdS. Using

eq. (1.5) we can then write

/δQ
Noether

|hor = /δQ
Noether

|∞
= −

[

ηνσβ
σ
CFTδT

µν
CFT + (ΛCFT

β
+ βα

CFTA
CFT

α ) δJµ
CFT

]

⋆CFTdxµ + d(. . .) .
(1.8)

Comparing equations eq. (1.8) against eq. (1.7), we immediately get the CFT first law of

thermodynamics:

δJµ
S,CFT

+ ηνσβ
σ
CFTδT

µν
CFT + (ΛCFT

β
+ βα

CFTA
CFT

α ) δJµ
CFT = 0 . (1.9)

When the gravity Lagrangian L is manifestly covariant, i.e. if it does not contain

Chern-Simons terms, and if eq. (1.7) is integrated over the bifurcation surface, we can

remove the variations to write (by denoting L = Lcov for later purpose) [2, 4]

SWald =

∫

Bif
2πεb

a δLcov

δRa
bcd

εcd =

∫

S∞

Jµ
S,CFT

⋆CFTdxµ , (1.10)

where the left integral is over the bifurcation surface whereas the right integral is over

a time slice in the CFT.6 Here εab is the binormal at the bifurcation surface defined via

∇aβ
b|Bif = 2πεa

b and δLcov

δRa
bcd

refers to a functional differentiation of the Lagrangian treating

Riemann tensor as an independent field . In time-independent solutions, the integral over

the bifurcation surface can be replaced by a suitable integral over an arbitrary time slice

of the horizon [3].

Although this is the most common form of Wald entropy used in the literature, it is

inapplicable precisely in the systems we are interested in, where L contains Chern-Simons

terms. For these systems, Tachikawa [22] has proposed that eq. (1.10) be modified to

SWald-Tachikawa =

∫

Bif
2πεb

a δLcov

δRa
bcd

εcd +

∫

Bif

∞
∑

k=1

8πk ΓN (dΓN )2k−2 ∂PCFT

∂ trR2k

=

∫

S∞

Jµ
S,CFT

⋆CFTdxµ ,

(1.11)

6For a differential form V , the definition of V is given in eq. (B.11).
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where Lcov is the covariant part of the gravity Lagrangian and PCFT = dICS encodes the

information about the Chern-Simons part. Further, we have written the answer in terms

of the normal bundle connection ΓN and its curvature RN = dΓN on the bifurcation

surface with

ΓN ≡
[

1

2
εa

bΓa
b

]

Bif

, RN ≡
[

1

2
εa

bRa
b

]

Bif

= dΓN . (1.12)

Heuristically, we can motivate the correction in eq. (1.11) from the Chern-Simons terms

by thinking of it as descending from a Wald-like formula in one-dimension higher.7 In [22],

Tachikawa outlined an algorithm for modifying Iyer-Wald’s derivation [2, 4] in order to

directly derive eq. (1.11) along with an explicit derivation in AdS3 case. This algorithm

was later implemented in higher dimensions by Bonora et al. [23] who however found that

it resulted in extra non-covariant contributions to eq. (1.11) which vanish only in special

coordinate systems.8 This work is motivated by this unsatisfactory state of affairs and to

provide a manifestly covariant Noether formalism to derive eq. (1.11).

Summary of results. In this part, we will summarize our strategy to derive eq. (1.11).

We will begin in section 2 by assigning a covariant pre-symplectic structure over the solu-

tions of Einstein-Maxwell-Chern-Simons equations in eq. (1.2). As we have emphasized be-

fore, this is the crucial step in our formalism that makes it different from the algorithm pro-

posed by Tachikawa [22] which instead works with a non-covariant pre-symplectic structure.

In order to write down the pre-symplectic current for Chern-Simons terms, we intro-

duce generalized Hall conductivity tensors {σ̄FF
H

, σ̄FR
H

, σ̄RF
H

, σ̄RR
H

} which describe how the

Hall currents (defined in eq. (1.4)) vary with field-strengths/curvatures. Let us consider a

general variation of the field strengths/curvatures - in any dimensions, we can write the

corresponding variation in the Hall currents as

1√
−G

δ
(√

−G JaH

)

≡ 1

2

(

σ̄FF
H

)efa · δFef +
1

2

(

σ̄FR
H

)hefa

g
δRg

hef ,

1

2

1√
−G

δ
(√

−G (ΣH)abc

)

≡ 1

2

(

σ̄RF
H

)befa

c
· δFef +

1

2

(

σ̄RR
H

)bhefa

cg
δRg

hef .

(1.14)

It follows from the definition of Hall currents in eq. (1.4) that these Hall conductivities

{σ̄FF
H

, σ̄FR
H

, σ̄RF
H

, σ̄RR
H

} are completely antisymmetric in their last three contravariant in-

dices (i.e., efa indices in the equations above): hence, they can be thought of as tensor-

valued three-forms. Their Hodge-duals are (2n − 2)-forms in AdS2n+1 and they have a

simple expression in terms of PCFT , the anomaly polynomial of the dual CFT:

σFF
H

≡ ∂2PCFT

∂F ∂F
,

(

σRR
H

)bg

ch
≡ ∂2PCFT

∂Rc
b∂Rh

g
,

(

σFR
H

)g

h
≡

(

σRF
H

)g

h
≡ ∂2PCFT

∂F ∂Rh
g
. (1.15)

7This follows from an identity which holds on the higher-dimensional bifurcation surface:

2πεb
a ∂PCFT

∂Ra
b

∣

∣

∣

∣

Bif

= d

[

∞
∑

k=1

8πk ΓN (dΓN )2k−2 ∂PCFT

∂ trR2k

]
∣

∣

∣

∣

∣

Bif

. (1.13)

8We note that although the integrand in eq. (1.11) is not covariant, its integral over the bifurcation

surface is covariant modulo global issues.
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In terms of these Hall conductivities, we choose a manifestly covariant pre-symplectic

current corresponding to Chern-Simons terms:

(/δ
2
Ω

a

PSympl
)
H

=
1

2

1√
−G

δ1

[√
−G (ΣH)(bc)a

]

δ2Gbc −
1

2

1√
−G

δ2

[√
−G (ΣH)(bc)a

]

δ1Gbc

+ δ1Ae ·
(

σ̄FF
H

)efa · δ2Af + δ1Γ
c
be ·

(

σ̄RR
H

)bhefa

cg
· δ2Γg

hf

+ δ1Ae ·
(

σ̄FR
H

)hefa

g
δ2Γ

g
hf − δ2Ae ·

(

σ̄FR
H

)hefa

g
δ1Γ

g
hf .

(1.16)

We will then construct in section 3 a covariant Noether charge consistent with this

pre-symplectic current which takes the form

(/δQ
ab

Noether
)H =

[

∇hξ
g
(

σ̄RR
H

)hcabf

gd
+ (Λ + ξeAe) ·

(

σ̄FR
H

)cabf

d

]

δΓd
cf

+
[

∇hξ
g
(

σ̄RF
H

)habf

g
+ (Λ + ξeAe) ·

(

σ̄FF
H

)abf
]

· δAf

+
1

2

[

(ΣH)(cd)a ξb − (ΣH)(cd)b ξa
]

δGcd

+
1

2

ξd√
−G

δ
[√

−G Gcd

(

Σacb
H +Σbac

H +Σcab
H

)]

,

(1.17)

or in terms of differential forms

(/δQ
Noether

)H = δΓc
d ∧

[

∇bξ
a ∂2PCFT

∂Ra
b∂Rc

d

+ (Λ + iξA) · ∂
2PCFT

∂F ∂Rc
d

]

+ δA ·
[

∇bξ
a ∂

2PCFT

∂Ra
b∂F

+ (Λ + iξA) · ∂
2PCFT

∂F ∂F

]

− 1

2
δGcd (ΣH)(cd)a iξ

⋆dxa

− ξdδ

[

1

2
Gcd

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb)

]

.

(1.18)

In particular, we will show in section 4 that this differential Noether charge on a bifurcation

surface reduces to the Tachikawa formula (the Chern-Simons contribution in eq. (1.11)).

Outline. The organization of the rest of this paper is as follows. In section 2, we construct

a pre-symplectic current which leads to a manifestly covariant differential Noether charge

in section 3. In particular, we integrate this charge at the bifurcation surface to derive

the Tachikawa formula for black hole entropy in section 4. In section 5, we review the

generalization of Lee-Iyer-Wald method to Chern-Simons terms as proposed by Tachikawa

and compare with our formulation. We conclude this paper with some future directions in

section 6. For reader’s convenience, we provide the detail of the derivation of the differential

Noether charge for Chern-Simons terms in appendix A. In appendix B we summarize our

notation for differential forms and present our formulation in this language.
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2 Pre-symplectic current

We will begin our discussion of the Noether procedure which has two main ingredients:

the first is a pre-symplectic structure on the space of solutions we are interested in and the

second being the construction of the Noether charge. The main result of this section is the

construction of a covariant pre-symplectic current in the presence of higher dimensional

Chern-Simons terms.

First, in subsection 2.1, we will introduce the idea of a pre-sympletic current. An

explicit example of a pre-sympletic current in the Einstein-Maxwell theory will be given in

subsection 2.2. Then we will review in subsection 2.3 the discussion of Lee-Iyer-Wald [4,

8] in the case of Einstein-Maxwell system while the generalization of the Lee-Iyer-Wald

construction to Chern-Simons terms will be presented in section 5. As we will see, however,

such a pre-symplectic current in the presence of Chern-Simons terms is non-covariant.

We will thus propose a construction of a manifestly covariant pre-symplectic current in

subsection 2.4.

2.1 Basic idea

We start with a dynamical system whose equations of motion we collectively represent by

/δE . To be specific, let us consider a theory with dynamical fields being the metric Gab and

a gauge field Aa. Then, we can write the equations of motion as

/δE =
1

2
δGab T

ab + δAa · Ja , (2.1)

where {T ab, Ja} are some appropriate functionals of the fields {Gab, Aa}. The symbol /δ

denotes the fact that /δE involves one variation of fields. By solutions of these equations

of motion, we mean those configurations of {Gab, Aa} which satisfy {T ab, Ja} = 0. For

example, for the Einstein-Maxwell-Chern-Simons system we are interested in, the equations

of motion take the form T ab = (T ab)Ein-Max+Tab
H = 0 and Ja = (Ja)Ein-Max+JaH = 0 where

(T ab)Ein-Max ≡ − 1

8πG
N

[

Rab − 1

2
(R− 2Λcc)G

ab

]

+
1

g2
EM

[

F ac · F b
c −

1

4
GabFcd · F cd

]

,

(Ja)Ein-Max ≡ − 1

g2
EM

DbF
ab ,

(2.2)

and the Hall contributions Tab
H and JaH are given in eq. (1.4) and just below.

The next data we will need is the pre-symplectic current9 denoted by (/δ
2
Ω

PSympl
)a.

This is defined such that10

∇a(/δ
2
Ω

PSympl
)a =

1√
−G

δ1

(√
−G /δ2E

)

− 1√
−G

δ2

(√
−G /δ1E

)

, (2.3)

9The adjective ‘symplectic’ here refers to the fact that this current can be used to define a symplectic

structure on the space of configurations thus allowing us to treat the space of configurations like a

phase-space. The adjective ‘pre’ here refers to the fact that to define the symplectic structure, often

some more work is needed — for example, it is often the case that we have to identify the configurations

which are gauge equivalent before we can define a sensible symplectic structure. We will ignore such

complications in the rest of this paper.
10We note that our pre-symplectic current is negative of the one introduced by Lee-Wald [8].
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i.e., the divergence of the pre-symplectic current is equal to the anti-symmetrized variation

of the equations of motion. The symbol /δ
2
denotes the fact that (/δ

2
Ω

PSympl
)a involves two

variations of the underlying fields. In our example with eq. (2.1), this equation becomes

∇a(/δ
2
Ω

PSympl
)a =

1

2

1√
−G

δ1

[√
−G T ab

]

δ2Gab − 1

2

1√
−G

δ2

[√
−G T ab

]

δ1Gab

+
1√
−G

δ1

[√
−G Ja

]

· δ2Aa − 1√
−G

δ2

[√
−G Ja

]

· δ1Aa .

(2.4)

We note that given arbitrary equations of motion, the existence of a pre-symplectic

current is not always guaranteed. However, as we will show below, if, for example, the

equations of motion are derived by varying a manifestly covariant Lagrangian, then we are

guaranteed at least to have a candidate for a pre-symplectic current [4, 8].

We now proceed towards finding the pre-symplectic current for the system we are in-

terested in: the Einstein-Maxwell Chern-Simons theory. As a prelude, we will first examine

the simpler case of the Einstein-Maxwell theory.

2.2 Pre-symplectic current for Einstein-Maxwell theory

The equations of motion for the Einstein-Maxwell theory are given by

(/δE)Ein-Max = −1

2
δGab ×

1

8πG
N

[

Rab − 1

2
(R− 2Λcc)G

ab

]

+
1

2
δGab ×

1

g2
EM

[

F ac · F b
c −

1

4
F cd · Fcd Gab

]

− δAa ·
1

g2
EM

DbF
ab .

(2.5)

The most commonly used pre-symplectic current for this system is

(/δ
2
Ω

a

PSympl
)Ein-Max =

1√
−G

δ1

(
√
−G

8πG
N

Gc[aδ
b]
d

)

δ2Γ
d
cb −

1√
−G

δ2

(
√
−G

8πG
N

Gc[aδ
b]
d

)

δ1Γ
d
cb

+
1√
−G

δ1

(
√
−G

g2
EM

F ab

)

· δ2Ab −
1√
−G

δ2

(
√
−G

g2
EM

F ab

)

· δ1Ab .

(2.6)

We will show in the next subsection that this current obeys eq. (2.3).

2.3 Lee-Iyer-Wald prescription: pre-symplectic potential

It is often convenient to derive the pre-symplectic current from a pre-symplectic potential

denoted by /δΘ
a

PSympl
via

/δ
2
Ω

a

PSympl
= − 1√

−G
δ1

[√
−G /δ2Θ

a

PSympl

]

+
1√
−G

δ2

[√
−G /δ1Θ

a

PSympl

]

. (2.7)

The existence of such a pre-symplectic potential is closely related to the existence of

an underlying Lagrangian from which the equations of motion can be derived. To see this,
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we take the divergence of eq. (2.7) so that eq. (2.3) becomes

1√
−G

δ1

[√
−G

(

/δ2E +∇a/δ2Θ
a

PSympl

) ]

=
1√
−G

δ2

[√
−G

(

/δ1E +∇a/δ1Θ
a

PSympl

) ]

.

(2.8)

This is the integrability condition for the existence of a Lagrangian density L such that

/δE +∇a/δΘ
a

PSympl
=

1√
−G

δ
[√

−G L
]

. (2.9)

Thus, the pre-symplectic potential can be thought of as the boundary term that needs to

be subtracted from the variation of the Lagrangian density to get the equations of motion.

This demonstrates that, for any equations of motion obtained from a Lagrangian, we can

define a pre-symplectic potential and in turn a pre-symplectic current.

Let us illustrate this with the example of Einstein-Maxwell theory. The standard

Einstein-Maxwell Lagrangian density is given by

L
Ein-Max

=
1

16πG
N

(R− 2Λcc)−
1

4g2
EM

Fab · F ab

= −
[

1

2
Rd

cab

Gc[aδ
b]
d

8πG
N

+
Λcc

8πG
N

+
1

4
Fab ·

F ab

g2
EM

]

.

(2.10)

Varying this and adding an appropriate boundary term give the Einstein-Maxwell equa-

tions,viz.,

1√
−G

δ
{√

−G L
Ein-Max

}

+∇a

{

Gc[aδ
b]
d

8πG
N

δΓd
cb +

F ab

g2
EM

· δAb

}

= (/δE)Ein-Max . (2.11)

We can thus take the pre-symplectic potential as11

− (/δΘ
a

PSympl
)
Ein-Max

=
Gc[aδ

b]
d

8πG
N

δΓd
cb +

F ab

g2
EM

· δAb . (2.14)

Varying this potential, we get the pre-symplectic current that we quoted before in eq. (2.6).

By construction, this pre-symplectic current then satisfies eq. (2.3).

11It is sometimes convenient to write this pre-symplectic potential as

(/δΘ
a

PSympl
)
Ein-Max

= 2δΓd
cb

∂L
Ein-Max

∂Rd
cab

+ 2δAb ·
∂L

Ein-Max

∂Fab

, (2.12)

and the corresponding pre-symplectic current as

− (/δ
2
Ω

a

PSympl
)Ein-Max =

1√
−G

δ1

(

2
√
−G

∂L
Ein-Max

∂Rd
cab

)

δ2Γ
d
cb −

1√
−G

δ2

(

2
√
−G

∂L
Ein-Max

∂Rd
cab

)

δ1Γ
d
cb

+
1√
−G

δ1

(

2
√
−G

∂L
Ein-Max

∂Fab

)

· δ2Ab −
1√
−G

δ2

(

2
√
−G

∂L
Ein-Max

∂Fab

)

· δ1Ab .

(2.13)

Written in this form, these Lee-Iyer-Wald pre-symplectic potential and current extend to Lovelock theories.
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Given a Lagrangian density, this method then directly gives a candidate for a

pre-symplectic current. We note that the pre-symplectic potential computed via an

integration by parts as shown above often depends on the order of integration by parts.

A crucial part of the Lee-Iyer-Wald prescription [4, 8] is, in fact, to prescribe a particular

order of integration by parts which produces covariant pre-symplectic potentials for

manifestly covariant Lagrangians. This, for example, excludes Chern-Simons terms which

are of interest to us in this paper.

2.4 Pre-symplectic current for Hall currents

Now we want to choose an appropriate pre-symplectic structure for the Hall current con-

tribution (i.e, terms in equations of motion coming from varying Chern-Simons terms).

This can be done via the Lee-Iyer-Wald prescription [4, 8] which we had described in our

previous subsection. This is the pre-symplectic structure chosen by Tachikawa [22, 23].

We will compute this pre-symplectic current explicitly in section 5 and show that such a

prescription results in a non-covariant answer in dimensions greater than three.

We note that a non-covariant pre-symplectic current is a serious shortcoming. Usually,

we try to derive the symplectic structure on the space of solutions by identifying the

directions under which the pre-symplectic current is degenerate or non-invertible. With

the non-covariant pre-symplectic current, this procedure would in general result in a

situation whereby two configurations which are gauge equivalent can no more be identified

as a single physical configuration. This breakdown of gauge redundancy would then render

the theory inconsistent.

In light of these complications, we will adopt in this subsection an alternate procedure

which produces a manifestly covariant pre-symplectic current that solves eq. (2.3). We

will refer the reader to section 5 for a comparison of our answer to the one obtained by

Tachikawa’s extension of the Lee-Iyer-Wald prescription.

The Hall current contribution to the equations of motion (coming from a variation of

Chern-Simons terms) is given by

(/δE)
H
=

1

2
δGab (TH)ab + δAa · JaH

= ∇a

[

1

2
δGbc (ΣH)(bc)a

]

+
1

2
δΓc

ba (ΣH)ab c + δAa · JaH .
(2.15)

In the second equality, we have used

1

2
δGab(TH)ab = ∇c

[

1

2
(ΣH)(ab)c δGab

]

+
1

2
δΓc

ba (ΣH)ab c , (2.16)

which is obtained from the following relation related to the anti-symmetric property of the

spin Hall current (ΣH)cab = − (ΣH)cba:

δΓa
bc (ΣH)cb a = −∇aδGbc (ΣH)bca = −(∇cδGab) (ΣH)(ab)c . (2.17)

Our strategy for the construction of the pre-symplectic current is as follows: we begin

by computing the anti-symmetrized variation of eq. (2.15) which should be equal to the

– 12 –
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divergence of the corresponding contribution to a pre-symplectic current (see eq. (2.3)) .

We use this fact to write down a manifestly covariant pre-symplectic current which has the

correct divergence. We first get

1√
−G

δ1

[√
−G (/δ2E)H

]

− 1√
−G

δ2

[√
−G (/δ1E)H

]

= ∇a

{

1

2

1√
−G

δ1

[√
−G (ΣH)(bc)a

]

δ2Gbc −
1

2

1√
−G

δ2

[√
−G (ΣH)(bc)a

]

δ1Gbc

}

+
1

2

1√
−G

δ1

[√
−G (ΣH)ab c

]

δ2Γ
c
ba −

1

2

1√
−G

δ2

[√
−G (ΣH)ab c

]

δ1Γ
c
ba

+
1√
−G

δ1

[√
−G JaH

]

· δ2Aa −
1√
−G

δ2

[√
−G JaH

]

· δ1Aa .

(2.18)

The first line on the right hand side is already in the form of a total divergence. To simplify

the next two lines, we consider a general variation of the charge and spin Hall currents:

1√
−G

δ
(√

−G JaH

)

≡ 1

2

(

σ̄FF
H

)efa · δFef +
1

2

(

σ̄FR
H

)hefa

g
δRg

hef ,

1

2

1√
−G

δ
(√

−G (ΣH)abc

)

≡ 1

2

(

σ̄RF
H

)befa

c
· δFef +

1

2

(

σ̄RR
H

)bhefa

cg
δRg

hef ,

(2.19)

where the tensors {σ̄FF
H

, σ̄FR
H

, σ̄RF
H

, σ̄RR
H

} are the generalized Hall conductivities defined in

eq. (1.15).

Before proceeding, we consider an example to see how these conductivity tensors look

like. Let us take the mixed Chern-Simons term with the anomaly polynomial PCFT =

c
M
F 2 ∧ tr[R2] in AdS7 as an example. Then the corresponding charge and spin Hall

currents are given by

JaH = −2c
M

1

(2!)3
εa b1b2c1c2c3c4Fb1b2R

e
fc1c2R

f
e c3c4 ,

(ΣH)abc = −4c
M

1

(2!)3
εa b1b2b3b4c1c2Fb1b2Fb3b4R

b
c c1c2 .

(2.20)

These expressions can then be varied to give the generalized Hall conductivities

(

σ̄FF
H

)abc
= −2c

M

1

(2!)2
εa b c c1c2c3c4Re

fc1c2R
f
e c3c4 ,

(

σ̄FR
H

)eabc

f
=

(

σ̄RF
H

)eabc

f
= −4c

M

1

(2!)2
εa b c b1b2c1c2Fb1b2R

e
fc1c2 ,

(

σ̄RR
H

)egabc

fh
= −2c

M
δehδ

g
f

1

(2!)2
εa b c b1b2b3b4Fb1b2Fb3b4 .

(2.21)

Thus, given the Hall currents, it is straightforward to compute the conductivity tensors.

A useful property of the conductivity tensors is that their covariant divergence (taken

with respect to one of its form indices) is zero:

Da

(

σ̄FF
H

)efa
= 0 , Da

(

σ̄FR
H

)hefa

g
= 0 ,

Da

(

σ̄RF
H

)befa

c
= 0 , Da

(

σ̄RR
H

)bhefa

cg
= 0 .

(2.22)
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Further, they satisfy reciprocity type relations

α ·
(

σ̄FF
H

)efa · β = β ·
(

σ̄FF
H

)efa · α ,
(

σ̄RR
H

)bhefa

cg
=

(

σ̄RR
H

)hbefa

gc
,

(

σ̄FR
H

)befa

c
=

(

σ̄RF
H

)befa

c
.

(2.23)

Here {α, β} are two arbitrary scalars transforming in the adjoint representation of the

gauge group. We will need later another set of identities which are useful in getting back

the Hall currents from the Hall conductivities:

δafJ
b
H − δbfJ

a
H =

(

σ̄FF
H

)eab · Fef +
(

σ̄FR
H

)heab

g
Rg

hef ,

1

2
δaf (ΣH)bcd −

1

2
δbf (ΣH)acd =

(

σ̄RF
H

)ceab

d
· Fef +

(

σ̄RR
H

)cheab

dg
Rg

hef .
(2.24)

All these identities can be easily checked for the example of the mixed Chern-Simons term

in AdS7.

We now turn to using these properties of the generalized Hall conductivities to write

down a covariant pre-symplectic current for arbitrary Chern-Simons terms. The fourth

and third lines of eq. (2.18) are rewritten respectively as

1√
−G

δ1

[√
−G JaH

]

· δ2Aa −
1√
−G

δ2

[√
−G JaH

]

· δ1Aa

= ∇a

[

δ1Ae ·
(

σ̄FF
H

)aef · δ2Af

]

+∇a

[

δ1Ae ·
(

σ̄FR
H

)haef

g
δ2Γ

g
hf − δ2Ae ·

(

σ̄FR
H

)haef

g
δ1Γ

g
hf

]

− 1

2
δ2Γ

g
ha

(

σ̄RF
H

)haef

g
· δ1Fef +

1

2
δ1Γ

g
ha

(

σ̄RF
H

)haef

g
· δ2Fef ,

(2.25)

and

1

2

1√
−G

δ1

[√
−G (ΣH)ab c

]

δ2Γ
c
ba −

1

2

1√
−G

δ2

[√
−G (ΣH)ab c

]

δ1Γ
c
ba

= ∇a

[

δ1Γ
c
be ·

(

σ̄RR
H

)bhefa

cg
· δ2Γg

hf

]

+
1

2
δ2Γ

g
ha

(

σ̄RF
H

)haef

g
· δ1Fef − 1

2
δ1Γ

g
ha

(

σ̄RF
H

)haef

g
· δ2Fef .

(2.26)

By substituting eqs. (2.25) and (2.26) into eq. (2.18), we finally obtain the pre-

symplectic current for our formulation:

(/δ
2
Ω

PSympl
)a
H

=
1

2

1√
−G

δ1

[√
−G (ΣH)(bc)a

]

δ2Gbc −
1

2

1√
−G

δ2

[√
−G (ΣH)(bc)a

]

δ1Gbc

+ δ1Ae ·
(

σ̄FF
H

)efa · δ2Af + δ1Γ
c
be ·

(

σ̄RR
H

)bhefa

cg
· δ2Γg

hf

+ δ1Ae ·
(

σ̄FR
H

)hefa

g
δ2Γ

g
hf − δ2Ae ·

(

σ̄FR
H

)hefa

g
δ1Γ

g
hf .

(2.27)

This current is manifestly covariant (recall that variations of the gauge field and Christoffel

connection transform covariantly) and, by construction, it satisfies

∇a(/δ
2
Ω

PSympl
)a
H
=

1√
−G

δ1

[√
−G (/δ2E)H

]

− 1√
−G

δ2

[√
−G (/δ1E)H

]

, (2.28)
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as required. Eq. (2.27) is the main result of this section. In the next section, we will use

this pre-symplectic current to formulate a manifestly covariant differential Noether charge.

3 Noether charge

Here, we will proceed to the construction of the differential Noether charge for an arbi-

trary diffeomorphism/gauge transformation. After introducing our notations for diffeomor-

phism/gauge transformation in subsection 3.1, we outline the basic idea behind the notion

of differential Noether charge in subsection 3.2. As an example, we take up the well-known

Lee-Iyer-Wald construction of differential Noether charge for the Einstein-Maxwell system

in subsection 3.3. We then turn to sketch the derivation of differential Noether charge for

Chern-Simons terms in subsection 3.4 relegating most of the details to appendix A.

3.1 Diffeomorphisms and gauge transformations

We begin this subsection by introducing our notation for diffeomorphisms and gauge trans-

formations. We will adopt here a notation which admits a natural generalization to non-

Abelian gauge transformations.

Given a covariant tensor Θa
b transforming in a specific representation of the gauge

group, the action of diffeomorphisms and gauge transformations is defined via

δχΘ
a
b = £ξΘ

a
b + [Θa

b,Λ]

= ξc∂cΘ
a
b − (∂cξ

a)Θc
b +Θa

c (∂bξ
c) + [Θa

b,Λ]

= ξc (∇cΘ
a
b + [Ac,Θ

a
b])− (∂cξ

a)Θc
b +Θa

c (∂bξ
c) + [Θa

b,Λ + ξcAc] .

(3.1)

Here £ξ denotes Lie derivative with respect to the vector ξa parametrizing diffeomorphism,

while Λ is the gauge parameter in the adjoint representation of the gauge group and the

commutator [Λ, ·] is the natural adjoint action of the gauge group. We use χ ≡ {ξa,Λ} to

jointly denote diffeomorphisms and gauge transformations. In the last line of eq. (3.1), we

have defined the covariant derivative

∇cΘ
a
b ≡ ∂cΘ

a
b + Γa

dcΘ
d
b − Γd

bcΘ
a
d , (3.2)

and the corresponding gauge covariant derivative is DcΘ
a
b ≡ ∇cΘ

a
b + [Ac,Θ

a
b]. We note

that the above transformations in eq. (3.1) are covariant provided ξa transforms like a

vector and if the combination Λ + ξcAc transforms covariantly like a scalar in the adjoint

representation.

We have chosen an anti-hermitian basis for the Lie algebra and we have suppressed

all gauge indices for convenience. We can write Λ = −iTA(ΛReal)
A etc. with TA being the

standard hermitian gauge group generators. Further, a trace over gauge indices is indicated

by “·”, a ‘center dot’. For example, if Aa ≡ AC
a (−iTC) and Ja ≡ JaC(iTC), then Aa · Ja =

AC
a J

aD Tr (TCTD). In this anti-hermitian convention, Abelian gauge fields are purely

imaginary, i.e., if Aa is an Abelian gauge field, then Aa = −i(Aa)Real. The corresponding

Abelian current would be Ja = i(Ja)Real so that Aa · Ja = (Aa)Real(J
a)Real. The Abelian

action on a field Ψq with Abelian charge q is given by [Λ,Ψq] = qΛΨq = −iq(Λ)RealΨq.
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We now turn to the action of δχ on various quantities. We can write the transformation

of background gauge field/metric as

δχAa = £ξAa + [Aa,Λ] + ∂aΛ = ∂aΛ + [Aa,Λ] +Ac∂aξ
c + ξc∂cAa

= ∂a (Λ + ξcAc) + [Aa, Λ + ξcAc] + ξcFca ,

δχGab = £ξGab = Gcb∂aξ
c +Gac∂bξ

c + ξc∂cGab

= ∇aξb +∇bξa ,

(3.3)

where Fab denotes the field strength for Aa.

The Christoffel connection Γb
ac, being the unique torsionless and metric-compatible

connection, is completely determined by the background metric Gac as

Γb
ac ≡

1

2
Gbd [∂aGcd + ∂cGad − ∂dGac] . (3.4)

We will use this connection and the associated covariant derivative from now on unless

specified. For the Christoffel connection, the transformation is

δχΓ
a
bc =

1

2
Gad [∇b (∇cξd +∇dξc) +∇c (∇bξd +∇dξb)−∇d (∇bξc +∇cξb)]

= ∇c∇bξ
a + ξdRa

bdc .
(3.5)

The field strength Fab and the curvature tensor Rd
abc transform as covariant tensors under

gauge transformations and diffeomorphisms. We also note that variations of gauge field

and Christoffel connection, i.e. δAa and δΓa
bc, transform covariantly.

It is sometimes convenient to focus only on the non-covariant part of transformations

and drop the covariant parts. We denote this part by defining

δnon-covχ (. . .) ≡ δχ(. . .)−£ξ(. . .)− [. . . , Λ] . (3.6)

It follows from eq. (3.1) that δnon-covχ Θa
b = 0 for any covariant tensor field Θa

b. The

connections, on the other hand, transform non-covariantly as

δnon-covχ Aa = ∂aΛ , δnon-covχ Γa
bc = ∂c∂bξ

a . (3.7)

3.2 Differential Noether charge

We begin with eq. (2.3) where we take the second variation to be the diffeomorphism/gauge

variation δχ generated by χ = {ξa,Λ}:

∇a(/δ/δχΩPSympl
)a =

1√
−G

δ
(√

−G /δχE
)

− 1√
−G

δχ

(√
−G /δE

)

. (3.8)

This implies that∇a(/δ/δχΩPSympl
)a ≃ 0 on-shell, i.e., once we impose the equations of motion

/δE = 0 . Here we have used the symbol ≃ to denote that the equality holds only on-shell.

Assuming that there are no cohomological obstructions, the statement

∇a(/δ/δχΩPSympl
)a ≃ 0 implies that there exists a (/δQ

Noether
)ab such that

−∇b (/δQNoether
)ab ≃ (/δ/δχΩPSympl

)a (3.9)
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with (/δQ
Noether

)ab = −(/δQ
Noether

)ba. We will call a (/δQ
Noether

)ab that satisfies the above equa-

tion as the differential Noether charge associated with the diffeomorphism/gauge variation

δχ. Our aim is to construct the differential Noether charge for the Einstein-Maxwell-Chern-

Simons system so that one can use it to assign charges to solutions of this system.

Often in the construction of the differential Noether charge, it is convenient to work

off-shell and impose the equations of motion /δE = 0 only at the end. In order to do this,

we need to lift eq. (3.9) to an off-shell statement. In case of covariant equations of motion,

this can be done using Noether’s theorem.

Assuming /δE transforms as a scalar under diffeomorphism/gauge transformations, the

second term on the right hand side of eq. (3.8) becomes

1√
−G

δχ

(√
−G /δE

)

= (∇aξ
a)/δE + ξa∇a(/δE) = ∇a

(

ξa /δE
)

, (3.10)

so that we can write eq. (3.8) as

∇a

[

(/δ/δχΩPSympl
)a + ξa /δE

]

=
1√
−G

δ
(√

−G /δχE
)

. (3.11)

We then turn our attention to the right hand side of eq. (3.11). To simplify this

term we now invoke Noether’s theorem (see [15] for example). Noether’s theorem asserts

the following: If the system under question is invariant under the diffeomorphism/gauge

variation δχ generated by χ = {ξa,Λ},12 then there exists a Noether current Na such that

/δχE = ∇aN
a. Further, we can always choose an on-shell-vanishing Na, i.e., a Noether

current Na such that Na ≃ 0.

To illustrate this, we consider the example where the only dynamical fields are metric

and gauge fields. We then have

/δχE =
1

2
T abδχGab + Ja · δχAa

= T ab∇bξa + ξaJb · F ab + Ja ·Da (Λ + ξcAc) +
1

2
T ab (∇aξb −∇bξa)

= ∇a

[

ξbT
ba + Ja · (Λ + ξcAc)

]

− ξa

[

∇bT
ab − Jb · F ab

]

− (DaJ
a) · (Λ + ξcAc)

+
1

2

(

T ab − T ba
)

∇aξb .

(3.12)

If the equations of motion describe a system which is diffeomorphism/gauge invariant, then

we have the following Bianchi identities (which hold off-shell):

∇bT
ab = Jb · F ab , T ab = T ba , DaJ

a = 0 . (3.13)

We can therefore choose the on-shell-vanishing Noether current as

Na = ξbT
ab + Ja · (Λ + ξcAc) . (3.14)

12The reader should note that theories with Chern-Simons terms are included in this set.
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Let us now use such a Noether current to simplify eq. (3.11) to

∇a

[

(/δ/δχΩPSympl
)a + ξa /δE

]

= ∇a

[

1√
−G

δ
(√

−G Na
)

]

, (3.15)

or

∇a

[

(/δ/δχΩPSympl
)a + ξa /δE − 1√

−G
δ
(√

−G Na
)

]

= 0 . (3.16)

This is the off-shell generalization of the statement ∇a(/δ/δχΩPSympl
)a ≃ 0. The statement

−∇b (/δQNoether
)ab ≃ (/δ/δχΩPSympl

)a then generalizes off-shell to

−∇b (/δQNoether
)ab = (/δ/δχΩPSympl

)a + ξa /δE − 1√
−G

δ
(√

−G Na
)

, (3.17)

or
1√
−G

δ
(√

−G Na
)

= (/δ/δχΩPSympl
)a + ξa /δE +∇b (/δQNoether

)ab . (3.18)

This expression shows that (/δQ
Noether

)ab can be thought of as the surface contribution to

the variation of the Noether current Na, thus justifying the name ‘differential Noether

charge’. In the following subsections, we will apply the above Noether procedure to the

Einstein-Maxwell-Chern-Simons system.

3.3 Differential Noether charge for Einstein-Maxwell system

Our goal in this subsection is to compute the differential Noether charge for Einstein-

Maxwell system. We begin by writing down the on-shell vanishing Noether current for this

system:

(Na)Ein-Max = − ξb

8πG
N

[

Ra
b −

1

2
(R− 2Λcc) δ

a
b

]

+
ξb

g2
EM

[

F ac · Fbc −
1

4
F cd · Fcdδ

a
b

]

− (Λ + ξcAc)

g2
EM

·DbF
ab .

(3.19)

This current is, by construction, proportional to the Einstein-Maxwell equations of motion.

Hence, it vanishes on any solution of Einstein-Maxwell system (thus the adjective ‘on-shell

vanishing’).

Let us rewrite this Noether current in a suggestive way:

(Na)Ein-Max = ξa
[

1

16πG
N

(R− 2Λcc)−
1

4g2
EM

F cd · Fcd

]

− 1

8πG
N

ξbRa
b +

1

g2
EM

[

ξbF ac · Fbc − (Λ + ξcAc) ·DbF
ab
]

.

(3.20)

We recognize the standard Einstein-Maxwell Lagrangian density (see eq. (2.10)) in the first

line of eq. (3.20). On the other hand we can rewrite the second line of eq. (3.20) using the

following identities:

F ab · δχAb = F ab ·Db (Λ + ξcAc) + F ac · ξbFbc

= ∇b

[

(Λ + ξcAc) · F ab
]

+ ξbF ac · Fbc − (Λ + ξcAc) ·DbF
ab ,

(3.21)
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and

Gc[aδ
b]
d δχΓ

d
cb = Gc[aδ

b]
d ∇b∇cξ

d +Gc[aδ
b]
d ξfRd

cfb

= ∇b

(

Gc[aδ
b]
d ∇cξ

d
)

− ξbRa
b ,

(3.22)

so that we have the following expression for the Noether current (Na)Ein-Max:

(Na)Ein-Max = ξaLEin-Max +
1

8πG
N

Gc[aδ
b]
d δχΓ

d
cb +

1

g2
EM

F ab · δχAb

−∇b

{

1

8πG
N

Gc[aδ
b]
d ∇cξ

d +
1

g2
EM

F ab · (Λ + ξcAc)

}

.

(3.23)

We recognize that the pre-symplectic potential for the Einstein-Maxwell system (see

eq. (2.14) with the variation set equal to a diffeomorphism/gauge variation) is

− (/δχΘ
a

PSympl
)Ein-Max =

1

8πG
N

Gc[aδ
b]
d δχΓ

d
cb +

1

g2
EM

F ab · δχAb . (3.24)

Further, defining

− (K ab
χ )Ein-Max ≡ 1

8πG
N

Gc[aδ
b]
d ∇cξ

d +
1

g2
EM

F ab · (Λ + ξcAc) , (3.25)

which is often termed the Komar charge, we can write the Einstein-Maxwell contribution

to the Noether current in the following form:

(Na)Ein-Max =
{

ξaL− (/δχΘPSympl
)a +∇bK

ab
χ

}

Ein-Max
. (3.26)

We will call this form of decomposition for the on-shell-vanishing Noether current as the

Komar decomposition.

The Komar decomposition exists for any covariant Lagrangian.13 To see why this

might be the case, we consider the divergence of the vector ξaL− (/δχΘPSympl
)a:

∇a

[

ξaL− (/δχΘPSympl
)a
]

= ∇a

(

ξaL
)

− 1√
−G

δχ

(√
−G L

)

+ /δχE = /δχE , (3.28)

where we have used the fact that, if L is a scalar, then (
√
−G)−1 δχ

(√
−G L

)

= ∇a

(

ξaL
)

.

This shows that the vector ξaL − (/δχΘPSympl
)a is a Noether current by itself (we note

however that it is not on-shell vanishing). The Komar decomposition then follows from

the statement that any two Noether currents differ by a total divergence.

The Komar decomposition plays an important role in the Lee-Iyer-Wald method for

computing differential Noether charge. We consider a general variation applied to the

Komar decomposition written in the form

−∇bK
ab
χ = ξaL− (/δχΘPSympl

)a −Na. (3.29)

13For example, if we rewrite the Einstein-Maxwell Komar charge as

(K ab

χ )Ein-Max ≡ 2
∂L

Ein-Max

∂Rd
cab

∇cξ
d + 2

∂L
Ein-Max

∂Fab

· (Λ + ξcAc) , (3.27)

then this form can be extended to Lovelock theories.
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Then we get

−∇b

[

1√
−G

δ
(√

−G K ab
χ

)

]

= ξa
1√
−G

δ
(√

−G L
)

− 1√
−G

δ
[√

−G (/δχΘPSympl
)a
]

− 1√
−G

δ
(√

−G Na
)

.

(3.30)

We now use eq. (2.9) as well as the following relation to rewrite the first and second terms

on the right hand side:

1√
−G

δ
[√

−G (/δχΘPSympl
)a
]

=
1√
−G

δχ

[√
−G (/δΘ

PSympl
)a
]

− (/δ/δχΩPSympl
)a

= (/δΘ
PSympl

)a∇bξ
b + ξb∇b(/δΘPSympl

)a − (∇bξ
a)(/δΘ

PSympl
)b − (/δ/δχΩPSympl

)a

= −∇b

[

ξa(/δΘ
PSympl

)b − (/δΘ
PSympl

)aξb
]

+ ξa∇b(/δΘPSympl
)b − (/δ/δχΩPSympl

)a .

(3.31)

Here we have assumed (/δχΘPSympl
)a transforms like a vector and is invariant under gauge

transformations. Substituting these relations back into eq. (3.30), we get

−∇b

[

1√
−G

δ
(√

−G K ab
χ

)

+ ξa(/δΘ
PSympl

)b − (/δΘ
PSympl

)aξb
]

= (/δ/δχΩPSympl
)a + ξa /δE − 1√

−G
δ
(√

−G Na
)

.

(3.32)

From this expression, we can then identify the differential Noether charge according to the

Lee-Iyer-Wald prescription (for systems with covariant Lagrangian and symplectic poten-

tial) as

/δQ
ab

Noether
=

1√
−G

δ
(√

−G K ab
χ

)

+ ξa(/δΘ
PSympl

)b − (/δΘ
PSympl

)aξb. (3.33)

For the Einstein-Maxwell system, by using eqs. (2.14) and (3.25), this differential

Noether charge is written as

(/δQ
ab

Noether
)
Ein-Max

= − 1√
−G

δ

[√
−G

(

1

8πG
N

Gc[aδ
b]
d ∇cξ

d +
1

g2
EM

F ab · (Λ + ξcAc)

)]

− ξa
[

1

8πG
N

Gc[bδ
f ]
d δΓd

cf +
1

g2
EM

F bf · δAf

]

+ ξb
[

1

8πG
N

Gc[aδ
f ]
d δΓd

cf +
1

g2
EM

F af · δAf

]

.

(3.34)

3.4 Differential Noether charge for Chern-Simons terms

A differential Noether charge for theories with Chern-Simons terms was constructed by

Tachikawa by generalizing the Lee-Iyer-Wald method [22, 23]. As we will demonstrate in

section 5, this charge however turns out to be non-covariant. In this subsection, we will

instead construct a manifestly covariant differential Noether charge.
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We now proceed to evaluate the contribution to the differential Noether charge from

Chern-Simons terms by directly using its relation with the pre-symplectic current:

−∇b(/δQ
ab

Noether
)H = (/δ/δχΩPSympl

)a
H
+ ξa(/δE)

H
− 1√

−G
δ
[√

−G Na
H

]

. (3.35)

The Hall contribution Na
H

to the on-shell vanishing Noether current for this system is

given by

Na
H
= ξb(TH)ab + (Λ + ξcAc) · JaH

= ∇b

[

1

2
ξc

(

Σacb
H +Σbac

H +Σcab
H

)

]

+
1

2
Σ
(bc)a
H δχGbc

+
1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH .

(3.36)

Using this along with our covariant expression for the pre-symplectic current, we get

(/δ/δχΩPSympl
)a
H
+ ξa(/δE)

H
− 1√

−G
δ
[√

−G Na
H

]

= −∇b

{

1

2

[

(ΣH)(cd)a ξb − ξa (ΣH)(cd)b
]

δGcd

+
1

2

ξd√
−G

δ
[√

−G Gcd

(

Σacb
H +Σbac

H +Σcab
H

)]

}

+ ξa
[

1

2
δΓd

cb (ΣH)bc d + δAb · JbH
]

− 1√
−G

δ

[√
−G

(

1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH
) ]

+ δAe ·
(

σ̄FF
H

)efa · δχAf + δΓc
be ·

(

σ̄RR
H

)bhefa

cg
· δχΓg

hf

+ δAe ·
(

σ̄FR
H

)hefa

g
δχΓ

g
hf − δχAe ·

(

σ̄FR
H

)hefa

g
δΓg

hf .

(3.37)

The details of the computation that lead to this expression can be found in appendix A.

We can then express the right hand side of eq. (3.37) as a total divergence to give

(/δQ
ab

Noether
)H =

[

∇hξ
g
(

σ̄RR
H

)hcabf

gd
+ (Λ + ξeAe) ·

(

σ̄FR
H

)cabf

d

]

δΓd
cf

+
[

∇hξ
g
(

σ̄RF
H

)habf

g
+ (Λ + ξeAe) ·

(

σ̄FF
H

)abf
]

· δAf

+
1

2

[

(ΣH)(cd)a ξb − (ΣH)(cd)b ξa
]

δGcd

+
1

2

ξd√
−G

δ
[√

−G Gcd

(

Σacb
H +Σbac

H +Σcab
H

)]

,

(3.38)

which is a manifestly covariant differential Noether charge as required. In appendix B, we
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convert the above expression into differential forms:

(/δQ
Noether

)H = δΓc
d ∧

[

∇bξ
a ∂2PCFT

∂Ra
b∂Rc

d
+ (Λ + iξA) · ∂

2PCFT

∂F ∂Rc
d

]

+ δA ·
[

∇bξ
a ∂

2PCFT

∂Ra
b∂F

+ (Λ + iξA) · ∂
2PCFT

∂F ∂F

]

− 1

2
δGcd (ΣH)(cd)a iξ

⋆dxa

− ξdδ

[

1

2
Gcd

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb)

]

.

(3.39)

This manifestly covariant differential Noether charge is the main result of this paper.

In the next section, we evaluate this differential Noether charge at the bifurcation

surface to derive the Tachikawa formula (see eq. (1.11)). In an accompanying paper [49],

we will use eq. (3.39) to covariantly assign both entropy and charges to the black hole

solutions found in [37] and compare them against the dual CFT expectations.

4 A covariant derivation of Tachikawa formula

In this section, we give a covariant derivation of the Tachikawa formula described in

eq. (1.11) using our differential Noether charge eq. (3.39). Our derivation here is aimed

at neatly sidestepping various issues raised by Bonora et al. [23] regarding Tachikawa’s

extension of the Lee-Iyer-Wald method. In particular, unlike the derivation in [23], we do

not have to pass to special coordinates/gauges in order to suppress various non-covariant

contributions that arise in Tachikawa’s proposal.

Let us begin by recalling that at the bifurcation surface we have ξa|Bif = 0 and (Λ +

ξaAa)|Bif = Λ
β
+ βaAa = 0 . Thus eq. (3.39) reduces to

(/δQ
Noether

)H
∣

∣

Bif
= −2πεab

[

δΓc
d
∂2PCFT

∂Ra
b∂Rc

d
+ δA · ∂

2PCFT

∂Ra
b∂F

]

. (4.1)

Here we have used

∇bξ
a|Bif = 2πεb

a = −2πεab , (4.2)

where ε is the binormal to the bifurcation surface. Furthermore, following [2, 4], we have

δεab = 0, since ξa|Bif = 0 while δξa = 0 everywhere.

For simplicity, let us first start with the single trace case where PCFT = c
M
F l∧tr[R2k]

in AdS2n+1 with n = 2k + l − 1. Derivatives of the anomaly polynomial with respect to

the curvature two-form and the U(1) field strength are given respectively by

∂2PCFT

∂Ra
b∂F

= c
M
(2kl)F l−1 ∧ (R2k−1)ba ,

∂2PCFT

∂Ra
b∂Rc

d
= c

M
(2k)F l ∧

2k−2
∑

m=0

(Rm)bc(R
2k−2−m)da ,

(4.3)
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where we take (R0)bc ≡ δbc. Substituting the above into eq. (4.1) yields14

(/δQ
Noether

)H
∣

∣

Bif
=−2πc

M
(2k)

{

F l∧
2k−2
∑

m=0

tr[δΓR2k−2−mεRm]+lδA·F l−1∧tr[εR2k−1]

}

.

(4.4)

Let us now discuss the pull-backs of Γ and R onto the bifurcation surface. Since

∇cεab = 0 at the bifurcation surface, the induced metrics on the tangent and normal bundle

are also covariantly constant. Therefore, the restriction of the covariant derivative onto the

tangent (normal) bundle is equal to the covariant derivative constructed out of the tangent

(normal) bundle metric. This implies that at the bifurcation surface εabR
b
c = Ra

bε
b
c =

−εabε
b
cRN where −2RN ≡ tr(εR)|Bif . The normal bundle curvature RN satisfies RN =

dΓN where −2ΓN ≡ tr (εΓ) |Bif .
15 We will exploit below this factorization between the

normal and tangent bundle at the bifurcation surface.

Using this, at the bifurcation we have R2k−2−mεRm = R2k−2
N ε and tr

(

εR2k−1
)

=

−2R2k−1
N . These allow us to rewrite eq. (4.4) in the following form:

(/δQ
Noether

)H
∣

∣

Bif
= 2πc

M
(2k)R2k−2

N ∧
{

−(2k − 1)F l ∧ tr[δΓε] + 2l δA · F l−1 ∧RN

}

= 8πk c
M
R2k−2

N ∧
{

(2k − 1)F l ∧ δΓN + l δA · F l−1 ∧ dΓN

}

= 8πk c
M
R2k−2

N ∧
{

(2k − 1)F l ∧ δΓN + l δF · F l−1 ∧ ΓN

}

+ 8πk c
M
d
[

l δA · F l−1 ∧ ΓNR2k−2
N

]

= δ
[

8πk ΓNR2k−2
N ∧ c

M
F l

]

+ 8πk c
M
d
{

(2k − 2)F l ∧ ΓNR2k−3
N δΓN + l δA · F l−1 ∧ ΓNR2k−2

N

}

= δ

[

8πk ΓNR2k−2
N ∧ ∂PCFT

∂ trR2k

]

+ d(. . .) ,

(4.5)

which agrees with the result of Tachikawa in [22].

We now use induction to generalize this formula to the case with multiple traces.

First, we denote the anomaly polynomial as PCFT = P̃ ∧ tr[R2k0 ] and assume that P̃

contributes to the black hole entropy via the Tachikawa formula. For example, for the

anomaly polynomial PCFT = c
M
F l ∧ tr[R2k1 ] ∧ tr[R2k0 ], the term P̃ is given by P̃ =

c
M
F l ∧ tr[R2k1 ]. Now we will show that PCFT also contributes to the entropy via the

14In the following, the binormal ε inside the traces should be interpreted as the matrix εab.
15To show RN = dΓN , we can use the decomposition of the binormal εab = ρaβb − βaρb for vectors ρ

and β satisfying ρaρ
a = βaβ

a = 0 and ρaβa = 1 at the bifurcation surface. Then using an equivalent

definition of ΓN ≡ ρb∇cβbdx
c, one can show that RN = dΓN . For more details on the properties of the

normal bundle at the bifurcation surface, see [51].
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Tachikawa formula as in the last line of eq. (4.5). In this case, eq. (4.1) becomes

(/δQ
Noether

)H
∣

∣

Bif
=

[

δ

(

∞
∑

k=1

8πk ΓNR2k−2
N ∧ ∂P̃

∂ trR2k

)

+ d(. . .)

]

∧ tr[R2k0 ]

+ P̃ ∧
[

δ
(

8πk0 ΓNR2k0−2
N

)

+ d(. . .)
]

− (2k0)

{

tr

[

δΓ
∂P̃

∂R

]

2π ∧ tr
[

εR2k0−1
]

+ tr
[

δΓR2k0−1
]

∧ 2πtr

[

ε
∂P̃

∂R

]}

.

(4.6)

The first line above correspond to the terms where both of the derivatives on the anomaly

polynomial (with respect to the curvature two-form) act on P̃ while the second line cor-

responds to the terms where both derivatives act on tr[R2k0 ]. The two terms in the third

line account for the cases where one derivative acts on P̃ while the other on tr[R2k0 ].

As a next step, we use

−2π(2k0) ∧ tr[εR2k0−1] = 8πk0 R2k0−1
N ,

−2π tr

[

ε
∂P̃

∂R

]

=
∞
∑

k=1

8πk R2k−1
N ∧ ∂P̃

∂ trR2k
,

(4.7)

to write the last line of eq. (4.6) as

tr

[

δΓ
∂P̃

∂R

]

8πk0 R2k0−1
N + (2k0)tr

[

δΓR2k0−1
]

∧
∞
∑

k=1

8πk R2k−1
N ∧ ∂P̃

∂ trR2k

= tr

[

δR
∂P̃

∂R

]

8πk0 ΓNR2k0−2
N + (2k0)tr[δRR2k0−1] ∧

∞
∑

k=1

8πk R2k−1
N ∧ ∂P̃

∂ trR2k

− d

{

tr

[

δΓ
∂P̃

∂R

]

8πk0 ΓNR2k0−2
N +(2k0)tr[δΓR

2k0−1] ∧
∞
∑

k=1

8πk ΓNR2k−2
N ∧ ∂P̃

∂ trR2k

}

= δP̃ ∧ 8πk0 ΓNR2k0−2
N + δtr[R2k0 ] ∧

∞
∑

k=1

8πk R2k−1
N ∧ ∂P̃

∂ trR2k
+ d(. . .) .

(4.8)

Finally, substituting the above expression into eq. (4.6), we obtain

(/δQ
Noether

)H
∣

∣

Bif
= δ

(

∞
∑

k=1

8πk ΓNR2k−2
N ∧ ∂P̃

∂ trR2k

)

∧ tr[R2k0 ]

+ P̃ ∧ δ
(

8πk0 ΓNR2k0−2
N

)

+ δP̃ ∧ 8πk0 ΓNR2k0−2
N + δtr[R2k0 ] ∧

∞
∑

k=1

8πk R2k−1
N ∧ ∂P̃

∂ trR2k
+ d(. . .)

= δ

(

∞
∑

k=1

8πk ΓNR2k−2
N ∧ ∂PCFT

∂ trR2k

)

+ d(. . .) ,

(4.9)

which proves the Tachikawa formula for Chern-Simons contribution to entropy.
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5 Tachikawa’s extension of Lee-Iyer-Wald method: a comparison

Now, we will review the generalization of the Lee-Iyer-Wald method to Chern-Simons

terms as proposed by Tachikawa [22]. The reader should also consult [23] where a detailed

exposition of this method is given. Since the discussion below is somewhat long and

technical, we will begin by summarizing what we do in this section.

5.1 Summary of this section

The primary aim of this section is to take our discussion about the formulation of Noether

charge for theories with Chern-Simons terms and link it with the previous proposals in

the literature - mainly the references [22, 23]. We begin with an explicit implementation

of Tachikawa’s prescription for the most general Chern-Simons term. Our analysis can be

thought of as a straightforward generalization of the analysis in [23].

We will show that our Noether charge agrees with the Noether charge of [22] in AdS3
where Tachikawa’s extension has been primarily applied. However, Tachikawa’s extension

for the formulation of Noether charge deviates from our method in higher dimensions

by various additional non-covariant contributions which we will explicitly compute below.

Thus, our prescription neatly resolves this non-covariance issue with higher dimensional

Chern-Simons terms that was noted by the authors of [23].

We will now present two main analytical results of this section that lead to the

conclusions above. The first is the relation between our covariant pre-symplectic cur-

rent (/δ
2
ΩPSympl)H and the non-covariant pre-symplectic current (/δ

2
ΩPSympl)

IWT
H

from

Tachikawa’s extension:

(/δ
2
ΩPSympl)

IWT
H

= (/δ
2
ΩPSympl)H

+ d

{

δ1A · ∂
2ICS

∂F ∂F
· δ2A+ δ1Γ

c
b

∂2ICS

∂Rc
b∂Rg

h
δ2Γ

g
h

}

+ d

{

δ1A · ∂2ICS

∂F ∂Rg
h
δ2Γ

g
h − δ2A · ∂2ICS

∂F ∂Rg
h
δ1Γ

g
h

}

.

(5.1)

Since the derivatives of the Chern-Simons action ICS in eq. (5.1) contain A or Γa
b, this

expression shows that (/δ
2
ΩPSympl)

IWT
H

is non-covariant in AdS5 and higher16 and that

non-covariance enters as a boundary contribution.

The second result we derive is the relation between our covariant differential Noether

charge (/δQ
Noether

)
H
and the non-covariant differential Noether charge (/δQ

Noether
)IWT
H

from

16We note that the non-covariant contributions vanish for AdS3.
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Tachikawa’s extension:

(/δQ
Noether

)IWT
H

= (/δQ
Noether

)
H

−
{

δA · ∂
2ICS

∂F ∂F
· δχA+ δΓc

b
∂2ICS

∂Rc
b∂Rg

h

δχΓ
g
h

}

−
{

δA · ∂2ICS

∂F ∂Rg
h

δχΓ
g
h − δχA · ∂2ICS

∂F ∂Rg
h

δΓg
h

}

+ d

{

/δZ + δA · ∂
2ICS

∂F ∂F
· (Λ + iξA) + δΓc

b
∂2ICS

∂Rc
b∂Rg

h

∇hξ
g

}

+ d

{

δA · ∂2ICS

∂F ∂Rg
h

∇hξ
g + δΓg

h
∂2ICS

∂Rg
h∂F

· (Λ + iξA)

}

.

(5.2)

This expression shows that (/δQ
Noether

)IWT
H

is non-covariant in AdS5 and higher and that

non-covariance enters both as a bulk and a boundary contribution. The boundary contri-

bution is however ambiguous in Tachikawa’s extension which is represented by an arbitrary

term /δZ in the expression above.

In the rest of this section, we will derive these analytical results. Since the non-

covariance of Tachikawa’s extension complicates the formulation of Noether charge for

general Chern-Simons terms, we will work entirely with differential forms throughout this

section.

5.2 Pre-symplectic current in Tachikawa’s extension

As a first step of the comparison, we compute the deviation of the pre-symplectic currents

constructed by Tachikawa’s extension from ours.

For the Chern-Simons terms, the Lagrangian form is given by L
H
= ICS . The corre-

sponding equations of motion form are given by converting eq. (2.15) into differential forms:

(/δE)
H
= −(/δE)

H

⋆1

= −d

[

1

2
Σ
(ab)c
H δGab

⋆dxc

]

− 1

2
δΓa

b (
⋆ΣH)b a − δA · ⋆JH .

(5.3)

The pre-symplectic potential /δΘPSympl is given as

/δΘPSympl =
1

2
Σ
(ab)c
H δGab

⋆dxc + δΓa
b
∂ICS

∂Ra
b

+ δA · ∂ICS

∂F
. (5.4)

Following Tachikawa [22], we then define the pre-symplectic current as

(/δ
2
ΩPSympl)

IWT
H

≡ −δ1(/δ2ΘPSympl)H + δ2(/δ1ΘPSympl)H

= −1

2
δ1

[

(ΣH)(bc)a ⋆dxa

]

δ2Gbc +
1

2
δ2

[

(ΣH)(bc)a ⋆dxa

]

δ1Gbc

+ δ1A · σFF
H

· δ2A+ δ1Γ
c
b ·

(

σRR
H

)bh

cg
· δ2Γg

h

+ δ1A ·
(

σFR
H

)h

g
δ2Γ

g
h − δ2A ·

(

σFR
H

)h

g
δ1Γ

g
h

+ d

{

δ1A · ∂
2ICS

∂F ∂F
· δ2A+ δ1Γ

c
b

∂2ICS

∂Rc
b∂Rg

h
δ2Γ

g
h

}

+ d

{

δ1A · ∂2ICS

∂F ∂Rg
h
δ2Γ

g
h − δ2A · ∂2ICS

∂F ∂Rg
h
δ1Γ

g
h

}

,

(5.5)
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where we have used the following identities to simplify the expression:

σFF
H

=
∂2PCFT

∂F ∂F
=

∂2ICS

∂A∂F
+

∂2ICS

∂F ∂A
+D

(

∂2ICS

∂F ∂F

)

,

(σRF
H

)ba =
∂2PCFT

∂Ra
b∂F

=
∂2ICS

∂Γa
b∂F

+
∂2ICS

∂Ra
b∂A

+D

(

∂2ICS

∂Ra
b∂F

)

,

(σFR
H

)dc =
∂2PCFT

∂F ∂Rc
d

=
∂2ICS

∂A∂Rc
d

+
∂2ICS

∂F ∂Γc
d

+D

(

∂2ICS

∂F ∂Rc
d

)

,

(σRR
H

)bdac =
∂2PCFT

∂Ra
b∂Rc

d
=

∂2ICS

∂Γa
b∂Rc

d
+

∂2ICS

∂Ra
b∂Γc

d
+D

(

∂2ICS

∂Ra
b∂Rc

d

)

.

(5.6)

Comparing against the pre-symplectic current (/δ
2
ΩPSympl)H derived in eq. (B.31), the

relation between these two pre-symplectic currents is given by

(/δ
2
ΩPSympl)

IWT
H

= (/δ
2
ΩPSympl)H + d

{

δ1A · ∂
2ICS

∂F ∂F
· δ2A+ δ1Γ

c
b

∂2ICS

∂Rc
b∂Rg

h
δ2Γ

g
h

}

+ d

{

δ1A · ∂2ICS

∂F ∂Rg
h
δ2Γ

g
h − δ2A · ∂2ICS

∂F ∂Rg
h
δ1Γ

g
h

}

.

(5.7)

Unlike (/δ
2
ΩPSympl)H , the current (/δ

2
ΩPSympl)

IWT
H

is not covariant under gauge and

diffeomorphisms in AdSd+1 for d ≥ 4. Since it is covariant up to a boundary contribution,

the pre-symplectic structure defined via its integral would be invariant. As we will see

below, however, these boundary contributions do contribute to the Noether charge thus

affecting the covariance of /δQ
Noether

. Discarding by hand this non-covariant boundary

contribution in (/δ
2
ΩPSympl)

IWT
H

, we get back (/δ
2
ΩPSympl)H .

5.3 Komar decomposition for Chern-Simons terms

We next move on to the Komar decomposition. Following [22] we begin by constructing

two differential forms Ξχ and /δΣχ defined via17

δnon-covχ ICS = dΞχ ,

δΞχ = δnon-covχ (/δΘPSympl)H + d/δΣχ .
(5.8)

A direct computation gives

Ξχ ≡ Λ · ∂ICS

∂A
+ ∂bξ

a ∂ICS

∂Γa
b
− dY ,

/δΣχ ≡ δA ·
[

∂2ICS

∂F ∂A
· Λ +

∂2ICS

∂F ∂Γc
d

∂dξ
c

]

+ δΓa
b

[

∂2ICS

∂Ra
b∂A

· Λ +
∂2ICS

∂Ra
b∂Γc

d

∂dξ
c

]

− δY + d/δZ ,

(5.9)

where Y and /δZ are arbitrary forms undetermined by this procedure. We note that Ξχ

encodes the consistent anomaly of the dual CFT and thus we will refer to Ξχ as the

consistent anomaly form.

17We note that our /δΣχ is negative of the one used in in [22, 23].
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Using these forms, we can write

− d⋆N
H
= (/δχE)H = δχICS − d(/δχΘPSympl)H = d

[

iξICS +Ξχ − (/δχΘPSympl)H
]

. (5.10)

The Komar decomposition takes the form

− ⋆N
H
= iξICS +Ξχ − (/δχΘPSympl)H + dKχ . (5.11)

Here N
H
is the Chern-Simons part of the on-shell vanishing Noether current (see eq. (3.36))

given by

⋆N
H
= d

[

1

2
ξc

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb)

]

+
1

2
Σ
(bc)a
H δχGbc

⋆dxa

+
1

2
∇cξ

d (⋆ΣH)c d + (Λ + iξA) · ⋆JH .

(5.12)

This gives the Komar charge as

(Kχ)H ≡ Y +∇bξ
a ∂ICS

∂Ra
b
+ (Λ + iξA) · ∂ICS

∂F

− 1

2
ξc

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb) .

(5.13)

We note that the Komar term in this case is completely ambiguous by an addition

of an arbitrary form Y . Further, we remind the reader that, as emphasized by Bonora

et al. [23], this expression does not directly lead to the analogue of Wald entropy, unless

the form Y is suitably chosen and one works in a special set of coordinates/gauges. More

explicitly, this can be done in a two-step process:

1. First, fix various ambiguities in Tachikawa’s extension (the objects Y and /δZ above)

so that the forms Ξχ and /δΣχ are proportional to dΛ and d(∂aξ
b).

2. Next, pass to a certain special gauges/coordinate systems where dΛ = 0 and

d(∂aξ
b) = 0 at the bifurcation surface, so that the forms Ξχ and /δΣχ in the non-

covariant Tachikawa’s extension vanish.

Once the forms Ξχ and /δΣχ are made to vanish by these two steps, one can derive an

effective Komar charge for Chern-Simons terms from which one can derive the Tachikawa

formula for Chern Simons contribution to entropy in this special set of gauges/co-

ordinates [23].

5.4 Differential Noether charge for Chern-Simons terms in Tachikawa’s ex-

tension

Finally, we evaluate the difference between the differential Noether charges constructed by

the two methods.

We begin with the Komar decomposition for the Chern-Simons term eq. (5.11) which

we rewrite as

− d(Kχ)H = iξICS +Ξχ − (/δχΘPSympl)H + ⋆N
H
. (5.14)
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Now we consider the variation of this expression. By using

δ
[

Ξχ − (/δχΘPSympl)H
]

− d/δΣχ

= δnon-covχ (/δΘPSympl)H − δχ(/δΘPSympl)H + (/δ/δχΩPSympl)
IWT
H

= (/δ/δχΩPSympl)
IWT
H

− iξd(/δΘPSympl)H − diξ(/δΘPSympl)H ,

(5.15)

and

iξδICS + diξ(/δΘPSympl)H = iξ(/δE)H + iξd(/δΘPSympl)H + diξ(/δΘPSympl)H , (5.16)

we have the following expression:

− d
[

δKχ + /δΣχ − iξ/δΘPSympl

]

H
= (/δ/δχΩPSympl)

IWT
H

+ iξ(/δE)H + δ⋆N
H
. (5.17)

Thus, we obtain the differential Noether charge according to Tachikawa’s prescription as

(/δQ
Noether

)IWT
H

= δ(Kχ)H + /δΣχ − iξ
(

/δΘPSympl

)

H
. (5.18)

Using eqs. (5.4), (5.9) and (5.13), this simplifies to

(/δQ
Noether

)IWT
H

= δΓd
c ∧

[

∇hξ
g
(

σRR
H

)hc

gd
+ (Λ + iξA) ·

(

σFR
H

)c

d

]

+ δA ·
[

∇hξ
g
(

σRF
H

)h

g
+ (Λ + iξA) ·

(

σFF
H

)

]

− 1

2
δGcd (ΣH)(cd)a iξ

⋆dxa

− ξdδ

[

1

2
Gcd

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb)

]

−
{

δA · ∂
2ICS

∂F ∂F
· δχA+ δΓc

b
∂2ICS

∂Rc
b∂Rg

h

δχΓ
g
h

}

−
{

δA · ∂2ICS

∂F ∂Rg
h

δχΓ
g
h − δχA · ∂2ICS

∂F ∂Rg
h

δΓg
h

}

+ d

{

/δZ + δA · ∂
2ICS

∂F ∂F
· (Λ + iξA) + δΓc

b
∂2ICS

∂Rc
b∂Rg

h

∇hξ
g

}

+ d

{

δA · ∂2ICS

∂F ∂Rg
h
∇hξ

g + δΓg
h

∂2ICS

∂Rg
h∂F

· (Λ + iξA)

}

.

(5.19)

Here we have also used the identities for the generalized Hall conductivities summarized

in eq. (5.6). Comparing this expression against eq. (B.32), the deviation of the differential

Noether charge constructed by Tachikawa’s extension from ours is:

(/δQ
Noether

)IWT
H

= (/δQ
Noether

)
H
−

{

δA · ∂
2ICS

∂F ∂F
· δχA+ δΓc

b
∂2ICS

∂Rc
b∂Rg

h

δχΓ
g
h

}

−
{

δA · ∂2ICS

∂F ∂Rg
h
δχΓ

g
h − δχA · ∂2ICS

∂F ∂Rg
h
δΓg

h

}

+ d

{

/δZ + δA · ∂
2ICS

∂F ∂F
· (Λ + iξA) + δΓc

b
∂2ICS

∂Rc
b∂Rg

h
∇hξ

g

}

+ d

{

δA · ∂2ICS

∂F ∂Rg
h
∇hξ

g + δΓg
h

∂2ICS

∂Rg
h∂F

· (Λ + iξA)

}

.

(5.20)
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We note that unlike (/δQ
Noether

)
H
, (/δQ

Noether
)IWT
H

is not covariant. Further this non-

covariance shows up even if one discards the boundary contributions (which is justified

when we are interested only in the integral of /δQ
Noether

over a closed surface). In fact,

this non-covariance can be directly traced to the non-covariant terms in the pre-symplectic

current (/δ
2
ΩPSympl)

IWT
H

in eq. (5.5). Thus, choosing a covariant pre-symplectic current

(/δ
2
ΩPSympl)H automatically guarantees a /δQ

Noether
which is covariant up to boundary con-

tributions.

6 Conclusions and discussions

In this paper, we have proposed a new formulation of a differential Noether charge for

theories in the presence of Chern-Simons terms. Our formulation realizes a manifestly

covariant pre-symplectic current and differential Noether charge. We have also presented

a manifestly covariant derivation of the Tachikawa formula for Chern-Simons contribution

to entropy. When contrasted against Tachikawa’s extension that we reviewed in section 5,

our derivation has the additional merit of being relatively simple and straightforward.

The critical reader might wonder about the ambiguities in our construction. We have

chosen a specific pre-symplectic current and a differential Noether charge solely guided by

covariance and in case of Chern-Simons terms, this is indeed a stringent constraint which

almost uniquely determines our choice. This is in contrast with Tachikawa’s extension

of the Lee-Iyer-Wald procedure where the ambiguities in the definition of the charge are

resolved by an explicit prescription which unfortunately gives a non-covariant answer for

Chern-Simons terms (see section 5).

A more systematic prescription is provided by the Barnich-Brandt-Compère formal-

ism [13–15] where a particular differential operator (called the homotopy operator) is con-

structed to resolve such ambiguities. It would be an interesting test to see whether Barnich-

Brandt-Compere method gives a covariant pre-symplectic current and differential Noether

charge for Chern-Simons terms. Given that the homotopy operator is itself not manifestly

covariant, this would be a highly non-trivial check for Barnich-Brandt-Compère formalism.

Further, a rederivation of our expressions using the homotopy operator would then remove

much of the ambiguities in our construction. An encouraging sign in this direction is the

fact that for Abelian gauge Chern-Simons terms, our prescription already agrees with the

answer previously derived via the homotopy operator [52].

A further advantage to rederiving our construction in the Barnich-Brandt-Compère

formalism would be the following: it would then be straightforward to demonstrate that our

expression naturally incorporates algebra of currents in the dual CFT. The current algebra

of a CFT with anomalies exhibits central terms known as Schwinger terms whose structure

is completely fixed by the anomaly coefficients. It would be interesting to show that our

differential Noether charge correctly reproduces this current algebra structure. Further,

we might be able to extend to Chern-Simons terms other standard results in the homotopy

operator formalism. For example, it would be interesting to derive the generalized Smarr

relation [53] relevant for Chern-Simons terms. A related question is whether there is a

Wald-like formula for asymptotic charges [54, 55] of Chern-Simons terms.
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Another direction in which our results can be generalized is to extend them to p-forms

with Green-Schwarz couplings. Green-Schwarz couplings can often be traded for Chern-

Simons couplings by passing to a description in terms of a dual p-form [17, 22, 56]. It

would be interesting to see whether our method can be used to obtain the same answer

without dualizing.

We now turn to a largely unexplored set of questions of much current interest —

questions about the interplay between anomalies and entanglement entropy. Recently,

motivated by the generalized gravitational entropy method [57, 58], much progress has

been made in understanding how higher-derivative terms in gravity Lagrangians enter

holographic entanglement entropy [19, 20]. However, much of this effort has been focused

on covariant Lagrangians and much less is understood about Chern-Simons terms (see

however [59] for the case of the gravitational Chern-Simons term in AdS3). Some of the

questions one would like answered in this context are:

• Can one obtain the entanglement entropy formula for Chern-Simons terms by a

dimensional reduction? If yes, what are the extrinsic curvature correction to the

Tachikawa formula? In AdS3, the authors of [59] have argued that the Tachikawa

formula receives no corrections. It would be interesting to see whether the same holds

in higher dimensions by evaluating Chern-Simons terms on the squashed cone metric.

• Can one reproduce the bulk Chern-Simons equations of motion from entanglement

entropy à la [60, 61]?

• If one computes the anomaly contributions to the entanglement entropy equation [62,

63], are they independent of the coupling? These terms would then be the analogue

of anomaly-induced terms in hydrodynamics.

• The structure of anomaly-induced terms in hydrodynamics is captured by a replace-

ment rule [41, 44] which was recently proved by formal Euclidean methods in [43, 46].

Is there a simpler and a more physically transparent proof using anomaly-induced

entanglement entropy?

As a first step towards answering these questions, one would first like to check that the

expressions proposed in this paper, when evaluated over the fluid/gravity solutions of [37]

correctly reproduce the anomaly-induced hydrodynamics. That, dear reader, will be the

subject of our accompanying paper [49]!
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A Detailed computation of (/δQ
Noether

)H

This appendix summarizes the detailed derivation of our result for the differential Noether

charge in eq. (3.38). We begin by writing down the Hall part of the pre-symplectic current

with the second variation set equal to the diffeomorphism/gauge variation δχ generated by

χ = {ξa,Λ}:

(/δ/δχΩPSympl
)a
H

=
1

2

1√
−G

δ
[√

−G (ΣH)(bc)a
]

δχGbc −
1

2

1√
−G

δχ

[√
−G (ΣH)(bc)a

]

δGbc

+ δAe ·
(

σ̄FF
H

)efa · δχAf + δΓc
be ·

(

σ̄RR
H

)bhefa

cg
· δχΓg

hf

+ δAe ·
(

σ̄FR
H

)hefa

g
δχΓ

g
hf − δχAe ·

(

σ̄FR
H

)hefa

g
δΓg

hf .

(A.1)

We will begin by simplifying the first line in eq. (A.1):

1

2

1√
−G

δ
[√

−G (ΣH)(bc)a
]

δχGbc −
1

2

1√
−G

δχ

[√
−G (ΣH)(bc)a

]

δGbc

=
1

2

1√
−G

δ
[√

−G (ΣH)(bc)a δχGbc

]

− 1

2

1√
−G

δχ

[√
−G (ΣH)(bc)a δGbc

]

.

(A.2)

The second term on the right hand side of eq. (A.2) evaluates to

1

2

1√
−G

δχ

[√
−G (ΣH)(cd)a δGcd

]

=
1

2
(∇bξ

b) (ΣH)(cd)a δGcd +
1

2
ξb∇b

[

(ΣH)(cd)a δGcd

]

− 1

2
(∇bξ

a) (ΣH)(cd)b δGcd

= −∇b

{

1

2

[

ξa (ΣH)(cd)b − (ΣH)(cd)a ξb
]

δGcd

}

+ ξa∇b

[

1

2
(ΣH)(cd)b δGcd

]

= −∇b

{

1

2

[

ξa (ΣH)(cd)b − (ΣH)(cd)a ξb
]

δGcd

}

+
1

2
ξaδGcd(TH)cd

− 1

2
ξaδΓd

cb (ΣH)bc d ,

(A.3)
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where we have used eq. (2.16). Thus, the first line in eq. (A.1) can be written as

1

2

1√
−G

δ
[√

−G (ΣH)(bc)a
]

δχGbc −
1

2

1√
−G

δχ

[√
−G (ΣH)(bc)a

]

δGbc

= ∇b

{

1

2

[

ξa (ΣH)(cd)b − (ΣH)(cd)a ξb
]

δGcd

}

− 1

2
ξaδGcd(TH)cd

+
1

2
ξaδΓd

cb (ΣH)bc d +
1

2

1√
−G

δ
[√

−G (ΣH)(bc)a δχGbc

]

.

(A.4)

After rewriting (/δ/δχΩPSympl
)a
H

by using eq. (A.4), we add to it the term ξa(/δE)
H

=

(1/2)ξaδGcd(TH)cd + ξaδAb · JbH to get

(/δ/δχΩPSympl
)a
H
+ ξa(/δE)

H

= ∇b

{

1

2

[

ξa (ΣH)(cd)b − (ΣH)(cd)a ξb
]

δGcd

}

+ ξa
[

1

2
δΓd

cb (ΣH)bc d + δAb · JbH
]

+
1

2

1√
−G

δ
[√

−G (ΣH)(bc)a δχGbc

]

+ δAe ·
(

σ̄FF
H

)efa · δχAf + δΓc
be ·

(

σ̄RR
H

)bhefa

cg
· δχΓg

hf

+ δAe ·
(

σ̄FR
H

)hefa

g
δχΓ

g
hf − δχAe ·

(

σ̄FR
H

)hefa

g
δΓg

hf .

(A.5)

We should subtract from this expression the variation of the Hall contribution Na
H

to

the on-shell vanishing Noether current, which is given by

Na
H
= ξb(TH)ab + (Λ + ξcAc) · JaH

= ∇c

[

1

2
ξb

(

Σabc
H +Σbac

H +Σcab
H

)

]

+
1

2
(∇bξc +∇cξb) Σ

(bc)a
H

+
1

2
∇cξ

b (ΣH)ac b + (Λ + ξcAc) · JaH

= ∇b

[

1

2
ξc

(

Σacb
H +Σbac

H +Σcab
H

)

]

+
1

2
Σ
(bc)a
H δχGbc

+
1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH .

(A.6)

Subtracting the variation of this expression from eq. (A.5), we get

(/δ/δχΩPSympl
)a
H
+ ξa(/δE)

H
− 1√

−G
δ
[√

−G Na
H

]

= ∇b

{

1

2

[

ξa (ΣH)(cd)b − (ΣH)(cd)a ξb
]

δGcd

−1

2

ξd√
−G

δ
[√

−G Gcd

(

Σacb
H +Σbac

H +Σcab
H

)]

}

+ ξa
[

1

2
δΓd

cb (ΣH)bc d + δAb · JbH
]

− 1√
−G

δ

[√
−G

(

1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH
) ]

+ δAe ·
(

σ̄FF
H

)efa · δχAf + δΓc
be ·

(

σ̄RR
H

)bhefa

cg
· δχΓg

hf

+ δAe ·
(

σ̄FR
H

)hefa

g
δχΓ

g
hf − δχAe ·

(

σ̄FR
H

)hefa

g
δΓg

hf .

(A.7)
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Now we want to express the right hand side of the above expression as a total divergence.

Let us begin by simplifying the first two lines outside the divergence in eq. (A.7):

ξa
[

1

2
δΓd

cb (ΣH)bc d + δAb · JbH
]

− 1√
−G

δ

[√
−G

(

1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH
) ]

= ξf
[

1

2
δΓd

cb

(

δaf (ΣH)bc d − δbf (ΣH)ac d

)

+ δAb ·
(

δafJ
b
H − δbfJ

a
H

)

]

−
(

1

2
∇cξ

d 1√
−G

δ
[√

−G (ΣH)ac d

]

+ (Λ + ξcAc) ·
1√
−G

δ
[√

−G JaH

]

)

= −
(

δΓd
cb

(

σ̄RR
H

)cheab

dg
+ δAb ·

(

σ̄FR
H

)heab

g

)

ξfRg
hfe

−
(

δΓd
cb

(

σ̄RF
H

)ceab

d
+ δAb ·

(

σ̄FF
H

)eab
)

· ξfFfe

+
(

∇hξ
g
(

σ̄RR
H

)hceab

gd
+
(

Λ + ξfAf

)

·
(

σ̄FR
H

)ceab

d

)

∇eδΓ
d
cb

+
(

∇hξ
g
(

σ̄RF
H

)heab

g
+
(

Λ + ξfAf

)

·
(

σ̄FF
H

)eab
)

· ∇eδAb ,

(A.8)

where we have used eqs. (2.19) and (2.24). Next, we shift the covariant derivatives from

∇eδΓ
d
cb and ∇eδAb by an integration by parts to obtain

ξa
[

1

2
δΓd

cb (ΣH)bc d + δAb · JbH
]

− 1√
−G

δ

[√
−G

(

1

2
∇cξ

d (ΣH)ac d + (Λ + ξcAc) · JaH
) ]

+ δAe ·
(

σ̄FF
H

)efa · δχAf + δΓc
be ·

(

σ̄RR
H

)bhefa

cg
· δχΓg

hf

+ δAe ·
(

σ̄FR
H

)hefa

g
δχΓ

g
hf − δχAe ·

(

σ̄FR
H

)hefa

g
δΓg

hf

= ∇e

{ (

∇hξ
g
(

σ̄RR
H

)hceab

gd
+
(

Λ + ξfAf

)

·
(

σ̄FR
H

)ceab

d

)

δΓd
cb

+
(

∇hξ
g
(

σ̄RF
H

)heab

g
+
(

Λ + ξfAf

)

·
(

σ̄FF
H

)eab
)

· δAb

}

= −∇b

{ (

∇hξ
g
(

σ̄RR
H

)hcfab

gd
+ (Λ + ξeAe) ·

(

σ̄FR
H

)cfab

d

)

δΓd
cf

+
(

∇hξ
g
(

σ̄RF
H

)hfab

g
+ (Λ + ξeAe) ·

(

σ̄FF
H

)fab
)

· δAf

}

.

(A.9)

Combining all the terms together, we finally obtain

−∇b(/δQ
ab

Noether
)H = (/δ/δχΩPSympl

)a
H
+ ξa(/δE)

H
− 1√

−G
δ
[√

−G Na
H

]

, (A.10)
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with

(/δQ
ab

Noether
)H =

[

∇hξ
g
(

σ̄RR
H

)hcabf

gd
+ (Λ + ξeAe) ·

(

σ̄FR
H

)cabf

d

]

δΓd
cf

+
[

∇hξ
g
(

σ̄RF
H

)habf

g
+ (Λ + ξeAe) ·

(

σ̄FF
H

)abf
]

· δAf

+
1

2

[

(ΣH)(cd)a ξb − (ΣH)(cd)b ξa
]

δGcd

+
1

2

ξd√
−G

δ
[√

−G Gcd

(

Σacb
H +Σbac

H +Σcab
H

)]

.

(A.11)

B Differential forms and Noether charge

In this appendix, we summarize our notation for the differential forms and present the

formulation of the Noether charge in differential forms.

B.1 Notation: differential forms

It is often useful to shift to the language of differential forms (denoted by bold letters in

this paper) which is a more efficient way of dealing with antisymmetric tensor indices. In

this appendix, we summarize our conventions for differential forms.

• We will denote the volume form on the spacetime by

dd+1x
√

G Sign[G] =
Sign[G]

(d+ 1)!
εa0a1...addx

a0 ∧ dxa1 ∧ . . . ∧ dxad , (B.1)

where G denotes the determinant of the metric and Sign[G] is its signature.

For pseudo-Riemannian metrics describing spacetime, we have Sign[G] = −1 and we

take εrtx1...xd−1 ≡ −
√
−G where r is the (spatial) holographic direction with r → ∞

corresponds to the conformal boundary of AdSd+1. The epsilon tensor for the dual

CFTd on R
d−1,1 (with the flat metric) is taken to be εtx1...xd−1 = −1.

• We define the Hodge-dual of a p-form V via

(⋆V )a1a2...ad+1−p
≡ Sign[G]

p!
Vb1b2...bpε

b1b2...bp
a1a2...ad+1−p

, (B.2)

or, in other words,

⋆V ≡ Sign[G]

p!(d+ 1− p)!
Vb1b2...bp εb1b2...bpa1a2...ad+1−p

dxa1 ∧ dxa2 . . . ∧ dxad+1−p . (B.3)

We note that the definition above is equivalent to

⋆
(

dxb1 ∧ dxb2 . . . dxbp
)

≡ Sign[G]

(d+ 1− p)!
εb1b2...bpa1a2...ad+1−p

dxa1 ∧ dxa2 . . . ∧ dxad+1−p ,

(B.4)
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or

dxb1 ∧ dxb2 . . . dxbp ≡ 1

(d+1−p)!
εa1a2...ad+1−pb1b2...bp ⋆

(

dxa1∧dxa2 . . .∧dxad+1−p

)

≡ (−1)p(d+1−p)

(d+1−p)!
εb1b2...bpa1a2...ad+1−p ⋆

(

dxa1∧dxa2 . . .∧dxad+1−p

)

.

(B.5)

For the boundary CFTd, our convention for the Hodge-dual ⋆CFT is given by similar

expression as in eq. (B.2) but with Gab replaced by the flat metric on R
d−1,1 and

the bulk epsilon tensor replaced by the boundary epsilon tensor as discussed below

eq. (B.1).

• One of the main uses of eq. (B.5) is in translating expressions of the following form

into components
⋆V = A1 ∧A2 ∧ . . . ∧Ak . (B.6)

Here V is a (d + 1 − p)-form , A1 is a q1-form, A2 is a q2-form etc. such that
∑k

i=1 qi = p. We have

⋆V = A1 ∧A2 ∧ . . . ∧Ak

=
1

q1!q2! . . . qk!
(A1)a1...aq1 (A2)b1...bq2 . . . (Ak)f1...fqk

dxa1 ∧ . . . dxaq1 ∧ dxb1 . . . dxbq2 ∧ . . . dxf1 ∧ . . . dxfqk

=
1

q1!q2! . . . qk!(d+ 1− p)!
εc1c2...cd+1−pa1...aq1b1...bq2 ...f1...fqk

(A1)a1...aq1 (A2)b1...bq2 . . . (Ak)f1...fqk
⋆
(

dxc1 ∧ dxc2 . . . ∧ dxcd+1−p

)

,

(B.7)

so that the component of V is written as

V c1c2...cd+1−p =
1

q1!q2! . . . qk!
εc1c2...cd+1−pa1...aq1b1...bq2 ...f1...fqk

(A1)a1...aq1 (A2)b1...bq2 . . . (Ak)f1...fqk .

(B.8)

• Given two p-forms V1 and V2, we have

V1 ∧ ⋆V2 = dd+1x
√
−G

1

p!
(V1)c1c2...cp(V2)

c1c2...cp . (B.9)

• Given a p-form V1 and a q-form V2 with q ≥ p, we have

V1 ∧ ⋆V2 =
1

p!(q − p)!
(V1)b1b2...bp (V2)

c1c2...cq−pb1b2...bp ⋆
(

dxc1 ∧ dxc2 . . . dxcq−p

)

.

(B.10)

• Given a p-form V , we introduce a form V such that V = −⋆V . In components, we

have

(V )a1a2...ad+1−p
≡ − 1

p!
εa1a2...ad+1−p

b1b2...bpVb1b2...bp . (B.11)
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For a k-form U , a result we will need is

U ∧ ⋆V

=
1

k!
Uc1c2...ck(V )a1a2...ad+1−p−kc1c2...ck

1

(d+ 1− p− k)!
⋆(dxa1 ∧ . . . ∧ dxad+1−p−k

) .

(B.12)

Another result we will need is iξ
⋆V = ⋆ (V ∧ ξ) for any vector ξa whose dual one-form

is given by ξ ≡ Gab ξ
adxb.

B.2 Noether charge formalism in differential forms

It is straightforward to convert our equations about the Noether charge formulation to

differential forms using the formulae given in appendix B.1.

We begin by defining the equation of motion form via /δE = −(/δE) ⋆1 and the pre-

symplectic form as the Hodge-dual of the pre-symplectic current by the use of the relation

/δ
2
ΩPSympl = −(/δ

2
Ω

PSympl
)a ⋆dxa. All the other forms are defined in a similar fashion

following eq. (B.11). The basic equation eq. (2.3) about the divergence of the pre-symplectic

current becomes

d(/δ
2
ΩPSympl) = δ1(/δ2E)− δ2(/δ1E) . (B.13)

We note that various factor of
√
−G are naturally taken into account in the language of

forms.

By introducing the form corresponding to the pre-symplectic potential as /δΘPSympl,

eq. (2.7) is written as

/δ
2
ΩPSympl = −δ1(/δ2ΘPSympl) + δ2(/δ1ΘPSympl) . (B.14)

Noether’s theorem then assumes the form

d ⋆N = −/δχE , ⋆N ≃ 0 , (B.15)

while the Komar decomposition eq. (3.29) is of the form

− dKχ = iξL− /δχΘPSympl +
⋆N . (B.16)

Next, the defining equation eq. (3.17) for the differential Noether charge becomes

− d (/δQ
Noether

) = /δ/δχΩPSympl + iξ/δE + δ(⋆N) . (B.17)

Finally, in terms of the Komar charge, the Lee-Iyer-Wald differential Noether charge is (by

converting eq. (3.33) to differential forms):

/δQ
Noether

= δKχ − iξ/δΘPSympl . (B.18)
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B.3 Einstein-Maxwell contribution

Here we rewrite the derivation of the Einstein-Maxwell Noether charge in differential forms.

We first begin with the Lagrangian form for the Einstein-Maxwell theory defined via

L
Ein-Max

≡ −L
Ein-Max

⋆1 .

Thus eq. (2.10) becomes

L
Ein-Max

= Rb
a ∧

⋆(dxa ∧ dxb)

16πG
N

+
Λcc

8πG
N

⋆1 +
1

2g2
EM

F ∧ ⋆F , (B.19)

where we have introduced Maxwell field strength two-form F ≡ (1/2)Fab dx
a ∧ dxb and

curvature two-form Ra
b ≡ (1/2)Ra

bcd dx
c ∧ dxd. Later, we will also use gauge field one-

form A ≡ Aadx
a and connection one-form Γa

b ≡ Γa
bcdx

c. We denote products of curvature

two-forms as (Rk)ab ≡ Ra
c1 ∧Rc1

c2 ∧ . . . ∧Rck−2
ck−1

∧Rck−1
b and hence tr[Rk] ≡ (Rk)aa

is understood as a matrix-trace.

We remind the reader that given our orientation convention in AdS, we have ⋆1 =

−
√
−G dd+1x and hence the Einstein-Maxwell action is given by

S
Ein-Max

=

∫

L
Ein-Max

=

∫
[

Rb
a ∧

⋆(dxa ∧ dxb)

16πG
N

+
Λcc

8πG
N

⋆1 +
1

2g2
EM

F ∧ ⋆F

]

.

The corresponding pre-symplectic potential in eq. (2.14) becomes

(/δΘPSympl)Ein-Max
≡ −(/δΘ

PSympl
)a
Ein-Max

⋆dxa

= δΓb
a

⋆(dxa ∧ dxb)

16πG
N

+ δA ·
⋆F

g2
EM

= δΓb
a
∂L

Ein-Max

∂Rb
a

+ δA · ∂LEin-Max

∂F
,

(B.20)

and the Hodge-dual of the pre-symplectic current in eq. (2.6) is

(/δ
2
ΩPSympl)Ein-Max

≡ −(/δ
2
Ω

PSympl
)a
Ein-Max

⋆dxa

=

[

δ1Γ
b
a δ2

(

⋆(dxa ∧ dxb)

16πG
N

)

+ δ1A · δ2
(

⋆F

g2
EM

)]

−
[

δ2Γ
b
a δ1

(

⋆(dxa ∧ dxb)

16πG
N

)

+ δ2A · δ1
(

⋆F

g2
EM

)]

.
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Moving on to the Komar charge, we have

(Kχ)Ein-Max
≡ − 1

2!
(Kχ)

ab
Ein-Max

⋆(dxa ∧ dxb)

= ∇aξ
b

⋆(dxa ∧ dxb)

16πG
N

+ (Λ + iξA) ·
⋆F

g2
EM

= ∇aξ
b ∂L

Ein-Max

∂Rb
a

+ (Λ + iξA) · ∂LEin-Max

∂F
.
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The Einstein-Maxwell contribution to the differential Noether charge in eq. (3.34) can

be written in terms of forms as

(/δQ
Noether

)
Ein-Max

≡ − 1

2!
(/δQ

Noether
)ab
Ein-Max

⋆(dxa ∧ dxb)

= δ

[

∇aξ
b

⋆(dxa ∧ dxb)

16πG
N

+ (Λ + iξA) ·
⋆F

g2
EM

]

− iξ

[

δΓb
a

⋆(dxa ∧ dxb)

16πG
N

+ δA ·
⋆F

g2
EM

]

,
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which can be simplified further to give

(/δQ
Noether

)
Ein-Max

=
1

2
∇aξ

b δ

[

⋆(dxa ∧ dxb)

8πG
N

]

+ (Λ + iξA) · δ
[

⋆F

g2
EM

]

+
1

2
δΓb

a
iξ

⋆(dxa ∧ dxb)

8πG
N

+ δA · iξ
⋆F

g2
EM

.
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B.4 Hall contribution

As the next step, we rewrite the derivation of the Hall contribution to the Noether charge

in differential forms. We start with the defining equation for the Hall conductivities in

eq. (2.19) which can be stated in terms of forms as

−δ (⋆JH) ≡ δF · σFF
H

+ δRg
h ∧

(

σFR
H

)h

g
,

−1

2
δ (⋆ΣH)b c ≡ δF ·

(

σRF
H

)b

c
+ δRg

h ∧
(

σRR
H

)bh

cg
.

(B.25)

We can now use the expression for the Hall currents

− ⋆JH ≡ ∂PCFT

∂F
, −1

2
(⋆ΣH)b c ≡

∂PCFT

∂Rc
b

, (B.26)

to get the generalized Hall conducetivities

σFF
H

≡ ∂2PCFT

∂F ∂F
,
(

σRR
H

)bg

ch
≡ ∂2PCFT

∂Rc
b∂Rh

g
,

(

σFR
H

)g

h
≡
(

σRF
H

)g

h
≡ ∂2PCFT

∂F ∂Rh
g
.

(B.27)

To restate the property eq. (2.24), we first rewrite it by contracting with an arbitrary

vector ξf :

JaHξb − JbHξa =
(

σ̄FF
H

)eab · ξfFfe +
(

σ̄FR
H

)heab

g
ξfRg

hfe ,

1

2
(ΣH)acdξ

b − 1

2
(ΣH)bcdξ

a =
(

σ̄RF
H

)ceab

d
· ξfFfe +

(

σ̄RR
H

)cheab

dg
ξfRg

hfe .
(B.28)
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We can now multiply both sides by −(1/2)⋆(dxa ∧ dxb) and use ⋆(V ∧ ξ) = iξ
⋆V for an

arbitrary form V to get

−iξ
⋆JH = σFF

H
· iξF +

(

σFR
H

)h

g
iξR

g
h ,

−iξ
1

2
(⋆ΣH)cd =

(

σRF
H

)c

d
· iξF +

(

σRR
H

)ch

dg
iξR

g
h ,
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or

iξ
∂PCFT

∂F
=

∂2PCFT

∂F ∂F
· iξF +

∂2PCFT

∂F ∂Rg
h

iξR
g
h ,

iξ
∂PCFT

∂Rd
c

=
∂2PCFT

∂Rd
c∂F

· iξF +
∂2PCFT

∂Rd
c∂Rg

h

iξR
g
h ,

(B.30)

which is just the statement that the operator iξ acts as a derivation.

Next, the pre-symplectic current in eq. (2.27) becomes

(/δ
2
ΩPSympl)H = −(/δ

2
Ω

PSympl
)a
H

⋆dxa

= −1

2
δ1

[

(ΣH)(bc)a ⋆dxa

]

δ2Gbc +
1

2
δ2

[

(ΣH)(bc)a ⋆dxa

]

δ1Gbc

+ δ1A · σFF
H

· δ2A+ δ1Γ
c
b ·

(

σRR
H

)bh

cg
· δ2Γg

h

+ δ1A ·
(

σFR
H

)h

g
δ2Γ

g
h − δ2A ·

(

σFR
H

)h

g
δ1Γ

g
h .

(B.31)

Finally, the expression for Hall contribution to the differential Noether charge given in

eq. (A.11) becomes

(/δQ
Noether

)H = δΓd
c ∧

[

∇hξ
g
(

σRR
H

)hc

gd
+ (Λ + iξA) ·

(

σFR
H

)c

d

]

+ δA ·
[

∇hξ
g
(

σRF
H

)h

g
+ (Λ + iξA) ·

(

σFF
H

)

]

− 1

2
δGcd (ΣH)(cd)a iξ

⋆dxa

− ξdδ

[

1

2
Gcd

(

Σacb
H +Σbac

H +Σcab
H

) 1

2!
⋆(dxa ∧ dxb)

]

.
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