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1 Introduction

A major breakthrough in the study of the AdS/CFT-correspondence [1] was the discovery

of integrability, first on the field theory side [2] and then on the string side [3]. Since then

integrability techniques have been used to learn a lot about string theory in AdS5 × S5

and N = 4 super Yang-Mills, with the ultimate hope of eventually solving both theories

and thereby proving the AdS/CFT-correspondence in this case (see [4] for a comprehensive

review).

A very interesting problem is to try to find more examples of AdS-backgrounds where

the string is integrable (and their dual CFTs). One approach is to find deformations

of the AdS5/CFT4-correspondence which preserve the integrability. Another approach,

which we will take here, is to try to find other simple AdS-backgrounds, for example

by considering the near-horizon geometries of intersecting branes, and demonstrate the

(classical) integrability of the string by constructing a flat Lax connection. There are

two known examples which have been studied a lot. The first one is string theory on

AdS4 × CP3 with RR-flux [5–8] which is dual to ABJM-theory [9]. The second is string

theory on AdS3 × S3 × S3 × S1 with RR and NSNS-flux [10, 11] for which the dual 2d-

CFT is not well understood. In both cases there is a way to fix the kappa symmetry of
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the string so that the string action reduces to a supercoset sigma model as in AdS5 × S5.

The classical integrability is then easily demonstrated by the standard construction of a

Lax connection [3]. The situation is not completely satisfactory however, since the kappa

symmetry fixing employed is not consistent for all string configurations. An important

example is the GKP-string rotating in AdS3 whose low-energy limit has in both cases been

shown to be integrable by other methods [12–14].1 We do not expect the integrability

to depend on the particular string configuration considered so one expects the full string

action, before fixing any kappa symmetry, to be integrable. This was indeed shown to be the

case for strings inAdS4×CP3 in [15] and for strings inAdS3×S3×S3×S1 with pure RR-flux

in [16]. The construction of the Lax connection was only carried out to quadratic order in

the fermions Θ due to the complexity of the calculations at higher orders.2 The construction

used components of the superisometry Noether current as building blocks for the Lax

connection. The same construction has also been applied to strings in AdS2×S2×T 6 with

RR-flux and the integrability has again been demonstrated to quadratic order in Θ [17, 18].

Since this background preserves only eight supersymmetries the corresponding supercoset

model is only a (classically consistent) truncation of the full string action and can not be

directly used to argue the integrability. However, because the truncation to the supercoset

does not commute with kappa symmetry, we expect/hope that kappa symmetry should be

powerful enough to guarantee the integrability of the full string action. In this paper we

will see that this expectation is indeed borne out in several examples.

Intersecting brane constructions give rise, by taking the near horizon limit (and di-

mensionally reducing if they are in eleven dimensions), to many simple examples of AdS-

backgrounds for which one could hope that the string would be integrable. By simple we

mean backgrounds with constant fluxes and dilaton. Several AdS×S×S×T backgrounds

arising from intersecting branes were constructed in [19] using the intersection rules of [20–

23]. They are listed in table 1.3 Backgrounds (C)–(G) appear to not have been studied in

the literature before from an integrability point of view.4

Our aim in this paper is to show that the string is in fact (classically) integrable in

all the backgrounds listed in table 1 (before fixing kappa symmetry).5 This is done up to

quadratic order in Θ by explicitly constructing the Lax connection using components of the

superisometry current along the lines of [15–18]. The construction is complicated somewhat

by the fact that all backgrounds except (A) generically involve both RR and NSNS flux

whereas the backgrounds studied previously, using this construction, only involved RR-

1For AdS3 × S3 × S3 × S1 only the case with pure RR-flux was considered.
2A reduced AdS4-model was however shown to be integrable to all orders.
3We list only the type IIA solutions but all backgrounds except (A) can be trivially T-dualized along a

toroidal direction to type IIB.
4A special case of (G), AdS2 × S2 × T 6 with RR-flux, was studied in [17, 18] as already remarked. The

(non-critical) supercoset corresponding to AdS2 × S2 × S2 (and a different realization of AdS2 × S3 to

the one that appears here) occurs in the list of semi-symmetric supercosets with vanishing one-loop beta

function given in [24] (the corresponding finite gap equations were discussed in [25]).
5Since the bosonic background in all cases is a symmetric space the bosonic string should be integrable

even with the NSNS flux. This is (probably) not enough for the full superstring to be integrable however,

see the discussion in section 3.6.
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Space Superisometry group #SUSYs Parameters

A AdS4 × CP 3 OSp(6|4) 24 –

B AdS3 × S3 × S3 × S1 D(2, 1;α)2 ×U(1) 16 0 ≤ α , q ≤ 1

C AdS3 × S2 × S3 × T 2 D(2, 1;α)× SL(2,R)× SU(2)×U(1)2 8 0 ≤ α ≤ ∞

D AdS3 × S2 × S2 × T 3 D(2, 1;α)× SL(2,R)×U(1)3 8 0 ≤ α ≤ 1

E AdS2 × S3 × S3 × T 2 D(2, 1;α)× SU(2)2 ×U(1)2 8 0 ≤ α ≤ 1

F AdS2 × S2 × S3 × T 3 D(2, 1;α)× SU(2)×U(1)3 8 0 ≤ α ≤ ∞

G AdS2 × S2 × S2 × T 4 D(2, 1;α)×U(1)4 8 0 ≤ α , q ≤ 1

Table 1. Integrable Type IIA string backgrounds arising from intersecting branes.

flux. In table 1 we have also listed the corresponding superisometry group, which in all

cases except (A) involves the exceptional supergroup D(2, 1;α) with α a real parameter

(note that in examples (C)–(F) only the left SL(2,R)L (SU(2)L) of AdS3 (S3) sits inside

D(2, 1;α)). This free parameter turns out to control the relative curvature radii of two

factors in the geometry. Two examples are

(C):RAdS3 =
2√

1 + α
, RS2 = 1 , RS3 =

2√
α

(D):RAdS3 = 2 , RS2
1

=
1√
α
, RS2

2
=

1√
1− α

. (1.1)

In the limit α → 0 (and sometimes α → 1) an S2 or S3 decompactifies and one obtains

a different geometry. For example taking α = 0 in (C) gives AdS3 × S2 × T 5. This and

similar backgrounds are therefore special cases of the ones listed in table 1. Note also that

taking α → ∞ in (C) gives a highly curved AdS3 × S3 part while the curvature of S2

remains finite. For some purposes it may be more convenient to keep the AdS-radius fixed.

Rescaling all radii by
√

1 + α and introducing α̃ = 1
1+α get instead

(C): RAdS3 = 2 , RS2 =
1√
α̃
, RS3 =

2√
1− α̃

,

and similarly for (F). Here 0 < α̃ ≤ 1 since for α̃ = 0 the fluxes of the supergravity solution

diverge. The superisometry algebra D(2, 1; α̃) then takes exactly the same form as in (B),

(D), (E) and (G). This explains what we mean by D(2, 1;α) in (C) and (F).

Backgrounds (B) and (G) actually have one more free parameter that we call 0 ≤ q ≤ 1.

It controls the amount of NSNS flux with q = 0 corresponding to pure RR flux (in (B)

q = 1 corresponds pure NSNS flux). This additional free parameter can be understood

most easily in the dual type IIB picture where it arises from the freedom to perform an

SL(2,R) S-duality.

– 3 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
5

The outline of the paper is as follows. In section 2 we give a general discussion of

the form of the superisometry transformations in a type II supergravity background. We

describe how the transformations may be determined order by order in Θ and go on to

determine them up to order Θ4 using the results of [26]. We also give the corresponding

Noether currents for the superstring to the same order. The discussion in section 2 is

completely general but the only result needed for the integrability discussion in the rest of

the paper is the form of the superisometry Noether current up to order Θ2. In the second

part of the paper we focus on very special backgrounds, namely symmetric spaces with

constant fluxes and constant dilaton. We postulate a general form for the superisometry

algebra in section 3.2 and describe some additional conditions needed on the fluxes for

integrability in the case of both RR and NSNS flux. We then go on to construct the Lax

connection up to quadratic order in Θ. Section 4 gives the details of the backgrounds listed

in table 1 and we show that they fulfill all the conditions needed for the construction of

the Lax connection in the previous section. We end the paper with some conclusions.

2 Strings in backgrounds with superisometries

For backgrounds with some isometries and which preserve some amount of supersymmetry

the string action will of course be invariant under the corresponding transformations. To

find the explicit form of the transformations of the coordinates (x,Θ) of superspace which

leave the action invariant one needs to construct the Killing vector and Killing spinor

superfields. We will now describe the general procedure for doing this. A similar discussion

for maximally supersymmetric backgrounds can be found in [27].

2.1 Isometries in superspace

The infinitesimal transformation of the supercoordinates6

δzM = KM (x,Θ) , zM = (xm,Θµ) , (2.1)

where KM = (Km ,Kµ) is some superfield, is a superisometry if the supervielbeins trans-

form only by an induced Lorentz transformation, i.e.

δEa = labE
b , δEα =

1

4
(ΓabE)α lab , (2.2)

for some anti-symmetric matrix lab which may depend on x and Θ. The fields of the

supergravity background of course also have to respect the isometry, i.e. the dilaton, NSNS

three-form and the RR field strengths must satisfy

Lδzφ = 0 , LδzH = 0 , LδzF (n) = 0 . (2.3)

Plugging in δzM = KM into (2.2) leads to equations for KM . From the first equation

we get

labE
b = dKa +KbΩb

a + ECKB(TBC
a − ΩBC

a) , Ka = KMEM
a , (2.4)

6The transformation can be expanded as KM = εMKM
M (x,Θ), where the index M runs over the

generators of the isometry group and εM are constant infinitesimal parameters.
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where Ka is the Killing vector superfield. Using the superspace torsion constraints of [26]

this becomes

∇(aKb) = 0 and ∇αKa − i(ΓaΞ)α = 0 , Ξα = KMEM
α , (2.5)

where Ξ is the Killing spinor superfield. We also get

lab = −∇aKb +KCΩCab . (2.6)

Using δzM = KM in the second equation of (2.2) gives

1

4
(ΓabE)α lab = dΞα + ΞβΩβ

α + ECKB(TBC
α − ΩBC

α) , (2.7)

which, using the superspace torsion constraints of [26], gives the superfield Killing spinor

equation

∇aΞα +
1

8

(
[HabcΓ

bcΓ11 + SΓa]Ξ
)α − ψabαKb = 0 (2.8)

and an equation for the spinor derivative of the Killing spinor superfield which determines

the higher components in the Θ-expansion

∇βΞα − 1

8

(
[HabcΓ

bcΓ11 + SΓa]
)α
βK

a +
1

4
(Γab)αβ∇aKb −

1

2
χβ Ξα +

1

2
δαβ Ξχ (2.9)

+
1

2
(Γ11χ)β (Γ11Ξ)α − 1

2
(Γ11)αβ ΞΓ11χ−

1

2
(ΓaΞ)β (Γaχ)α +

1

2
(ΓaΓ11Ξ)β (ΓaΓ11χ)α = 0 .

Here ψab is the gravitino field strength superfield, χ is the dilatino superfield and S is a

superfield constructed from the RR field strengths contracted with gamma matrices [26].

The bosonic part of S is given, in the type IIA case, by

S = eφ
(1

2
F

(2)
ab ΓabΓ11 +

1

4!
F

(4)
abcdΓ

abcd
)
. (2.10)

The condition that the dilaton superfield respect the isometry gives the superspace dilatino

equation

0 = Lδzφ = KM∂Mφ = Ξχ+Ka∇aφ . (2.11)

To find the explicit form of the superisometry transformations one simply has to find

the form of the superfields Ka and Ξα and the form of the supervielbeins since

δzMEM
a = Ka , δzMEM

α = Ξα . (2.12)

The string action and the form of the supervielbeins for a general supergravity background

is known up to order Θ4 [26]. We will now determine Ka and Ξα to this order as well (it

is sufficient to know Ξ to order Θ3).
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2.2 Θ-expansion of the Killing vector and Killing spinor superfields

The procedure is almost identical to the procedure for finding the supervielbeins order by

order in Θ using the supergravity constraints and the bosonic geometry as input. One

introduces a parameter t and rescales Θ → tΘ in all superfields. Using the fact that7

d
dt = Θα∇α when acting on a superfield one uses the superspace constraints to write first

order ordinary differential equations for the t-dependence, i.e. Θ-dependence, of the relevant

superfields. Using (2.5) and (2.9) we find the equations8

d

dt
Ka = iΘΓaΞ , (2.13)

d

dt
Ξα = −1

4
(ΓabΘ)α∇aKb +

1

8

(
[HabcΓ

bcΓ11 + SΓa]Θ
)α
Ka − 1

2
Θα Ξχ+

1

2
(Γ11Θ)αΞΓ11χ

+
1

2
Ξα Θχ− 1

2
(Γ11Ξ)αΘΓ11χ+

1

2
(Γaχ)α ΘΓaΞ− 1

2
(ΓaΓ11χ)α ΘΓaΓ11Ξ ,

(2.14)

d

dt
∇aKb = Θα∇α∇aKb = −ΘαTαa

C∇CKb −ΘαRαabcK
c + iΘΓb∇aΞ

=
i

4
ΘΓ[aSΓb]Ξ−

i

2
Habc ΘΓcΓ11Ξ− iΘΓ[aψb]cK

c +
i

2
ΘΓcψabK

c . (2.15)

These equations are in fact identical to the ones for the supervielbeins and spin connection

written in [26] with the replacements

Ea → Ka , Eα → Ξα , Ωab → ∇aKb , dΘ→ 0 . (2.16)

These equations can now be solved order by order in Θ subject to the boundary conditions

that at Θ = 0 we should have

Ξ(0) = ξ , K(0)
a = ka , (∇aKb)

(0) = ∇akb , (2.17)

where ka(x) is the Killing vector and ξ(x) is the Killing spinor. Note that in the last

equation the covariant derivative on the left-hand-side involves the full spin connection

superfield while on the right-hand-side it involves only the spin connection of the bosonic

background ωab(x). The Killing spinor ξ satisfies the Killing spinor equation, which can

be obtained by setting Θ = 0 in the corresponding superfield equation (2.8),

Daξ = ∇aξ +
1

8
Maξ = 0 where Ma = HabcΓ

bcΓ11 + SΓa . (2.18)

The integrability condition for the Killing spinor equation is

Uabξ = 0 where Uab = −1

4
Rab

cdΓcd +
1

32
M[aMb] +

1

4
∇[aMb] , (2.19)

which is also the condition for supersymmetry coming from the variation of the grav-

itino [26].

7The Wess-Zumino gauge like condition iΘΩAB = 0 is imposed on the spin connection while iΘE
α = Θα.

8Throughout this section we will write the expressions relevant to type IIA supergravity, i.e. Θ is a

32-component Majorana spinor. However, with very minor changes they also hold for type IIB, see [26].
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Evaluating (2.13), (2.14) and (2.15) at t = 0, using the fact that all fermionic fields

except Ξ vanish at lowest order in Θ, we find at the linear order in Θ

K(1)
a = iΘΓaξ , (∇aKb)

(1) =
i

8
ΘΓ[aMb]ξ −

i

8
ξΓ[aMb]Θ ,

Ξ(1) =
1

8
(MaΘ) ka −

1

4
(ΓabΘ)∇akb . (2.20)

Applying a derivative to (2.11) we also get the dilatino equation

0 = ΞTΘ + i∇aφΘΓaξ = ΘTξ ⇒ Tξ = 0 , (2.21)

where

T =
i

2
∇aφΓa +

i

24
HabcΓ

abcΓ11 +
i

16
ΓaSΓa . (2.22)

Applying another t-derivative to (2.13), (2.14) and (2.15) and evaluating at t = 0 using

E(1) = DΘ = ∇Θ + 1
8e
aMaΘ, ψ

(1)
ab = UabΘ and χ(1) = TΘ (see [26]) we find at the second

order in Θ

K(2)
a =

i

2
ΘΓaΞ

(1) =
i

16
ΘΓaM

bΘ kb −
i

8
ΘΓa

bcΘ∇bkc ,

(∇aKb)
(2) =

i

16
ΘΓ[aMb]Ξ

(1) − i

16
Ξ(1)Γ[aMb]Θ−

i

2
ΘΓ[aUb]cΘ kc +

i

4
ΘΓcUabΘ kc ,

Ξ(2) =
1

2
Mξ − 1

4
(M + M̃)ξ , (2.23)

where we have introduced the matrices

Mα
β = Mα

β + M̃α
β +

i

8
(MaΘ)α (ΘΓa)β −

i

32
(ΓabΘ)α (ΘΓaMb)β −

i

32
(ΓabΘ)α (CΓaMbΘ)β ,

Mα
β =

1

2
ΘTΘ δαβ −

1

2
ΘΓ11TΘ (Γ11)αβ + Θα (CTΘ)β + (ΓaTΘ)α (ΘΓa)β , M̃ = Γ11MΓ11 ,

which also appear, written in a slightly different way, in [26]. In the above expressions C

is the charge-conjugation matrix and we follow the conventions of [26].
Continuing to the next order we find, using the lower order results and the expressions

given in [26] for H
(2)
abc and S(2),

K(3)
a =

i

3
ΘΓaΞ(2) =

i

6
ΘΓaMξ − i

12
ΘΓa(M + M̃)ξ , (2.24)

Ξ(3) =
1

6
(MΞ(1))α +

1

96

(
[M + M̃ ]SΓaΘ

)α
ka +

1

96

(
ΘΓa[M + M̃ ]SC

)α
ka

− i

24
(ΓabΘ)α ΘΓcUabΘ kc +

i

24
(ΓabΓ11Θ)α ΘΓcΓ11UabΘ kc +

i

24
(ΓabΘ)α ΘΓaUbcΘ kc

+
i

24
(ΓabΓ11Θ)α ΘΓaΓ11UbcΘ kc +

i

48
ΘΓabcΓ11Θ (Γ11UabΘ)α kc −

i

48
ΘΓabcΘ (UabΘ)α kc ,

We have left out (∇aKb)
(3) since it is only needed at the next order in Θ. And finally we

have

K(4)
a =

i

4
ΘΓaΞ

(3) . (2.25)

Note that K
(2)
a , (∇aKb)

(2) and Ξ(3) can also be obtained directly by making the re-

placements

DΘ→ Ξ(1) and ea → ka (2.26)

in the expressions given in [26] for E(2) a, Ω(2) ab and E(3)α respectively.

– 7 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
5

2.3 Worldsheet superisometry Noether current

The Green-Schwarz string action in a general supergravity background takes the form

S = −T
∫

Σ

(
1

2
∗ EaEbηab −B

)
, (2.27)

where B is (the worldsheet pullback of) the NSNS two-form potential, H = dB. A star

denotes the worldsheet Hodge dual defined with the (auxiliary) worldsheet metric. Using

the superspace constraints of [26] the equations of motion read

∇ ∗ Ea − i

2
EΓaΓ11E +

1

2
EcEbHa

bc = 0 , ∗Ea (ΓaE)α − Ea (ΓaΓ11E)α = 0 . (2.28)

The superisometry Noether current takes the form

J = EaiδzEa − ∗iδzB + ∗Λ = EaKa − ∗iδzB + ∗Λ , (2.29)

where δz is the superisometry transformation of the supercoordinates given in (2.1) and
B transforms by a gauge-transformation, δB = dΛ, leaving H = dB invariant. Indeed we
find, using the from of ∇Ka given in (2.5),

d ∗ J = ∇ ∗ EaKa + ∗Ea∇Ka − diδzB + dΛ (2.30)

= (∇ ∗ Ea −
i

2
EΓaΓ11E +

1

2
EcEbHabc)K

a − i(∗Ea ΞΓaE − Ea ΞΓaΓ11E)− LδzB + dΛ .

The first and second term are proportional to the bosonic and fermionic equation of

motion respectively and the last two terms cancel since the change of B under an isometry

transformation is dΛ = δB = LδzB. This proves that J is conserved on-shell.

To have a completely explicit form of J we need to determine the superfield one-form

Λ. This is again easily done order by order in Θ. Using the fact that

dΛ = δB = LδzB = iδzH + diδzB , (2.31)

we can write, using the superspace constraint on H,9

Λ = iδzB + λ+

∫ 1

0
dt iΘiδzH(x, tΘ)

= iδzB + λ− i
∫ 1

0
dt (Ea(tΘ) ΘΓaΓ11Ξ(tΘ)−ΘΓaΓ11E(tΘ)Ka(tΘ)) , (2.32)

where the lowest component of Λ, λ(x), satisfies

dλ = ikH
(0) =

1

2
ebeaH

(0)
abck

c . (2.33)

Using this expression for Λ in (2.29) the superisometry current takes the explicit form

J = EaKa + ∗λ− i
∫ 1

0
dt (∗Ea ΘΓaΓ11Ξ−ΘΓaΓ11 ∗ EKa) , (2.34)

9This is the same trick that was used in [26] to compute B from H.
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which is straightforwardly evaluated using the Θ-expansion of the supervielbeins and the

Killing vector and Killing spinor superfields. Using the Θ-expansions of Ξ and Ka derived

in the previous section and the expansion of the supervielbeins derived in [26] we find the

following Θ-expansion of the superisometry Noether current up to fourth order in Θ

J (0) = ea ka + ∗λ , J (1) = iea ΘΓaξ − i ∗ ea ΘΓaΓ11ξ , (2.35)

J (2) =
i

2
ΘΓaDΘ ka +

i

2
ΘΓaΓ11 ∗ DΘ ka +

i

16
ea ΘΓaM

bΘ kb (2.36)

− i

16
∗ ea ΘΓaΓ11M

bΘ kb −
i

8
ea ΘΓa

bcΘ∇bkc +
i

8
∗ ea ΘΓa

bcΓ11Θ∇bkc ,

J (3) =
i

6
ea ΘΓaMξ − i

12
ea ΘΓa(M + M̃)ξ − i

6
∗ ea ΘΓaΓ11Mξ (2.37)

+
i

12
∗ ea ΘΓaΓ11(M + M̃)ξ − 1

2
ΘΓaDΘ ΘΓaξ +

1

6
ΘΓa ∗ DΘ ΘΓaΓ11ξ

− 1

3
ΘΓaΓ11 ∗ DΘ ΘΓaξ ,

J (4) =
i

4
ΘΓaE(3) ka +

i

4
ΘΓaΓ11 ∗ E(3) ka +

i

4
ea ΘΓaΞ

(3) − i

4
∗ ea ΘΓaΓ11Ξ(3) (2.38)

− 1

4
ΘΓaDΘ ΘΓaΞ

(1) +
1

8
ΘΓa ∗ DΘ ΘΓaΓ11Ξ(1) − 1

8
ΘΓaΓ11 ∗ DΘ ΘΓaΞ

(1) .

We have chosen not to expand J (4) all the way due to the length of the resulting expression.

In the following we will use (pieces of) J (0), J (1) and J (2) to build a Lax connection for

the string in certain symmetric space backgrounds. To extend this calculation beyond the

quadratic order in Θ one would need also the higher components of J .

3 Integrability of the string in certain backgrounds

So far the discussion has been valid for a general supergravity background but from now

on we will specify to very special backgrounds for which we can demonstrate integrability.

In particular we will require the bosonic background to be a symmetric space. We will also

require the fluxes and dilaton to be (covariantly) constant (as we will see below we will

also need some additional conditions on the form of the fluxes). Note that the backgrounds

listed in table 1 satisfy these conditions.

Since the bosonic backgrounds are symmetric spaces we expect the bosonic part of

the string to be integrable. The first step is to write down the bosonic Lax connection

L(0). Our problem is then to try to extend this Lax connection by fermionic terms up to

order Θ2. In principle one could try to go to higher order in Θ but we do not attempt this

here for two reasons: (i) the complexity of the expressions quickly become rather daunting,

and (ii) we don’t expect any obstructions to occur beyond the quadratic order. One may

ask whether any obstructions can occur at all or whether it is always possible to extend

a bosonic Lax connection to all orders in fermions. An argument for this would be that

kappa symmetry relates the bosons and fermions of the string to each other. However, one

can argue that this is unlikely to be true. For example, if we take one of the solutions

which we have found to be integrable and flip the signs of some of the fluxes we still have
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a supergravity solution, but now it will generically break all the supersymmetries. The

bosonic Lax connection will be the same but when we try to extend it to quadratic order

we will see that we rely in a crucial way on having Killing spinors, see section 3.6 (this

argument was first given in [15] for the case of AdS4 × CP3). It therefore appears that

it will generically not be possible to extend a bosonic Lax connection to quadratic order

in fermions.10 An interesting question is whether it is always possible given some minimal

amount of supersymmetry.

We will start by describing our approach to constructing the Lax connection in a formal

way as a deformation problem. Then we will postulate a form of the superisometry algebra

and discuss the extra conditions on the fluxes that we will need before proceeding to the

actual construction of the Lax connection. We will end the section with a brief summary

and discussion.

3.1 Deformation problem for the Lax connection

The question of whether the classical integrability of the bosonic string in a certain back-

ground extends to the full superstring amounts to finding a deformation of the bosonic Lax

connection by terms involving the fermions while preserving its flatness. The integrability

of the bosonic sector implies that there exists a Lax connection L(0), independent of Θ,

such that it is flat modulo terms involving Θ

dL(0) − L(0)L(0) = O(Θ2) . (3.1)

Note that in the above equation the full superstring equations of motion are used. Next

we want to find a Lax connection linear in Θ, L(1) (since the Lax connection is a bosonic

object this will have to involve the Killing spinors). It must satisfy

DL(1) = dL(1) − L(0)L(1) − L(1)L(0) = O(Θ3) . (3.2)

We then have a Lax connection up to linear order in Θ since

d(L(0) + L(1))− (L(0) + L(1))(L(0) + L(1)) = O(Θ2) . (3.3)

Let us call the order Θ2 terms on the right-hand-side F (2), i.e. the right-hand-side is

F (2) +O(Θ3). The Lax connection can be extended to quadratic order in Θ if and only if

it is possible to write

F (2) = DL(2) +O(Θ4) . (3.4)

If so it is easy to see that L = L(0) + L(1) + L(2) is flat modulo terms cubic in Θ. One can

then go to the next order and so on. Note that it is very important for this process to work

that one writes the most general possible form of L(0) and L(1) since otherwise one might

mistakenly conclude that L(2) does not exist. We will see that this will be important in

our case.

10Note that there are certainly examples of backgrounds without supersymmetry in which the string

should be integrable. A simple example is type IIA on AdS5 ×CP2 × S1 [28] which is T-dual to type IIB

on AdS5 × S5. Another example is the γ-deformation of AdS5 × S5 [29].
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3.2 Superisometry algebra

Since the Lax connection is valued in the superisometry algebra we need to know the

form of the latter before discussing the possible integrability. Since we are assuming that

the bosonic geometry is a symmetric space the killing vectors should satisfy the standard

algebra appropriate to a symmetric space, i.e.

[ka, kb] = ∇akb , [kc,∇akb] = Rabc
dkd , (3.5)

where Rab
cd is the Riemann curvature. Note that this means that the Killing vector acts

like the covariant derivative. For the commutator of the Killing vector with the Killing

spinor it is natural to ask that the Killing vector should again act as a derivation and using

the Killing spinor equation (2.18) we get

[ka, ξ] = ∇aξ = −1

8
Maξ . (3.6)

We will find however that we need the existence of a matrix Ŝ such that11

Maξ = c[a]ŜΓaξ . (3.7)

Note that when there is no NSNS flux this is trivial since in that case Ma = SΓa so that

Ŝ = S. Here c[a] is either 1 or 2 depending on the index a. Writing a = (â, ã, a′), where â

runs over any AdS2 and S2 directions a′ runs over the flat (i.e. toroidal) directions and ã

runs over the rest, we have

c[â] = 2 , c[ã] = c[a′] = 1 . (3.8)

This factor comes from the difference in a factor of two between the AdS3 (S3) and AdS2

(S2) curvature radius, see for example (1.1). We therefore require the Killing vector —

Killing spinor commutator to take the form

[ka, ξ] = ∇aξ = −
c[a]

8
ŜΓaξ . (3.9)

Note that for consistency Ŝ must satisfy the projection equation PŜ = Ŝ where P is

the Killing spinor projector, i.e. Pξ = ξ (see section 4). From these equations it also

follows that

[∇akb, ξ] =
c[a]c[b]

32
ŜΓ[bŜΓa]ξ = −1

4
Rab

cd Γcdξ . (3.10)

Finally we come to the commutator of two Killing spinors. We will simply postulate

that it take the following form

{ξα, ξβ} = − i
8

(ŜΓaŜC)αβ ka +
i

4c[a]
(ΓabŜC)αβ∇akb , (3.11)

11Note that the fluxes in Ma are assumed to be constant and therefore Ŝ is constant as well.
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where C is the charge-conjugation matrix. For consistency we require also that Ŝ should

satisfy the following conditions

(i) (ŜC)(αβ) = 0

(ii) [Ŝ,Γab]∇akb = 0

(iii) Ma′ξ = ŜΓa′ξ = 0 .

The first two conditions ensure that the right-hand-side of (3.11) is indeed symmetric in the

spinor indices. The last condition means that the Killing vectors of the toroidal directions

ka′ decouple from the algebra, see (3.9). Note that these are constant, i.e. ∇ka′ = 0.

Since we have simply postulated the form of the commutators involving the killing

spinors we have to ensure that the Jacobi identities are satisfied. Applying a covariant

derivative ∇c to (3.11) and using (3.9) and (3.5) we find that

ic[c]

32
(ŜΓcŜΓdŜC)(αβ) kd −

i

4c[a]
(ŜΓabC)αβ Rab

cdkd (3.12)

should vanish. This is indeed true as can be seen by using (3.10) and the symmetry

properties of Ŝ and the gamma-matrices. This calculation is equivalent to checking the

Jacobi identity involving one ka and two ξ. The last step that remains is to check the

Jacobi identity involving three ξ. We find

0 = [{ξ(α, ξβ}, ξγ)] =
i

128
[2c[a](ŜΓaŜC)(αβ(ŜΓaξ)

γ)− c[a](ŜΓabC)(αβ(ŜΓaŜΓbξ)
γ)] . (3.13)

This Jacobi identity can be verified on a case by case basis for the backgrounds in table 1

by making use of the properties of Ŝ and Fierz identities. We have not found a simple way

to show that it holds in general. When there is no NSNS flux, so that Ŝ = S, it is however

easy to check (note that S is anti-symmetric and commutes with Γ11 by (2.10)).

In addition to the constraints on Ŝ and the form of the superisometry algebra men-

tioned so far we find that we need some further constraints on the fluxes to be satisfied

for our Lax connection construction to go through. These extra conditions are related to

the fact that we have both RR and NSNS flux. When there is no NSNS flux they become

trivial. We divide the possible backgrounds into to groups: (I) The ones without AdS2 and

S2 factors ((A) and (B) in table 1) and (II) the ones with at least one AdS2 or S2 factor

((C)–(G) in table 1). The conditions we impose are listed in table 2 and 3 respectively.

The first condition says that for group I the NSNS flux is only allowed to be on AdS3 or

S3 while for group II it is only allowed to be on AdS2×R or S2×R where R denotes one

of the toroidal (flat) directions. In particular the two types of NSNS flux cannot coexist.

The second condition states that the NSNS flux is distributed evenly between the AdS2,3

and S2,3 factors in the geometry with the parameter q measuring the amount of flux. Note

that the Riemann curvature of AdS (S) is simply Rab
cd = +(−) 2

R2 δ
c
[aδ

d
b] so that habc essen-

tially coincides with Habc except for signs and factors of the curvature radius R. For the

remaining conditions we need to assume that, if there is non-zero NSNS flux, there is at

least one toroidal (flat) direction that we label by 9. We then define the “rotated” gamma
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(iv) Habc = Hãb̃c̃ with ã , b̃ , c̃ ∈ AdS3(S3)

(v) hãb̃c̃H
c̃d̃ẽ = −4q2δc̃[ãδ

d̃
b̃]

where Rab
dehdec = Habc

(vi) [Ma, qΓ9′ ]ξ = 0

(vii) {Ŝ, qΓ9′} = 0

(viii) qq̂ŜΓ9′ = qSΓ9

(ix) 2S = Ŝ + Γ11ŜΓ11

(x) SΓa(Ŝ − Γ11ŜΓ11) = −2HabcSΓbcΓ11

(xi) qSΓã9S = −q̂Hãb̃c̃Γ
b̃c̃S

Table 2. Group I: conditions for backgrounds without AdS2 or S2 factors.

(iv′) Habc = Hâb̂c′ â , b̂ ∈ AdS2(S2)

(v′) hâb̂e′H
e′ĉd̂ = −q2δĉ[âδ

d̂
b̂]
, ha′b̂êH

êĉd′ = 1
2q

2δd
′
a′δ

ĉ
b̂

where Rab
dehdec′ = Habc′

(vi′) {Ma, q̂Γ11′}ξ = 0

(vii′) qMâΓ9′ξ = 0 = qq̂MâΓ9′Γ11′ξ

(viii′) q = 1 or ã = {} , (i.e. a = (â, a′))

(ix′) [Ŝ, q̂Γ11′ ] = 0

(x′) S = Ŝ + Γ11ŜΓ11

(xi′) SΓâ(Ŝ − Γ11ŜΓ11) = −2H âb̂c′SΓb̂c′Γ11

(xii′) SΓã(Ŝ − Γ11ŜΓ11) = −R[ã]ε
ãb̃c̃Rb̃c̃

d̃ẽΓd̃ẽS

Table 3. Group II: conditions for backgrounds with at least one AdS2 or S2 factor.

matrices

Γ9′ = q̂Γ9 − qΓ11 , Γ11′ = qΓ9 + q̂Γ11 where q2 + q̂2 = 1 . (3.14)

Note that this “rotation” preserves the Clifford algebra of the gamma matrices. Conditions

(vi), (vii) and (viii) and conditions (vi′), (vii′) and (ix′) give certain conditions on Ŝ and

Ma, appearing on the right-hand-side of the Killing spinor equation (2.18), involving these

gamma matrices. Condition (ix) and (x′) expresses S in terms if Ŝ. Conditions (x), (xi)

and (xi′) relates certain products of S, Ŝ and gamma matrices to the NSNS flux. Finally

condition (viii′) says that for group II q 6= 1 only if there are only AdS2 and S2 factors in

the geometry (plus flat directions of course). This corresponds to (G) in our list in table 1.

Note that for condition (xii′) to make sense we have to assume that AdS2 or S2 factors can

only occur in the geometry together with AdS3 or S3 factors (or with other AdS2 or S2

factors) so that the ε-symbol is defined (Rã denotes the corresponding curvature radius).

Again this is clearly true for the backgrounds listed in table 1.

To conclude this section we note that the superisometry Noether current in (2.34) can

be expanded in terms of the Killing vector, its covariant derivative and the Killing spinor as

J = Jaka + Jab∇akb + Jαξ
α . (3.15)

Separating the conservation equation, d ∗ J = 0, into components correspondingly and

using the Killing spinor equation and the symmetric space relations (3.5) we find that the
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conservation of J is equivalent to the following equations for the components

∇ ∗ Ja + ∗JbcedRbcda = 0 ,
(
∇ ∗ Jab − ∗Jaeb

)
∇akb = 0 ,

∇ ∗ JβPβα +
1

8
ea ∗ Jβ(MaP)βα = 0 . (3.16)

In fact we will find that, essentially due to kappa symmetry, more general versions of these

equations hold. This fact will turn out to be important in the construction of the Lax

connection in the following.

3.3 Order Θ0: bosonic Lax connection

The bosonic terms in the conserved current take the form (2.35)

J (0) = ea ka + ∗λ , (3.17)

where λ satisfies dλ = 1
2e
beaHabck

c. Since we assume Habc to be constant it is easy to see

that we can write

λ = λaka + λab∇akb = ωâb̂hâb̂c′k
c′ − 1

2

(
eahabc + ea

′
ha′bc

)
∇bkc , (3.18)

where habc is anti-symmetric and was defined in (v) and (v′) of table 2 and 3, ωâb̂ id the

AdS2 (S2) spin connection and we recall that primed indices run over the flat directions.

Let us also recall the form of the string equations of motion to lowest order in Θ, which is

all we will need. From (2.28) we have

∇ ∗ ea +
1

2
ecebHa

bc = O(Θ2) , ∗ea (ΓaDΘ)α − ea (ΓaΓ11DΘ)α = O(Θ3) , (3.19)

where D = ∇+ 1
8e
aMa. The first equation can also be derived from the first conservation

equation in (3.16) by using the form of J (0).

The bosonic Lax connection splits up into separate Lax connections for each factor in

the geometry. Let us first consider the example of an S3 factor in the geometry. We claim

that the following Lax connection does the job

L(0)|S3 = (αJ (0) +β ∗J (0))|S3 = αeãkã+β ∗eãkã−
α

2
∗eãhãb̃c̃∇

b̃kc̃− β
2
eãhãb̃c̃∇

b̃kc̃ . (3.20)

Here α (not to be confused with α appearing in D(2, 1;α)!) and β are parameters to be

determined (they coincide with α1 and α2 of [15]). Using the fact that ∇ea = 0 (i.e. the

torsion of the bosonic background vanishes) and the bosonic equation of motion in (3.19)

together with the symmetric space relations (3.5) the curvature of the Lax connection

becomes

dL(0)|S3 − L(0)|S3L(0)|S3 =
β

2
eãeb̃(Hãb̃c̃ − hãd̃ẽR

d̃ẽ
b̃c̃)k

c̃

+
1

2
((1 + α)α− β2)eã ∗ eb̃hb̃d̃ẽR

d̃ẽ
ãc̃k

c̃ +
1

2
(β2 − α2 − 2α)eãeb̃∇ãkb̃

− α

4
eãeb̃Hãb̃c̃h

c̃d̃ẽ∇d̃kẽ +
1

4
(α2 − β2)eãeb̃hb̃c̃d̃hãẽf̃R

ẽf̃ c̃
g̃∇dkg . (3.21)
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Using condition (v) of table 2 the right-hand-side reduces to

1− q2

2
(β2 − α2 − 2α)eãeb̃∇ãkb̃ (3.22)

which vanishes provided that12

β2 = α2 + 2α . (3.23)

Since there is only one condition on two parameters we have one free (spectral) parameter

and a one-parameter family of flat connections.

Let us now consider the Lax connection for an S2-factor in the geometry. We will find

that we need to modify two of the coefficients in the Lax connection and we will take it to

have the form

L(0)|S2 = α̂eâkâ + β̂ ∗ eâkâ −
α

2
∗ ea′ha′b̂ĉ∇

b̂kĉ − β

2
ea
′
ha′b̂ĉ∇

b̂kĉ , (3.24)

where α and β are the same as before satisfying (3.23) and α̂ and β̂ are to be determined.

Computing the curvature in the same way as before we find, keeping in mind condition

(iv′) in table 3,

dL(0)|S2 − L(0)|S2L(0)|S2 =
1

2
(α(1 + α̂)− ββ̂)eâ ∗ eb′hb′ĉd̂R

ĉd̂
âêk

ê

− 1

2
(αβ̂ − (1 + α̂)β)eâeb

′
hb′ĉd̂R

ĉd̂
âêk

ê − β̂eâeb′Hb′âĉk
ĉ +

1

2
(β̂2 − α̂2 − 2α̂)eâeb̂∇âkb̂

− α

4
eâeb̂Hâb̂c′h

c′d̂ê∇d̂kê +
1

4
(β2 − α2)ea

′
eb
′
ha′ĉd̂hb′êf̂R

êf̂ ĉ
ĝ∇d̂kĝ . (3.25)

Using condition (v′) the right-hand-side now reduces to

1

2
(α(1 + α̂)− ββ̂)eâ ∗ eb′Hb′âĉk

ĉ − 1

2
((2 + α)β̂ − (1 + α̂)β)eâeb

′
Hb′âĉk

ĉ

+
1

2
(β̂2 − α̂2 − 2α̂+

1

2
q2α)eâeb̂∇âkb̂ . (3.26)

We now observe that these terms vanish if we take

α̂ = γ(2 + α)− 1 , β̂ = γβ where γ =
1

2

√
2 + q2α

2 + α
, (3.27)

giving us again a one-parameter family of flat connections.

Putting together what we have learned we write the total Lax connection

L(0) = α[a]e
ak̃a + β[a](∗ea + λa)k̃a −

α

2
∗ eahabc∇bk̃c −

β

2
eahabc∇bk̃c , (3.28)

where

α[â] = α̂ , β[â] = β̂ , α[ã ,a′] = α , β[ã ,a′] = β . (3.29)

Two remarks should be made about the form of L(0) in (3.28). Firstly we have included a

factor of λa together with ∗ea in the second term. This only affects the term involving ka′

12For the special case q = 1 it appears we don’t need to impose any condition, however this condition

will arise again at higher orders in Θ.
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since λa = λa
′

by (3.18) and it is in fact needed in that term so that there are no ka′ terms

generated when computing d of L(0). Note that

∗ J (0) a = ∗ea + λa , ∗J (0) ab = −
c[a]

2
echc

ab , (3.30)

with c[a] defined in (3.8), so that the Lax connection is indeed built from the components

of the conserved current as in [15]. The next important comment is that we have written

k̃a instead of ka. The reason for this will become clear when we try to find L(2). The

k̃a still satisfy the same algebraic relations as those written for ka in the previous section

however. The reason for the notation is that we will find that in the examples in group

II with an AdS3 (S3) factor only the left SL(2,R)L (SU(2)L) isometry generators should

appear in L(0) (these are the ones that sit inside D(2, 1;α), see table 1).

3.4 Order Θ1 Lax connection

We will now show that the terms in the Lax connection linear in Θ take the form

L(1) = ∗J (1)
α (VWξ)α , (3.31)

where V and W are matrices (that depend on the spectral parameter) to be determined.

The superisometry Noether current at linear order in Θ is J (1) = J
(1)
α ξα and from (2.35)

we read off that

J (1)
α = iea (ΘΓa)α − i ∗ ea (ΘΓaΓ11)α . (3.32)

Note that we do not impose the projection by P on J
(1)
α (recall that ξ = Pξ). This will

be important as the matrices V ,W will typically not commute with P. Even without the

projection by P an equation like the conservation equation in (3.16) is still satisfied. Indeed

we have, using the form of J
(1)
α and the lowest order equations of motion (3.19)

∇ ∗ J (1)
α = i∇ ∗ ea (ΘΓa)α +

i

8
∗ eaeb (Θ[−HbcdΓ

cdΓ11 + ΓbS]Γa)α

− i

8
eaeb (Θ[−HbcdΓ

cdΓ11 + ΓbS]ΓaΓ11)α +O(Θ3)

= −1

8
ea ∗ J (1)

β (Ma)
β
α +O(Θ3) , (3.33)

where we used the fact that Ma = HabcΓ
bcΓ11 + SΓa.

Using the form of L(0) in (3.28) and L(1) in (3.31), the commutation relation (3.9),

and noting that ∗J (1)
α = −(J (1)Γ11)α we find the curvature of the Lax connection at linear

order in Θ to be

d(L(0) + L(1))− (L(0) + L(1))(L(0) + L(1)) = dL(1) − L(0)L(1) − L(1)L(0) +O(Θ2)

=
1

8
eaJ (1)

α (Γ11MaVWξ)α − 1

8
eaJ (1)

α (Γ11[1 + α[a] + β[a]Γ11]VWMaξ)
α

+
1

8
eahabcRde

bcJ (1)
α ([α+ βΓ11]VWΓdeξ)α − 1

8
β[a]λ

aJ (1)
α (Γ11VWMaξ)

α +O(Θ2) .

(3.34)
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The last term vanishes due to (iii) since λa = λa
′
. Taking the matrix V to have the form

V = a− bΓ11 , where a =
β√
2α

, b =

√
α

2
(3.35)

it is easy to see, using (3.23) and (3.27), that V satisfies the relations

V V † = a2−b2 = 1 , V 2 = 1+α−βΓ11 , (1+α̂+β̂Γ11)V = γ(2+α+βΓ11)V = 2aγ .

(3.36)

The curvature of the Lax connection reduces to

1

8
eaJ (1)

α (Γ11MaVWξ)α − aγ

4
eâJ (1)

α (Γ11WMâξ)
α − 1

8
eãJ (1)

α (V †Γ11WMãξ)
α

+
b

4
eãHãb̃c̃J

(1)
α (Γ11WΓb̃c̃ξ)α +

b

4
ea
′
Ha′b̂ĉJ

(1)
α (Γ11WΓb̂ĉξ)α , (3.37)

where we have used (iv), (v), (iv′) and (v′) to rewrite the term with h. Using the form of

Ma in (2.18) and assuming that W commutes with Ha′b̂ĉΓ
b̂ĉ and Hãb̃c̃Γ

b̃c̃ we get

1

8
eâJ (1)

α (Γ11MâVWξ)α − aγ

4
eâJ (1)

α (Γ11WMâξ)
α +

1

8
eãJ (1)

α (V †Γ11[Mã,W ]ξ)α

+
1

8
ea
′
J (1)
α (V †Γ11Ma′Wξ)α . (3.38)

It is clear that due to (vi) and (iii) this vanishes for Group I if we take W = c+qdΓ9′ (note

that in this case the first two terms are absent). The free coefficients will be fixed at the

next order and we will get

WI =
1

2
√

2
(β + qαΓ9′) ⇒ WIW

†
I =

1

8
(2 + q̂2α)α . (3.39)

For Group II consider taking W = c + q̂dΓ11′ . The third term vanishes due to (viii′) and

the last term vanishes due to (vi′) and (iii). Using the form of V , (vi′), (vii′) and the fact

that Γ11 = q̂Γ11′ − qΓ9′ we get

b

8α
eâJ (1)

α (Γ11[(β + q̂αΓ11′)W
† − 2γβW ]Mâξ)

α . (3.40)

Which vanishes for the following choice of W (again the overall normalization is determined

at the next order in Θ)

WII =
1

2
√

2

√
γ

1 + 2γ
((1 + 2γ)β + q̂αΓ11′) ⇒ WIIW

†
II =

1

2
β̂2 , W 2

II =
β̂

4
(β + q̂αΓ11′) ,

(3.41)

as is easily seen using (3.23), (3.27) and the fact that q2 + q̂2 = 1. This concludes the

demonstration of the flatness of L(0) + L(1) modulo terms of order Θ2.

Let us end this section by computing L(1)L(1) which we will need for our analysis of

the Θ2-terms in the next section. Using the form of L(1) in (3.31) and that of J
(1)
α in (3.32)

we get

L(1)L(1) = −1

2
eaeb ΘΓaVW{ξ, ξ}W †V †ΓbΘ−

1

2
eaeb ΘΓaΓ11VW{ξ, ξ}W †V †Γ11ΓbΘ

(3.42)

+
1

2
∗ eaeb ΘΓaΓ11VW{ξ, ξ}W †V †ΓbΘ +

1

2
∗ eaeb ΘΓaVW{ξ, ξ}W †V †Γ11ΓbΘ .
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Using the form of the commutator of two Killing spinors in (3.11), the constraints in table 2
and 3, the form of V in (3.35) and the form of W in (3.39) and (3.41) one gets after some
algebra (the details of the calculation have been deferred to appendix A)

L(1)L(1) =
i

32
αβ
(
eced ΘΓcΓ

ãb̃SΓdΘ− ∗eced ΘΓcΓ
ãb̃SΓdΘ

)
Hãb̃ẽk

ẽ

+
i

32
β̂
(
eced ΘΓcΓ

âb′(α− βΓ11)SΓdΘ− ∗eced ΘΓcΓ
âb′(α− βΓ11)Γ11SΓdΘ

)
Hâb′êk

ê

+
i

32
β2
[a]

(
eced ΘΓcΓ

abSΓdΘ− ∗eced ΘΓcΓ
abΓ11SΓdΘ

)
∇̃akb

− i

64
α2
(
eced ΘΓcΓ

ãb̃SΓdΘ− ∗eced ΘΓcΓ
ãb̃Γ11SΓdΘ

)
hãf̃ g̃H

g̃
ẽb̃∇

ẽkf̃ . (3.43)

Here we have defined ∇̃akb which is the same as ∇akb except for group II where

∇̃ãkb̃ =
1

2

(
∇ãkb̃ +

R[ẽ]

2
Rãb̃c̃d̃ε

c̃d̃ẽkẽ

)
. (3.44)

3.5 Order Θ2 Lax connection

Computing the order Θ2 terms in the curvature of L(0) + L(1) using the superisometry

algebra of section 3.2, the conservation of J in (3.16) as well as the lowest order equations

of motion (3.19) we find

F (2) = −d
(
β[a] ∗ J (2) ak̃a + β[a] ∗ J (2) ab∇ak̃b −

α

2
∗ J (2)

a habc∇bk̃c
)

− α

2
∗ eaJ (2)

b hbcdRcdaek̃
e +

α

2
∗ eaJ (2) bcRbcadh

def∇ek̃f − L(1)L(1) . (3.45)

Recall from the discussion in section 3.1 that we need to show that this can be written

as DL(2) = dL(2) − L(0)L(2) − L(2)L(0), for some L(2), for the Lax connection to exist up

to quadratic order in Θ. To do this we will need two identities. Using the lowest order

bosonic and fermionic equations of motion in (3.19) and the form of the conserved current

in (2.36) we have

∇ ∗ J (2) ab + ∗e[aJ (2) b] = −1

2
e[aJ

(2)
cd H

b]cd − ecJ (2) d[aHb]
cd +

i

32
∗ eced ΘΓcΓ

abSΓdΘ

− i

32
eced ΘΓcΓ

abΓ11SΓdΘ +O(Θ4) . (3.46)

This is a generalized version of the second conservation equation in (3.16). Note that the

right-hand-side vanishes when contracted with ∇akb as needed for consistency with the

conservation equation. It is also useful to note that the first two terms on the right-hand-

side vanish when contracted with Habe as follows from (v) and (v′) in table 2 and 3. We

can also derive a “dual” version of this equation. Using the form of J (2), the conservation

of J in (3.16) and the lowest order equations of motion in (3.19) we find

∇J (2) ab + e[aJ (2) b] = −1

2
∗ e[aJ

(2)
cd H

b]cd + ∗ecJ (2)d[aHb]
cd +

i

32
eced ΘΓcΓ

abSΓdΘ

− i

32
∗ eced ΘΓcΓ

abΓ11SΓdΘ +O(Θ4) . (3.47)
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Using these two equations, the form of L(0) in (3.28), the superisometry algebra in sec-

tion 3.2, the conditions (iv), (v), (iv′) and (v′) in table 2 and 3 and the expression for

L(1)L(1) given in (3.43) one can show, after a bit of algebra, that

D
(
β[a] ∗ J (2) ak̃a −

α

2
∗ J (2)

a habc∇bk̃c + β[a]

[
(1 + α[a]) ∗ J (2) ab + β[a]J

(2) ab
]
∇ak̃b

+ α
[(3

2
+ α

)
∗ J (2)ãb̃ + βJ (2) ãb̃

]
Hãb̃c̃k̃

c̃ + β̂
[
β ∗ J (2) a′b̂ + αJ (2) a′b̂

]
Ha′b̂ĉk̃

ĉ

− α

2

[
β ∗ J (2) ãb̃ + αJ (2) ãb̃

]
hb̃c̃

ẽHẽd̃ã∇
c̃k̃d̃
)

= −F (2) +
i

64
(3 + 2α)α

(
∗eced ΘΓcΓ

ãb̃SΓdΘ− eced ΘΓcΓ
ãb̃Γ11SΓdΘ

)
Hãb̃ẽk̃

ẽ

− i

64
αβ
(
∗eced ΘΓcΓ

ãb̃SΓdΘ− eced ΘΓcΓ
ãb̃Γ11SΓdΘ

)
hãf̃

g̃Hg̃ẽb̃∇
ẽk̃f̃

− α

2
eã ∗ J (2) b̃c̃Rb̃c̃ãẽh

ẽf̃ d̃∇f̃ k̃d̃ −
α

2
eã ∗ J (2) b̃c̃Hb̃c̃d̃∇ãk̃

d̃ +
3

2
αβe[ãJ (2) b̃c̃]Hãb̃d̃∇c̃k̃

d̃

+
3

2
q2α2e[ã ∗ J (2) b̃c̃]Hãb̃d̃∇c̃k̃d̃ + β̂2ea

′ ∗ J (2) b̂ĉHa′b̂d̂∇ĉk̃d̂ − 2β̂2e[â ∗ J (2) b̂]c′Hc′âd̂∇b̂k̃
d̂ ,

(3.48)

where F (2) was given in (3.45). Here we have had to assume a specific form of k̃a. For

group I k̃a = ka while for group II k̃â,a′ = kâ,a′ while

k̃ã =
1

2

(
kã −

R[ã]

2
εãb̃c̃∇

b̃kc̃
)
. (3.49)

This form of k̃ã is chosen such that ∇ãk̃b̃ = ∇̃ãkb̃ defined in (3.44) and is needed in order

to cancel the corresponding term appearing in L(1)L(1) eq. (3.43). It is not hard to show

that k̃a satisfies the same algebra as ka but with the extra constraint

∇ãk̃b̃ =
R[ã]

2
Rãb̃

c̃d̃εc̃d̃ẽk̃
ẽ . (3.50)

k̃a can be interpreted as the SL(2,R)L (SU(2)L) isometries of AdS3 (S3). The reason only

the left isometries appear is because these are the ones sitting inside D(2, 1;α) and hence

the only ones that can appear in the commutator of two Killing spinors and therefore in

L(1)L(1).

In fact all terms on the right-hand-side of (3.48) except for F (2) vanish! The terms

involving S vanish by the symmetry properties of the gamma-matrices and the fact that S

commutes with the relevant combinations of gamma matrices. The next two terms cancel

upon using the form of Rab
cd ∼ δc[aδ

d
b] and (v) of table 2 while the rest of the terms vanish

due to the anti-symmetry in the indices (note that in these terms the tilded indices can only

run over three values while the hatted ones can only take two values). We have therefore

managed to write F (2) as D of something proving that the Lax connection can be extended

to the quadratic order in Θ.

3.6 Summary

We have shown that the string in a background with constant fluxes satisfying the condi-

tions listed in section 3.2 is classically integrable by constructing its Lax connection up to
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quadratic order in Θ. The Lax connection takes the form

L = L(0) + L(1) + L(2) +O(Θ3) , (3.51)

where the different pieces are built from components of the superisometry current as

L(0) = α[a]e
ak̃a + β[a] ∗ J (0) ak̃a −

α

2
∗ eahabc∇bkc −

β

2
eahabc∇bkc , L(1) = ∗J (1)

α (VWξ)α ,

L(2) = β[a] ∗ J (2) ak̃a −
α

2
∗ J (2)

a habc∇bkc + β[a]

[
(1 + α[a]) ∗ J (2) ab + β[a]J

(2) ab
]
∇ak̃b

+ α
[(3

2
+ α

)
∗ J (2)ãb̃ + βJ (2) ãb̃

]
Hãb̃c̃k

c̃ + β̂
[
β ∗ J (2) a′b̂ + αJ (2) a′b̂

]
Ha′b̂ĉk

ĉ

− α

2

[
β ∗ J (2) ãb̃ + αJ (2) ãb̃

]
hb̃c̃

ẽHẽd̃ã∇
c̃kd̃ , (3.52)

where V and W are defined in (3.35), (3.39) and (3.41), k̃a defined in (3.49) and α[a] and

β[a] in (3.29).

Note that for the construction of the Lax connection at quadratic order, L(2), it was

important that we took the most general form of L(0) and L(1). For example, taking L(0)

with ka instead of k̃a is perfectly fine up to order Θ1 but we would fail to construct L(2) since

only terms involving the left isometries SL(2,R)L (SU(2)L) are generated from L(1)L(1) as

we have seen. Similarly it would have been fine to drop the Γ9′-term in WI at order Θ1

but this term is needed in order to construct L(2) since it affects the terms coming from

L(1)L(1).

Finally, let us imagine that we changed some signs of the fluxes in the supergravity

solution so as to break the supersymmetry. The bosonic Lax connection would still be fine

but there would be no L(1) since there would no longer be any Killing spinors from which

to construct it.13 Trying to go to the next order one would then encounter a problem. The

terms in the curvature that were canceled by L(1)L(1) in the supersymmetric case (3.43)

would now be left over. They would certainly not vanish in general and it does not appear

possible to write them as D of something. This argument suggests that kappa symmetry

of the string alone is not enough to ensure that integrability of the bosonic string lifts

to the superstring. A very interesting question is whether kappa symmetry together with

some amount of supersymmetry is enough for the bosonic integrability to extend to the

full superstring. We hope to return to this question in the future.

4 Integrable type IIA backgrounds from intersecting branes

In this section we will give the details of the backgrounds listed in table 1 and show that they

fulfill all the conditions we had to impose in the previous section to prove the integrability.

13One could try instead to construct an L(1) using some constant spinor or the Killing spinor of the

supersymmetric background. However, even if this worked to linear order in Θ it would not fix the problem

at quadratic order since L(1)L(1) would not be of the required form.
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Our conventions for the volume form and curvature of AdSn and Sn are

ΩAdSn =
1

n!
ean−1 · · · ea0εa0···an−1 = −en−1 · · · e0 , Rab

cd(AdSn) =
2

R2
AdS

δc[aδ
d
b] (4.1)

ΩSn =
1

n!
ean · · · ea1εa1···an = en · · · e1 , Rab

cd(Sn) = − 2

R2
S

δc[aδ
d
b] , (4.2)

where R is the radius of curvature.

The supersymmetry conditions are (see section 2.2)

Dilatino eq: Tξ = 0 Gravitino eq: Uabξ = 0 , (4.3)

where, for constant dilaton and fluxes,

T =
i

24
Habc ΓabcΓ11 +

i

16
ΓaSΓa , Uab =

1

32
M[aMb] −

1

4
RabcdΓ

cd . (4.4)

The Killing spinor satisfies

ξ = Pξ , (4.5)

where P is a projector which projects on the supersymmetric directions in spinor space.

We also introduce a parameter 0 ≤ q ≤ 1 such that

q = 0⇔ No NSNS-flux. (4.6)

Backgrounds with non-zero NSNS-flux which can not be tuned we take to have q = 1.

Note that the specific form of the fluxes we give can be changed by performing T-

dualities. This does not however affect the rest of the discussion, in particular the integra-

bility goes through in the same way (as it must).

A. AdS4 × CP3. This supergravity solution can be obtained by dimensional reduction

from the maximally supersymmetric AdS4× S7 solution arising as the near-horizon geom-

etry of the M2-brane. This is done by viewing S7 as an S1 Hopf fibration over CP3 and

reducing on the S1 [30, 31]. This breaks the superisometry group of the eleven-dimensional

solution, OSp(8|4), down to OSp(6|4), leaving 24 unbroken supersymmetries. The type IIA

solution has RR four-form and two-form flux, the latter arising through the Hopf reduction

procedure. The fluxes take the form

F (2) = e−φJ , F (4) = −3e−φΩAdS4 . (4.7)

Here J is the Kähler form on CP3 and we take J = e5e4 + e7e6 + e9e8 in terms of the CP3

vielbeins. Note that we have indicated the dilaton dependence even though the dilaton is

just a constant for the backgrounds we consider here. From the definition of S in (2.10)

and T in (4.4) we find

S = 4PΓ0123 , T =
3i

2
Γ0123(1− P) , (4.8)

where the Killings spinor projection matrix is given by

P =
1

4
(3 + Γ6789 + Γ4589 + Γ4567) . (4.9)

– 21 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
5

The dilatino equation in (4.3) is obviously satisfied and it is also easy to check the gravitino

equation. One finds the radii of curvature to be

RAdS4 = 1 , R
CP

3 = 2 . (4.10)

Since there is no NSNS flux (q = 0) eq. (3.9) is trivially true (with Ŝ = S) while

conditions (i), (ii) and (iii) are clearly true and the conditions in table 2 become trivial.

B. AdS3 × S3 × S3 × S1 (and AdS3 × S3 × T 4). This supergravity background arises

as the dimensional reduction of the eleven-dimensional AdS3 × S3 × S3 × T 2 solution

representing the near-horizon geometry of two M5-branes and an M2-brane intersecting

over a line [19]. It also arises in type IIB supergravity as an intersection of D1’s and

D5’s [32]. The solution preserves 16 supersymmetries and has the superisometry group

D(2, 1;α)×D(2, 1;α)×U(1). The geometry is supported by NSNS and RR four-form flux

of the form

H = 2q
(
ΩAdS3 +

√
αΩS3

1
+
√

1− αΩS3
2

)
,

F (4) = 2q̂e−φdx9
(
ΩAdS3 +

√
αΩS3

1
+
√

1− αΩS3
2

)
, (4.11)

where the parameters q, q̂ satisfy q2 + q̂2 = 1. When q = 0 there is only RR-flux and

conversely when q = 1, q̂ = 0 there is only NSNS-flux. The free parameter q arises from

the freedom to perform an S-duality in the type IIB picture. From the definition of S

in (2.10) and T in (4.4) we find

S = −4q̂PΓ0129 , T = − i
2

Γ012[q̂Γ9 + 2qΓ11][1− P] , (4.12)

where the Killing spinor projection matrix is

P =
1

2
(1 +

√
αΓ012345 +

√
1− αΓ012678) . (4.13)

Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = ŜΓaξ with Ŝ = −4PΓ0129′ , (4.14)

where Γ9′ is defined in (3.14). The dilatino equation in (4.3) is obviously satisfied and it is

also easy to check the gravitino equation. One finds the radii of curvature to be

RAdS3 = 1 , RS3
1

=
1√
α
, RS3

2
=

1√
1− α

. (4.15)

Note that for α = 0 , 1 one S3 decompactifies and the geometry becomes instead AdS3 ×
S3 × T 4.

It is easy to verify that conditions (i), (ii) and (iii) hold. Conditions (iv)–(xi) of table 2

are also easily verified.
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C. AdS3×S2×S3×T 2 (and AdS3×S2×T 5). This type IIA solutions can be obtained by

starting from the same eleven-dimensional AdS3×S3×S3×T 2 solution as in the previous

case but, instead of reducing on a T 2 direction, performing a Hopf reduction on the S3, i.e.

viewing S3 as an S1 fibration over CP1 ∼ S2 and reducing on the S1. The Hopf reduction

breaks the supersymmetry down from sixteen to eight supercharges and the superisometry

algebra is D(2, 1;α)× SL(2,R)× SU(2)×U(1)2. The fluxes take the form

H = dx9ΩS2 , F (2) = −e−φΩS2 , F (4) = e−φdx9(
√

1 + αΩAdS3 −
√
αΩS3) . (4.16)

Note the presence of both NSNS and RR flux. From the definition of S in (2.10) and T

in (4.4) we find

S = −2P2Γ34Γ11 , T =
i

4
Γ34Γ11[2(1− P1) + (1− P2)] (4.17)

where the Killing spinor projection matrix is now a product of two projection matrices

P = P1P2 , with P1 =
1

2
(1+Γ9) , P2 =

1

2
(1−
√

1 + αΓ340129Γ11−
√
αΓ345679Γ11) .

(4.18)

The two projection matrices commute and therefore reduce the amount of supersymmetry

by a factor of 2 each from 32 to 8. The dilatino equation in (4.3) is obviously satisfied and

it is also easy to check the gravitino equation. One finds the radii of curvature to be

RAdS3 =
2√

1 + α
, RS2 = 1 , RS3 =

2√
α

(4.19)

Taking α = 0 decompactifies the S3 and we obtain the solution AdS3 × S2 × T 5. Taking

instead the limit α →∞ gives a highly curved AdS3 × S3 subspace with the curvature of

the S2 remaining finite. Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = c[a]ŜΓaξ with Ŝ = −2PΓ34Γ11 , (4.20)

with c[a] defined as in (3.8).

Next we look at the conditions needed for integrability. Conditions (i)–(iii) are easily

verified. Since the NSNS-flux cannot be tuned we have q = 1 which means that conditions

(vi′) and (ix′) in table 3 are empty. Conditions (iv′) and (viii′) are clearly true and the

remaining conditions are easily seen to hold after a little bit of algebra.

D. AdS3×S2×S2×T 3 (and AdS3×S2×T 5). This solution arises in type IIB supergravity

as the near-horizon limit of a self-dual configuration of two D5’s two NS5’s and one D3 [19].

The fluxes of the T-dual type IIA solution are

H = −
√
αdx7ΩS2

1
+
√

1− αdx8ΩS2
2
,

F (4) = e−φ
(√
αdx9dx8ΩS2

1
+
√

1− αdx9dx7ΩS2
2
− ΩS2

1
ΩS2

2

)
. (4.21)

It is not possible to switch off the NSNS or RR flux (performing S-duality in the IIB picture

only leads to a rotation in the 78-plane). From the definition of S in (2.10) and T in (4.4)

we find

S = −2P2Γ3456 , T =
i

4
Γ012[2P2(1− P1)− (1− P2)] , (4.22)

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
1
1
5

where the Killing spinor projection matrix is again a product of two commuting projection

matrices

P = P1P2 , with P1 =
1

2
(1 + Γ0123456) , P2 =

1

2
(1 +

√
αΓ5689 +

√
1− αΓ3479) ,

(4.23)

leaving eight ξ’s. The dilatino equation in (4.3) is obviously satisfied and it is also easy to

check the gravitino equation. One finds the radii of curvature to be

RAdS3 = 2 , RS2
1

=
1√
α
, RS2

2
=

1√
1− α

. (4.24)

For α = 0 , 1 one S2 decompactifies and the geometry becomes instead AdS3 × S2 × T 5.

Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = c[a]ŜΓaξ with Ŝ = −2PΓ3456 , (4.25)

with c[a] defined as in (3.8). The conditions needed for integrability, (i)–(iii) together with

the conditions listed in table 3, are easily verified (note that we have q = 1 so that e.g.

Γ9′ = −Γ11).

E. AdS2× S3× S3× T 2 (and AdS2× S3× T 5). This example is very similar to (C). As

in that case one starts from the eleven-dimensional AdS3×S3×S3×T 2 solution. Viewing

AdS3 as an S1 fibration over AdS2 one reduces on the S1 breaking the supersymmetry

from 16 down to 8. The fluxes in the IIA solution take the form

H = dx9ΩAdS2 , F (2) = −e−φΩAdS2 , F (4) = −e−φdx9
(√
αΩS3

1
+
√

1− αΩS3
2

)
.

(4.26)

Again both NSNS and RR flux is present. From the definition of S in (2.10) and T in (4.4)

we find

S = 2P2Γ01Γ11 , T = − i
4

Γ01Γ11[2(1− P1) + (1− P2)] (4.27)

where the Killing spinor projection matrix is again a product of two commuting projection

matrices

P = P1P2 , with P1 =
1

2
(1+Γ9) , P2 =

1

2
(1−
√
αΓ012349Γ11−

√
1− αΓ015679Γ11) .

(4.28)

The dilatino equation in (4.3) is obviously satisfied and it is also easy to check the gravitino

equation. One finds the radii of curvature to be

RAdS2 = 1 , RS3
1

=
2√
α
, RS3

2
=

2√
1− α

. (4.29)

For α = 0 , 1 one S3 decompactifies and the geometry becomes AdS2 × S3 × T 5.

Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = c[a]ŜΓaξ with Ŝ = 2PΓ01Γ11 , (4.30)

with c[a] defined as in (3.8). The conditions needed for integrability, (i)–(iii) together with

the conditions listed in table 3, are easily verified (note that we have q = 1 so that e.g.

Γ9′ = −Γ11).
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F. AdS2×S2×S3×T 3 (and AdS2×S3×T 5). This solution is similar to (D). It can be

realized in type IIB as the near-horizon geometry of a D1-F1-D5-NS5-D3 intersection [19].

The fluxes of the T-dual type IIA solution are

H = −
√

1 + αdx7ΩAdS2 +
√
αdx8ΩS2 ,

F (4) = e−φ
(√

1 + αdx9dx8ΩAdS2 +
√
αdx9dx7ΩS2 − ΩAdS2ΩS2

)
. (4.31)

Both NSNS and RR flux is present. From the definition of S in (2.10) and T in (4.4) we

find

S = 2P2Γ0123 , T =
i

4
Γ456[2P2(1− P1)− (1− P2)] , (4.32)

where the Killing spinor projection matrix is again a product of two commuting projection

matrices

P = P1P2 , with P1 =
1

2
(1 + Γ0123456) , P2 =

1

2
(1 +

√
αΓ0179 +

√
1 + αΓ2389) .

(4.33)

The dilatino equation in (4.3) is obviously satisfied and it is also easy to check the gravitino

equation. One finds the radii of curvature to be

RAdS2 =
1√

1 + α
, RS2 =

1√
α
, RS3 = 2 . (4.34)

For α = 0 the S2 decompactifies and the geometry becomes instead AdS3 × S2 × T 5. The

opposite limit, α → ∞, gives a highly curved AdS2 × S2 subspace with the S3 curvature

remaining finite.

Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = c[a]ŜΓaξ with Ŝ = 2PΓ0123 , (4.35)

with c[a] defined as in (3.8). The conditions needed for integrability, (i)–(iii) together with

the conditions listed in table 3, are easily verified (note that we have q = 1 so that e.g.

Γ9′ = −Γ11).

G. AdS2 × S2 × S2 × T 4 (and AdS2 × S2 × T 6). This solution can be obtained by

dimensional reduction from the eleven-dimensional supergravity solution AdS2×S2×S2×
T 5 which arises as the near-horizon geometry of an intersection of two M2’s and four

M5’s [33]. The superisometry group is D(2, 1;α)×U(1)4 and the fluxes take the form

H = q
(
− dx8ΩAdS2 +

√
αdx7ΩS2

1
+
√

1− αdx6ΩS2
2

)
,

F (4) = e−φ
(
[dx7dx6 − q̂dx9dx8]ΩAdS2 +

√
α[dx8dx6 + q̂dx9dx7]ΩS2

1

+
√

1− α[q̂dx9dx6 − dx8dx7]ΩS2
2

)
. (4.36)

Here q2 + q̂2 = 1 and taking q = 0 turns off the NSNS-flux (q = 1 does not however turn off

the RR-flux). The parameter q arises from the freedom to perform S-duality in the T-dual

type IIB solution or performing the dimensional reduction from eleven dimensions at an

angle. From the definition of S in (2.10) and T in (4.4) we find

S = −2P2Γ0167(1 + q̂Γ6789) , T = − i
4

Γ0167(1 + Γ678[2qΓ11 + q̂Γ9])(1− P2) , (4.37)
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where the Killing spinor projection matrix is a product of two commuting projection ma-

trices

P = P1P2 , with P1 =
1

2
(1+Γ6789′) , P2 =

1

2
(1+
√
αΓ012378 +

√
1− αΓ014568) ,

(4.38)

where Γ9′ appearing in P1 is defined in (3.14). The dilatino equation in (4.3) is obviously

satisfied and it is also easy to check the gravitino equation. One finds the radii of curvature

to be

RAdS2 = 1 , RS2
1

=
1√
α
, RS2

2
=

1√
1− α

. (4.39)

For α = 0 , 1 one S2 decompactifies and the geometry becomes instead AdS2 × S2 × T 6.

Computing the r.h.s. of the Killing spinor equation (3.9) one finds

Maξ = (HabcΓ
bcΓ11 + SΓa)ξ = c[a]ŜΓaξ with Ŝ = −2PΓ0167 , (4.40)

with c[a] defined as in (3.8). The conditions needed for integrability, (i)–(iii) together with

the conditions listed in table 3, are not difficult to verify.

5 Conclusions

In the first part of the paper we determined the form of the superisometry transformations

in a general type II supergravity background up to quartic order in Θ. The string action is

known in general to the same order [26]. We also determined the form of the superisometry

Noether current for the string to the same order. The rest of the paper dealt with the special

case of symmetric space backgrounds with constant fluxes and dilaton. We postulated a

form for the superisometry algebra and a number a extra constraints on the form of the

fluxes in the cases with both NSNS and RR flux. We then showed that given this form of the

superisometry algebra and the constraints a Lax connection could be constructed at least

up to order Θ2. We then verified that these constraints hold for the backgrounds listed in

table 1 of the introduction and which arise through intersecting brane constructions. Note

that one can also obtain other, more complicated, examples of integrable backgrounds by

applying T-dualities and field redefinitions to these. Sometimes S-duality also preserves

the integrability as we have mentioned, although this is in general not guaranteed.

There are many interesting questions and possible future directions of work. A very

interesting (and difficult) question is to try to classify integrable backgrounds in string

theory, see [34, 35] and references therein. This is perhaps manageable if one restricts

to AdS backgrounds with some amount of supersymmetry and/or constant fluxes and

dilaton. A related question which we touched upon briefly is whether one can prove that

integrability of the bosonic string extends to the full superstring under certain conditions.

We argued that this seems not to happen in general. It would be very nice to find a more

general framework to address the question of integrability, something like a generalization

of the supercoset construction. Most likely this would have to rely in a crucial way on the

kappa symmetry of the string.

It would also be interesting to study other simple backgrounds, for example ones with

less supersymmetry. Certainly the easiest class from our point of view are those with
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constant fluxes. Perhaps these could even be classified. Another approach is to exploit

dualities in order to generate new integrable examples.

Finally it would be interesting to study the quantum properties of the integrable strings

found here. For example it was recently understood how to incorporate the massless modes

that arise in the BMN-limit into the finite gap equations [36]. It would also be very

interesting to try to construct the exact S-matrix for these strings, see [37–42] for some

recent work. It would also be very interesting if one could say something about the CFTs

dual to the string backgrounds considered here. Besides their symmetries [19] very little is

known about them.
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A Computation of L(1)L(1)

Here we will give some details of the calculation of L(1)L(1) the result of which was given

in (3.43). Starting from (3.42) and using the killing spinor commutator (3.11) we find for

the terms involving ∇akb
i

8c[a]

(
eced ΘΓcVWΓabŜW †V †ΓdΘ + eced ΘΓcΓ11VWΓabŜW †V †Γ11ΓdΘ

− ∗eced ΘΓcΓ11VWΓabŜW †V †ΓdΘ− ∗eced ΘΓcVWΓabŜW †V †Γ11ΓdΘ
)
∇akb .

(A.1)

Let us first compute these terms for backgrounds in group I using the constraints listed in
table 2. Using (vii), the form of WI in (3.39), (viii) and the fact that c[ã] = 1 we get

i

64
(β2+q2α2)

(
eced ΘΓcV Γab[Ŝ + Γ11ŜΓ11]V †ΓdΘ− ∗eced ΘΓcV ΓabΓ11[Ŝ + Γ11ŜΓ11]V †ΓdΘ

)
∇akb .
(A.2)

Using (ix) and the form of V in (3.35) this reduces to

i

32
(β2 + q2α2)

(
eced ΘΓcΓ

abSΓdΘ− ∗eced ΘΓcΓ
abΓ11SΓdΘ

)
∇akb . (A.3)

For backgrounds in group II we get instead, using (ix′) of table 3, the form of WII in (3.41),

(x′) and the form of V

i

16c[a]
β̂2
(
eced ΘΓcΓ

abSΓdΘ− ∗eced ΘΓcΓ
abΓ11SΓdΘ

)
∇akb . (A.4)

Using (3.11) in (3.42) we find the following terms involving ka

− i

16

(
eced ΘΓcVWŜΓaŜW †V †ΓdΘ + eced ΘΓcΓ11VWŜΓaŜW †V †Γ11ΓdΘ

− ∗eced ΘΓcΓ11VWŜΓaŜW †V †ΓdΘ− ∗eced ΘΓcVWŜΓaŜW †V †Γ11ΓdΘ
)
ka .

(A.5)
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Using (vii), (ix′), the form of W , the fact that ŜΓaŜ = 1
c[a]
MaŜ and (iii) this becomes

− i

16c[a]

(
eced ΘΓcVW

2MaŜV †ΓdΘ + eced ΘΓcΓ11VW
2MaŜV †Γ11ΓdΘ

− ∗eced ΘΓcΓ11VW
2MaŜV †ΓdΘ− ∗eced ΘΓcVW

2MaŜV †Γ11ΓdΘ
)
ka . (A.6)

Consider group I first. Using the form of WI (3.39) and V (3.35), the form of Ma (2.18)
and (viii) of table 2 we get

− i

128
(β2 + q2α2)

(
eced ΘΓcSΓa[Ŝ − Γ11ŜΓ11]ΓdΘ + ∗eced ΘΓcSΓaΓ11[Ŝ − Γ11ŜΓ11]ΓdΘ

)
ka

− i

128
(β2 + q2α2)

(
eced ΘΓcΓefΓ11[Ŝ + Γ11ŜΓ11]ΓdΘ− ∗eced ΘΓcΓef [Ŝ + Γ11ŜΓ11]ΓdΘ

)
Hefaka

− iq

64q̂
αβ
(
eced ΘΓcSΓã9[Ŝ + Γ11ŜΓ11]ΓdΘ− ∗eced ΘΓcSΓã9Γ11[Ŝ + Γ11ŜΓ11]ΓdΘ

)
kã . (A.7)

Using (ix) and (x) the first two terms cancel and, using (xi), we are left with

i

32
αβ
(
eced ΘΓcΓ

ãb̃SΓdΘ− ∗eced ΘΓcΓ
ãb̃SΓdΘ

)
Hãb̃ẽk

ẽ . (A.8)

Next we turn to group II. Using the form of WII (3.41) and V (3.35), the form of Ma (2.18),

c[â] = 2, (vi′) and (vii′) of table 3 we get

i

64
β̂
(
eced ΘΓcΓa′b̂(α− βΓ11)[Ŝ + Γ11ŜΓ11]ΓdΘ

− ∗eced ΘΓcΓa′b̂(α− βΓ11)Γ11[Ŝ + Γ11ŜΓ11]ΓdΘ
)
Ha′b̂êkê

+
i

128
β̂
(
eced ΘΓc(α+ βΓ11)SΓâΓ11[Ŝ − Γ11ŜΓ11]ΓdΘ

+ ∗eced ΘΓc(α+ βΓ11)SΓâ[Ŝ − Γ11ŜΓ11]ΓdΘ
)
kâ

− i

64
ββ̂
(
eced ΘΓcSΓã[Ŝ − Γ11ŜΓ11]ΓdΘ + ∗eced ΘΓcSΓãΓ11[Ŝ − Γ11ŜΓ11]ΓdΘ

)
kã

+
iq̂

64
αβ̂
(
eced ΘΓcV SΓãΓ11′ŜV

†ΓdΘ + eced ΘΓcΓ11V SΓãΓ11′ŜV
†Γ11ΓdΘ

− ∗eced ΘΓcΓ11V SΓãΓ11′ŜV
†ΓdΘ− ∗eced ΘΓcV SΓãΓ11′ŜV

†Γ11ΓdΘ
)
kã . (A.9)

The last term vanishes due to (viii′) and using (x′), (xi′) and (xii′) this reduces to

i

32
β̂
(
eced ΘΓcΓa′b̂(α− βΓ11)SΓdΘ− ∗eced ΘΓcΓa′b̂(α− βΓ11)Γ11SΓdΘ

)
Ha′b̂êkê

+
i

64
ββ̂
(
eced ΘΓcΓ

ãb̃SΓdΘ− ∗eced ΘΓcΓ
ãb̃Γ11SΓdΘ

)
R[g̃]Rãb̃

ẽf̃εẽf̃ g̃k
g̃ . (A.10)

Summarizing our calculation we have for group I

L(1)L(1) =
i

32
αβ
(
eced ΘΓcΓãb̃SΓdΘ− ∗eced ΘΓcΓãb̃SΓdΘ

)
H ãb̃ẽkẽ

+
i

32
(β2 + q2α2)

(
eced ΘΓcΓ

abSΓdΘ− ∗eced ΘΓcΓ
abΓ11SΓdΘ

)
∇akb , (A.11)
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while for group II we have

L(1)L(1) =
i

32
β̂
(
eced ΘΓcΓ

a′b̂(α− βΓ11)SΓdΘ− ∗eced ΘΓcΓ
a′b̂(α− βΓ11)Γ11SΓdΘ

)
Ha′b̂êkê

+
i

32
β̂2
(
eced ΘΓcΓ

âb̂SΓdΘ− ∗eced ΘΓcΓ
âb̂Γ11SΓdΘ

)
∇âkb̂

+
i

32
β2
(
eced ΘΓcΓ

ãb̃SΓdΘ− ∗eced ΘΓcΓ
ãb̃Γ11SΓdΘ

)
∇̃ãkb̃ , (A.12)

where ∇̃ãkb̃ was defined in (3.44) and we have used the fact that due to (viii′) β̂kã = β
2kã.

It is not hard to see that these equations can be written as one, in the form of (3.43).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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