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1 Introduction

One of the most important tools used in exploring string theory, its vacuum structure, and

its dynamics, is the low-energy effective action. For many purposes, it is enough to use

only the lowest order pieces in this action, but sometimes it turns out that we need to go

to higher orders, either in a derivative expansion (o’ expansion), or in the string coupling

(g9s expansion). In fact, there are situations where the higher order terms are crucial to

correctly determine the vacuum structure.

For example, consider M-theory on R'? x X, where X is a Calabi-Yau four-fold with

a Ricci-flat metric. This is certainly a valid solution of eleven-dimensional supergravity,



which is the leading part of the low-energy effective action of M-theory. However, once
one also incorporates the leading (eight-derivative) corrections to the effective action [1],
then it is no longer a solution, and in fact there is a topological obstruction (unless X has
vanishing Euler number, x(X) = 0). To find solutions, we must include internal fluxes or
space-filling M2-branes.

If X is elliptically fibered with a section, then there is a dual IIB compactification to
four dimensions on the base B of the fibration with D7-branes and O7-planes located at
points where the fiber degenerates [2]. In this situation, the topological obstruction arises
from higher-derivative corrections that are localized on the D7-branes and O7-planes and
that have the form (neglecting an order one dimensionless coefficient)

To(a/)2 / Cu A Jtr (Ry A Re) — tr (R A Byl (1.1)
D7/O7

where Ry and Ry are the tangent and normal curvature two-forms on the brane, and 7%
is the tension. This gives a contribution to the tadpole for Cy4 in the R directions arising
from integrating the couplings above over the four-cycle in B wrapped by the D7s and OTs.
What this teaches us is the importance of understanding the leading order higher-derivative
corrections to effective actions, including those that are localized on D-branes or O-planes.

Note that this coupling is only one piece of the full action at this order in derivatives.
In more general backgrounds, one expects that additional couplings involving H-flux and
other fields will be important, and may in fact lead to induced charges like in the situation
above [3-5]. In those cases, a proper understanding of the higher derivative corrections
will again be crucial to correctly understand the vacuum structure.

There are many approaches which can be used to determine these corrections. The spe-
cific couplings above were predicted using anomaly cancellation [6-8], K-theoretic consid-
erations [9], and verified by direct scattering amplitude calculations [10, 11]. In the current
work we will follow a different route, using constraints from T-duality to determine the full
non-linear (in the bulk fields) couplings of a type II Op-plane to the NS-NS sector bulk fields.

There are many different perspectives available on T-duality. On the world-sheet,
it is a duality which, if one of the world-sheet scalars is compact, exchanges Neumann
boundary conditions with Dirichlet boundary conditions, and exchanges momentum modes
with winding modes. In the target space, where we will be focusing, T-duality arises for
backgrounds that admit a U(1) isometry, i.e. a circle fibration. Consider the sector of the
low-energy theory in which no fields have dependence on the coordinate of this isometry.
If we Kaluza-Klein reduce on this circle, then T-duality acts as a Zy symmetry of the
reduced theory.! Of course, since this is only a Zs symmetry, there are many potential
couplings of the reduced theory fields which would be invariant, obtained by simply adding
a candidate coupling together with its image under T-duality. However, we have the
additional information that the theory has been reduced from a covariant, gauge-invariant

!'Note that the low-energy theory does not include winding modes on the circle (these would masses that
scaled like R/a/, where R is the radius of the circle). By restricting to the sector with no dependence on the
circle coordinate we are also dropping the momentum modes, which is why T-duality can act as a symmetry.



theory in one dimension higher. It is the combination of this knowledge with T-duality
invariance which is surprisingly powerful.

Thus to use T-duality to constrain the leading order? higher-derivative corrections,
an unsophisticated brute-force approach would be to write down all possible generally
covariant, gauge-invariant couplings in the bulk theory, with arbitrary coefficients, and at
the first non-vanishing order in the derivative expansion. Next, make an ansatz that there
is a U(1) isometry and reduce the theory on the circle. This reduced theory now has a
set of couplings parameterized by the coefficients of the parent theory (and in particular
they are not the most general possible couplings). Finally, demanding that T-duality is a
symmetry of the reduced theory will put constraints on those couplings.

This procedure was followed for the bosonic string, or equivalently for the NS-NS sec-
tor of the superstring, for the two-derivative action in [12] and in a related approach for
the bosonic string to order o' in [13] (see also [14] and [15]). At linearized order in the
Buscher rules, some terms were obtained in the order (o) superstring action in [16], and
similar techniques have been recently exploited by [17] to obtain some more of the type
IT couplings at order (a/)?. One would like to pursue the full unsophisticated brute-force
approach to continue the work of these latter papers, but unfortunately this becomes quite
difficult, owing to the huge number of covariant and gauge-invariant couplings which one
would have to consider at eight-derivative order. Instead, we would prefer to work in a
situation where the leading corrections come in at a lower order in derivatives, like in the
bosonic string example of [13].

Fortunately, this is the case for the actions which localize at D-branes and O-planes,
for which, even in the superstring, corrections start at order (a’)?, which is four derivatives
in the bulk fields. There is a complication however, since T-duality exchanges a direc-
tion along one of these localized objects with a direction transverse (for D-branes this is
simply the statement above that T-duality exchanges Neumann and Dirichlet boundary
conditions), in other words exchanging a p-brane wrapping the circle with a (p — 1)-brane
localized on the circle. A priori it’s not clear that the localized action on the former should
be related in a simple way to the latter - the couplings could have explicit dependence
on the brane dimension p. However, it is a remarkable fact that, when written in string
frame fields, all known brane couplings are universal in this sense. We will take this as
an assumption. We consider the fact that we will find a unique four-derivative action on
the O-plane, and that this action is consistent with all previously known couplings, to be
a fairly strong check on this assumption.

Our procedure will be similar to that outlined above for bulk couplings. We will write
down all possible consistent (covariant, gauge-invariant) brane couplings at leading order
in the derivative expansion which might mix under T-duality and assume that they have

2A modified procedure could also be used to constrain the action beyond leading order, but it gets
more convoluted. The reason is that the action of T-duality itself (i.e. the Buscher rules) can receive
corrections. At leading order, this implies we should combine the uncorrected Buscher rules acting on the
leading correction to the action with the corrections to the Buscher rules acting on the two-derivative action.
But the latter contributions will clearly be proportional to the variations of the two-derivative action with
respect to the fields (since the Buscher rules act on the fields), i.e. the lowest-order equations of motion.
As such, their effect can be removed by a field redefinition.



the same arbitrary coefficients (in string frame) for all p. Then we will make the ansatz of
a U(1) isometry in the bulk and demand that the reduced action for the p-brane wrapping
the circle gets mapped into the action for the (p — 1)-brane transverse to the circle. In this
way we will put constraints on our couplings.

For D-branes, even though the corrections begin at four-derivatives, the full proce-
dure remains prohibitively difficult, because the combinations of world-volume and bulk
fields, and tangent and normal indices, lead to a very large number of potential couplings.
Nonetheless, by working to linearized order in the Buscher rules and the fields, many
restrictions can be put on some of the higher derivative couplings [3, 12, 18-21].

The situation is most tractable for O-planes. In this case, there are no world-volume
fields,> and many couplings get removed by the orientifold projection. We can reduce the
number of couplings even further by restricting to terms with no R-R fields (the Buscher
rules act linearly on R-R fields, so they will not mix couplings with different numbers
of R-R fields). This is the arena where we would like to implement our unsophisticated
brute-force approach to constraining the higher-derivative corrections.

In section 2 and appendix A, we classify all possible couplings that we need to consider
up to four derivatives in the bulk fields, and assign coefficients to the terms that can appear.
The next step is to reduce these couplings in the presence of a U(1) isometry. Unfortunately,
even our simplified situation can get cumbersome if we work with the most general U(1)-
isometry ansatz, largely because of the need to commute covariant derivatives on a general
curved base of our circle fibration. For this reason, we will consider not the most general
circle bundle ansatz, but a pair of simplified classes of backgrounds. The first class has
a flat base metric and no off-diagonal components between base and fiber for either the
metric or B-field, but allows the dilaton and circle radius to have arbitrary profile over the
base. We call this the warped product. The second class has again a flat base metric, a
constant dilaton and radius, but arbitrary off-diagonal components of the metric and B-
field, which become a pair of vectors on the base (and are interchanged under T-duality).
We call this the twisted product. In each case we get a set of constraints on our list of
coefficients. Neither of our two classes is broad enough to determine all the coefficients,
but by combining the results from the two classes, we get our final result,

S (o 2
=1 2(96 :

/—ge {—v%vaqw”q»vb@ + 2V OV D H, " Hyei + %H“biHaijCdiHcdj
1 abipr gy ke 1 abigr cjor k 1 abi; cjord 1 ik tmo n
_ZH Hn.b Hz H]k,g— gH Ha Hbc H”k'i—gH Ha Hb ]Hcdl"_ﬂH HZ Hje Hkm'n
+3V OV, OV, ® — VD H,“ Hyei — gv” OH Hopj + %v” OH, Hjpp — 2V, OV, ®
+2VIOV,;® + 2V OV, DR, — 2V OV BR, . — R, H, " Hoqi + R* H,," Hiji,

+2R™Y H,% Hy.; — gRMaJHbCZ-Hij + ER“ZGJHZ-MHW —2V*, ®R",. + AVIDR",,;
_2RabacRded + RadeRabcd _ Rabina,bij + 2Raiaij7jbj + 4vaq>Ha biVCHbci _ 2vaHa biVCHbci

f%V“Hb”VaHbci = %V”HijkVaHijk} . (1.2)

3We are considering a single O-plane with no coincident D-branes, not even fractional D-branes. Most
of the subtleties of O-plane taxonomy (plus or minus, tilde or no tilde) will not be relevant here. The only
information we need to use is that there are no world-volume degrees of freedom and that the orientifold
projection acts on the bulk fields in the usual way as detailed in section 2.



This is the main result of the current paper. We also point out an alternative formu-
lation in (6.7), related to (1.2) by a field redefinition, in which the dilaton only appears
through the factor of e~®. This result agrees with all previously known couplings.

The plan of the paper is as follows. In section 2, we classify all couplings which can
appear in our orientifold plane action. We proceed very carefully, making clear precisely
where we use field redefinitions, integrations by parts, or Bianchi identities. It is not really
necessary to spell out all of these details (and most of them are in fact relegated to ap-
pendix A), but we do so with an eye towards computerizing the task for related calculations
in future work. Section 3 explains the procedure outlined above in more technical detail.
Section 4 performs the computation for the warped product, with the horrible details ap-
pearing in appendix B, and section 5 and appendix C do the same for the twisted product.
The final results and the reformulation alluded to above appear in section 6.

2 Classifying allowed couplings

In its basic construction, an orientifold plane (Op-plane, in the case that the world-volume
is (p+ 1)-dimensional, or O-plane in general) in type II or bosonic string theory arises from
a Zo quotient of the theory combining a worldsheet orientation reversal with an involution
on the spacetime manifold. The fixed point locus of the involution is called an orientifold
plane. Away from this locus, the quotient relates fields at two different points in spacetime,
and at the O-plane itself, the quotient acts as a projection on the fields which we will discuss
below. In its most elementary form, there are no perturbative degrees of freedom localized
at the O-plane.* However, there will still be interactions in the spacetime effective theory
which are localized at the O-plane (as pointed out in [22]), and which can be captured
by an action which is an integral over the orientifold world-volume of a local Lagrangian,
constructed from bulk fields that have been pulled back to the world-volume.

In this section we would like to enumerate all the possible couplings that can appear
in this action up to four derivatives. We will demand consistency with general covariance,
gauge invariance (for the B-field), and the orientifold projection. We will take careful
account of all the relations between couplings arising from integrations by parts, Bianchi
identities, and field redefinitions, so that we arrive at a consistent linearly independent
basis of physical couplings.

2.1 Ingredients

In this paper we will focus only on the part of the action that has no R-R fields (since
T-duality acts linearly on R-R fields, it will not mix pieces of the action with different
numbers of R-R fields).> We will also focus on the bosonic sector (again T-duality will not
mix purely bosonic couplings with couplings that involve fermions). As such we restrict to

4There are other flavors of Op-planes which do host open string degrees of freedom. These can often be
thought of (at least as a guide to our intuition) as combinations of Op-planes and (possibly fractional) Dp-
branes. But in this paper we shall focus on the simplest case with no localized fields living on the Op-plane.
In work in preparation [23] we will repeat this exercise for terms with R-R fields.



the NS-NS sector of type II, and the bulk fields consist only of the dilaton ®, the metric
G, and the NS-NS antisymmetric tensor B,,,,. We could also consider our set-up to be in a
bosonic string context; the classification of couplings is the same. However, in that case the
bulk action gets corrected already at order o/, and we have not been careful to keep track of
the consequences of this in later sections, so we will focus primarily on type II superstrings.

To simplify our lives, we will work in local coordinates in which the involution is simply
reflection in the final D —p—1 coordinates which we denote x%, i = p+1,--- ,D—1 (D = 10
for type II, D = 26 if we want to consider O-planes in the bosonic string theory). This
means that the orientifold is located at the point z! = 0, and its world-volume can be
parameterized by the first p + 1 coordinates %, a = 0,--- ,p. In these local coordinates,
the pull-backs of our bulk fields are simply given by restriction to 2 = 0. We will use z*,
pw=0,---,D—1, to denote the full set of D coordinates.

Under orientation reversal, B, changes sign, while ® and G, are invariant. Com-
bining with the involution, it means that ®, Gy, Gjj;, and B,; can be non-vanishing at
the O-plane, while Gy;, Ba, and B;; are projected out. Furthermore, we can of course
have derivatives acting on these fields, and each normal derivative brings an extra minus
sign from the involution. Thus the rule is that ®, Gy, G;;, and Bg; can appear with
any number of derivatives along world-volume directions and an even number of normal
derivatives, while G;, Bgp, and B;; can have any number of world-volume derivatives and
must carry an odd number of normal derivatives (and in particular not zero).

Now in order to ensure invariance under B-field gauge transformations, 0B, =
20y,A,), the B-field should only appear in the action via its field strength® H = dB,
or H#VP = 38[NBVP]'
with an even number of normal derivatives, while H,. and Hg;; require an odd number of

The rule for projection of H is then that Hg,,; and H;j;, can appear

normal derivatives.

Similarly, consistency with general covariance requires that all derivatives be covariant
derivatives V, or V;, and that explicit derivatives of the metric only be packaged inside of
the bulk Riemann tensor. The projection means that Rgpcq, Rabij, Raip; can appear with
even numbers of normal derivatives, while R,p; and R;j;, require an odd number of normal
derivatives. Additionally, each covariantly constructed coupling should be integrated with
the proper world-volume measure \/—g, where g = det(Gyp) is the determinant of the
pull-back of the bulk metric.

We also need to confront the fact that covariant derivatives do not commute, and
any commutator of covariant derivatives can be replaced by terms involving the Riemann
tensor. To eliminate this freedom, we will use the convention that whenever more than one
covariant derivative hits a field, we will only take the completely symmetrized combination
of derivatives. We will write this using a single nabla with multiple indices, so for example,

1 1 1
VabiHeji = V@VoViyHejie = 3V (Vo) Villejit 3V @V Vo Hejit ViV (@ Ve Heji, (2.1)

50One might imagine the possibility of Chern-Simons type terms, but such parity-odd terms are intrinsi-
cally dimension-dependent. Thus, by our assumption (discussed further in section 3) that the string frame
couplings are the same for all p, these terms are disallowed.



or

1 1 1
Vel d = gvavavbvb@ + gvavbvavl@ + gvavbvbva@ (2.2)

Finally, using basic symmetries (antisymmetry of H,,,, symmetrization of the
covariant derivatives discussed above, Rupeq = —Rabde = Redap, and exchange of identical
fields) we will always order the indices lexicographically when possible. The first step in
our classification is then, at a fixed derivative order (where ® counts zero, H counts one,
R counts two, and each extra V counts one more), to list all possible scalars which can be
constructed using these ingredients. Clearly we can always include an arbitrary function
f(®) in front of our coupling, and apart from this we need only consider appearances of
® which have been hit by at least one derivative. Thus for each scalar we can build out of
V&, H, R, and extra covariant derivatives, subject to the orientifold projections above, we
have a potential coupling whose coefficient is a function of ®. At a given derivative order
there are a finite number of such couplings and we can think of them as forming a vector
space V. A candidate Lagrangian is specified by a vector of ®-dependent coefficients in
this vector space (we will see below in section 3.2 that T-duality fixes every one of these

P

functions to be proportional to e, so we will only be dealing with constant vectors in

coupling space times this overall function of ®).

2.2 Redundancies

Next we need to discuss the possible redundancies which reduce the number of physically
independent couplings. In other words, rather than the vector space V' of couplings con-
structed in section 2.1, we are interested in the vector space U of physically independent
couplings, which will be given by a quotient U = V/K, where K is a subspace of V' spanned
by combinations of couplings that are not physically relevant; i.e. which do not contribute
to physical amplitudes. These redundancies come from three sources: Bianchi identities,
total derivatives, and bulk equations of motion.

2.2.1 Bulk equations of motion

Our general perspective on the full spacetime effective theory is to consider the O-plane
action as being a small perturbation to the bulk action (probe limit). In that case, the
bulk equations of motion should be taken essentially as identities for the purpose of the
O-plane action, and any scalars that we can form by contracting those equations of motion
with combinations of other fields and derivatives will not be physically relevant couplings,
and hence will represent vectors in K. Another perspective on this is that we can really
imagine this action as a source of extra vertices for Feynman diagrams describing scattering
of bulk fields. Any vertices which are proportional to the lowest order equations of motion
will give vanishing contributions to the amplitude in exactly the same way as they would
for bulk vertices, even if the usual arguments regarding field redefinitions are no longer as
clean (since they would seem to require redefinitions which were localized on the O-plane).

Let us recall what the (string frame) equations of motion for the NS-NS fields in type II,

1
0= R+4V/", & —4VIOV, — S H'"PHypp - (2.3)



1
0= Ru +2V,u® — S H, " Hypo +++- (2.4)
0= VP H,, —2V/OH,,, +--- . (2.5)

Here - -+ represent terms involving the R-R fields, as well as higher derivative corrections
starting at order (o/)3.

There are many ways we could choose to eliminate this redundancy. For reasons that
we will discuss in section 3 below, our choice will be to eliminate any coupling in which
two normal indices are contracted within a single field (including the derivatives acting on
that field). In other words, we will use

. 1 . 1
Vid = 2VIOV,d — ZH‘””Habi — EH”’“HW — Ve, , (2.6)
. 1 .
Ry = §H(LCZHbCi =2V ® — R, (2.7)
1 1
Rikjk = ZHabZ'Habj + ZHZ'MHJ'M - 2Vij(1) — Ramj, (28)
VIH,i; = —2VP® Hypi 4+ VP Hyp. (2.9)

Note that we have made use of the projections to eliminate certain terms, and that we
have dropped the extra --- terms from the equations of motion. Note also that, through
the use of Bianchi identities we can do something similar for any expression that involves
contraction of normal indices within a field. For example,

V'Rapei = —VaRy'.; + VoR,' (2.10)

a ci)
and we can then rewrite the right hand side using the previous expressions.

2.2.2 Bianchi identities

Some combinations that don’t contribute come simply from Bianchi identities which might
have caused us to overcount the number of terms. For instance, from the definition of H,,,
in terms of B, it follows that dH = 0, i.e. that

ViuHype) = 0. (2.11)

This means that although we might have, in a preliminary enumeration of terms, included
separately couplings

VeHYY  Hy;,  VOHYV,H,;,  and  VOHYV,Hg., (2.12)
the Bianchi identity means that the combination
4vaHbCiv[aHbci] _ vaHbCivaHbci . QVaHbCivaaci . vaHbCiviHaba (213)

vanishes and hence sits in K.
Similar considerations apply to the two types of Bianchi identity obeyed by the
Riemann tensor,

Ryupo =0, and ViuRupor = 0. (2.14)



Any of these three Bianchi identities (VH, R, and VR) can be contracted with other fields
or derivatives, including potentially derivatives acting on the Bianchi identity itself (for
example H abiVCV[QHbCi] = 0) to get a scalar, and the resulting combinations of couplings
will all be vectors in K.

2.2.3 Total derivatives

Similarly, any combinations of couplings which is a total divergence on the world-volume
will correspond to a vector in K. In other words, any combination of couplings that can
be written in the form

da (V=9x") = vV=9Vax", (2.15)

for any vector x* constructed from the fields and derivatives will be in the subspace K.
We will follow the strategy of eliminating the couplings described in 2.2.1 by hand,
and we will use V to refer only to the space of remaining couplings. Then the subspace K
will be given by the span of all vectors arising from Bianchi identities and total derivatives.
As an example, if we are considering only two derivative couplings, then we would
need to find all possible combinations of fields with one free world-volume index, and
which is first order in derivatives. Since the Riemann tensor starts at second order in
derivatives, and since there is no way to contract the indices of an H-field appropriately,
the only possibility is
X = f(®)VD, (2.16)

where f(®) is an arbitrary function of ®.

2.3 Lexicography

To facilitate comparisons, it will be necessary to have an explicit ordering, to ensure that
we always write terms and expressions in the same way. To this end, we will make use of
the following rules that give an unambiguous (though certainly not canonical) ordering of
the couplings which we can construct.

Couplings” (i.e. vectors in V) are built from linear combinations of monomials, which
in turn are made up of a product of fields and derivatives, which we call letters, subject to
the orientifold projections, and whose indices are completely contracted to make a scalar.

To order these monomials, we first put an order on the letters. We order them first by
derivative order, and at a given derivative order we list ® first, then R, then H. In other
words, the ordered list of possible letters is

V®,H,V?®,R,VH,V3® VR,V?H,--- V'O, V" 2R V" 'H V"o .... (2.17)

This ordering corresponds roughly to the complexity of the resulting expressions that
come when we reduce in a circle bundle background. For aesthetic reasons, within a
monomial we will write all the ® letters first, in increasing derivative order, then all the
R letters, then all the H letters.

"In this section and almost all the rest of the paper, except where noted, we have already used the bulk
equations of motion to remove any couplings in which two normal indices are contracted within a single
field and its derivatives.



Now to compare two different monomials, we will first compare their largest letters. If
one has a letter that is larger than the other, then it will appear later in our list. In case of
a tie, we proceed to compare the next largest letters, and so on. Thus, schematically (i.e.
before worrying about possible distributions of indices and contractions), the full ordered

list of two derivative monomials is
(V®)?, H?, V2®, R. (2.18)
At four derivatives, the analogous ordered list is

(V)L (V)2 B2 HY, (VE)? V20, V2O H?, (V?®)?, (V)2 R, RH?, V>®R, R?,
VOHVH,(VH)? , VOV3®, VOVR, HV?H, Vi®, V2R, (2.19)

Next we must turn to the distribution of indices. We first write down all the possible
assignments of world-volume and normal indices which is consistent with the orientifold
projection.

For example, consider terms which are schematically V2®H?. Using A to represent
a world-volume index and I to represent a normal index, the possibilities consistent with
the projection are

VAA¢HAAIHAAI VAA@HAAIHIII VAA(I)HIIIHIII
v[[@HAAIHAAI,vII(I)HAAIHI[I’vII@H[[IHII[. (220)

Take the first case, VAP HAA HAAL  We have three pairs of world-volume indices and
one pair of normal indices. Without taking account of symmetries, there are fifteen ways of
doing the world-volume contractions and one way of doing the normal index contraction:

vaa(I)beiHCciv vaaq)HbciHbci’ vaaq)Hbcichi’ vabq)HabiHccw vabq)HaciHbci’
Vab(I)Ha Cichi; vabq)HbaiHcci7 vabq)HbCiHacia vabq)HbCiHcai’ Vabq)HcaiHbcia
VOOHE ' Hey, VOPOHG Hyes, VOOH Hei, VPOH Hyy, VOOHC Hyy. (2.21)

Now we take symmetries into account, namely that the indices of H are all antisymmetric
and the covariant derivatives acting on ® are symmetric. We can also use the fact that in-
terchanging the two H'’s is a symmetric operation as well. For each term, we can look at all
of its images under these symmetries, relabeling the dummy indices into lexicographic or-
der. In some cases, the starting term will appear again among the images, but with a minus
sign from antisymmetry, thus indicating that the term is in fact zero. For instance, in the
list above, this eliminates the first, fourth, seventh, fourteenth, and fifteenth terms. The
remaining terms will fall into orbits of the symmetry group. In the list above, there are two
such orbits - one of order two comprising the second and third terms, and another of order
eight comprising the remaining ones (fifth, sixth, eighth, ninth, tenth, eleventh, twelfth, and
thirteenth). From each orbit we will select the representative with the lexicographically ear-
liest distribution of indices, read from left to right. So in the case at hand, we would select

Ve, ®H" Hy.;, and  V®OH, % Hy,. (2.22)

,10,



Repeating that exercise for the other possibilities in (2.20), we extract nothing from
the second and fifth entries on the list, while from the others we find one orbit each,
selecting terms

Ve, OH T Hyjp., VIOH® Hy, VIOH Hj,. (2.23)
Note that we remove by hand possibilities such as

V@ H™ Hyy,j, (2.24)

that include contractions of normal indices within a field. The five surviving terms, again
in the order corresponding to lexicographic distribution of indices, are the ones which
appear in the list in appendix A. By repeating this with each of the structures in (2.19),
we generate the full list of terms in the appendix.

2.4 List

For two derivative terms, the possible terms we can write down are

ViV, o, HY H o, HI* H i, ve,®,

R® . (2.25)

There are no Bianchi identities to worry about in this case (they all start at least at two
derivatives and are not scalars), but there is one term which can be removed by integration
by parts, since

V4 (Ved) = V9, . (2.26)

So the space of physical couplings at two derivatives consists of four terms, each of which
can have an arbitrary function of @,

Sop= /dpﬂx\/fg [ FLR)VIDOV D+ fo (D) H Hopi+ f3() H* Hyjp+- f4(q>)Rabab} . (2.27)

In appendix A we repeat this exercise for the four derivative action. Instead of four
physical couplings, we find after eliminating redundancies due to Bianchi identities and
total derivatives, forty-eight couplings,

o f1(D)VIDV,DVIDV,D,

o fo(D)VDVPH " Hyey, f3(P)VOV PHI*Hjpp, f1(R)VIOVPOH, % Hyes,

fs @)H“biﬂaijiMije, fQ((I))Hab?HaciHbdecdja flo(q))HabinchbckHijka
fu(®)H Hy Hy" Hegi, fro(®)H* Hijp H™" Hyp, f13(®)H9 H,;CHY™ Hipp,
f14(<D)Hiiji£mngnHk‘mna

o fi5(®)VOV, OV’ D,

(
(
o f5(®)HY Hypi HY Hgj, fo(®)H™ Hopi H* Hjpg, fr(®)H® H 7 H H g5,
(
1

o fi6(®)V,PH" Hye;, fi7(®)Ve,PHIRH, 51, f18(@)VPDH  “ Hyi,
f19(®)VIOH™ Hypj, foo(®)VIOH, M Hjpy,
)

o fo1(®)VI,OVY D, for(P)VIDV,;®,
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o fo3(P)VIDV,DRY, | fou(®)VIOVPDR ©

a be?

o fo5(®)R® HH, 4, fo6(®)R™ , HIKH, 51, for(®)R™ CH, % H. g,
fos ()R H " Hegi, f20(®)R™ H . * Hyjy, f20(®) R H . Hyej,
f31(®)R™ I H Hy,;, f32(®)R™ S H,* Hjp, f33(®)RYY H ¢ Hp,;,
f34(‘I’)RijkgHiijkzm,

o f35(®)VI,PR™,., f35(P)VI R

g

e f 37((D)Ral?abRCdcd’ f: 38((1))Ra‘balcRbdcd7 J 39((I))RfledRabcd7 f10(®) R R i,
f41((p)Rala]Rbibj7 f12(®)RY™I Ry, fa3(@)RIF R e,

o f14(®)VIOH, "V Hye;,

o fi5(®)VOH, "VCHyei, f16(®)VEHY Y Hyei, f17(®)VIHIFV  Hyjy,
f1s(®)VIHYEY  H ..

3 Strategy

T-duality can be characterized in many different ways in string theory, either from a
world-sheet perspective or a target space perspective. In this paper, we emphasize the
latter point of view. For our purposes, T-duality is a process which takes as input a
solution to the low-energy effective theory of string theory which admits a U(1) isometry,
and generates a new solution which also admits a U(1) isometry. The mapping between
the two solutions is provided by the Buscher rules [24].

Equivalently, in the presence of a U(1) isometry, we can dimensionally reduce the low
energy theory to obtain a new theory in one fewer dimension. Then T-duality, as encoded
by the Buscher rules, should act as a symmetry of this reduced theory.

If we were trying to constrain the higher derivative corrections to the bulk action,
this describes precisely how we could proceed. First, we would parameterize all of the
possible physically independent couplings which could arise. Then we would then make
an assumption of a U(1) isometry and we would dimensionally reduce our theory; the
couplings parameterizing the corrections to the higher dimensional theory would map into
couplings of the reduced theory. Finally, we would demand that the reduced theory is
symmetric under application of T-duality, thus constraining the couplings. One might
be concerned that the Buscher rules themselves get corrections at a given order in the
derivative expansion, but at leading order, such corrections won’t matter; the extra terms
that would result would always be proportional to the leading order equations of motion,
and hence will not affect the space of physical couplings. At higher orders this will no
longer be true, and modifications to the Buscher rules may become important.

In the presence of localized sources such as D-branes or O-planes, the story changes
somewhat. We will focus on the case of O-planes, leaving the analysis with D-branes for
future work. We will be working in the probe limit, in which we are given a bulk solution
that admits an orientifold involution, and we wish to know the form of the action localized
at the resulting orientifold plane, without worrying about any backreaction effects. Now,
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if the bulk solution also admits a U(1) isometry, then we can apply T-duality. If the
orientifold involution acts as a reflection on the isometry direction (so that the O-plane
is localized on the T-duality circle), then T-duality will generate a solution in which the
isometry direction is invariant under the orientifold involution (so that the O-plane wraps
the circle), and vice versa. Thus an Op-plane wrapping the circle gets mapped to an
O(p — 1)-plane transverse to the circle.

A key assumption that we will be making is that the string frame action localized to
the orientifold plane is independent of the dimension p of the Op-plane. Though this seems
like a strong assumption, it holds for all known couplings, both leading order and higher
derivative.® We shall also see that the current work provides a solid test of this assumption,
since the couplings we will derive will pass several consistency checks.

Given this assumption, we can imagine performing the following procedure. We
first enumerate and parameterize all the possible physical couplings which could correct
the O-plane action at a given order. Then, making an ansatz of an isometry along the
O-plane world-volume, we can dimensionally reduce to get a new action in terms of our
parameters. On the other hand, we can make an ansatz of a bulk isometry transverse to
the O-plane and again perform a dimensional reduction. The Buscher rules should then
map one reduced action into the other. Since both actions are written in terms of the
same parameters, this will constrain the possible couplings.

Though straight-forward in principle, this procedure can be difficult to implement in
practice. The first hurdle is in enumerating the possible couplings, but we have actually
accomplished that for the NS-NS sector of O-plane actions already in section 2. Our lives
were simplified by the fact that the leading corrections appear already at four-derivative
order (contrast this with the corrections to the type II bulk actions, which do not arise
until eight derivatives), and by the fact that the orientifold projection effectively halves the
number of allowed fields. The second source of difficulty comes from implementing the di-
mensional reduction for a general background with U(1) isometry. In particular, if the base
of the circle fibration is curved, then one has to be very careful with commuting covariant
derivatives in the reduced theory, which makes comparing terms potentially quite tedious.

To elide the second difficulty, we will follow a slightly lazier procedure. Rather than
reduce the theory in the most general background admitting an isometry, we will reduce
the action in various simplified backgrounds. In each case we will get a set of constraints
on our parameters that will not be the most general constraints, but by combining this
procedure on different backgrounds, we will find that the constraints are, in fact, sufficient
to reduce the allowed corrections to a single parameter (which can be thought of as o).

A key point regarding this strategy is that it was essential that we chose to use the
bulk equations of motion in such a way that cleanly divided the space of possible couplings
in two, and that in particular, the subspace of physically irrelevant couplings generated
by total derivatives and Bianchi identities did not mix these two sets of couplings. This
means that in the reduced theory we again only have to worry about total derivatives and

8Note, however, that it does not hold for couplings written in Einstein frame. For example, in Einstein
frame the leading order dilaton couplings on D-branes or O-planes are all proportional to (p — 3), and hence
the dilaton decouples from the action on a D3-brane or O3-plane, but this is not true in string frame.
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Bianchi identities, and not about equations of motion. If we had to include the latter, we
would lose a lot of information, since in our simplified backgrounds, solving the equations
of motion is very restrictive (for instance there are essentially no non-trivial solutions of
the Einstein equation for a warped product of a circle and flat space).

3.1 Generalities

A general background with a U(1) isometry can always be put into the following form,’

G + efa,a, ea g —a?
JMN = <gW e eg;l/) ; gMN = <g ) . (3.1)

efay, —at e”¥ +a’a,
~ 1 1
B, = B, — ia#by + §a'/b“’ By = by, (3.2)

where we have split our space into a circle parameterized by y fibered over a base with
coordinates x*. In other words, our nine-dimensional fields are encoded by a base metric
Juv, & base B-field By, two vectors a, and b, and two scalars ® and ¢. Note that ; and
v indices are raised and lowered using g,,. The isometry means that nothing depends on
the coordinate y, only on the base coordinates x*.

By restricting to ten-dimensional diffeomorphisms and B-field gauge transformations
that preserve our isometry (i.e. the gauge parameters are independent of y), we generate
diffeomorphisms and B-field transfomations of § and B on the base, as well as gauge
transformations of the vectors a, and b, (generated by ten-dimensional diffeomorphisms
&Y(x#) and B-field gauge parameters A, (z*) respectively). Any covariant scalar couplings
of the ten-dimension fields, when written in terms of the base fields, must be invariant
under these gauge transformations, so should only depend on the field strengths

fMV = 28[Ma,j}, fw, = 28[Mb'/]' (3.3)

Note however that the field EW, as well as its naive field strength H = dé, are not
invariant under these gauge transformations. For the B-field potential, this is simply an
unavoidable tradeoff; the decomposition of Bj;x which has nice behavior under T-duality
is not invariant under these gauge transformations. For the field strength, however, there
is a fix. We can define

ﬁwm = 3a[uévp} - ga[ufvﬂ] - gb[ufvpb (3-4)

or
Huvp = Hup +3a,fops Huvy = Frue (3.5)
With this definition, H is invariant under gauge transformations of b,, as well as gauge

transformations of Eww It is also invariant under gauge transformations of a,, since under
a ten-dimensional diffeomorphism generated by £Y(z), we have

ﬁﬂyp =Hyp— 3a[uHup]y — (Hy,z/p + 33[M§yHVp}y) -3 (a[u + a[ugy) H,/p]y = ﬁ“yp. (3.6)

In this section, capital letters M, N represent ten-dimensional indices, while y and v represent the
nine-dimensional base of the circle fibration, which will in turn be separated into a, b, etc. for indices
parallel to the O-plane, and i, j, etc. for indices perpendicular to the O-plane. The isometry direction is
always denoted by y.
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Under T-duality then, the Buscher rules leave g, B , and H invariant, and the other
fields transform as 1
ay < by, © = —p, d— P — 2 (3.7)

The price we pay for having a field strength H which is both gauge invariant and behaves
nicely under T-duality, is that it now has a non-trivial Bianchi identity!'®

- 3 -
v[,u,flypcr] = _if[uyfpcr]' (38)

Now, for reference, we list all the reductions we need from ten-dimensional expressions
to expressions on the base, though in practice we will make simplifying assumptions about
the base geometry that will lead to simpler expressions than those listed below.

V,® = V,9,

v,® = 0. (3.9)
V® = V0 + % ? [VPoV 0 aua, — 290 agu |

V,,® = %e“" [ﬁvqﬁwa“ — VDL, (3.10)
Viyy® = %ewﬁmiﬁugo.
Ruvpe = ﬁwpg + %e“’ |:_§[,U,(70§|p|80 a0 + §[M<p§|a|<p ay)ap — 2§[ng ay) foo

_ﬁ[u@a\;ﬂfu]a + ﬁ[uSO a|0|fu]p + ﬁpgpa[ufu}a - ﬁp@ aaf;w - 6U(Pa[ufu]p
Vo apfuw = fuvfoo = fulpl e = 2V o o + 2V o) arjap

o~ A~ A~ 1 T T
+2a[ﬂvy} fpa + apvaf,uz/ - aovpfuu] + 562@ |:a[,ua|p|fy} Jor — a[ua\(ﬂfy} pr:| )
1 ~ ~ ~ ~ ~
Rywpy = 56@ [_v[u‘pvlp\s"al/] + Viefip = Vo fuw =2V pp an) — fow}
1 o
—iezwa[ufy} foors (3.11)
Lol e o Vi Loopsp
Ruyy'y = Ze [—VMOVVSO - QV;W(P} + 16 fN fup'

Hyp = ﬁuw) + BG[MJ?Vp]v

10This modified field strength and its modified Bianchi identity arise here simply for convenience and
nice transformation properties, and are unrelated to issues of whether particular forms are defined globally
or only locally, which are often central to the appearances of other modified Bianchi identities in string
theory. However, we cannot resist pointing out how something like (3.8) is compatible with the familiar
example of the heterotic string. If we were to study heterotic theory reduced on a circle, the T-duality
group would be SO(1,17;Z). In the reduced nine-dimensional theory, similar considerations to the ones
above would lead us to a H that contained also a term proportional to Tr(A A F'), needed since T-duality
can mix the vectors a, and b, with the gauge vectors AL. The modified Bianchi identity would then
include the familiar T7(F?) heterotic contribution. For heterotic, we know that the appropriate globally
defined field strength has another o corrected piece in its Bianchi identity, proportional to Tr(R?). We
suspect that in the heterotic case, where the bulk action, and hence the Buscher rules themselves can get
corrections at order o/, we would find that the most convenient form of the field strength would involve a
further modification to include such a term.
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Hyy = fuw. (3.12)

3~ - 3. - 3. - o o
Villvpo = =5V upap fro) = 5V A fpo) + 5 Fulv Tpo) + 301V |l fpo) + ViuHupo

3 L o7 7
_|_§€<p |:2aua[lzfp fO’]T +V'p aua[u polT auf[y pO’]T a[uf|u| pa]'r:| )

lo 7 o7 L _
quypy = _*vu@fup + V,ufup + [2auf[y fp]a + V (Pau vpo f HVpO':| )

3 3
vyHqu = - v[u@fup [QQ uf fp]a + v Taam Vp]a f[N Vp]a} ) (313)

1 ~
VyHuy = 5690 [2f[u fu}p + Vp‘PH;wp} :

Finally, we must identify how these reduced fields behave under the orientifold
projection. These follow easily from the behavior of the ten-dimensional fields. For @"CI),
@"gp, and @”ﬁi, we must have an even number of normal indices to survive the projection,
while V*H must have an odd number of normal indices. For the pair of vectors, there
are two cases; either the involution acts on the circle fiber, or it leaves it invariant. In the
former case the O-plane is transverse to the circle, and vn f should have an odd number
of normal indices, while %”f should have an even number. In the latter case, with the
O-plane parallel to the circle direction, it is reversed - vn f should have an even number
of normal indices, while @"f should have an odd number.

3.2 Trivial product

As our first example of a simplified background to consider, we will take the case of a
product space B x S', where the S' is constant radius (p is constant). We allow an
arbitrary metric g and B-field B on B, and a dilaton which depends on the coordinates x*
of B, but we allow no cross-terms in the metric or B-field (so a, = b, = 0).

For this background, the reduction of the couplings is very simple - we just replace
each R by E, each V by @, and each H by H. The general coupling can be put in the form

V—9f(®)L[V®,R,H,V]|. (3.14)

In the case that the O-plane wraps the circle fiber, this reduces to the following coupling
on the base,

V=9l (®)LIVD, R, H,V] = \/—ge2* f(®)L[V®, R, H, V), (3.15)
while for the case that the circle fiber is normal to the O-plane we have
V=9f(®)LIVD, R, H,V] =, \/~Gf(®)LIV®, R, H,V. (3.16)
Finally, under T-duality, the latter couplings map as
NE A NN A (@ - ;¢>c[6q>, R H,Y. (3.17)
Comparing (3.17) with (3.15), we conclude that T-duality requires
2P (D) = f((I) - ;g0>. (3.18)
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Since this should hold for all ® and constant ¢, we conclude that
f(®) =ce™®, (3.19)

for some constant c.

There are of course other means we could have used to fix the dilaton dependence of
these couplings, but it is somewhat gratifying to see that it in our formalism it follows
simply from consistency with T-duality, without adding any extra assumptions. In the rest
of the paper, we will assume that the coupling functions f(®) all have this form.

4 Warped product

The next class of backgrounds we will consider are warped products of flat space with a
circle. We take g, = My, guy = 0, gyy = €%, B,y = 0, and B, ®, and ¢ are arbitrary
functions of the base coordinates x*. The only nonvanishing Christoffel symbols for this

metric are 1 1
., = —569"3“@, Y, = iaucp, (4.1)
and this gives us the following expressions
1
V,®=0,®, V, =0, V,®=0,9, V,uy®=0, Vyy<1>:§e“’€)“<1>8u<p, (4.2)
1
R;u/p()’ :07 R,uypy :0, Ruyvy = Zew [—aMQanQO— 28/“/@] 5 (43)
1
VuHypo =0uHypo, VyuHypy=0, VyHu,=0, vwa,y:§e@8pcpHWp. (4.4)

Of course, when pulled back to the orientifold-plane we need to impose various projections
on the fields as well. Note that in the absence of a, and b, there is no distinction between
H,,, and ﬁ/“,p, so we use the former to save on tildes.

For each coupling, we want to reduce in the case that the circle is parallel to the O-
plane and in the case that the circle is perpendicular to the O-plane, and in the latter case
we also want to apply T-duality, using the Buscher rules

1
o — —p, ® — O — igo. (4.5)

Let’s illustrate this in the case of our four two-derivative couplings.

v/ =ge VIOV, P = cre P 3¢0°90,D

=, c1e %9°®9,®

. %e—“%w [40°DI,® — 40" DD,y + 0% 0Duyg)
62\/jgef®HabiHabi - 02€f¢+%<pHabiHabi

=1 coe” PH" Hyp

_ 0267¢+%<pHabiHabi,

Cc3\/ —ge v Hijk = c3e +2tpH” Hijk
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=, cze” PHI* 5,

— 03€7¢+(’9HU’€H¢jk,

and

Cqv/ _ge_q’Rabab il %e_é—‘_%@ [—aa(pgago - 2aaa90]

— 0.

The corresponding computations for the forty-eight four-derivative couplings are presented
in appendix B. In either case, the parallel reduction must be equal to the T-dual of
the perpendicular reduction, up to terms that re total derivatives or are proportional to
Bianchi identities.

Among the reduced fields @, o, and H, the only Bianchi identity we have is

O H,ypo) = 0. (4.6)

Since this is already two-derivative order, there’s no way to get a two derivative coupling
by contracting this with other fields. For four derivative couplings, there are ten possible
couplings which are enumerated in appendix B.

At two derivative order, the only total derivatives constructed using the reduced fields
are

197 (e—‘“%@aacb) - %ﬁ“éso (20930, ® + 9Dy + 20°B]
and
y28° (e*‘“%waago) - %e*@%v (209D + % pBap + 20% ) . (4.7)

At four derivatives there are twenty-eight couplings, listed in appendix B.
Thus, subtracting the T-dual of the perpendicular couplings from the parallel cou-
plings, and adding in an arbitrary multiple of the total derivatives, we find at two derivatives

1 1
0= Otz¥ {—y18“®6a‘1> + 5 (2¢1 + y1 — 2y2) 0PIy + 2 (—c1 — 2¢4 + 2y92) 0%@0up

+1y10%9P + (—cq + y2) 8aa<p} . (4.8)

This gives five linear equations for the ¢; and y;. In this case the only solution is that
ct =c4=vy1 =1y =0. The H 2 couplings co and c3 do not appear in this system, and
remain unconstrained.

The same procedure is carried out for the four-derivative couplings in appendix B. The
resulting system leaves twenty-four of our forty-eight couplings unconstrained (ten of these
are the H* couplings), fixing the remaining twenty-four in terms of them. The end result is

L= / g/ —ge2® {cl [vacbva@v"cwbq) —3VOV, V", 4 2V, oVh, D

—2V70V,;® — 2V DV, DR, + 2V OV PR, + 2V, ®R",. — AVIDR",,; + 2R™ Ry

,18,



— R Rapea = 2R R + 4 [V OV OH,“ Hycs + 2V OH, "V Hyes = V* Hy "'V i
+cis {Vﬂb‘I’HaCiHbci +R™, H," Heai — %ViHajkviHajk}
+cig [V”@H“biHabj + RaiaijciHbcj] + c20 [VijCDHiMije + RaiajHiMije]
+e2s R* Hyy' Heai 4 c20R™ Hop* Hyji + 3o R* H, Hyej + casR*Y H,  Hye;
+C34RijkéHi]’mHk£m + c37 [RababRCdcd — 4R R, ..+ RadeRabcd] + caoR™Y Ravij

+eag [V‘ZH””’VEHM + viH“J”“viHﬂjk] + car VO H*V  Hyj + (H4)} . (4.9)

We note with satisfaction that the R? and (VH)? terms are consistent with known
results [18, 25] (we would require c37 = 0 and cq = c; to match the R? terms, and
cy = —2c1, c13 = 0, c46 = c1/2, and cq7 = ¢1/6 to match the (VH)? terms!!), but many
other coefficients have now been fixed. It is interesting to also note that c37 multiplies the
Gauss-Bonnet combination for the pulled back metric g,;, which can be argued to vanish
(in our basis of couplings), but which can not be checked directly by two-point amplitudes.

To fix more coefficients, we need to consider a different class of backgrounds.

5 Twisted product

In the twisted product, we set g,, = 1. + efaua,, guy = €ay,, gyy = €%, By, = E,w —
%auby + %a,,bu, and By, = by, with ¢ and ® constant, and with a, and b, being arbitrary
functions of the base coordinates z#. We define field strengths

Juw = 28[May}, Juw = 26[Mby]. (5.1)

As described in section 3.1, it is also useful to define

~ ~ 3 3 =
Hywp = Hywp = 3agufyp) = 30, By, — Qf[/wbp} - §a[ufl/p}‘ (5.2)

The Buscher rules will act by
1 -
w— —p, o — D — 59@ ay < b;u f,uzz <~ f,um (5'3)

and H uvp 18 invariant.
The Christoffel symbols are given by

1 1

=53¢ (anf,” + aut,’) Doy =3¢, Th=0. (5.4)
1 1 1

F;yw = ) (auau+auau) - 565‘7 (auapfl,p—kayapf#p) ) Fzy = —56@61”]”“1,, Fzzjy =0.

"To carry out the match with [18], we need to rewrite the coupling V' H***V,; H . in our basis, using
the null vectors from appendix A,

/ V=ge *V'H™V,;H .= / \ F_ge‘q’[?,vaHbcivaH,m+6V”HJ’"VCH,,C¢+ (RH?) +(V¢HVH)] . (4.10)
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This gives
1
Ryvpo = 56&7 20,0, fpo + 0900 frv — A60p fuv — Frv foo = fiulpl fiio] (5:5)

1 T T
5% gy for = apaioify for|

2
Rywpy = _%épapflw - %ewa[ufu]afpm Ryyvy = iewfupfvm (5.6)
Hypo = Hyp + 31, fp)s Hyuvy = fuv, (5.7)
ViuHypo = %fwfpa} + 301,011 fpo) + OuHlupo (5.8)
+ ge“’ [2aua[uf/fa}r — aufiy " Hpolr — a[VfMTﬁp(,]T] :
Vo Hypy = Oufop + %e@ [2% Fo " T — fuaﬁ,,po} , (5.9)
VyHyup = %e%" [2% £, o — f[ugffyp]o}  VyHuy =€, Ty

Again, we will illustrate the procedure with the two-derivative couplings.

01\/—ge_cbva<I>Va<I> = 0

— 0,

—® rrabi o —d+Lo | ryabir —p rai

cov/—ge " H" Hyp; =| ¢2¢€ 2 |H"" Hp; + 2e f faz

=1 ce ? [ﬁlabiﬁabi + e_wfabfab}

— 026_@%@ [ﬁabiﬁabi + ewfabfab] )
03\/—g6_(bHiijijk =| 036_q>+%@ﬁijkﬁi]‘k

— | cqe® [ﬁijkf_jijk n Se‘ﬁpﬁjﬁj}

— cze” 3¢ {E’ijkffﬁk + 36“’fijfij} ;

_ _al 1
ca/=ge PRy, = cae” P12 |:_4€¢fabfab:|
— 0.

The corresponding computations for the four-derivative couplings are presented in ap-
pendix C. Note that we have some useful selection rules. The total number of H and f
which appear must be even, since this just counts the number of H fields in the original
covariant coupling. Furthermore, the total number of f and f fields which appear must
also be even. To see this, we note that in the expansions (5.6)—(5.7), the parity of the
number of a, and b, is equal to the parity of the number of y indices. Since the total
coupling has no free indices, there must be an even total number of f and f

There are three Bianchi identities that can be relevant for the reduced fields a, b, and H ,

Nulvp) = 0,
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Oty = 0, (5.10)

_ 3 -
Oty po] + §f[uvfp01 = 0.

These all have two derivatives already, so won’t play a role in constraining the
two-derivative couplings. For the four-derivative couplings, there are twenty-three
combinations one can write down (in the parallel case), and they are listed in appendix C.

In the two-derivative case, our selection rules prevent us from writing any total
derivative terms either (we assume that parity-odd terms, which would be dimension
dependent, are not allowed). At four derivatives, there are twenty possible total derivative
combinations that we can construct which are consistent with the selection rules, and they
are enumerated in appendix C.

So for the two-derivative case, demanding that the parallel reductions minus the T-
duals of the perpendicular reductions vanish up to Bianchi identities and total derivatives,
we find

~ 1 g
0=e P+3% {2026‘%”f“’fa¢ +3 (—4cy — cg) €€ f% fop — 3cge¢f”fij} : (5.11)

This imposes three linear equations which force co = c3 = ¢4 = 0. Only the (V®)?
coupling ¢ is unfixed by this result; the other couplings are forced to vanish. Note that
this is consistent with our warped product analysis which left ¢o and ¢3 unfixed and forced
c¢1 = ¢4 = 0. Combining the two results, we learn that ¢; = ¢co = ¢3 = ¢4 = 0. In other
words, there is no two-derivative NS-NS sector action which we can write an on O-plane
which is compatible with T-duality!

In appendix C, the analogous procedure is carried out for the forty-eight four-
derivative couplings. Seventeen couplings involve derivatives of the dilaton, and these
cannot be directly fixed by considering the twisted product backgrounds. Of the remaining
thirty-one couplings, we find that there is only one free parameter, c7, and all of the other
thirty couplings are fixed in terms of that one (in fact we find that fourteen of them must
vanish). The resulting action is

. . . . 2 . .
L= \/jge—q) {67 |:HabZHab] HCdiHcdj _ HaszabJHikajke _ gHabZHaC] HbckHijk
1 . , 1 . . g
_|_§Hasza0j Hbdecdi + gH”kH/msznHkmn - 4RabachdzHcdi + 4Rabm Hakaijk
+8R™ H, Hyei — 6R" ] H", Hyoj + 2R" J H,* Hjpy — 8R™ Ry’ + 4R Ropeq
—4R™ Ry + 8R™ Ry — 8V H, "V Hye; — 2V H"'V o Hye; — gvaHU’fvaHijk

+(® terms)}. (5.12)

Note that this is completely consistent with (4.9) and with previously known R? and
(VH)? couplings.
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6 Combined results

6.1 Final result

As mentioned above, for the two-derivative couplings the twisted product analysis fixed all
the couplings which did not involve derivatives of the dilaton to vanish. Meanwhile, the
warped product analysis showed that all couplings which weren’t purely H? must vanish.
Between these two results, we see that the entire two-derivative action is fixed to vanish.

At four derivatives, we found that the twisted product again fixed every coupling
that did not involve derivatives of the dilaton, up to one overall parameter. And by
examining (4.9), we see that the warped product analysis in turn relates every dilaton
coupling to a coupling that does not involve the dilaton. Thus, by combining the two
analyses, we fix the entire four-derivative action up to one overall constant,

L=—c1v/—ge ® {fvaévaévbd)qu) + 2V OV DH, " Hyei + iH”biHaijCdiHcdj

1 ) . 1 ) . 1 ) . 1 ..
_ZHaszab]Hileij - 8HablHaC]HbckHijk + gHaszachbdecdi + ﬂH”kHizmHjenHkmn
3 i 1o

5v”cbhr“bﬁabj + §V”<I>HZ~MHJM — 2V, oV’ ®

+2VIOV,;® + 2V OV, DR, — 2V OV BR, . — R*,H," H.qi + R* H,," Hijx
3
2
—2R™°Ry%cq + R***Rapea — R* Rapij + 2R’ Rbibj + 4V OH, "V Hyei — 2V H, "V Hyei

+3VIOV, BV, ® — VPOH, Hypei —

+2R™ H ¢ Hyej — = R* 7 H®, Hye; + 5R‘”JHZ.’“’v’HM —2V*, ®R",, +4AVIDR",,;

1 ; 1 y
—gvaHb”VaHbci - 6vabr”’“vamjk} . (6.1)

By comparing with [18], we can fix the constant as well to be

2 ()2
,m ()
Cc1 = _TPT, (62)
where T}, = 2P=5T), is the (absolute value of the) O-plane tension, i.e. the zero-derivative
action is So = T} [ dPTize=® /=g, and

2 _ptl
T, = = (4n%a’)” 7 | (6.3)
Js
is the Dp-brane tension.

For comparison, the action on a Dp-brane is

Spp = —Tp/dpﬂxeq’\/— detg + B + 2md/F

2 (0/)2

+ 1, 13

/dp+le—¢’ /_g <RabcdRabcd + .. > . (64)
The index structure of the R? squared terms [25] and (VH)? term [18] have the same

structure as they do for D-branes, essentially because the two-point RP? amplitude of
NS-NS vertex operators is related to the disc amplitude simply by a kinematic factor.
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It is interesting to ask what future checks could be performed on the result (6.1). Of
course one could in principle compare the coefficients directly with scattering amplitudes
by computing appropriate three- and four-point closed string amplitudes on RP2. This
would be tedious, but all the tools are available. There are some other potential checks
that exploit string dualities. One possibility that would be quite beautiful arises from the
fact that an O6-plane in type IIA can be lifted to M-theory, where it can be described
purely geometrically as the manifold R7 x Mg, where My is the Atiyah-Hitchin
manifold (the corresponding statement relating D6-branes to the Taub-NUT manifold
may be more familiar). In M-theory, the leading corrections arise only at eight derivative
order. We can expand our eleven-dimensional fields around this solution, and try to
find the action which governs these fluctuations. In the perturbative string limit (the
limit where the asymptotic radius of the circle in the Atiyah-Hitchin geometry goes to
zero), this action should split into a ten-dimensional piece (from KK reducing over the
asymptotic circle) and a seven-dimensional piece localized near the center of M 4. The
higher derivative corrections in eleven dimensions will give corrections to these actions as
well, but because some of the derivatives can be soaked up by the non-vanishing curvature
of M 4y, the seven-dimensional action can receive corrections already at four derivatives
acting on the fluctuations, and these should match our results for p = 6. Unfortunately, we
are not yet in a position to implement this procedure, since not all of the eight-derivative
couplings in eleven dimensions are known once the four-form field strength Gy is also taken
into account. But if these couplings were worked out (see for instance recent progress on
the ITA couplings in [17]), the relation we have just sketched would be a very nice check
on our results and the general understanding of these dualities.

6.2 A dilaton-free rewriting

The method we have used relied on the fact that we could consistently use the bulk equa-
tions of motion to eliminate terms in which two normal indices were contracted inside the
same field, and that this elimination didn’t mix with our other classes of null vectors, in
particular those coming from total derivatives. However, now that we have our final result
in hand, we are free to switch to a different basis of couplings. One interesting choice, in-
spired by the structures which actually appear when computing amplitudes [12, 18, 26, 27],
is to instead only keep self-contractions built with the matrix

5 0
DM — . .
(0 —5”) (6.5)

To this end we can define quantities

(DV?®) = D"V, V,® =V’ & — V'@,
(DR),,, = D*Rypyo = R,%,, — R, (6.6)

(TRZ Al

(DVH),, = D"V Hyi = —V"Hyp — V9 Hyij.

We can then use the equations of motion and heavy use of null vectors (i.e. much use
of Bianchi identities, equations of motion, and integrations by parts) to rewrite our action

— 23 —



above as

_ 3 4 , 5 . , 3 4 .
L=—c1y/—ge ® {?ﬂHablHaijCdz‘Hcdj - EHGbZHaijZMHM - gHabZHaciHbd]Hcdj
1 3
6 32
+ﬂH“kamHﬂ”Hkmn — (DR)™ H,® Hye; + R™7 H,,* Hyjp. + 2R H, % Hy;
1

. 1 . 1 .
-3 (DR)" H“biHabj—i—i (DR)Y H;* Hjpp— 5 (DR)™ (DR) 4+ R Rypeq — R™ R

HablHaCJ HbckHijk + gHablHacj Hbdecdi + HZ]k‘Hiijk mnHémn

1 g 1 . 1 A 1 g
+5 (DR)7(DR),j+ 5 (DVH)™ (DVH) 1y~ 5V H*'V o Hyci — 6V“H”kVaHijk} . (6.7)

Writing things in this way, the dilaton dependence has entirely vanished except for the
overall factor of e~®. It would be very interesting to understand why this situation arises.
Note also that the connection with computation of RP? amplitudes is not very direct,
since to compare with the string scattering calculations we must first convert to Einstein
frame, which will make the dilaton couplings reappear.
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A Classification of covariant couplings

As in the rest of the paper, we use indices from the beginning of the alphabet, a, b, etc. for
directions along the O-plane world-volume, and indices from the middle of the alphabet,
i, j, etc. for normal directions. Occasionally Greek letters will appear, u, v, etc.; in this
section these represent all ten directions, tangent and normal.

Each coupling below will be accompanied in the Lagrangian by a factor of \/—g as
well as a function of the dilaton f(®). In section 3.2 it is shown that T-duality requires
the function to be of the form f(®) = ce~® for some constant c. At any rate, to save space
these factors will be omitted from the couplings below. It should be understood that in
the action, each coupling will appear with integration and measure [ He‘ﬂ- .y

As discussed in section 2.3, terms are built out of letters which consist of symmetrized
covariant derivatives acting on covariant fields (®, R,.p0, or Hyyp). The orientifold pro-
jection demands that the number of normal indices on a letter built from ® or R must be
even, while on a letter built from H there must be an odd number of normal indices. We
also require an even number of H-letters in each term (note that at even derivative order,
we need an even number of H fields in order to have an even total number of indices).
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Moreover, as in section 2.2 we can always use the leading order bulk equations of motion
to remove any term that includes a contraction of normal indices within a given letter.

As described in 2.3, we order letters by complexity. The ones that will appear here,
in order, are

{V®,H,V?®, R, VH,V*®, VR, V?H,V*®, V’R} . (A1)

We then order terms by comparing their most complex letter, then moving to their
next most complex letter, and so on. Within a term we order the letters by starting
with all the ®-letters, with increasing numbers of derivatives, then the R-letters, and
finally the H-letters. Finally, terms that differ only in their index structure are ordered
by the minimal lexicographic order of their indices, read from left to right, using the
rules we have outlined and the basic symmetries of the letters (i.e. that all derivatives
are symmetrized, that H,,, is antisymmetric, and that the Riemann tensor satisfies
Ryvps = Rpopy = —Rupupe) and exchanges of identical letters. . .

The list of allowed terms, where we do not yet worry about Bianchi identities or
integration by parts'? is,

o VIOV, OVPOV,,

o VOV, DHY" Hypi, VIOV, OHI*H,jp., VOOVPOH,“ Hyy,

° HabliHabiHCd]iHcdja HabZ:Habiijeijéy Habi‘Habj‘HcdiHcdj, Ha'b'iHaiji kZijZ’
H ‘ff”HaciHbdecdj, H" Ho Hy*Hijy, H Ho™ Hy jHegi, H9" Hijp O Hpy,
Hz]kHijermnHémny Hlij/mngnHkmny

o VIOV, OV, ®, VIOVIOV,, P,

o VO, OH" Hye, V', ®PHI*H,jp,, VOOH,“ Hyei, VIOH™ Hypi, VIOH H g,

o VI OV ®, VPOV ,,®, VIOV, P,

o VIOV, DRY, , VIOVPOR €, |

b di b ijk b di bed i bed )
o R HHegs, ™, H9" Hiji, R™,H," Hegiy R H ' Heaso R*Hoy,' Hyai,
bij k bij at jrrb at jrr k ibj k
RWUH FH;ik, ROIH € Hyej, R"y H Hyej, R H,* Hjpe, R H K H,ip,
R H,Hyejy R Hy jHyej, RO H ;™ Hyg, RV H ™ o,
o V4, ORY,  VPORC,  VIOR

a be? iaj?

b d b d bed bed bij bij ai j pb
o R¥ R ., R", R ., R"“Rapea, R"“Rycpa, R Rapij, RV Ry, R0 R
Ky > ia ip
R Ryivjy R Rjvi, RV Rijre, R Rigjo,

ibj>

o VOH "V°Hy,, VO H" Y, Hyei, VO H" N H i, VO H" Y, Hope,
VeOH I  H,jk, VIOHIFN, Hy i,

121t would not be difficult to skip ahead and take account of Bianchi identites and total derivatives by
hand. However, we are trying to proceed in the most systematic possible manner, both to allay any doubts
about our procedure, and also because we are in the process of computerizing this approach to work in
some more general contexts.
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VOH, "V Hyi, VOHYV o Hygi, VO HV Hogi, VO H'V; Hope, VO HIRY o i,
VOH IR Hyji, V' HON Hope, VO HORY Hyjy, V' HORY  Hogy,

VeV b @,

VedV, R, | VIOVIR ¢

a ber

° HabivaCHbch I{abivcc]'{abi7 HabivciHabm HijkvaaHijkv HijkvaiHajk7
ab

o VI P,

o V° Rbc VabR c
a be? a be®

We should think about these terms as spanning an 80-dimensional vector space of
couplings. However, many of the vectors in this space are actually zero in the physical
action, either because they are proportional to a Bianchi identity, or because they
correspond to total derivatives on the world-volume. The physical space of couplings
will correspond to the quotient of the full space by this subspace of null couplings. Our
objective is to find a (lexicographically earliest) subset of the couplings above whose
images under projection to the quotient space form a basis of the quotient space.

To accomplish this we now list all terms which are zero by virtue of Bianchi identities
or total derivatives. First the Bianchi identities. There are three basic ones to consider,

Riwple =0, ViuHyps =0,  VRypjor = 0. (A.2)

Any term that is built by acting on these with covariant derivatives or multiplying them
with other letters should be zero. Occasionally we will omit the details of some terms
which are obtained by replacing commutators of covariant derivatives with Riemann
tensors, since these will inevitably involve only terms which are earlier in our ordering
than the other terms in a given vector, and they will not matter when we are deciding
which couplings can be eliminated using these null vectors.

B3H™ H,” Ryey; = RV H,Hyej — R H, Hyej + R H, Hy;,
3 b Hacj Ry = Rabi H, % Hyej — Roibj H, Hyej + R%bj HaCijCi’
SH" H Rigpja = R™ Hop' Heai — 2R* H,.' Hyai,
SH H* Ry, = R H, " Hijw — 2RV H,,* Hyjp,,
3HabiHl'ij[ajk]b _ Rabinakaijk — 2Raiijakaijk7
3H"H;"" Ry = RVM Hy™ Hyon — 2RV Hy ™ Hjorn,

3R Ripqa = R Rapea — 2R Rocpa,

BRI Ry = R™ Rapij — 2R™Y Ry,

3R Rigijp = Rabi Rapij — 2Rabinaibj7

3R Ry = R™ Ry — R Ry + R™™ Ry,

3R Rygisp = R™ Raj — R Rain; + R Ry,

BRI Ryjuge = R Rijrg — 2RV Rige,
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AV QHN (, Hypy) = VOH"'V  Hye; — 2V OH"'Ny Hoey — VOOH'Y; Hyye,
AV OHI [ Hyjpy = V*OHY*V  H,ji, — 3V @ H ¥V H .,
AV HY N | Hyeiy = VO HY ' o Hyei — 2V H"'V Hoe; — VO H"'V; Hype,
AV HM ( Hyjy = VOHYM  Hyjp, — 3V HYMY, Hy
AV HV | Hyiy = 3V H" 'V Hope — V' HV; Hp,
AV H"  Hyjg = VOHY"N Hyjy, — V' HY*N  Hy i, + 2V HY*V  H o,
4 Habivcv[a Hyo) = 2 Habiv © Hiyos + Habivc H.p — Habzvc H o + ( R H2)7
AHIR NN ( Hyjy = H9¥V Hyj), — 3HI*V Hyjp, + (RH?)
VOV Ry = VIOV,R", — 2V @V R,°
3VIV Ry = VR, —2VPR,¢

a ber

a be*

Note that this collection of null vectors is not linearly independent.

Similarly, we can find all the total derivatives,'3

ve (Va<I>Vb<I>Vb<I>) — VIOV, VY, + 2VIOVPDV D,

v (va@H"ciHba V. @H" Hye; + 2V*®H"'V 4 Hyi,

Ve (Va®H T Hiy ) = 9, @H I Hyjy + 29 O HIMY , Hiy,
ve (vbchaciH ) = VPOH, @ Hyy — VOOH, WV Hy + VOO H Y, Hyes,
Ve (V.0V,0) = V9,0V, + VoV, + (V) R),
ve (Vbévawb = VPPV, ® + VIOV 0P + ((vq>)2 R) :
ve (Vachbcbc = V% RY,, + VIOV, RY,
pe + VIOVIRS,,

V* (H, "V Hye ) = VO H, " Hygi + HV, Hyei + (R,
( VO HYY y Hyei + H'V, Hop,

V" (B Haes) = V'V Hoei = HV, Hys + (RH?)
( VOH Y, Hype + HY'V, Hope + (RH)

= VYHY"V Hj. + HI*V  Hyjy,

) -
)
)
)
)
)
ve (V'OR,5,) = VIR,
)
) =
)
) -
)
+) =

13 Actually, because of the factor of e~® which multiplies all of these couplings in the action, these total
derivatives are not truly null; integration by parts would replace the total derivative V¢ by a factor of
V®®. The resulting terms are always lower in the lexicographic ordering however, and do not affect the
determination of which couplings can be eliminated.
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U (Valty) = Vo, R,

v (vaaCbc) _ vabR c

At this point the remaining work is only linear algebra.

dimensional space of couplings, leaving a 48-dimensional quotient space representing phys-

a ber

ical couplings. A basis for these physical couplings is given in section 2.4.

B Reduction and duality of couplings in the warped product

For each of the forty-eight possible four-derivative couplings, we must reduce them in the
case that y is parallel to the brane, y is perpendicular to the brane, and then compute
the T-duality of the latter. Below we omit the H* couplings cs, - - , c14 because all three
expressions (parallel, perpendicular, and T-dual to perpendicular) are trivially equal, and
we don’t get any constraints on these coefficients. There are also some other coefficients
(certain RH?, R?, and (VH)? terms) which will not be constrained, but we include them

below for completeness.
c1V/—ge VDV, VPPV, P

02\/—ge_¢va¢va©HbCiHbci =

csv/—ge TVOOV  OH Y H iy =

cav/—ge PV OV OH, “Hyei =

c1sv/—ge TVIOV, VP =

ciov/—ge Ve, OH " Hyey =

=
=1

—

I
}_

e T2 9999, DO’ DO, D
c1e” 2% P9, 00" D0, ®

%e—‘b*%“’ [168“(1)8a‘1>6b<1>8b<1> 320" D0, D9 Dy p

+80° D0, D" Oy + 160" PO DD, Oy
—80" D0, 08" 0Dy + (9a<,06ag08b<p8bcp} :

coe” P22 998, ® H Hiyes

26" PO DO, DH Hpes

%e*‘“%“’ [4a“<1>aac1>HbciHm 40" 90, pH " Hyei
+0" pOapH" Hyci|

C3e*¢+%“’6“<l>8ad)Hiij¢jk

63€_¢8a¢8aq’Hiijijk

%36—‘”%%0 [4a“q>aa¢>H“’“Hijk — 40" B H* Hijy
+8ag08a<pHiijijk} .

c1e P TP D D H, " Hyes

cae PO DOPDH,  Hyes

%46_(1)_"%“0 [48%6”@1{;1’}[,,& — 49°®0" o H, " Hyes
+8a§08b§0HaCiHbcii| 5

G5 —tie [8“<I>6a¢>8b<1>8b<p T 2a“c1>aac1>abbq>]

2
(3156_@6(1(138,1 @6%@

8
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C%e*‘”%w [8acl>8a<prCiHbci n 28“a<I>HbCiHbm-]
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It can be checked that
the Bianchi identities and total derivatives span a 32-dimensional subspace of our 80-
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cisv/=ge "V OH, "V Hyer =) Sre 37 |0 ©0 0 H, " Hycs + 20" ®H," 0 Hyc:|
=1 C44e*¢8“¢>Hab"86Hbc,-

— %efqﬂr%” [26“<I>Habi86Hbci - 6a90Habiach“} 4

Cas /jgef@VaHabivchci = %efqﬂr%tp [_aaﬁpabSOHadeci+48a§0Habiachci

+48“Habi80Hbci]

=1 cuse PO H, Y0 Hyes

— 045e_¢+%“’8aHabiachm-,
cagy/—ge PV H 'V o Hyei = %67¢+%@ [8atpab80HaCiHbci+28aHbCi3aHbci]

=1 cage PO H" Oy Hyei

— 046674’+%“"3aHbCi3aHbci,
car/—ge PV HIRY  Hiy = care 2 T390 H* 0, Hij,

= 6476_¢8aHijk8aHijk

— C47e_q>+%"8aHijk8aHijk,
casv/—ge PV HYMY Hyjp = case” ¥ T30 H 0, H,

- C%f‘l’ [8a¢8bg0HaCiHbm' + 2aiH“jkaiHajk]

S |:8a<pabg0HaCiHbci + zaiHaj’vaiHajk] .

We will also need the warped product combinations (with y parallel to the O-plane)
which are zero either because of a Bianchi identity or because they are a total derivative
on the O-plane. Proceeding as in section 2, we list the Bianchi combinations, this time
built only from ®, ¢, and H,,,:

431 D" OH O Hyi) = 21 |0°®H O, Hygi — 20" O H" Oy Hoes — 0" OH 0, Hope
a0 O HIF O, Hy g = o |0°DHI*0, Hyyy — 3aaq>HijkaiHajk,]
4x38a(prCia[aHbcﬂ = T3 _aGQOHbCiaaHbci - 28a90HbCiabHaci - 8a90HbCi8iHabc:| )

440" HI* 0\, Hijpy = w4 |00 HIO, Hyjy — 33a<pHijkaiHajk} ,

Az50“H" O Hye] = 5 9% HY'0, Hiyoi — 20° HY' 0y Hooi — aaHbciaiHabc} ,
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4$68aHijka[aHijk} = T¢
470" H* Oy Hyeyp = @7
4x88iH“jk8[aHijk] = Is

Azg H*" 00 Hyei) = w9

O HN9, Hiyy — 30° OO, Hygy
39 HY 10, H yp. — aiHabcaiHabC] :

O 0, Hoy, — 0" H 0, Hogp + 20" HI*0; Ho |

-2Habiaachci + HabiaccHabi . HabiaciHabc} ’

4$10Hijk8a6[aHijk] = T10 [HijkaaaHijk — 3Hijk8aiHajk:| )

and the total derivatives,
1 9° (e*“%‘f’aa@ab@ab@)

20" (e*“%*’aa@abcbaw)
y39° (e_¢+%“’8b¢>3b¢3atp)
20" (e—“%%"aa@abgoaup)
Y50 (e*“%%"abcbaagoab@)
y60" (e’“%‘@asﬁ@bsﬁaw)
yr0° (e“"*%“’aa@H””Hbci)
ys0” (e_q’+%¢8acl>Hiijijk)
00" (eiq)Jr%“‘j@bq)Ha”Hbci)
y100* (67©+%waa@HbCiHbci)
y110° (e_¢+%¢8a<pHiijijk>
Y120 (e_®+%wabWHaCiHbci)

y130” (eAH 299, Bo°, <I>)

%e*“%‘f’ [fza%aa@ab@abcp 1 8700, DO DIy

120D, D’ + 4a“<1>ab<1>aabc1>] ,

%6*“%‘? [—2a“q>aa<1>ab<bab¢ + 0D DD, oDy

120D, DBy + 20° DO, DDy p + Qa%abcpaaw] ,

_ %3@—“%“’ [—Qa%aa@ab@aw + 0°D8, 80" e

40°DD, DDy + Qaacpaa@a”b@] ,

_ %46—“%*’ [—28a¢8a¢‘(9b<p8b<p Y Wt s

£20%, 38" 0Dy + 4aa¢ab¢aab¢] ,

- %e*“%%’ [723'1@8’](1)3@9085@ e e

120" DD pByp + 20° PBapdy + 2a“<1>a"¢aabgo] ,
= yge*qﬂr%"’ [—26“@&1@81)9061,@ + 8% 0000 B
+20% 00, p0yp + 43%3"903@@} :

_ %7@—‘“%“’ [—23“q>aa<1>H””'Hbci 4 0" DDu o H " Hyes

20" OH" Hyci + 40" OH" 0, Hycs |

- %e—“%*’ [—2a“q>aaq>Hif’“Hijk + 0D H'I* Hyg
+28aa'1>Hiijijk + 4aa(I’Hijk8aHijk] ,

_ %96*‘“%“’ Paa@abwﬁmci + 0°®O"pH,  Hyei
120" D H, " Hyei — 20°®H, "0 Hyei + 2a“q>Hb°iabHaci] ,

_ yQﬂe*‘“%w [—28“@8E¢HbCiHbci + 0%p0apH " Hye:

+28aa(prCiHbci + 48“90HM8‘1H””} )

_ y%e_é_%w [—28a¢8aﬁpHiijijk + aaspaawHiijijk
+20%, 0 H "  H, ), + 48“@Hijk8aHijk] ;

_ %26“”%*” [_28aq>8b<ﬂHaCiHbci + 0% 00" pH, ' Hyei
+20"H, " Hye; — 20" 0H," 9 Hyei + 20 0H b“iame] ’

y2£e*‘1’+%*’ [fza%aa@abb@ 1 87D, DD + 20°, DO, D

+28“<1>aabb<1>] ,
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y140” (67¢+%“’8b¢>8ab ‘P)

Y150 (ei¢+%“"8ab<b8bsﬁ)

Y160 (67@+%W8bb‘1)5a 90)

y170° (€_¢+%“’aa CI’abbW)
188" (e*“%wab@aaw)

Yy190” (67¢+%¢3a908bb80)

9200 (67¢+%w8b§08ab90)
y210° (e—<1>+%cpHabiachCi) _
Y230 (67¢+%”Hb6i8bHaci) _
Y240 (e*“%*ﬂH””&Hﬂbc)
Y250" (e_®+%”H“k{9aHijk) _
Y260” (6_¢+%wHijkaiHajk) =

270" (87¢+%w3abb<1>)

Y280” (67¢+%¢8a bb#’)

%e*“%w [fzaﬂcpab@aabcb 1 0%, Dy + 20" DDy D

+28“c1>aabb<1>] ,

yge*‘“%w [—Qa%aa"@aw 1 0™ BBy Iy + 20" BDarp
+20°,"00yp] ,

yzﬁe*“%‘f’ [—25a¢8bb¢8acp + 0%, 00 0y + 20°, 085
+20°,"D0hp] ,

%e—“%v [—26“@8&8%@ + 0 BDapdyip + 20%, Py
+28a@3abb90] )

%e*“%w [728a¢'8b¢‘8ab<p 1 8°08 pIurp + 20" DO
+28a‘1>3abb90] )

%ef‘?*%“" [—28“@8,13081’,,90 + 0000 0% + 20%, 0%
+28a906abb60} )

y%e,q>+%¢ [—28a¢'8b4p8ab<p + 0% p0°0Bap o + 20" PBapp
+23a903abb§0} )

%e““%v [—26“@}1(1’”861{1,& O oH, 9 Hye
+20°H,"0° Hye: + 2H“bi8achci] ,

34226—‘1>+%w [7za“<1>Hb”'8aHbci + 0% pH " 9y Hes
120" H' 0y Hyei + 2H““61Habi} ,

%e*%%w [7za“<1>H””‘ame + 0% H " 0y Hoei
+20"H" Oy H e — QHabiaachci] )

- y%e*“%@ [—28“¢>Hb0i6iHabc O OH" 9, Hape
+20" H*'0; Have + 2H" 0 Hare |

l’zﬁe—%%v [—28“<I’H”k8aHijk + 0%H %9, H, ),
+20"H* 9, Hyj1, + 2HijkaaaHijk] ;

%ﬁe—‘ﬂéw [—28“¢'Hijk8iHajk + 0%pH %9, H,
+20°H7*9; Hyj1, + 2HijkaaiHajk’:| ,

%efwéw Pza“cbaabbcb 1 0% DDy + 26%%@} ,

e3¢ [220°00, 0 + 000, o +20% ¢ -

Finally, enforcing that the parallel action minus the T-dual of the perpendicular action

is zero, up to Bianchi identities and total derivatives, leads to

1
0= e F3¥ {(—yl) DD, DI DI, D + 5 (de1 + 15 — 245 — 293) D D, DI DIy
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= (—c1 — ez + y3 — 2ya) " PO, 0y

+= (—4ey + ea1 — 22 — Coq + 2y — 4ys) 0PI DI, Dy

e e

+§ (4de1 + 2¢99 — 2635 — 36 + dy1 + dys + Ays — 8yg) DD, Dy
1
+ﬁ (—c1 — €29 4 ¢36 + 4esy + 2e38 + Aesg — ca1 — caz + 8yg) 040D’ Py

+ (—y7) 0Dy ® H Hiypy + (—ys) 0" PO, @ H T  Hyjp, + (—yo) 0°®°®H,“ Hye;

+= (2c2 + €16 + Y7 — 2y10) 0PI H* Hyyp;i

+ (203 +c17+Ys — 2y11) 8a(138a<pHiijijk

‘ 1 ,
(2¢4 — caq + Yo — 2y12) D@ H,“ Hyei + ~ (—ca — 2¢a5 + 2y10) 0“0 H" Hyei

+ 4(

_l’_

(—c3 — 2¢a6 + 2y11) 0" pDup HI* Hyjy,

(—ca — cor — a5 + 2c46 — 248 + 2y12) D90 H, " Hyei + (y1 — y13) 0“9, @O, ®

+
~ B IRPRERIRNDI RN RN

+
DO

1
Y1 — y14) 09D, D + 3 (2y2 + 4ys + Y14 — 2y15) 0°PI, POy

(2¢15 + 221 + 22 + Y13 — 2u16) D PO°, By 0

+

1
(—c15 — 235 4 4ys + 2y16) 0%, PO LIy + 3 (2y5 + y15) 0PI,y
yr) 0% @ H Hyi + (yg) 0% @ HI® Hysp 4 (yo) 0P ®H, % Hyei + (y13) 0%, P% @

+ + +
~ RPN

1
Y14) OPPH,, d + 3 (c15 — 2¢o3 + 2y3 — 2y17) 8afl>8a<1>8bbgo

(—ca4 + 2y2 — 2y13) DDAy

_l’_

A~ NP R RPOIRPRN PR RN

(—2¢15 — 2¢35 + €36 + 4ys + 2y17 — 4y19) 0D,

_l’_

_l’_

(4ys + 2ys5 + Y18 — 2y20) D" P Pupp

(c15 — €36 + 8car + 2e38 + 241 + 8y + 4y19) 020Dy’

_l’_

1 )
+= (38 + 4c30 + cag + 8y6 + 2u20) 0%’ PDapep + 3 (c16 — 2¢25 + 2y10) 0% H " Hyei

. 1 .
(c17 — 2¢a6 + 2y11) 0% HI* Hyjp + 5 (c18 — €27 + 2y12) 00 H,“ Hy;

(c19 — c31) 09 H ™ Hyypj + B (c20 — c32) 07 @ H,™ Hipe

_|_

_l’_

_l’_

1 -
co1 — ¢35 + Y16 + y17) 0% P00 + (y15 + y1s) 0PI + 3 (2¢22 — €36) 0V PO; 5

1
(—co1 + 4czr + c38 — a1 + 4y19) 0% 0% + 1 (c3s + 4esg — can + 4y20) AP 0app

(—caz + ca1 + caz — 4eaz) D900 + (—yg — yo1) 0" ®H, "0 Hys

_l’_
e R

_I_
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(w1 + 2y7 — y22) 0" ®H Oy Hyei + (—2x1 + Yo — y23) 0" ®H" 0 Hyei
—21 — yoa) 0" ®H0; Hop. + (2 + 2ys — yo5) O“@H* 0, H, .

- 1 .
—319 — yog) O*®H IR, H 1 + B (cas + 2¢45 — 2y12 + y21) 0“9 H, " 0 Hy;

1 .
3 (—4w3 + 2y12 + yo3) 0“9 H " Op Hyei

= (=64 + y26) O"0HT*0; Hoji, + (y21) 0 H,"'0° Hyei + (5 + y22) 0 H' Oy Hpes
—225 + y23) O"H " Oy Hoei + (—25 + 327 + you) 0" H0; H

x6 + yo5) O"HI* 9, Hyjp + (—3w6 + x5 + yo6) O“HI*0; Hyjp, + (—a7) 0" H0; Hype
—x8) 0'HY*0; Hyjy, + (28) 0" HM0j Hyip + (y13 + y1a — yor) 0709, % 0

= (2y15 + 2y16 + Y2r) 0% PO + (17 + Y18 — Yos) 0PI,

+3 (2419 + 2y20 + yas) 09D, " + (229 + Y21 — ya3) HD, Hye;
+ (29 + y22) HYO Hopi + (—29 + you) H™0% Hape + (210 + y25) H9*0%, Hyijp
+ (=310 + y26) H7*0% Hajr, + (y27) 0°,5® + (y2s) 3“abb90} :

Setting this lengthy expression to zero just gives a large number of linear equations
for the coefficients ¢;, ;, and y;. Terms with different numbers of H fields don’t mix in
the warped product. Turning first to the terms with no H fields, the solution to this linear
system is given by

c15 = —3¢1, €21 =2¢1, €9 = —2c1, C3=—2c1, cog4=2c1, C35=2

C36 — —461, C38 — 201 — 4637, C3g — —(C1 + C37, C41 = —261, Cq9 = C43 = 0, (B.l)
1 1 1 1
y1 =0, yz= 30 TY2 Ya=ga T gl Us= o0t gl Y= gl
yis=vy14=0, Yyi5=c1—Y2, Yi6=-—-Cc1tY2, Yir=0C—Y2, Yis=—C1+ Y2
Y19 = _%Cl» Y20 = %Ch Yo7 = yag = 0.
The coefficients c¢1, ¢37, c40, and yo are arbitrary.

For the coefficients involving two H fields, we find relations

Cyg = C3=Clg=Cl7 =C25 =C6 =T7 =T =Y7 =Yg = Y9 = Y10 = Y11 = Y12 = Y21 = 0,

Co7 = C18, C31 = Cl9, C32 = C20,
1

Cas = 2¢4, €45 = —C4, Ci8 = —5¢1s + cas, (B.2)
1

T3 = —5T1, T3 = AL, L9 = —TL, Yo =1, Ya3 = —2T1, You = —71,
1

Ta = —5T2 Te= Ty Tl = T2 Yas =Tz Y26 = —3x2,

with ¢4, c18, c19, €20, 28, €29, €30, €33, €34, C46, C47, T1, and w2 unconstrained.
As mentioned before, the terms with four H fields are all unconstrained.
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C Reduction and duality of couplings in the twisted product

Now for each coupling that does not involve derivatives of the dilaton, we will reduce the
couplings in the case that the circle is parallel to the O-plane, and then subtract the T-dual
of the reduction when the circle is perpendicular. Computing,

CS\/jg€7¢HabiHabiHCdecdj — 0567@%“& [4672vfaiﬁzifbjﬁj + 467¢faiﬁif]bcjflbcj

_2€Lpfabfabﬁcdiﬁcdi _ e2<pfabfabfcdf6di| ,

_ ; . o 1 o~~~
cov/—ge” TH ™ Hopi H* Hjpp — coe™ 2% [26 € FY o HOM H g

# (—f“bfabﬁ”kﬁijk - 3fijfijﬁabkﬁabk) - 362¢fabfabfijfij] ,

erv/mge H L HE oy — cre” T 47 PRy e P B

_2ecpfabfcdflabiﬁcdi _ eQ«pfabfabfcdde] ,

-~ ) . el Lo Tai T i ~
esv/=ge H H oy H¥ Hyne — cse™ 3% [2e72 J [0 Hne

+e¥ (_2fabfijﬁabkf]ijk _ 2fijfikﬁabjﬁabk> _ e2<pfabfabfijfiji| 7

- abi c j - 1 - Tai g " Taip g ra
cov/—ge  TH* H, H,Y H.4; — coe”*T2% [e i (f faifP fos + f fa]fbifbj)

* (27 B Hocy + 2 P B iHicy ) = 267 £ fu By Heai = &7 £ 1.5
ClO\/_geiq)HabiHachbckHijk — 01067¢+%¢ [3eivfaifbjﬁabkﬁijk —3€¢fabfijﬁaciﬁbcj] ’

i j 1 —2p paip j ra —@ pat 7bj 17 ¢ I71
11 /jge—@HaszaCJHbdecdi _}clle—¢>+2¥’ |:2€ 2<Pf faj.fbifbj +4e¢f fb]Ha ijci

72e¢fubf0dﬁaciﬁbdi o 62¢fabfacfbdfcd] ,
ciov=ge CHH  H " Hopek —> c10e” 2137 [—6@‘” F9 i HE " Higr, — 9€°2 £ f15 7 fké] :

cisv/—ge  THYYH HY™ Homn
—d41 ij T tm 7y ij T om Ty
— cize q’*z*’[e*" <74f]fikHjé Hyom — 29 ¥, Hum)

(=17 Fi £ e = AP RR 1 )]

- ik 4
C14v/ —ge€ fv‘.[lJ H mH gnHkmn

s cue I [—66¢fijfkeﬁikmﬁj£m — Sewfijfikfjefu} ;

a cdi P L 1 a s 1 a rredi 1y
casv/—ge” PR VH " H . 4 — case” T2 [*§f bfabf fm'*zewf bfabHdHcdi:|7

— 36 —



—ogd
casv/—ge” TR o H9¥ Hyj — coge” PH3® {_

—® pab ¢ di
027\/jge R a Hb Hcdi

— core — P4 2<P |:7 (fabfabfmfci _ 2fabfa fb fci _ 48afa fCleC’L) _ %

C28vV — 6 RadeHabl cdi — C28€ q)+2¢ [fabfa fb fCZ + 26afbcfa1Hbcz

+%6¢ (_fabedﬁubiﬁcdi -

—® pabij k —orlo |l o kS
C29v —ge€ R" mHab Hijp — ca0e ta¢ {56 (pfmf JHab Hiji

1 ~ i~
Ze¢f“bfabH”kHijk} :

6¢fabfacﬁbdiﬁcdi:| s

fabedﬁuciﬁbdi)} 5

1 ab pij 7 F a pij ¢ k1 ij o rab 1y 1 ab pij 17 T
5 (£ 0 Fashog +20° 9 Hogn = 2090 Hany ) = 567 f bfﬂHakaz-jk} :

- abij c — 1 1 _ ~ai - ~i P~ L~
csov/—ge PRV H,  Hyej — czoe” *127 {16 ¢ (f Y H, Hyey — f“ P H, ijci)

g (<71 Fas o+ 20° £ T g + 20 T, o) — 5 1 P A, 1Hbcj},

1,03 —osais i Sbe
csiv/=ge TRYJH" Hyej — csie” " T2¢ {Ze P F fu? HY Hyes

(I T i 2 P T T+ 470 o) +

—® pai jgr kL _oalo |3 osaiT i ke
csav/—ge TRV H Hjpp — caze” 7T2¥ [Ze PV f  Hy™ Hijke

+i (7fijfijfakj’?’ak+6fijfik}'ajﬁk+4fijaa}-;kﬁijk)

1 . ~ ~
Zeipfzj fikHabj Habk:| ,

Ui ks tm
+ZewfjfikHje Hkém:|7

_ aibj c — 1 1 _ ~wi P~ L~ ~ai S~
C33y/ —ge QR bJHa iHbcj —> C33€ q>+2g; |:18 ¥ (2f P]Ha iHbcj +f beHa ijci)

3 (S R T = I 5 T+ 7 £8P 4 40 479 Ty = 4100 ¥ o)

_%eQOfabfij ﬁaciﬁbcj:| 7

c3av/—ge R”MH”merm — C34€ -+ 2“) |: f”fl f fak — 2f1]8 fkeH]kg

1 . ~ -
+§€w <—f”fMH¢ijkem -

Yy ab cd —p4+1
C37 6 R abR cd — c3re 2P

—® ab d _p4 1 1 b
cssv/—ge TR, Ry’ ey — csse” P17 —§e¢a“fa O° foe
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1 2¢ pab cd
166 f fabf fcd:|,



(5 o a4 AF )

abed <I>-0—l a pbe
csov/—ge” PR Rapea — cage 2¥ [Cwa 7 0a foc

(30 feof ™ e+ 5L )|

_ abij — 1 1 _ Tai Tai s
c40V/ —ge *R bJRabij — cgoe” P27 [8 2(P( f fazf fb]+f fa fifbj)

1 i ~ 1 y 1 .
5O T O e 0S4 LI

—® pai jpb — P41 1
cay/—ge "R R’y — care tae [*

(- f“lfmfbjfby — 97" 1 P

€O T Fu ot e FULS, fke},

- aibj - 1 1 _ rai i 7 raip j rs
cazv/—ge "R Raip; — caze” T12¥ [E 2“)( 57 faif” fo; — 5 fa]fbifbj)

; 7‘98”5‘7”8 fln *6walfaja fa] 1 (fabfabf”flj +f”fz fj fkl):| ’

Z _ 1 1 _ T T T _ o~ ~
cssv/=ge” "R Rijie — caze”"TE7 [*f PP ey — €00 PO S

—&—éez"’ (3fijfijfk£fké + 3fijfikfjefk£)} )

casv/—ge PV H, "V Hypei — case i Ee_“’ (faiﬁjﬁa%ﬁbcj —4aafziabfbi)
1 abp cpip ij p kpa 7 a p bpeiry abac 7 iy ab 7 inc Ty
Ty I S fei = FUL7 S far + 40" o f " Hbei — 470" fo " Hapi — 4™ fo 0" Hbes

ij Fa 7 1 ab ped 77 iy a c
LT ) e (<175 o o — 10,00 ).

casy/—ge” PV H 'V o Hyey — cage i H ﬂo( Fe 7 H" Hyej + 89 f*'8, sz)
+1 (fabf Tei gy 4 ab pij ¥ F 2 ij p kFa 49° bCNiE 8 aba Nciﬁ )
4 abf fcz - f f faszg + f fl f ]'fak + f fa bei — f af bei
ab et 7 ab pei 7 1 a crr dirr ab ped 17 i 77
8 F 0 s = AS " F Oellani ) + 5¢7 (41" £ Hy " Hoas = 20 £ Hoe B

_4fabfijﬁaciﬁbcj + fijfikﬁabjﬁabk B 4aafbcaafbc>:| ,

car/—ge  *VOH*Y, Hijr — care —P+3e [—%e_wfaiﬁjﬁiuﬁjkl
1 ij rak 7 ij Ta 7 a pij p k17 ij pa T
+5 (=377 £ T Far + 6 ffﬁf o +120° F9F, N iy =127 F 0, 1)

167 (37752, F — 67 £ ~jlm*12aafijaafij)}7
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048\/—5167(I>

+4,f~aifbjﬁabkﬁijk + 2fai}bjﬁacjﬁbci + 48ifjk3¢fjk) +

A+ F fii P Far —

The relevant Bianchi identities are (we omit the constant prefactors of e=®

of e¥)

324 S H" 010 fu
3$/2J?akﬁijk8[afij]
3xéﬁiﬁabj8[afij}
3240 "0 fod
3$gaafija[afij} =
3x%aifaj8[afij} =
3% [P0 Ol foc
Bxéfijaaa[afij}
3 *H', Dya i
320 H01a fyi
3z}, fUH kga[z‘fjk}
3$/12‘9afbia[aﬁ;ﬂ
32150 [0\ fri
3$/14aifjka[ifjk]

390/15J?aiab3[aﬁz']

The Bianchi identities involving H are slightly more complicated as discussed in section 2.2.

AFY 5P far + 8" £ F* Havy — 4f7 0i f* Hjne —

(7985 s = 80005 |

8

8

8

8]

8

/
4
/
5
/
6
/
7
/
8
/
9

8

o 1 o
VzHajkviHajk — C4g€7¢+%tp |:Z I ( fmfajH MHJM 4fm_]?biHaC]Hbcj

i (—Zf“bfacﬁiﬁi + 4% 9 fui fo;
Sfijfakaiﬁajk

+4fijfakakﬁaij) + iew

0 £, o — 207 1", Haer

_8afijj7 K — 26ifajj7akﬁijk} ’

0% sy — 0 P Hang + 0" £ 'y Hoi]
0" £ 00 foc = 20° " On |

[bafija fij — 20 f90; fa;] ,

[0° 11901 fug = 0190, fug + 0190 ]

[2 FO,C oo + fO° fab:|

[£90° fij = 2090 ]

=700 Hos + f0°, Hoci — £0'F, Hos)

(o [2090° Py + 1907 s
PO Hye — 270" i

0 00 i — 0T 00 s + 0 0, o]
20° 10, fan + 0 F0 s
3lfjkazf;k - 232’}71{33’]34 ;

:faiaabﬁi — FEgh, F ok faiabi};b} .

oo T (100 g + 60 ) = 2t [£ T o = 20 1 T 25 F 0

+fabeiacﬁabi - fabeiaiﬁabc} )

e f T (40 Hign) + 6Fiwifin) = e [£7 fir I For = 207 £ s Fan + £ 7 0u Hi

29 F* 0 Hoj — fijfakakﬁaij] ,

2hs0" B (40 Hoci) + 6 i Je)) = @hs [2F* T Qullues + f** F 0. Havi + 0° B0 i

400" HI* (46[af1ijk] + Gij‘}k]) = aho [3fijf“’“aaffijk + 0" H7*9, H,jp, — 3a“ﬁijka¢ﬁajk] ,

728‘1?]’]“&?[@1’ — 3aﬁbda¢ﬁabc] s
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and powers



ThoO  H® (4a[aﬁ1,m] +6 f[ab};]) = Thy [3 I F0; Hupe + 30“ H" 0, Hpe — aiﬁﬂbcaﬂabc] ,

@0 H* (400 Higny + 6 iaiing ) = @on [207 T 0+ £ F** 0 Has + 0 H*0i Ha
_8i-ﬁajkaiﬁajk + 28iﬁﬂjk6jﬁaik] )

by H*'° (48[aﬁbci] + 6f[ab}::i]) = x3 [25afabf6iﬁbcz‘ + 0% f*° fu " Hyei + 2f ** 00 [ Hye:
+fabac.fcif_jabi + 2ﬁabiaacf_jbci + ﬁabiaccﬁabi
7ﬁabiaciﬁabci| ’

2y H9* 9 (46[af~fijk] i 6f[ai]?jk]) = Zhs [36afij};kﬁijk +3FION T Huge + H* 0%, Hipn

_Sf[”kaazﬁajk] 5

Finally we also need the total derivatives,
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Demanding that the sum of all these pieces vanish gives a system of linear equations for

the coefficients ¢;, «}, and y,. The solution involves an arbitrary choice for ¢z, @), zf, /s,

rig, and g, and then all other coefficients are fixed (we of course omit ¢; corresponding

to terms with derivatives of the dilaton, as these drop out of the twisted product),

C5 = C6 = C9g = C12 = C13 = Co5 = (26 = C28 = €33 = C34 = C37 = C42 = C43 = C48 = 0,

902=$3=9€6=9€11=3614=$16=$17=$20=$21:y15=0,

2 1 1
g = —C7, Cl0 = —3Cr, 11 =507, Cl4= g7, Co7 = —4c7, o9 = 4c7,
c30 = 8cr, 31 = —6cy, 32 =2c7, c33 = —8cy, c39=4cy, cy=—4c7, (C.1)
2
cy1 = 8¢y, c45 = —8cy, cC46 = —2c7, cCa7 = 3¢
! 4 2 / ! 2 / / _8 !/ 2 3 / /o 8
Yp = &C1 — &l1g, Yo = —4C7 — Xygy, Y3 = OC7, Yy = —4C7 — OLyg, Y5 = —OC7,
! ! / / / ! / / /
Ye = —12¢7, y; = —06cr —xy, ys=2wy, Yg=—T5, Y= 25,
/ / / / / / / / /
Yy = —4er, Yo =4er — 29, Y13 =g, Yia = 4cr — 29, Y6 = — s,
! / ! / / / ! /
Yir = 2%1g,  Yis = Tiss Y19 = —T19, Y20 = 3T1g,

/ / / / / / /
xy = 4cr, afp =6x7+xy, w3 =15, x9=8cr, x75= 4cy,

A r_ / ro ro_
xyg = —207, x5 =47 — X, Ty =Tig,  Toz = Tig.
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