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1 Introduction

Unfolded dynamics approach, originally developed for the description of higher-spin field

dynamics [1], implies rewriting field equations in the form of some generalized covariant

constancy conditions. In principle, any theory can be reformulated in such a way (e.g.,

in [2] this has been done for gravity and Yang-Mills theory). Unfolded formulation of a

dynamical system allows one to control its gauge symmetries. The coordinate-free language

of differential forms is particularly convenient for theories of gravity. Moreover, so-called

universal unfolded equations [3], to which class belong all relevant examples, are insensitive

to a particular space-time where the fields live. The latter property allows one in partic-

ular to derive different versions of the superspace formulations directly from the unfolded

formulation in the usual space-time.
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A related remarkable feature of the unfolded dynamics approach is that it provides a

tool for the search for Lagrangians and conserved currents in terms of certain Q-cohomology

associated with the system of unfolded equations [2]. The aim of this paper is to illustrate

this method by systematic derivation of the manifestly supersymmetric superspace actions

for the simplest supersymmetric model, namely 4d Wess-Zumino model [4, 5]. Our results

provide an off-shell extension of the on-shell results of [6].

Naively, the proposed scheme may look obstructed by the fact that superforms do not

support integration over superspace. This is avoided once, as we proceed in this paper, the

action is either defined as an integral of a superform over an even submanifold arbitrarily

embedded into the full superspace or as a Bernstein-Leites integral form [7]. It should

be noted that the Bernstein-Leites integration was applied in the context of D-branes [8]

in which case it was used that the integrands in the model in question had a specific

Gaussian form. In this paper we extend the class of integral forms to those behaving as

δ-functions of the supervielbeins. The respective superspace integrals turn out to be well-

defined, providing the manifestly supersymmetric formulation for supersymmetric theories.

Being useful in practical computation this extension of the class of superspace Lagrangians

may open new possibilities for the construction of supersymmetric actions in superspace.

In particular, for the Wess-Zumino model considered in this paper integral forms having

the form of δ-functions of supervielbeins provide explicit solutions for the equations that

determine invariant actions.

The results of this paper provide an example of the application of the unfolded ma-

chinery to supersymmetric models, in which the superspace constraints naturally arise via

uplifting the unfolded system to the superspace. We construct the most general unfolded

Lagrangians of the Wess-Zumino model in the form of a 4-superform, integral form and

a chiral integral form. They contain all possible supersymmetric Lagrangians of the 4d

Wess-Zumino model, i.e., besides the standard Wess-Zumino [4] and Salam-Strathdee [9]

Lagrangians (see also [5]), they also contain higher-derivative Lagrangians. We expect that

the list of supersymmetric Lagrangians presented in this paper does not go beyond the gen-

eral supersymmetric Lagrangian L =
∫
d2θd2θ̄K+

[ ∫
d2θW +h.c.

]
for the chiral superfield

Φ (D̄α̇Φ = 0) with arbitrary Lorentz-invariant superpotential W (Φ) and a (real) Kahler

potential K which can depend on Φ and Φ̄ along with their (super)derivatives [10]. Never-

theless we believe that the obtained results can be useful for the practical analysis of the

higher-derivative component supersymmetric actions since the manifestly supersymmet-

ric superform unfolded action in our approach directly reproduces the component action

upon identification of Minkowski space with an integration surface in the full superspace.

In the context of the Wess-Zumino model higher-derivative Lagrangians were studied e.g.

in [11–14].

In application to supersymmetric models, our method has much in common with the

group manifold approach [15, 16] which treats actions as invariant functionals on hypersur-

face embedded into the group manifold, as well as with the “ectoplasm” approach of [17–20]

in which supersymmetric component actions result from the d-closure condition on the su-

perLagrangian. The Q-cohomology used in the unfolded dynamics is related to de Rham

cohomology by virtue of unfolded equations.
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The nice feature of the Q-cohomology approach is that it reformulates the problem

in a coordinate-independent algebraic way, making the procedure more systematic com-

pared to the analysis of differential operators as in the ectoplasm approach. As such, the

Q-cohomology approach is more general, being applicable to any (not necessarily super-

symmetric) model and/or geometry.

One of the key properties of the unfolded approach is that it makes gauge and global

symmetries manifest (the latter as residual symmetries of the gauge symmetries of the field

equations for the vacuum background fields). In particular, local or global supersymmetry

is one of such symmetries depending on the model in question. It is this property that makes

the unfolded approach particularly useful for the study of higher-spin gauge theories where

it was originally developed. One of the aims of this paper is to stress that it can be useful

for the analysis of usual (lower-spin) field theories as well. The feature that this approach

involves infinite towers of field variables sometimes considered as a complication is, in fact,

a simplification because these towers of fields just form a basis of all off-shell or on-shell

nontrivial higher derivatives in the model. If one is not interested in the analysis of certain

higher derivatives it is possible to truncate the unfolded equations appropriately. The

benefit is that unfolded formulation provides a well-defined basis of fields for the analysis

of higher-order and/or higher-derivative terms. The only condition is the nilpotency of the

operator Q, which guarantees both consistency of the system and its symmetries. This

condition provides a tool for the search of manifestly supersymmetric formulation of the

theory. In this context, it should be noted that because the dynamical equations of an

unfolded system are classified in terms of the so-called σ−-cohomology [21], this makes it

possible to derive an off-shell unfolded system directly from the on-shell one by finding

such a completion of the unfolded equations in which the corresponding sector of the

σ−-cohomology vanishes. In principle, this provides a general approach for the search of

manifestly supersymmetric versions of the theories in question.

Though gauge symmetries do not play an essential role in the Wess-Zumino model,

we expect that the unfolded formalism may be useful for the analysis of more complicated

models like super Yang-Mills theory despite the significant progress already achieved by

different methods [22–27]. In this work we are mainly interested in the analysis of specifici-

ties of the application of the unfolded technique to supersymmetric models in superspace

which is a modest step toward the future study of the gauge supersymmetric theories.

The paper is organized as follows. In section 2 unfolded dynamics approach is over-

viewed and the cohomological method of computation of Lagrangians for a graded system

is proposed. In section 3 relevant aspects of superform integration are considered. In sec-

tion 4 we recall the formulation of Minkowski superspace in terms of flat superconnections.

Section 5 contains an overview of the results of [6] for the on-shell massless scalar super-

multiplet as well as its off-shell generalization. In section 6 we explore the operator Q of

the system in question and compute the cohomology of its highest grade part. In section 7

we derive and solve equations which determine supersymmetric invariant functionals of the

model and find the particular solutions associated with action of the Wess-Zumino model.

In the end of section 7 it is explained how conventional field-theoretic Lagrangians result

from the found unfolded Lagrangians and is argued that the latter describe all possible
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supersymmetric Lagrangians in the model in question including the standard expressions

of [5] along with their higher-derivative generalizations. Conventions and notations are col-

lected in appendix A. The full system of equations from section 7 is stored in appendix B.

2 Unfolded formulation

2.1 Unfolded equations

Let Md be d-dimensional space-time manifold with local coordinates xn, n = 0, . . . , d− 1.

Unfolding of equations implies their reformulation in the form of generalized zero curvature

equations

RΩ(x) := dWΩ(x) +GΩ
(
W (x)

)
= 0 , (2.1)

where d = dxm ∂
∂xm is de Rham differential, WΩ(x) are degree pΩ differential forms and

GΩ(WΥ) :=
∞∑
n=1

fΩ
Υ1...ΥnW

Υ1 . . .WΥn (2.2)

are degree pΩ + 1 differential forms built from exterior products of forms WΥ(x) (wedge

symbol is omitted in this paper). Here Ω and Υ are indices carried by differential forms.

The identity d2 ≡ 0 implies the compatibility condition

GΥ(W )
δGΩ(W )

δWΥ
≡ 0 , (2.3)

which has to be satisfied for all WΩ. It can be equivalently rewritten as

Q2 = 0 , Q = GΥ(W )
δ

δWΥ
. (2.4)

Unfolded equations are called universal [2, 3] if compatibility condition (2.3) holds

independently of the fact that any p-form with p > d is zero in d-dimensional space. In

this case one can differentiate freely over WΩ(x), and equation (2.1) is invariant under

gauge transformation

δWΩ = dεΩ − εΥ δG
Ω(W )

δWΥ
, (2.5)

where (pΩ − 1)-form gauge parameter εΩ(x) is related to the pΩ > 0 form WΩ(x) (0-forms

do not give rise to gauge parameters).

For universal unfolded equations, condition (2.3) holds independently of the choice of

a space-time manifold. Full information about local physical degrees of freedom of the

unfolded system is contained in 0-forms at any given point of space-time. Since these data

remain the same in any space, universal unfolded systems provide an equivalent description

in a larger (super)space simply via addition of extra coordinates. Particular examples of

this phenomenon have been presented in [6, 28–30].

The following terminology is used. The fields that can neither be expressed via deriva-

tives of some other fields nor gauged away are called dynamical. The rest of the fields

are referred to as auxiliary. (Let us note that the decomposition of fields into dynamical
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and auxiliary is not necessarily unambiguous.) Differential conditions imposed by unfolded

equations on dynamical fields are called dynamical equations. Other equations are ei-

ther consequences of dynamical equations or constraints which express auxiliary fields via

derivatives of the dynamical ones.

An example of unfolded equation can be constructed as follows. Let g be a Lie algebra

with a basis {Ta}. Consider a g-valued 1-form Ω0 = Ωa
0Ta. For G = Ω0Ω0, equation (2.1)

reads as

dΩ0 + Ω0Ω0 = 0 . (2.6)

The compatibility condition (2.3) gives usual Jacobi identity for the algebra g. Eq. (2.6)

means that the connection Ω0 is flat which is the standard way to describe g-invariant

vacuum. Eq. (2.5) gives usual gauge transformations of the connection Ω0

δΩ0 = dε0(x) + Ω0ε0(x)− ε0(x)Ω0 , (2.7)

where ε0(x) is a 0-form valued in g. Given flat connection Ω0 is invariant under the

transformations with parameters obeying

dε0(x) + Ω0ε0(x)− ε0(x)Ω0 = 0 . (2.8)

This equation is formally consistent by virtue of (2.3). Solutions of equations (2.8) describe

the leftover global symmetry g of any solution of (2.6).

Let us linearize unfolded equations (2.1) around fixed connection Ω0 satisfying (2.6),

W = Ω0 + C ,

where C are differential forms treated as small perturbations and hence contributing lin-

early to the equations. Let {Cip} be a subset of forms of a fixed degree p, enumerated by

index i. In the linear approximation, the part of G which is bilinear in Ω0 and Cip con-

tributes, i.e. G = Ωa
0(Ta)

i
jC

j
p. In this case, eq. (2.3) implies that the matrices (Ta)

i
j form a

representation of the algebra g in the space V where p-forms Cip are valued. Corresponding

equation (2.1) is the covariant constancy condition

DΩ0C
i
p = 0 , (2.9)

where DΩ0 ≡ d+ Ω0 is the covariant derivative in the g-module V . Cip transform properly

under g gauge transformations. Indeed, eq. (2.5) gives for (2.9)

δCip = dεip − ε0C
i
p + Ω0ε

i
p , (2.10)

where εip are gauge parameters related to Cip (for p > 0) and ε0 are global g-symmetry

parameters obeying (2.8).

2.2 σ−-cohomology

Classification of dynamical fields, gauge symmetries and dynamical equations of the un-

folded systems can be performed in terms of so-called σ−-cohomology [2, 3, 6, 21]. Let a

linear unfolded system be of the form(
d+

∑
i

σi

)
C(x) = 0 , (2.11)
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where C(x) are some differential form fields and operators σi act algebraically (i.e. do not

differentiate xn).

In the σ−-cohomology technics, the decomposition of the fields into dynamical and

auxiliary is controlled by the Z-grading G with respect to which auxiliary fields have higher

grade than dynamical ones. The grading operator G has to be diagonalizable on the space

of fields and to be bounded from below. d has grade zero. Usually, G counts a number of

tensor indices of the fields.

σ−-cohomology technics applies if σi contain operators of negative grades. Then σ− is

the operator of the lowest grade and eq. (2.11) takes the form

(d+ σ− + Σ)C(x) = 0 (2.12)

with Σ denoting all operators that act algebraically and have G-grade higher than σ−.

Since σ− has the lowest G-grade, from compatibility condition (2.3)

(d+ σ− + Σ)2 = 0 (2.13)

it follows that

(σ−)2 = 0 . (2.14)

Using that the gauge transformation (2.5) for equation (2.12) is

δC(x) = (d+ σ− + Σ)ε(x) , (2.15)

it can be shown [2, 3, 21] that, for p-forms Cp from the space V , the cohomology

Hp−1(σ−, V ), Hp(σ−, V ) and Hp+1(σ−, V ) are, respectively, the spaces of differential gauge

symmetries, dynamical fields and dynamical equations.

The situation with several operators of negative grade is more complicated. As shown

in [6], in this case usual σ−-analysis should be extended to the spectral sequence analysis

of all such operators. The full field-theoretical pattern of the system is determined by the

cohomology H
(
σ

′...′
− | . . . |σ

′′
−|σ

′
−|σ−

)
where the operators σ

′...′
− are arranged in the order of

increase of their G-grade and H
(
σ

′
−|σ−

)
means the cohomology of σ

′
− restricted to H(σ−).

2.3 Unfolded actions and charges

Invariants of a general unfolded system such as actions and conserved charges are encoded

by cohomology of the operator Q (2.4) [2].

Suppose that system (2.1) is off-shell, i.e. it does not contain any dynamical equations,

describing only a set of constraints. In the language of σ−-cohomology, this means that

unfolded equations for (p− 1)-forms WΩ have Hp(σ−) = 0. Following [2], the action S of

this system is defined as an integral over a manifold Md

S =

∫
Md

L (2.16)

of some d-form L(W ) which is a Q-closed function of the fields WΩ

QL = 0 : GΥ(W )
∂

∂WΥ
L(W ) = 0 . (2.17)

– 6 –
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Taking into account that δL = (∂L/∂WΩ)δWΩ and using (2.5), one easily obtains

δL = d

(
εΩ ∂L
∂WΩ

)
. (2.18)

Assuming that Md has no boundary (or that fields decrease fast enough at infinity), the

action remains invariant under gauge transformations (2.5).

If the Lagrangian L is Q-exact, i.e. L = GΩ ∂F
∂WΩ , by virtue of (2.1)

L = −dWΩ ∂F
∂WΩ

= −dF (2.19)

and hence Q-exact Lagrangians lead to trivial local actions. Thereby nontrivial invariant

actions of the off-shell system (2.1) are in one-to-one correspondence with itsQ-cohomology.

If system (2.1) is on-shell (i.e., contains some dynamical equations) and a p-form L is

a representative of the nonzero Q-cohomology class, the same formula (2.16) describes a

conserved charge as an integral over a p-cycle Σ

q =

∫
Σ

L . (2.20)

Let Md be embedded into some ambient space, Md ⊂ M̃ d̃, d̃ > d. Extending (2.1) to

M̃ d̃, by virtue of (2.17), which is equivalent to d-closure of L, action (2.16) is independent

of the local form of this embedding.

The case where the algebra of functions of fields from which a Lagrangian is built

admits a grading G bounded from below, is of particular interest. Let Q and L admit

decompositions into finite sums of G-homogeneous parts

Q =
n∑
i=0

Qi , L =
k∑
i=0

Li , (2.21)

where G(Qi) = G(Li) = i. It can be shown that the space of nontrivial Q-closed La-

grangians is isomorphic to some subspace of H(Qn), where Qn is the part of Q of maximal

G-grade.

Indeed, from Q2 = 0 at different G-grades it follows that

(Qn)2 = 0 , (2.22)

{Qn,Qn−1} = 0 , (2.23)

. . .

(Q0)2 = 0 . (2.24)

Equation QL = 0 gives

QnLk = 0 , (2.25)

Qn−1Lk +QnLk−1 = 0 , (2.26)

. . .

Q0L0 = 0 . (2.27)

– 7 –
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Let the highest grade components be denoted as Q := Qn and L := Lk. Since non-

trivial Lagrangians are represented by Q-cohomology, if L = Qf it can be removed by the

redefinition

L′ = L −Qf (2.28)

so that G(L′) < G(L), where L′ is the highest grade part of L′. If L′ = Qg, the subtraction

L′′ = L′ −Qg reduces the maximal grade further. The process stops in a finite number of

steps because G-grading is bounded below. Eventually, either the Lagrangian vanishes or

its highest grade part L belongs to H(Q). Thus, any nontrivial Lagrangian is represented

by some L ∈ H(Q).

This does not mean however that any L ∈ H(Q) is associated with some nontrivial

Lagrangian L ∈ H(Q). Two related phenomena may happen.

One is that L cannot be supplemented with the terms of the lowest degrees to form a

Q-closed Lagrangian L. Indeed, Qn−1L in eq. (2.26) is Q-closed by virtue of (2.22), (2.23)

and (2.25). If it is not Q-exact however, eq. (2.26) admits no solutions. In other words,

that Qn−1L is in nontrivial Q-cohomology provides an obstruction for reconstruction of L
in terms of L.

Another phenomenon is that if the same element of the Q-cohomology, that provides

an obstruction for the extension to full Q-cohomology, is interpreted as a highest grade

part of some other Lagrangian with L′ = Qn−1L, then such a highest grade part can be

removed by adding a Q-exact term −QL.

More generally, a similar phenomenon may occur at any step of the analysis of

eqs. (2.25)–(2.27). In particular, the corresponding Q-trivial highest grade components

have the form

L =

n∑
i=i0

QiFk−i = Qi0Fk−i0 +Qi0+1Fk−i0−1 + . . .+Qn−1Fk−n+1 + QFk−n , (2.29)

with Fi obeying

Qi0+1Fk−i0 +Qi0+2Fk−i0−1 + . . .+ QFk−n+1 = 0 , (2.30)

. . .

Qn−1Fk−i0 + QFk−i0−1 = 0 , (2.31)

QFk−i0 = 0 , (2.32)

where i0 ∈ [0, n] is some fixed integer. If Fk−i0 = Qg, it can be removed by the redef-

inition F ′i = Fi − Qn−k+i0+ig with F ′i′ which, by virtue of (2.22)–(2.24), obey the same

system (2.29)–(2.32) with i′0 = i0 + 1. As a result one is left either with a trivial highest

grade term L = QF̃k−n (if all Fi in (2.30)–(2.32) can be removed) or with F̃k−i0 from (2.32)

that belongs to H(Q). In the latter case, though being non-Q-exact, L can be removed by

adding Q-exact terms −
∑

iQFi.
Note that somewhat similar situation took place in [31], where the deformation of

Minkowski higher-spin vertices to AdS space was studied. There nontrivial vertices belong

to cohomology of the nilpotent operator Q = Qfl + λ2Qsub, where −λ2 is the cosmolog-

ical constant. The grading G counts the number of derivatives in vertices, G(Qfl) = 1,

– 8 –
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G(Qsub) = −1. The AdS deformation (if exists) of a nontrivial vertex F in Minkowski

space (where λ = 0 and Q = Qfl) may in principle turn out to be trivial in AdS.

As a result, the space of nontrivial Q-closed Lagrangians is isomorphic to subspace of

H(Q), which is formed by some highest grade terms L that cannot be represented in the

form (2.29) with Fi obeying (2.30)–(2.32).

The construction of invariant functionals presented so far works nicely for usual man-

ifolds but is less obvious in the case of superspace which is of most interest in this pa-

per. Since, naively, the differential superforms are not integrable over supermanifolds (see

e.g., [32]), we have to specify the notion of an unfolded action in superspace.

3 Integration in superspace

Most of differential geometry admits straightforward generalization to supermanifolds.

However extension of integration of differential forms over a supermanifold is not quite

straightforward. One way to see this is to observe that superform transformation law does

not match Berezin integral. Indeed, consider a supermanifold Mp|q with local coordinates

zM = (xm, θµ). To be coordinate-independent, the integration measure has to transform

according to Berezin formula∫
Mp|q

f(xm, θµ)dpxdqθ =

∫
Mp|q

f(ym, ξµ) BerJdpydqξ , (3.1)

where

J =

(
∂x
∂y

∂x
∂ξ

∂θ
∂y

∂θ
∂ξ

)
=

(
A B

C D

)
, Ber J =

det(A−BD−1C)

detD
.

Superforms resulting from naive extension to odd coordinates obviously do not satisfy this

condition and hence are not integrable.

However, even forms can still be integrated over even cycles in superspace. Indeed, con-

sider an even n-dimensional surface Sn on Mp|q: zM (ta) =
(
xm(ta), θµ(ta)

)
, a = 1, . . . , n,

parametrized by some even parameters ta (surface coordinates). Let the integral of a

n-superform ω = ωM1...Mndz
M1 . . . dzMn over Sn be defined as∫

Sn

ω =

∫
ωM1...Mn

(
∂zM1

∂ta1
dta1

)
. . .

(
∂zMn

∂tan
dtan

)
=

∫
ω′1...ndt

1 . . . dtn. (3.2)

It is neither dependent on the choice of coordinates ti nor of zM . Obviously if ω is exact

in superspace, the integration over Sn amounts to that over its boundary ∂Sn. By Cartan

formula LV = {d , iV } for the Lie derivative of a vector field V N (z), the integral of a closed

form ω (dω = 0) is independent of local variations of Sn. This allows us to define unfolded

superfield action as the integral of a closed p-superform L over an even p-dimensional

surface in superspace.

More generally, integration in superspace can be defined in terms of integral forms,

as was originally proposed in [7] (see also [32]). To this end an integral of superfunction

– 9 –
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f(x, θ) in superspace can be rewritten as∫
f(x, θ)dpxdqθ =

∫
F (x, θ, ς, s)dpxdqθdpςdqs , (3.3)

where ςm, m = 1, . . . , p and sµ, µ = 1, . . . , q are treated as additional anticommuting

and commuting integration variables, respectively. To contribute, F (x, θ, ς, s) should have

the form

F (x, θ, ς, s) = f(x, θ)δp(ς)δq(s) . (3.4)

To make the link with differential forms, one formally substitutes dxm and dθµ for ςm and

sµ in (3.4). Resulting objects are called integral forms. Note that δp(dx) is just the usual

volume form dx1 . . . dxp while δq(dθ) is the actual (even) δ-function, which is essentially

non-polynomial. On the other hand, integration of usual superforms polynomial in dθ does

not make sense, leading to divergent integral (3.3) with F (x, θ, ς, s) polynomial in sµ.

As mentioned in Introduction, our approach has much in common with the “ecto-

plasm” method [17–20] of construction of manifestly supersymmetric actions represented

by integrals of superforms over space-time “hypersurface” in the full superspace Mp|q with

coordinates zM = (xm, θµ). Let a p-superform

J = JM1...Mpdz
M1 . . . dzMp (3.5)

be closed

dJ = 0 ⇒ D[NJM1...Mp) −
d

2
T[NM |

PJP |M2...Mp) = 0 , (3.6)

with the covariant derivative DM and torsion tensor TMN
P . Then the integral over space-

time hypersurface

S =

∫
Mp

Jm1...mpdx
m1 . . . dxmp (3.7)

is independent of coordinates in Mp|q and, by virtue of (3.6), of a particular choice of the

integration hypersurface, provided that the latter is even and J falls down fast enough at

spatial infinity. It is invariant under the transformation

δJM1...Mp = ∂[M1
λM2...Mp) . (3.8)

The more general case of a curved superspace can be considered analogously in terms of

supervielbeins [18, 19]. Note that in some applications of the ectoplasm approach the

Bernstein-Leites integration was also used [8]. However, in this case its applicability relied

on the specific Gaussian form of the integrands, allowing to carry out the integration over

the odd differentials. In this paper we will extend the application of the Bernstein-Leites

integration to distributions of the background supervielbeins which provides a simple and

efficient way for writing superinvariants.

Similarity of the ectoplasm and unfolded approaches is obvious. Indeed, in the former

d-closure of Lagrangian guarantees its manifest SUSY, while in the latter the same is

achieved via Q-closure condition. As shown in subsection 2.1, Q is an algebraic counterpart
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of de Rham differential. Although for particular supersymmetric models both methods

lead to similar results, the unfolded approach is more general being applicable to any

(not necessarily supersymmetric) theory and (generalized) space-time like e.g., the Sp(8)-

invariant space-time considered in [28, 30].

4 Supersymmetric vacuum

Following [6], to obtain unfolded description of the flat superspace we start with the N = 1

SUSY algebra

[Mab,Mcd] = −(ηacMbd + ηbdMac − ηadMbc − ηbcMad) , (4.1)

[Pa,Mbc] = ηabPc − ηacPb , (4.2)

{Qα, Q̄β̇} = −2i(σa)αβ̇Pa , (4.3)

[Mab, Qα] =
1

2
(σab)α

βQβ , (4.4)

[Mab, Q̄
α̇] =

1

2
(σ̄ab)

α̇
β̇Q

β̇. (4.5)

(All other (anti)commutators are zero.)

Gauge fields of supergravity are 1-forms of vierbein ea = eamdx
m, spin-connection

ωa,b = ωa,bm dxm and gravitino φα = φαmdx
m (see e.g. [33]). They are components of a

1-form connection Ω0 valued in the SUSY algebra

Ω0 := eaPa +
1

2
ωa,bMab + φαQα + φ̄α̇Q̄

α̇. (4.6)

Supersymmetric flat background is represented by a connection Ω0 obeying (2.6), which

leads to the following component equations

DLea + 2iφαφ̄α̇(σa)αα̇ := dea + ωa,beb + 2iφαφ̄α̇(σa)αα̇ = 0 , (4.7)

DLωa,b := dωa,b + ωa,cωc
,b = 0 , (4.8)

DLφα := dφα +
1

4
ωa,bφβ(σab)β

α = 0 , (4.9)

DLφ̄α̇ := dφ̄α̇ +
1

4
ωa,bφ̄β̇(σ̄ab)

β̇
α̇ = 0 , (4.10)

where DL ≡ d+ ω is the Lorentz covariant derivative.

As explained in subsection 2.1, to promote these unfolded equations (which are ob-

viously universal) to superspace it suffices to add fermionic coordinates xm → zM =

(xm, θµ, θ̄µ̇) extending properly indices of the differential forms

eam(x)dxm → EaM (z)dzM , ωa,bm (x)dxm → Ωa,b
M (z)dzM ,

φαm(x)dxm → EαM (z)dzM , φ̄α̇m(x)dxm → Ēα̇M (z)dzM .
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Flat superspace is described by the zero curvature equations

DEa + 2iEαĒα̇(σa)αα̇ := dEa + Ωa,bEb + 2iEαĒα̇(σa)αα̇ = 0 , (4.11)

DΩa,b := dΩa,b + Ωa,cΩc
,b = 0 , (4.12)

DEα := dEα +
1

4
Ωa,bEβ(σab)β

α = 0 , (4.13)

DĒα̇ := dĒα̇ +
1

4
Ωa,bĒβ̇(σ̄ab)

β̇
α̇ = 0 , (4.14)

where D is the Lorentz covariant derivative in superspace.

Global SUSY transformations are described by those gauge transformations (2.8) of

system (4.11)–(4.14), that leave invariant background connection

δEa = dεa − εa,bEb + εbΩ
a,b − 2i

(
εαĒα̇(σa)αα̇ + ε̄α̇Eα(σa)αα̇

)
= 0 , (4.15)

δΩa,b = dεa,b + Ωa,cεc
b − εa,cΩc

,b = 0 , (4.16)

δEα = dεα +
1

4
εβΩa,b(σab)β

α − 1

4
εa,bEβ(σab)β

α = 0 , (4.17)

δĒα̇ = dε̄α̇ +
1

4
Ωa,bε̄β̇(σ̄ab)

β̇
α̇ −

1

4
εa,bĒβ̇(σ̄ab)

β̇
α̇ = 0 . (4.18)

Cartesian coordinate system is associated with the following solution of (4.11)–(4.14)

Ea = dxmδm
a + dθµ

(
iθ̄µ̇(σa)µµ̇

)
+ dθ̄µ̇

(
iθµ(σa)µν̇ε

µ̇ν̇
)
,

Ωa,b = 0 , Eα = dθµδµ
α, Ēα̇ = dθ̄µ̇δ

µ̇
α̇ . (4.19)

In these coordinates, the explicit solution to system (4.15)–(4.18) is

εa = ξa + ξabx
b + iξabθ

µθ̄µ̇(σb)µµ̇ + 2i
(
ξαθ̄µ̇(σa)αα̇ε

α̇µ̇ + θµξ̄
α̇(σa)αα̇ε

µα
)
, (4.20)

εa,b = ξa,b, (4.21)

εα =
1

4
ξa,bθµε

µβ(σab)β
α + ξα, (4.22)

ε̄α̇ =
1

4
ξa,bθ̄µ̇δ

µ̇
β̇(σ̄ab)

β̇
α̇ + ξ̄α̇ (4.23)

with ξa, ξa,b = −ξb,a, ξα, ξ̄α̇ being free constants, which are parameters of global symme-

tries.

Note that Lorentz covariant derivative in superspace can be rewritten in the form

D = EaDa + EαDα + Ēα̇D
α̇. (4.24)

In Cartesian coordinates

Da = ∂a , Dα = ∂α − i(σb)αα̇θ̄α̇∂b , D̄α̇ = ∂̄α̇ − iθα(σb)αα̇∂b . (4.25)

5 Unfolded free massless scalar supermultiplet

In this section we present an off-shell extension of the unfolded equations of motion for

N = 1, D = 4 free massless scalar supermultiplet, obtained in [6].
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First we consider the problem in Minkowski space. It is described by a solution of

system (4.7)–(4.10) with φα = φ̄α̇ = 0, i.e.

dea + ωa,beb = 0 , dωa,b + ωa,cωc
,b = 0 . (5.1)

Massless scalar field in Minkowski space is described by the unfolded equations [1, 21]

DLCa(k) + ebC
a(k)b = 0 , (5.2)

where the 0-forms Ca(k) are symmetric traceless tensors of rank k.

Similarly, unfolded equations

DLχa(k)
α + ebχ

a(k)b
α = 0 (5.3)

for the complex 0-forms χ
a(k)
α which are symmetric traceless rank-k spinor-tensors, obeying

σ-transversality condition

(σ̄b)
α̇αχa(k−1)b

α = 0 , (5.4)

describe massless spin-1/2 field in Minkowski space [1, 34].

To unify systems (5.2) and (5.3) into supermultiplet the terms with connections φα

and φ̄α̇ which mix bosons and fermions have to be introduced. This gives [6]

DLCa(k) + ebC
a(k)b −

√
2φαχa(k)

α = 0 , (5.5)

DLχa(k)
α + ebχ

a(k)b
α −

√
2iφ̄α̇(σb)αα̇C

a(k)b = 0 . (5.6)

Compatibility of the system is provided by flatness condition (2.6) and the identity

(σb)βα̇χ
a(k)b
α = (σb)αα̇χ

a(k)b
β which follows from σ-transversality and the fact that spinor

indices take two values.

Extension to superspace is trivially achieved via addition of fermionic coordinates

xm → zM = (xm, θµ, θ̄µ̇)

DCa(k)(z) + EbC
a(k)b(z)−

√
2Eαχa(k)

α (z) = 0 , (5.7)

Dχa(k)
α (z) + Ebχ

a(k)b
α (z)−

√
2iĒα̇(σb)αα̇C

a(k)b(z) = 0 . (5.8)

The resulting system is universal. As explained in subsection 2.1, this implies that all its

symmetries are preserved. Hence, system (5.7), (5.8) is supersymmetric.

To check that these equations indeed describe free massless scalar supermultiplet, one

has to single out independent dynamical superfields and dynamical equations with the

help of σ−-cohomology technics. As shown in [6], this gives the following result. The

only dynamical superfield is C(z). All other fields are auxiliary, being expressed via its

derivatives. For instance, χα(z) = 1√
2
DαC(z). Independent superfield equations are

D̄α̇C(z) = 0 , (5.9)

DαDαC(z) = 0 , (5.10)

which are standard equations of motion of a massless scalar supermultiplet [5].
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To construct the action, we should find an off-shell modification of system (5.7)–(5.8)

which implies no dynamical equations. As a guiding example, first consider the off-shell for-

mulation of system (5.2), (5.3). It results from relaxing the tracelessness condition for Ca(k)

and for χ
a(k)
α as well as the σ-transversality condition for the latter. Then eqs. (5.2), (5.3)

just represent a set of constraints which express higher rank tensors in terms of derivatives

of the dynamical fields.

However, supersymmetric extension (5.5)–(5.6) of the resulting off-shell system via in-

troducing connections for full SUSY algebra ceases to obey (2.3), i.e. becomes inconsistent.

Indeed, the compatibility condition for eq. (5.6) requires

φαφ̄α̇(σ̄b)
α̇β
(
χa(k)b

)
β

= 0 . (5.11)

In the on-shell case, it holds by virtue of σ-transversality, which is relaxed in the off-

shell case.

Inconsistency of the system means, in addition, that its gauge transformations (2.5)

do not obey SUSY algebra (4.1)–(4.5) any more, i.e. the system lost SUSY. To restore

both off-shell consistency and SUSY, a set of auxiliary fields F a(k) should be introduced.

Supersymmetric off-shell system of equations acquires the form

DLCa(k) + ebC
a(k)b −

√
2φαχa(k)

α = 0 , (5.12)

DLχa(k)
α + ebχ

a(k)b
α −

√
2iφ̄α̇(σb)αα̇C

a(k)b −
√

2φαF
a(k) = 0 , (5.13)

DLF a(k) + ebF
a(k)b −

√
2iφ̄α̇(σ̄b)

α̇αχa(k)b
α = 0 . (5.14)

This system is consistent, obeying (2.3). By virtue of eq. (5.14), auxiliary fields F a(k) are

higher derivatives of the ground auxiliary field F familiar for Wess-Zumino model. Not

surprisingly, the fields F a(k) provide closure of SUSY algebra of the off-shell system.

As explained in subsection 2.1, consistency of system (5.12)–(5.14) implies its global

SUSY invariance. Corresponding SUSY transformations in Minkowski space are

δCa(k) =
√

2εαχa(k)
α , (5.15)

δχa(k)
α =

√
2iε̄α̇(σb)αα̇C

a(k)b +
√

2εαF
a(k), (5.16)

δF a(k) =
√

2iε̄α̇(σ̄b)
α̇αχa(k)b

α . (5.17)

In Cartesian coordinates with eam = δam, φα = φ̄α̇ = 0, DL = d system (5.12)–(5.14)

implies Ca = −∂aC, (χα)a = −∂aχα. As a result,

δC =
√

2ξαχα , (5.18)

δχα = −
√

2iξ̄α̇(σa)αα̇∂aC +
√

2ξαF , (5.19)

δF = −
√

2iξ̄α̇(σ̄a)α̇α∂aχα , (5.20)

where ξα and ξ̄α̇ are global SUSY parameters. These are standard supertransformations

of the chiral supermultiplet [5].
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Extension of system (5.12)–(5.14) to superspace is again achieved via extension of all

functions to superspace

DCa(k) + EbC
a(k)b −

√
2Eαχa(k)

α = 0 , (5.21)

Dχa(k)
α + Ebχ

a(k)b
α −

√
2iĒα̇(σb)αα̇C

a(k)b −
√

2EαF
a(k) = 0 , (5.22)

DF a(k) + EbF
a(k)b −

√
2iĒα̇(σ̄b)

α̇αχa(k)b
α = 0 . (5.23)

Resulting system imposes, however, differential equations with respect to odd coordinates,

i.e. strictly speaking it is not fully off-shell in superspace. Indeed, using (4.24) it is easy to

obtain from (5.21)–(5.23) that

D̄α̇C
a(k) = 0 , DαF

a(k) = 0 . (5.24)

These are chirality condition for the fields Ca(k) and antichirality condition for the fields

F a(k). As is well known [5], these conditions do not impose differential equations in

Minkowski space, where the system remains off-shell.

Since the fields of Wess-Zumino model are complex, system (5.21)–(5.23) should be

supplemented by the complex conjugated equations

DC̄a(k) + EbC̄
a(k)b +

√
2Ēα̇χ̄

a(k)
α̇ = 0 , (5.25)

Dχ̄
a(k)
α̇ + Ebχ̄

a(k)b
α̇ +

√
2iEα(σb)αα̇C̄

a(k)b −
√

2Ēα̇F̄
a(k) = 0 , (5.26)

DF̄ a(k) + EbF̄
a(k)b −

√
2iEα(σ̄b)

α̇αχ̄
a(k)b
α̇ = 0 . (5.27)

Their consequences

DαC̄
a(k) = 0 , D̄α̇F̄

a(k) = 0 (5.28)

imply that C̄a(k) are antichiral and F̄ a(k) are chiral.

6 Operator Q

6.1 General properties

According to the general scheme of [2] recalled in subsection 2.3, Lagrangians of the un-

folded system are associated with its Q-cohomology. The full set of unfolded equations of

the system in question includes eqs. (4.11)–(4.14) describing flat superspace background

and eqs. (5.21)–(5.23), (5.25)–(5.27) describing scalar supermultiplet. The operator Q of

this system is

Q = QΩ + Q̂ , (6.1)

where

QΩ = Ωa,bEb
∂

∂Ea
+

1

4
Ωa,bEβ(σab)β

α ∂

∂Eα
+

1

4
Ωa,bĒβ̇(σ̄ab)

β̇
α̇
∂

∂Ēα̇
+ Ωa,bq̂

ba

+Ωa,cΩc
,b ∂

∂Ωa,b
, (6.2)

Q̂ = 2iEα(σa)αα̇Ē
α̇ ∂

∂Ea
+ Eaq̂

a +
√

2Eαq̂
α +
√

2Ēα̇ ˆ̄qα̇, (6.3)
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with

q̂bc = Ca(k−1)b ∂

∂Ca(k−1)c
+ C̄a(k−1)b ∂

∂C̄a(k−1)c
+ F a(k−1)b ∂

∂F a(k−1)c
+ F̄ a(k−1)b ∂

∂F̄ a(k−1)c

+χa(k−1)b
α

∂

∂χ
a(k−1)c
α

− 1

4
χ
a(k)
β (σbc)

β
α

∂

∂χ
a(k)
α

+ χ̄
a(k−1)b
α̇

∂

∂χ̄
a(k−1)c
α̇

− 1

4
χ̄
a(k)

β̇
(σ̄bc)

β̇
α̇

∂

∂χ̄
a(k)
α̇

,

q̂b = Ca(k)b
∂

∂Ca(k)
+C̄a(k)b

∂

∂C̄a(k)
+χa(k)bα

∂

∂χ
a(k)
α

+χ̄
a(k)b
α̇

∂

∂χ̄
a(k)
α̇

+F a(k)b
∂

∂F a(k)
+F̄ a(k)b

∂

∂F̄ a(k)
,

q̂α = (χα)a(k)
∂

∂Ca(k)
− F a(k) ∂

∂χ
a(k)
α

− iεαβ(σb)ββ̇C̄
a(k)b ∂

∂χ̄
a(k)

β̇

− iχ̄a(k)b
β̇

(σ̄b)
β̇α ∂

∂F̄ a(k)
,

ˆ̄qα̇ = −(χ̄α̇)a(k)
∂

∂C̄a(k)
+ F̄ a(k)

∂

∂χ̄
a(k)
α̇

− iεα̇β̇(σb)ββ̇C
a(k)b ∂

∂χ
a(k)
β

− i(σ̄b)α̇βχa(k)bβ

∂

∂F a(k)
.

Q̂ can be represented in the form

Q̂ = Q1 +Q+
2 +Q−2 +Q3 , (6.4)

where the operators

Q1 = Eaq̂
a (6.5)

Q+
2 =

√
2Eαq̂

α, Q−2 =
√

2Ēα̇ ˆ̄qα̇, (6.6)

Q3 = 2iEα(σa)αα̇Ē
α̇ ∂

∂Ea
, (6.7)

obey

(Q1)2 = (Q+
2 )2 = (Q−2 )2 = (Q3)2 = 0 , (6.8)

{Q1, Q3} = −{Q+
2 , Q

−
2 } = 2iEαĒα̇(σa)αα̇q̂

a, (6.9)

{Q+
2 , Q3} = {Q−2 , Q3} = {Q1, Q

+
2 } = {Q1, Q

−
2 } = 0 . (6.10)

Eq. (6.9) implies

{q̂α, ˆ̄qα̇} = −i(σ̄a)α̇αq̂a. (6.11)

6.2 Highest grades

Now we are in a position to look for Lagrangians, representing cohomology of the operator

Q. These are built from background 1-forms Ωa,b, Ea, Eα, Ēα̇ and supermultiplet 0-form

fields Ca(k), C̄a(k), χ
a(k)
α , χ̄

a(k)
α̇ , F a(k), F̄ a(k).

First of all, we observe that Lagrangian should be Ω-independent since the terms

resulting from the action of Ωa,cΩc
b ∂
∂Ωa,b in (6.2) cannot be canceled against other terms.

Indeed, consider for instance a function Ωa,bAab, where Aab is built from 1-forms Ea, Eα,

Ēα̇ and 0-forms of supermultiplet fields. Then the part of QΩa,bAab bilinear in Ω contains

three terms of the form Ωa,cΩc
bAab which do not cancel. Similarly one proceeds with terms

of higher orders in Ω. More precisely, though nonlinear Ω-dependent terms can be present,

all of them can be removed by adding Q-exact terms, thus representing the trivial class of

Q-cohomology.
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Clearly, for Ω-independent Lagrangian, the condition

QΩL = 0 (6.12)

implies that L is Lorentz invariant, i.e. all indices are contracted with Lorentz-invariant

flat metric and σ-matrices.

As a result Q-cohomology amounts to cohomology of the Ω-independent part Q̂ of Q.

It is convenient to introduce the following grading G of the background 1-forms

G(Eα) = G(Ēα̇) = 2 , G(Ea) = 1 . (6.13)

Hence

G(Q1) = 1 , G(Q+
2 ) = G(Q−2 ) = 2 , G(Q3) = 3 . (6.14)

According to subsection 2.3, nontrivial Lagrangians can be represented by cohomology

H(Q3).

The computation considerably simplifies in spinor notations. The dictionary between

vector and spinor indices is provided by σ-matrices. For example, for a Lorentz vector Aa

Aa =
1

2
(σ̄a)

α̇αAαα̇ , Aαα̇ = (σa)αα̇A
a.

In spinor notations

Q1 =
1

2
Eαα̇q̂αα̇ , (6.15)

Q3 = 2iĒα̇Eα
∂

∂Eαα̇
. (6.16)

An efficient tool to compute cohomology is provided by the homotopy lemma (see

e.g. [35]). Consider V =
∑∞

p=−∞
⊕
V p where linear spaces V p are finite dimensional. Let

Q be a grade one nilpotent operator

Q(V p) ⊂ V p+1, Q2 = 0 ,

and Q̃ be a grade −1 nilpotent operator

Q̃(V p) ⊂ V p−1, Q̃2 = 0 .

The homotopy lemma states, that if the homotopy operator

H := {Q, Q̃} (6.17)

is diagonalizable in V , then cohomology H(Q,V ) ⊂ KerH. Indeed, let v ∈ V be a Q-closed

eigenvector of H
Hv = λv , Qv = 0 (6.18)

with λ 6= 0. Then v is Q-exact because

v = λ−1Hv = Qβ , β = λ−1Q̃v . (6.19)

Hence, only v, that are eigenvectors of H with zero eigenvalue, can belong to H(Q,V ).
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To apply this technique let us introduce the operator

Q̃3 =
1

2i
Eαα̇

∂2

∂Ēα̇∂Eα
, (Q̃3)2 = 0 , G(Q̃3) = −3 . (6.20)

The homotopy operator associated with (6.16) and (6.20) is

H = EαĒα̇
∂2

∂Ēα̇∂Eα
+ Eαα̇

∂

∂Eαα̇
+ Eβα̇Eα

∂2

∂Eβ∂Eαα̇
+ Eαβ̇Ēα̇

∂2

∂Ēβ̇∂Eαα̇
. (6.21)

As explained in section 3, in supersymmetric models one can look for different types

of unfolded superLagrangians, depending on whether they are polynomials or distributions

with respect to commuting odd differentials dθ or, in terms of gauge fields, with respect to

gravitino 1-forms Eα and Ēα̇. In the both cases H has zero G-grade, and is diagonalizable

so that the homotopy lemma applies.

It is convenient to characterize expressions in question by the number of 1-forms Eαα̇

they contain. Being anticommutative, Eαα̇ can appear only in the following combinations:

Eαα̇Xαα̇, Eαα̇E
βα̇Xαβ + h.c., Eαα̇E

βα̇Eβ
β̇Xαβ̇, Eαα̇E

βα̇Eββ̇Eα
β̇X, where all X are Eαα̇-

independent. Note that for the last term in (6.21) the following relations hold

Eαβ̇Ēα̇
∂2

∂Ēβ̇∂Eαα̇

(
Eγγ̇E

δγ̇Ē δ̇
)

= Eγγ̇E
δγ̇Ē δ̇, (6.22)

Eαβ̇Ēα̇
∂2

∂Ēβ̇∂Eαα̇
δ2
(
Ēδ̇
)
Eγγ̇ = −2δ2

(
Ēδ̇
)
Eγγ̇ , (6.23)

using (A.6) and that Eγγ̇E
δγ̇ is symmetric in γ and δ due to anticommutativity of Eαα̇.

Derivative of δ-function is defined as usual via Ēγ̇δ
′
β̇
(Ēα̇) = εγ̇β̇δ

2(Ēα̇). Analogous relations

hold for the third term in (6.21).

Now let us use the homotopy lemma to compute Q3-cohomology in the class of real

superforms polynomial in Eα and Ēα̇. Depending on the number of Eαα̇, there are five

options:

• Λ0 = Eα . . . EαĒα̇ . . . Ēα̇λα(m),α̇(n) + h.c., where λα(m),α̇(n) are 0-forms symmetric

over indices α and α̇. Here we have

HΛ0 = mnΛ0 + h.c. = 0 , (6.24)

which is true when m = 0 or n = 0, i.e.

Λ0 = Eα . . . Eαλα(m) + h.c. (6.25)

• Λ1 = Eββ̇Eα . . . EαĒα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n) + h.c.

HΛ1 = mnΛ1 + Λ1 +mEαβ̇EβEα . . . EαmĒα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n)

+nEβα̇Eα . . . EαĒβ̇Ēα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n) + h.c. = 0 . (6.26)

This equation has nontrivial solutions if β is antisymmetrized with some α1 in

λβ,α(m),β̇,α̇(n) (and similarly for dotted indices). This gives the following solutions

Λ1
1 = Eαα̇EαĒα̇λ , (6.27)

Λ2
1 = Eβα̇EβE

α . . . Eαλα(m),α̇ + h.c. (6.28)
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• Λ2 = Eββ̇E
γβ̇Eα . . . EαĒα̇ . . . Ēα̇λβγ,α(m),α̇(n) + h.c.

HΛ2 = mnΛ2 +2Λ2 +2mEαβ̇E
γβ̇EβEα. . . EαĒα̇. . . Ēα̇λβγ,α(m),α̇(n) +nΛ2 +h.c. = 0 .

(6.29)

Again, this equation has nontrivial solutions only if λβ,γ,α(m),α̇(n) is antisymmetrized

over (β, α1) and (γ, α2), i.e.

Λ2 = Eβα̇E
γα̇EβEγE

α . . . Eαλα(m) + h.c. (6.30)

• Λ3 = Eβγ̇E
γγ̇Eγ

β̇Eα . . . EαĒα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n) + h.c.

HΛ3 = mnΛ3 + 3Λ3 +mEαγ̇E
γγ̇Eγ

β̇EβEα . . . EαĒα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n) +mΛ3

+nEβγ̇E
γγ̇Eγ

α̇Eα . . . EαĒβ̇Ēα̇ . . . Ēα̇λβ,α(m),β̇,α̇(n) + nΛ3 + h.c. = 0 .

(6.31)

This equation admits no nontrivial solutions.

• Λ4 = Eββ̇E
γβ̇Eγγ̇Eβ

γ̇Eα . . . EαĒα̇ . . . Ēα̇λα(m),α̇(n) + h.c. From (6.22) we find

HΛ4 = mnΛ4 + 4Λ4 + 2mΛ4 + 2nΛ4 . (6.32)

Hence, HΛ4 = 0 admits no nontrivial solutions.

Straightforward calculation shows that expressions (6.25), (6.27), (6.28) and (6.30) are

Q3-closed. Thus cohomology of Q3 in the class of superforms is contained in

H1 = Eα . . . Eαλα(m) + h.c. (6.33)

H2 = Eαα̇EαĒα̇λ , (6.34)

H3 = Eβα̇EβE
α . . . Eαλα(m),α̇ + h.c. (6.35)

H4 = Eβα̇E
γα̇EβEγE

α . . . Eαλα(m) + h.c. (6.36)

According to section 3 nontrivial Lagrangians can be associated with the 4-superforms

from H(Q3) which have the form

L8 = EαEαEαEα`α(4) + h.c. , (6.37)

L7 = Eβα̇EβE
αEα`α(2),α̇ + h.c. , (6.38)

L6 = Eαα̇E
βα̇EαEβ`+ h.c. , (6.39)

where G(Li) = i and `α(4), `α(2),α̇, ` are built from the supermultiplet fields. However, it

can be shown that (6.37) and (6.38) do not lead to Q-closed expessions. Skipping details,

here the phenomenon mentioned in subsection 2.3 occurs, namely Q1L8 and Q1L7 belong

to nontrivial cohomology of Q+
2 , that obstructs the reconstruction of the full Lagrangian.
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So the only candidate for Lagrangians is (6.39). To single out trivial highest grade

terms among (6.39) consider the following 3-forms from H(Q3) (6.33)–(6.36)

F6 = EαEαEαfα(3) + h.c. , (6.40)

F1
5 = Eαα̇EαĒα̇f , (6.41)

F2
5 = Eαα̇EαE

βfβα̇ + h.c. (6.42)

where G(Fi) = i and f are 0-forms built from the supermultiplet fields. As shown in

subsection 2.3, trivial Lagrangians are described by solutions of the system (2.29)–(2.32)

for (6.39) and some F (6.40)–(6.42).

First, we observe that (6.40) cannot contribute since its grade G(F6) = 6 is the same

as L6 (6.39), so that the system (2.29)–(2.32) admits no solutions since all Qi have positive

G-grades. For F1
5 (6.41) and F2

5 (6.42) with G(F1
5 ) = G(F2

5 ) = 5 the system (2.29)–(2.32)

takes the form

Q3F i5 = 0 , (6.43)

(Q+
2 +Q−2 )F i5 +Q3F i4 = 0 , (6.44)

Q1F i5 + (Q+
2 +Q−2 )F i4 +Q3F i3 = Eαα̇E

βα̇EαEβ`+ h.c. (6.45)

where i = 1, 2.

Eq. (6.43) is satisfied since F1
5 and F2

5 are Q3-closed. For F1
5 , eq. (6.44) admits a

solution

F1
4 =

i√
2
Eαα̇Eβα̇q̂βf + h.c. (6.46)

However (6.45) admits no nonzero solutions for F1
5 (6.41) and F1

4 (6.46) because its l.h.s.

contains among others the terms of the form

iEαα̇Eβα̇Ē
β̇Eα ˆ̄qβ̇ q̂βf + iEαα̇Eα

β̇EβĒα̇q̂β ˆ̄qβ̇f

that are not present on the r.h.s. of (6.45) and cannot be compensated by any Q3F1
3 due

to (6.11) which in spinor notations reads as

{q̂α, ˆ̄qα̇} = −iq̂αα̇. (6.47)

For F2
5 (6.42), eq. (6.44) gives

q̂αfβα̇ = 0 , ˆ̄qα̇f̄β̇α = 0 , (6.48)

F2
4 = i

√
2Eαα̇E

βα̇Eα ˆ̄qβ̇fββ̇ + h.c. (6.49)

Then (6.45) is solved by

F2
3 = −2

3
Eαβ̇E

ββ̇Eβ
α̇ ˆ̄qγ̇ ˆ̄qγ̇fαα̇ + h.c. , (6.50)

` = −1

2
q̂αα̇fαα̇ . (6.51)

The conclusion is that Lagrangians generated by L (6.39) are trivial if ` has the

form (6.51) (analogously for ¯̀) with fαα̇ obeying (6.48).
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7 Lagrangians

7.1 Four-form Lagrangian

We look for a Lagrangian as a Q-closed 4-superform

L = EaEb
{

(σ̄ab)α̇β̇Ēα̇Ēβ̇`6 + (σab)αβEαEβ ¯̀
6

}
+εabcdEaEbEc

{
Ēα̇(σ̄d)

α̇α`5α + Eα(σd)αα̇ ¯̀α̇
5

}
+ EaEbEcEdε

abcd`4 , (7.1)

where 0-forms `i are built Lorentz-covariantly from the supermultiplet fields Ca(k),

C̄a(k), χ
a(k)
α , χ̄

a(k)
α̇ , F a(k), F̄ a(k). That this is the most general Lorentz-invariant 4-

superform Ansatz follows from the results of section 6.2. (For instance, the term

εabcdEaEbE
α(σc)αα̇Ē

α̇`d, that has the same G-grade as (6.39), is not added as not rep-

resenting nonzero Q3-cohomology.)

The equation Q̂L = 0 can now be analyzed in different grade sectors, starting from

the highest one. The full set of equations is presented in appendix B.

There are two complex conjugated equations in the highest grade G = 9

2iEγ(σc)γγ̇Ē
γ̇ ∂

∂Ec
EaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6 = 0 , (7.2)

2iEγ(σc)γγ̇Ē
γ̇ ∂

∂Ec
EaEb(σ

ab)αβEαEβ ¯̀
6 = 0 . (7.3)

These hold true for any `6 and ¯̀
6, because the corresponding terms belong to H(Q3).

Indeed, e.g. eq. (7.2) is proportional to εabcd(σ̄ab)
α̇β̇(σ̄c)

γ̇αĒα̇Ēβ̇Ēγ̇ . From relation (A.9) it

follows that to be symmetric over three dotted spinor indices εabcd(σ̄ab)
α̇β̇(σ̄c)

γ̇α must be

antisymmetric with respect to the three undotted indices, which is zero because the latter

take just two values.

In the grade G = 8 we obtain four equations. From the first two

Ēγ̇ ˆ̄qγ̇EaEb(σ̄
ab)α̇β̇Ēα̇Ēβ̇`6 = 0 , (7.4)

Eγ q̂
γEaEb(σ

ab)αβEαEβ ¯̀
6 = 0 , (7.5)

we find that `6 and ¯̀
6 have to obey ˆ̄qα̇`6 = 0 and q̂α ¯̀

6 = 0, respectively. Using (A.9), one

easily finds that the last two equations

2iEγ(σe)γγ̇Ē
γ̇ ∂

∂Ee
εabcdEaEbEcĒα̇(σ̄d)

α̇α`5α+
√

2Eγ q̂
γEaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6 = 0 , (7.6)

2iEγ(σe)γγ̇Ē
γ̇ ∂

∂Ee
εabcdEaEbEcE

α(σd)αα̇ ¯̀α̇
5 +
√

2Ēγ̇ ˆ̄qγ̇EaEb(σ
ab)αβEαEβ ¯̀

6 = 0 (7.7)

are solved by `5α =
√

2
6 q̂α`6 and ¯̀

5α̇ =
√

2
6

ˆ̄qα̇ ¯̀
6.

Continuation of this analysis gives the following Q-closed superfield Lagrangian

L = EaEb(σ̄
ab)α̇β̇Ēα̇Ēβ̇W + EaEb(σ

ab)αβEαEβW̄

+

√
2

6
εabcdEaEbEcĒα̇(σ̄d)

α̇αq̂αW +

√
2

6
εabcdEaEbEcE

α(σd)αα̇ ˆ̄qα̇W̄

+EaEbEcEdε
abcd

(
i
√

2

16
ˆ̄qα̇ ˆ̄qα̇W̄ − i

√
2

16
q̂αq̂αW

)
(7.8)
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where the 0-forms W and W̄ are arbitrary functions of Ca(k), F̄ a(k) and C̄a(k), F a(k),

respectively, so that ˆ̄qα̇W = 0 and q̂αW̄ = 0. By virtue of (5.24), (5.28) this means that W

is chiral and W̄ is antichiral. Note that, as follows from (6.51), W of the form W = q̂af
a

lead to trivial Lagrangians.

By construction, Lagrangian (7.8) is manifestly supersymmetric and the corresponding

action is independent of the local variation of the integration surface. A particular solution,

that reproduces free Wess-Zumino action [5], results from (7.8) with W = i2
√

2CF̄ , W̄ =

−i2
√

2C̄F

LWZ = i2
√

2EaEb(σ̄
ab)α̇β̇Ēα̇Ēβ̇CF̄ − i2

√
2EaEb(σ

ab)αβEαEβC̄F

+
2i

3
εabcdEaEbEcĒα̇(σ̄d)

α̇α
[
χαF̄ − iC(σ̄e)αβ̇χ̄

β̇
e

]
+

2i

3
εabcdEaEbEcE

α(σd)αα̇
[
χ̄α̇F + iC̄(σ̄e)

α̇βχeβ
]

+EaEbEcEdε
abcd

[
1

2
CeeC̄ +

1

2
CC̄ee +

i

2
χ̄eα̇(σ̄e)

α̇αχα −
i

2
χ̄α̇(σ̄e)

α̇αχeα + FF̄

]
.

(7.9)

An important comment is that, though the unfolded on-shell system from section 5

describes free dynamics of massless scalar supermultiplet, its off-shell modification repre-

sents just an infinite set of constraints. The form of these constraints is independent of

whether the model is free or nonlinear. As a result, it can be used for description of a mas-

sive interacting theory. Nonlinear (starting from cubic) representatives of Q-cohomology

determine Lagrangians with interactions. In particular, if W = W (C) depends only on C

(respectively W̄ = W̄ (C̄)), (7.8) describes the superpotential.

7.2 Lagrangian as integral form

As explained in section 3, a superspace Lagrangian can also be formulated as an integral

form. This can be written as

L = Ea1 . . . Eamδ
2(Eα)δ2(Ēα̇)`[a1...am] , (7.10)

where `[a1...am] is some Lorentz-covariant 0-form built from the supermultiplet fields.

Applying the homotopy lemma, in spinor notations we have

H
(
Eα1α̇1 . . . Eαmα̇mδ

2(Eβ)δ2(Ēβ̇)`α1...αm,α̇1...α̇m
)

= 4L+mL −mL −mL = 0 , (7.11)

which implies m = 4. So the only nonzero cohomology of Q3 is

L = Eαα̇E
βα̇Eββ̇Eα

β̇δ2(Eγ)δ2(Ēγ̇)` . (7.12)

It is elementary to see that this Lagrangian is Q-closed.

To analyze whether or not such actions contain trivial parts one has to consider Q-

images of the expressions containing derivatives of delta-functions. Indeed, for

F = Eαα̇E
βα̇Eββ̇Eα

β̇δ′δ(Eγ)δ2(Ēγ̇)f δ + h.c. (7.13)
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we obtain

QF = (Q+
2 +Q−2 )F =

√
2Eαα̇E

βα̇Eββ̇Eα
β̇δ2(Eγ)δ2(Ēγ̇)(q̂δfδ + h.c.) . (7.14)

As a result, (7.12) describes trivial Lagrangians if ` = q̂αfα+h.c. for some fα. In particular,

Lagrangians with ` = q̂αα̇fαα̇ are trivial because, as follows from (6.47), in this case

` = iq̂α(ˆ̄qα̇fαα̇) + iˆ̄qα̇(q̂αfαα̇) . (7.15)

In tensor indices the Lagrangian reads as

L = εabcdEaEbEcEdδ
2(Eα)δ2(Ēα̇)` . (7.16)

The Lagrangian which reproduces the free Salam-Strathdee Lagrangian [5] is

LWB = εabcdEaEbEcEdδ
2(Eα)δ2(Ēα̇)(C̄C) , (7.17)

as follows from the formula (5.24) which implies that C(z) is a chiral superfield.

To relate Lagrangians (7.16) and (7.8) one can choose the integration surface for (7.8) as

xm = fm(tn) , θµ = ϕµ(tn) , θ̄µ̇ = ϕ̄µ̇(tn) , (7.18)

where coordinates tn, n = 1, . . . 4 are even, fm(tn) are even and ϕµ(tn), ϕ̄µ̇(tn) are odd.

Extending tn by odd variables λµ, λ̄µ̇, µ, µ̇ = 1, 2 so that {tn, λµ, λ̄µ̇} provide a full set of

superspace coordinates, we extend (7.18) to

xm = fm + iϕµ(σm)µµ̇λ̄
µ̇− iλµ(σm)µµ̇ϕ̄

µ̇ , θµ = ϕµ +λµ , θ̄µ̇ = ϕ̄µ̇ + λ̄µ̇ . (7.19)

Substitution of (7.19) into S =
∫
L (7.16) and integration over λµ, λ̄µ̇ represents the action

as an integral over the even surface (7.18) of the Lagrangian (7.8), where W = ˆ̄qα̇ ˆ̄qα̇` and

W̄ = q̂αq̂α` (plus Q-exact terms). In the process, 1-forms Ea, Eα, Ēα̇ from (7.16) get

transformed into Cartesian 1-forms (4.19) in the resulting Lagrangian (7.8)

Ẽa = dfa(t) + dϕµ(t)
(
iϕ̄µ̇(t)(σa)µµ̇

)
+ dϕ̄µ̇(t)

(
iϕµ(t)(σa)µν̇ε

µ̇ν̇
)
,

Ẽα = dϕα(t) ,

˜̄Eα̇ = dϕ̄α̇(t) . (7.20)

For the free Salam-Strathdee Lagrangian (7.17), this gives the unfolded Wess-Zumino action

with Lagrangian (7.9) hence showing their equivalence.

However, superpotentials are not represented in the integral form (7.16). This is ex-

pected since they represent chiral functions to be integrated over chiral subspaces [5]. In

our approach such terms also are most conveniently represented in the form intermediate

between the 4-form Lagrangians and integral-form Lagrangians, i.e. as integrals over chiral

superspace.
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7.3 Chiral superspace

To introduce superpotentials we introduce the following chiral integral forms,

Λ = δ2(Eα)Ea1 . . . EamĒα̇ . . . Ēα̇W
[a1...am]α̇(n), (7.21)

where W is the Lorentz-covariant 0-form built from chiral functions Ca(k) and F̄ a(k) (so,

Q−2 Λ = 0). Such forms are integrable over chiral superspace Cm+n|2 in a standard way

described in section 3. Here Ēα̇ without δ-functions describe the pullback of the respective

1-forms to the chiral superspace.

Let us explore equation HΛi = 0 in spinor notations, where Λi from (7.21) contains i

factors of Eαα̇. For

Λ0 = δ2(Eα)Ēα̇ . . . Ēα̇Wα̇(m) , (7.22)

Λ1 = δ2(Eα)Ēα̇ . . . Ēα̇Eββ̇Wβ,β̇,α̇(m) , (7.23)

Λ2 = δ2(Eα)Ēα̇ . . . Ēα̇
(
Eββ̇E

γβ̇Wβγ,α̇(m) + Eββ̇Eβ
γ̇Wβ̇γ̇,α̇(m)

)
, (7.24)

Λ3 = δ2(Eα)Eβγ̇E
γγ̇Eγ

β̇Ēα̇ . . . Ēα̇Wβ,β̇,α̇(m) , (7.25)

the equation HΛ = 0 has nontrivial solutions (with arbitrary 0-forms W ) only at m = 0.

This is easy to understand by noting that, because δ2(Eα)Ēα̇ = Q3

(
i
4δ
′
β(Eα)Eβα̇

)
all such

Λ, being Q3-closed due to δ-functions, are not Q3-exact only if they are independent of Ēα̇.

However, for

Λ4 = δ2(Eα)Eββ̇E
γβ̇Eγγ̇Eβ

γ̇Ēα̇ . . . Ēα̇Wα̇(m) , (7.26)

HΛ4 = −2mΛ4 + 4Λ4 − 4Λ4 + 2mΛ4 ≡ 0. Hence, Λ4 (7.26) can represent Q3-cohomology

at any m. Thus Q3-cohomology in the class of chiral integral forms is represented by

Λ0 = δ2(Eα)W , (7.27)

Λ1 = δ2(Eα)Eββ̇Wββ̇ , (7.28)

Λ2 = δ2(Eα)
(
Eββ̇E

γβ̇Wβγ + Eββ̇Eβ
γ̇W̄β̇γ̇

)
, (7.29)

Λ3 = δ2(Eα)Eβγ̇E
γγ̇Eγ

β̇Wββ̇ , (7.30)

Λ4 = δ2(Eα)Eββ̇E
γβ̇Eγγ̇Eβ

γ̇Ēα̇ . . . Ēα̇Wα̇(m) . (7.31)

To be integrated over C4|2, the only appropriate expression from (7.27)–(7.31) is

L0 = δ2(Eα)Eββ̇E
γβ̇Eγγ̇Eβ

γ̇W . (7.32)

Note that G
(
δ2(Eα)

)
= −4, because the δ-function has the degree of homogeneity −2

and G(Eα) = 2, as a result G(L0) = 0. To single out trivial Lagrangians, we write down

eqs. (2.29)–(2.32) for

F−1 = δ2(Eα)Eβγ̇E
γγ̇Eγ

β̇fββ̇ , G(F−1) = −1 , (7.33)
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which represents the only expression from those in (7.27)–(7.31), whose Q-image can con-

tribute to (7.32). This gives

Q3F−1 = 0 , (7.34)

(Q+
2 +Q−2 )F−1 +Q3F−2 = 0 , (7.35)

Q1F−1 + (Q+
2 +Q−2 )F−2 +Q3F−3 = δ2(Eα)Eββ̇E

γβ̇Eγγ̇Eβ
γ̇W . (7.36)

We immediately conclude that F−2 with G = −2 here can only have the form

F−2 = δ′δ(Eα)Eββ̇E
γβ̇Eγγ̇Eβ

γ̇f δ.

(G
(
δ′β(Eα)

)
= −6 as follows from the definition Eγδ

′
β(Eα) = εγβδ

2(Eα) and G
(
δ(Eα)

)
=

−4.) Eq. (7.34) is satisfied as F−1 ∈ H(Q3). Term with F−1 in (7.35) is zero because (7.33)

contains δ-function and fββ̇ is built from Ca(k) and F̄ a(k), so F−2 = 0. Finally, eq. (7.36)

has a solution

F−3 = 0 , W =
1

8
q̂αα̇f

αα̇ .

We conclude that (7.32) describes nontrivial Lagrangians only if W 6= q̂αα̇f
αα̇ for some

fαα̇. Also, analogously to subsection 7.2, we have to consider expressions with derivatives

of δ-function whose Q-images can lead to trivial Lagrangians in (7.32). It is easy to see

that the only appropriate elements from Ker(Q3) are

K1 = δ′β(Eα)Ēα̇ . . . Ēα̇k̄βα̇(4) ,

K2 = δ′β(Eα)Eγα̇Eγ
β̇Ēα̇Ēβ̇ k̄

β.

However the former has G(K1) = 2 while the latter has G(K1) = 0. Since G(L0) = 0

for (7.32), the system (2.29)–(2.32) admits no nonzero solutions in these cases.

Next, besides Q3L0 = 0, L0 (7.32) obeys

Q−2 L0 = 0 , (7.37)

Q+
2 L0 = 0 , (7.38)

Q1L0 = 0 . (7.39)

The first equation holds because W in (7.32) is built from chiral Ca(k) and F̄ a(k). The

second one holds due to the δ-function. The third one is true because L0 contains the

maximal number of Eαα̇. So L0 (7.32) is Q-closed and hence represents the general form of

an unfolded chiral Lagrangian. (Note that (7.27)–(7.30) with nonzero W are not Q-closed,

because they contain less than four Eαα̇ and hence are not annihilated by Q1 = 1
2E

αα̇q̂αα̇.)

In tensor notations, general chiral Lagrangian is

L = δ2(Eα)εabcdEaEbEcEdW , (7.40)

where Lorentz-invariant 0-form W is built from Ca(k) and F̄ a(k), and W 6= q̂afa. For the

Lagrangian to be real, (7.40) should be supplemented by the complex conjugated expres-

sion to be integrated over antichiral superspace with the 0-form W̄ built from C̄a(k) and
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F a(k). Combination of (7.40) (plus conjugated expression) and (7.16) gives the unfolded

superspace action of the interacting theory.

To reproduce superpotential of the Wess-Zumino model [5] we choose W = kC +
m
2 CC + g

3CCC with arbitrary constants k, m, g. Then superpotential takes the form

L =

∫
δ2(Eα)εabcdEaEbEcEd

(
kC +

m

2
CC +

g

3
CCC

)
+ h.c. (7.41)

To write a full action containing both kinetic term and superpotential of the Wess-

Zumino model in the chiral form we set W = − 1
16CF̄ + kC + m

2 CC + g
3CCC. This gives

S =

∫
δ2(Eα)εabcdEaEbEcEd

(
− 1

16
CF̄ + kC +

m

2
CC +

g

3
CCC

)
+ h.c. (7.42)

The kinetic term − 1
16CF̄ in (7.42) results from integration of (7.17) over θ̄α̇ taking into

account that from (5.25)–(5.27) it follows that F̄ = 2D̄D̄C̄.

As in section 7.2, one can map solution (7.40) to the 4-superform (7.8). The only

difference is that instead of (7.19) even surfaces of the chiral superspace (xm, θµ)→ (tm, λµ)

are parametrized as

xm = fm(t) + i
(
ϕµ(t) + λµ

)
(σm)µµ̇ϕ̄

µ̇(t) , θµ = ϕµ(t) + λµ. (7.43)

Integration over λµ, gives Lagrangian (7.8) with the same function W as in (7.40).

Analogously to section 7.2, the resulting Lagrangian is integrated over the surface (7.18)

with 1-forms (7.20).

Expressions (7.8), (7.16) and (7.40) give the most general unfolded Lagrangians which

can be written for the Wess-Zumino model as a 4-superform, integral form or a chiral

integral form respectively. Besides the standard Wess-Zumino and Salam-Strathdee La-

grangians, they also describe the higher-derivative Lagrangians. Namely, by virtue of

eqs. (5.21)–(5.23), the rank k tensors Ca(k), χ
a(k)
α and F a(k) describe the k-th derivatives

of the dynamical fields C, χα and F . Plugging the higher-rank tensors into (7.8), (7.16)

or (7.40) gives the higher-derivative unfolded actions. Unfolded Lagrangians contain all

possible ordinary Lagrangians that can be written for the 4d Wess-Zumino model. To

obtain a conventional field-theoretic Lagrangian from the unfolded, one has to express all

auxiliary fields Ca(k), C̄a(k), χ
a(k)
α , χ̄

a(k)
α̇ , F a(k), F̄ a(k) with k > 1 in terms of the derivatives

of the dynamical fields using unfolded equations (5.21)–(5.23), (5.25)–(5.27). Then, fixing

an integration surface, the substitution of the resulting expressions for instance into (7.8)

gives an ordinary space-time action.

In particular, doing this for (7.9) and choosing Minkowski space as an integration

surface we see that the integral of (7.9) reproduces the component action of the free chiral

supermultiplet [5]. Alternatively, one can use Lagrangians (7.17) or (7.42), arriving at the

standard Salam-Strathdee superfield action. Generally, being manifestly supersymmetric

the unfolded superform action leads directly to the component action.
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8 Conclusion

In this paper, unfolded off-shell formulation of the free massless scalar supermultiplet is

presented and the system of equations, that determines all superfield Lagrangians of the

model, is derived and analyzed. The particular solutions leading to superfield actions of

the Wess-Zumino model in the form of integrals of a 4-superform, integral form and chiral

integral form are obtained. Explicit relations between these forms of superspace actions

are established. It is shown in particular how usual superspace action for the Wess-Zumino

model can be rewritten as an integral of a 4-superform.

In some sense, the construction of a chiral action is intermediate between the one of

section 7.1 and that of section 7.2. In fact, this is a particular example of a very general phe-

nomenon that the full action may have a form of integral over (super)manifolds of different

dimensions. As long as even dimension is kept fixed, integration over supercoordinates will

result in one or another space-time action. We expect that in more complicated theories

like higher-spin theories and their further multiparticle extensions, invariant functionals

resulting from integrals over space-times with different even dimensions may all contribute

to the final result.

Being based on unfolded dynamics, the proposed method is most general, providing

maximal flexibility in the construction of supersymmetric actions. Applied to on-shell

unfolded system it provides a systematic tool for the analysis of on-shell counterterms

in supersymmetric systems, the issue which was extensively studied during the recent

years [22–27]. It would be interesting to explore its applications to more complicated

models with extended SUSY and, in the first place, to the theories whose manifestly su-

persymmetric formulation is yet lacking, like N = 1, D = 10 or N = 4, D = 4 super

Yang-Mills theories. It would also be interesting to clarify the relation of our approach to

the harmonic superspace approach [36].
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A Notations

We work with 4-dimensional Minkowski space with coordinates xm, m = 0 . . . 3 and the

superspace R4|4 with coordinates zM = (xm, θµ, θ̄µ̇); m = 0 . . . 3; µ, µ̇ = 1, 2, which are

denoted by the underlined letters from the middle of Latin and Greek alphabets. Super-

vielbeins Ea, Eα, Ēα̇ relate the base indices to the indices of the flat fiber space, denoted

by the letters from the beginning of the respective alphabets: (xa, θα, θ̄α̇); a = 0 . . . 3;

α, α̇ = 1, 2.

The fiber space Minkowski metric is ηab = diag{1,−1,−1,−1}. We use condensed no-

tations for symmetrized fiber indices writing a(k) instead of (a1 . . . ak). Indices in brackets
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[a1 . . . ak] are antisymmetrized. Spinorial indices are raised and lowered by the matrices

εαβ = εα̇β̇ =

∥∥∥∥∥ 0 1

−1 0

∥∥∥∥∥ , εαβ = εα̇β̇ =

∥∥∥∥∥ 0 −1

1 0

∥∥∥∥∥ , (A.1)

ξα = εαβξ
β, ξα = εαβξβ , ξ̄α̇ = εα̇β̇ ξ̄β̇ , ξ̄α̇ = εα̇β̇ ξ̄

β̇. (A.2)

σ-matrices are

(σ0)αβ̇ =

∥∥∥∥∥ 1 0

0 1

∥∥∥∥∥ , (σ1)αβ̇ =

∥∥∥∥∥ 0 1

1 0

∥∥∥∥∥ , (σ2)αβ̇ =

∥∥∥∥∥ 0 −i
i 0

∥∥∥∥∥ , (σ3)αβ̇ =

∥∥∥∥∥ 1 0

0 −1

∥∥∥∥∥ .
(A.3)

Also we use anti-Hermitian matrices

(σab)α
β =

1

2

(
(σa)αα̇(σ̄b)

α̇β − (σb)αα̇(σ̄a)
α̇β
)
,

(σ̄ab)
α̇
β̇ =

1

2

(
(σ̄a)

α̇α(σ̄b)αβ̇ − (σ̄a)
α̇α(σ̄b)αβ̇

)
. (A.4)

Their tensorial indices are lowered/raised by Levi-Civita symbol

(σab)α
β =

i

2
εabcd(σcd)α

β, (σ̄ab)α̇β̇ = − i
2
εabcd(σ̄cd)

α̇
β̇ . (A.5)

Following well-known relations are used

Tαβγ... − Tβαγ... = εαβT
δ
δγ... , (A.6)

(σa)αα̇(σ̄a)
ββ̇ = 2δα

βδα̇
β̇, (A.7)

(σaσ̄b)α
β = ηabδα

β + (σab)α
β. (A.8)

Using them one obtaines

(σa)αα̇(σb)ββ̇ − (σb)αα̇(σa)ββ̇ = (σab)αβεα̇β̇ + (σ̄ab)α̇β̇εαβ , (A.9)

(σa)αα̇(σb)ββ̇ + (σb)αα̇(σa)ββ̇ = ηabεαβεα̇β̇ + (σca)αβ(σ̄cb)α̇β̇ , (A.10)

(σaσ̄bσc)αα̇ − (σcσ̄bσa)αα̇ = 2iεabcd(σd)αα̇ . (A.11)

B Equations for superform Lagrangian

Expanding Q̂L = 0 for (7.1) and (6.4) into parts with different G-grade, one obtains a

following chain of equations

G = 9 : Q3

[
EaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6
]

= 0 ,

Q3

[
EaEb(σ

ab)αβEαEβ ¯̀
6

]
= 0 ,

G = 8 : Q−2
[
EaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6
]

= 0 ,

Q+
2

[
EaEb(σ

ab)αβEαEβ ¯̀
6

]
= 0 ,

Q3

[
εabcdEaEbEcĒα̇(σ̄d)

α̇α`5α
]

+Q+
2

[
EaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6
]

= 0 ,

Q3

[
εabcdEaEbEcE

α(σd)αα̇ ¯̀α̇
5

]
+Q−2

[
EaEb(σ

ab)αβEαEβ ¯̀
6

]
= 0 .
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G = 7 : Q−2
[
εabcdEaEbEcĒα̇(σ̄d)

α̇α`5α
]

+Q1

[
EaEb(σ̄

ab)α̇β̇Ēα̇Ēβ̇`6
]

= 0 ,

Q+
2

[
εabcdEaEbEcE

α(σd)αα̇ ¯̀α̇
5

]
+Q1

[
EaEb(σ

ab)αβEαEβ ¯̀
6

]
= 0 ,

Q3

[
EaEbEcEdε

abcd`4
]

+Q−2
[
εabcdEaEbEcE

α(σd)αα̇ ¯̀α̇
5

]
+Q+

2

[
εabcdEaEbEcĒα̇(σ̄d)

α̇α`5α
]

= 0 .

G = 6 : Q−2
[
EaEbEcEdε

abcd`4
]

+Q1

[
εabcdEaEbEcĒα̇(σ̄d)

α̇α`5α
]

= 0 ,

Q+
2

[
EaEbEcEdε

abcd`4
]

+Q1

[
εabcdEaEbEcE

α(σd)αα̇ ¯̀α̇
5

]
= 0 .

G = 5 : Q1

[
EaEbEcEdε

abcd`4
]

= 0 .
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[15] A. D’Adda, R. D’Auria, P. Fré and T. Regge, Geometrical formulation of supergravity

theories on orthosymplectic supergroup manifolds, Riv. Nuovo Cim. 3N6 (1980) 1 [INSPIRE].
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