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1 Defects and periods in 3d

R

The soliton structure contains a lot of useful information about N = 2 supersymmetric

theories in two dimensions [1–3] and, in fact, even offers a way to classify such theories

and their massive deformations [4]. The central role in this framework is played by a

superpotential function that we denote W̃ and whose critical points correspond to the

massive vacua of the deformed theory.

In the present paper we tackle a similar problem forN = 2 theories in three dimensions,

which upon reduction on a circle also lead to 2d N = (2, 2) theories. Again, the central role

will be played by a (twisted) superpotential function W̃. However, for theories obtained

via Kaluza-Klein reduction from three dimensions, the function W̃ in general will have

infinitely many critical points, resulting in an infinite spectrum of supersymmetric vacua

and solitons that interpolate between them. This is one of the features that makes 3d

theories on S1
t × R2 very rich compared to typical 2d N = 2 theories with finitely many

vacua. Another reason is that solitons — which in 2d are the same as domain walls —

in the Kaluza-Klein reduction on a circle can originate from two-dimensional as well as

one-dimensional defects in 3d.

Our goal is to probe the rich dynamics of 3d N = 2 gauge theories by studying such

defects, specifically line operators and domain walls. Since domain walls in three dimensions

are supported on two-dimensional surface, they can also be called “surface operators.” We

shall see the role of these defects in the calculation of various partition functions, e.g. the

supersymmetric index IS1
t×S2 on S1

t × S2, the ellipsoid partition function ZS3
b

on S3
b , or

the vortex partition function Zvortex on S1
t ×q R2. Here the symbol ×q denotes the twisted

product with equivariant parameter q.

The latter partition function plays the role of a basic building block [5, 6] since many

three-dimensional space-times can be constructed by gluing copies of S1
t ×qD,where D ∼= R2

is a “cigar.” For this reason, it was called a 3d “holomorphic block” in the recent work [7].

In particular, the index IS1
t×S2(T ) of a theory T can be built from two copies of the

“half-index” IS1
t×qD(T ) ∼= Zvortex(T ) on S1

t ×q D, where D can be identified with the disk

covering either upper or lower hemisphere of the S2.

Denoting by S1
sp the equator of S2 in the index calculation or, equivalently, the bound-

ary of the disk, S1
sp := ∂D, in the half-index / holomorphic block calculation we shall

consider the following configurations of line and surface operators:

• line operators supported on the “temporal circle” S1
t ;

• line operators supported on the “spatial circle” S1
sp;

• domain walls supported on S1
t × S1

sp.

In particular, as we explain in what follows, some of these defects have a simple and

natural interpretation in terms of periods on an algebraic curve or, more generally, an

algebraic variety

V ⊂ (C∗ × C∗)n (1.1)
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associated with the 3d N = 2 theory T with n global U(1) flavor symmetries.1 The

algebraic variety V controls the asymptotic behavior of various partition functions and can

also be understood as the space of supersymmetric parameters in the 3d N = 2 theory T
compactified on a circle. Thus, in the limit q → 1 we have

ZS3
b

Zvortex = IS1
t×qD

IS1
t×S2

 ' exp

(
1

~
W̃ + . . .

)
(1.2)

where q = e~ and W̃ can be interpreted as the twisted superpotential of the 3d N = 2

theory compactified on a circle S1
t . As explained in [8], the twisted superpotential W̃ is

given by the integral over an open path on V connecting p ∈ V with some reference point p∗:

W̃(p) =

∫ p

p∗

λ (1.3)

where

λ =
n∑
i=1

log yi
dxi
xi

(1.4)

is a 1-form written in terms of the (C∗)n × (C∗)n-valued coordinates (x, y) that

parametrize (1.1). The path γ starts at some reference point on V (that we tacitly as-

sume to be fixed throughout our discussion), and ends at the point p = (x, y) ∈ V that

represents SUSY vacuum of our interest. To be more precise, p ∈ V represents the choice of

parameters (twisted masses, FI terms, etc.) for which the theory T compactified on a circle

has a SUSY vacuum. Note, defined by (1.3) the twisted superpotential W̃ is a multi-valued

function and its ambiguity is given precisely by the closed periods on V. In what follows

we explain that the three types of above mentioned defects correspond to different types

of monodromies

W̃ → W̃ + ∆W̃ (1.5)

and some correspond to periods, as shown in figure 1.

In the opposite direction, the expression (1.3) implies that the space of SUSY param-

eters V is a middle-dimensional hypersurface in (C∗)n × (C∗)n defined by n equations:

yi = exp

(
xi
∂W̃
∂xi

)
i = 1, . . . , n . (1.6)

In fact, from this description it is clear that V is a complex Lagrangian submanifold with

respect to the holomorphic symplectic form Ω =
∑

i d log xi∧d log yi. For simplicity, in what

follows we mostly focus on the basic case n = 1; the generalization to n > 1 is completely

straightforward. In that case, V is an algebraic curve defined by a single equation that we

often write as

V : A(x, y) = 0 . (1.7)

1More generally, for a 3d theory with a non-abelian global symmetry G, V is a subvariety of (T×T)/WG,

where T is the maximal torus of the complexification, GC, and WG is the Weyl group.
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Figure 1. Different types of paths on the parameter space of 3d N = 2 theory and its circle com-

pactification. Note, that closed cycles that go around asymptotic regions of the curve V disappear

in the 3d / tropical limit.

From another perspective, this algebraic curve associated to a 3d N = 2 theory T on

S1
t × R2 defines a boundary condition for a 4d N = 4 abelian gauge theory on half-space

S1
t × R2 × R+. The moduli space of vacua of this four-dimensional theory is

M4d = {(x, y) ∈ C∗ × C∗} × C2 , (1.8)

so that x and y are vacuum expectations values of Maldacena-Wilson and ’t Hooft loop

operators supported on S1
t , see [9–12]. The 4d theory can be understood as the theory

on a M5 brane compactified on a torus [13–15]. Four real dimensions of the C2 factor

together with (log |x|, log |y|) correspond to vacuum expectation values of 6 scalar fields.

The Wilson and ’t Hooft operators can be associated to two cycles of the torus [16–19], so

that the electric-magnetic duality of N = 4 gauge theory acts in a natural way by SL(2,Z)

matrices on the vector (log x, log y). The boundary condition defined by a 3d theory T
reduces the moduli space (1.8) to a Lagrangian submanifold LV ⊂M4d,

LV = V × C

V = {(x, y) ∈ C∗ × C∗ | A(x, y) = 0}
(1.9)

where A(x, y) is the polynomial that we already encountered in the above discussion of

SUSY vacua and partition functions of the 3d theory T .

Since the 3d boundary theory T is compactified on a circle S1
t it can be considered

as a two-dimensional theory with N = (2, 2) supersymmetry. Let us consider the effective

twisted superpotentialW(x) already minimized with respect to all dynamical twisted chiral

multiplets. Then, the U(1) gauge field of the 4d theory induces a background field for a

global symmetry U(1)x in the 3d boundary theory. This field can be considered as a

part of a twisted chiral superfield Σx = D+D−Vx in the effective 2d N = (2, 2) theory,
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so that 〈Σx〉 = log x and Vx is the vector superfield for U(1)x symmetry. Thus W(x)

determines how the 4d theory is coupled to the boundary 3d theory T by gauging its

global (flavor) symmetry.

1.1 Algebra of line operators

In [20] it was argued that line operators supported on a surface operator can be identified

with elements of the fundamental group

{line operators} = π1(V) (1.10)

where V is the space of supersymmetric parameters of the surface operator. In particular,

this description of the algebra of line operators was used in [20] to realize the affine Hecke

algebra and its categorification, the affine braid group. Even though here our context

is slightly different and we are interested in systems with half as much supersymmetry,

the argument (that we shall review below) is essentially the same and also leads to the

conclusion (1.10).

One can see that the definition of the effective twisted superpotential through the

integral (1.3) is ambiguous and depends on the choice of the path connecting p and p∗.

The different choices are related by the elements of π1(V, p). This defines an action on the

effective twisted superpotential:

γp · W̃(p) = W̃(p) + ∆γpW̃(p), γp ∈ π1(V, p) (1.11)

where

∆γpW̃(p) := mon
γp
W̃(p) =

∫
γp

log y d log x . (1.12)

Clearly, γp · W̃(p) and W̃(p) produce the same space of SUSY parameters (1.6). Let us

note that the integral (1.12) in general depends on p since log y may have a nontrivial

monodromy along γp. It is easy to see that2

∆γpW̃(p) = Cγ + 2πinγ log x, γ ∈ H1(V) (1.13)

where γ is the image of γp under the Hurewicz map3

π1(V)
h−→ H1(V) ∼= π1(V)/[π1(V), π1(V)] (1.14)

and

nγ =
∆γ log y

2πi
∈ Z . (1.15)

Similarly one can define

mγ =
∆γ log x

2πi
∈ Z . (1.16)

2The numbers Cγ and nγ depend only on the homology class of the cycle γp. However the choice of

the branch of log x in the r.h.s. of (1.13) (and thus the numerical result for ∆γpW̃(p) ) does depend on its

homotopy class.
3There is also a version of the Hurewicz homomorphism for pointed spaces. However, since we are mostly

interested in path-connected V and in choice of γp up to isomorphism, to avoid clutter sometimes we write

π1(V) ∼= π1(V, p).
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Figure 2. The defect Lγ separating two domains D1 and D2 of the effective 2d theory.

Since W̃(p) and γp · W̃(p) describe equivalent theories one can consider a one-dimensional

defect Lγ in the world volume of the 2d theory on D ∼= R2 separating two regions with

different effective twisted superpotential which can be realized by continuos deformation

of the theory along the path γx in the parameter moduli space V. Consider the limit when

the width of the defect tends to zero, so that the defect can be interpreted as a “duality

wall” separating two equivalent theories in domains D1 and D2 (see figure 2).

Replacing log x → Σx in (1.13) it is easy to see that the Lagrangian of the theory

on D2 differs from the Lagrangian of the theory on D1 by 2πinγFx where Fx is the field

strength for the U(1)x vector field. This means that the defect Lγ changes coupling of the

U(1)x gauge field Ax of the 4d theory to the boundary by

2πinγ

∫
D1

Fx = 2πinγ

∫
Lγ

Ax . (1.17)

Therefore, the defect Lγ can be considered as a particle with the charge nγ with respect

to the symmetry group U(1)x. By electric-magnetic duality mγ is its magnetic charge. As

usual, the mass of the particle is given by |∆γW̃|. Thus, the defects in question form a

family of dyons labeled by the elements of π1(V) with charges given by the homomorphism

c∗, which in turn is induced by the embedding c : V ↪→ C∗ × C∗,

π1(V)
h−→ H1(V)

c∗−→ Z2 = H1(C∗ × C∗) =: Λem

γp 7−→ γ 7−→ (nγ ,mγ) .
(1.18)

Note, the lattice Λem introduced here is precisely the lattice of electric and magnetic charges

in the 4d theory on half-space discussed around (1.8) in which the symmetry U(1)x is

gauged. (Again, we remind that generalization to theories with larger symmetry groups of

rank n > 1 is straightforward.) The image of H1(V) under the map c∗ defines a sublattice

of Λem. This is the lattice of charges carried by line operators that exist in 3d N = 2

boundary theory T ,

Λ3d := c∗H1(V) (1.19)

The multiplication in π1(V) corresponds to 3-particle interaction or, equivalently, to defect

junctions in 3d N = 2 theory T . In section 3 we shall explain how these dyons arise in the

string theory picture.
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The defect Lγ can be interpreted as a 2d analogue of the four-dimensional Janus

configuration [21–23] since as one goes across Lγ the 2d effective theta angle Im log y

changes by 2πnγ . Instead of the Chern-Simons action on the world-volume of a Janus

domain wall [24], the defects Lγ considered here carry the standard action of a charged

particle, cf. (1.17).

1.2 Lift to 3d: tropical limit

In order to make connection between periods and line operators more explicit, it is conve-

nient to introduce logarithmic variables

X = log x , Y = log y (1.20)

Of course, these variables are defined only up to integer multiples of 2πi. Indeed, since

V is defined by polynomial equations (1.6)–(1.7) in x and y, they are invariant under the

integer shifts

Wilson : Y → Y + 2πi ∆W̃ = 2πi log x (1.21)

and

’t Hooft : X → X + 2πi (1.22)

which, according to the discussion in the previous section, we can identify with Wilson and

’t Hooft line operators, respectively.

In general, the structure of the fundamental group π1(V) can be rather complicated.

This, in part, is what makes this story rich and interesting. However, some information

about its image (1.19) under the charge map can be read off directly from the “shape” of

the curve V. In order to extract this information, it is convenient to look at the tropical

limit of V that physically corresponds to a decompactification of the circle,

S1
t × R2  R3 (1.23)

which will be explained in more detail later. In this limit, the supersymmetric parameters

include only real parts of X and Y , so that a complex algebraic curve (1.7) turns into

a real 1-dimensional graph Vtrop in the (ReX,ReY ) plane, that follows the skeleton of

the amoeba of V, see figure 1. Asymptotic regions of this “real moduli space” of SUSY

parameters are semi-infinite rays of the form

(log |x|, log |y|) = r(m,n) , r → +∞ , (1.24)

that correspond to tentacles of the amoeba. In other words, each semi-infinite ray or each

tentacle of the amoeba is characterized by the charge vector (n,m) that, without loss of

generality, we can take to be a relatively prime pair of integers. These tentacles represent

directions in the charge lattice along which the index I(n,m) exhibits only “linear growth”

(as opposed to generic, quadratic4 growth) and signal presence of chiral multiplets of charge

(n,m) [5].

4More precisely, it refers to the rate of growth of the leading R-charge R in the q-expansion of the index,

I(n,m) = aqR + . . ., as (n,m)→∞.

– 7 –
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In the curve V defined by a zero locus of the polynomial (1.7), each tentacle corresponds

to an asymptotic region which has topology R+×S1, in particular, it has a non-contractible

cycle that corresponds to changing the value of the 2d background θ-angle and the Wilson

line of the background U(1)x gauge field:

arg x =

∮
S1
t

A

arg y = θ

(1.25)

Specifically, a tentacle labeled by the charge vector (n,m) has a non-contractible cycle

(arg x, arg y) = (mϕ,nϕ) , ϕ ∈ [0, 2π) (1.26)

It is clear that such cycles around cusps or asymptotic regions on the curve V are non-

contractible on all of V. Therefore, we obtain an important conclusion about the spectrum

of charges of line operators:

Span ({n,m}tentacles) ⊆ Λ3d (1.27)

In other words, the spectrum of charges of line operators contains the span of all the charge

vectors that determine directions of tentacles of the amoeba of V. Note, that for curves

V of genus zero, i.e. for curves whose tropical limits are trees (i.e. graphs without closed

loops), the relation (1.27) becomes an equality.

Once we introduced Λem and Λ3d, we can define a quotient

Λem/Λ3d (1.28)

that classifies flux sectors (cf. flux vacua [25]) of the effective two-dimensional theory on D

modulo those connected by solitons (domain walls).

Let us consider the cycles that belong to the subgroup E ⊂ H1(V) defined by the

condition that the following sequence is exact:

0→ E ↪→ H1(V)
trop−→ H1(Vtrop)→ 0 (1.29)

where “trop” is the natural map which “forgets” how a cycle winds around the tubes that

become lines in the tropical limit. The group F := H1(Vtrop) ∼= H1(V)/E is a free abelian

group generated by the elements associated to finite faces of the graph Vtrop:

F = 〈γf | f ∈ faces of Vtrop 〉 (1.30)

The group E is generated by its (oriented) edges:

E = 〈γe | e ∈ edges of Vtrop 〉/〈±γe1 ± γe2 ± γe3 | e1, e2, e3 have common vertex 〉 (1.31)

In particular, it contains all cycles (1.27) associated to the tentacles. We can always embed

F ⊂ H1(V) by making a choice of how the cycles from F pass along the tubes and pairs

of pants associated with the vertices of the graph Vtrop, cf. [17]. At least when the curve

– 8 –
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is non-degenerate it is possible to choose F ⊂ ker c∗, where c∗ is defined in (1.18). Even

though V is singular in a number of examples considered below, for the sake of simplicity

we pretend that it is not the case and

H1(V) = E ⊕ F . (1.32)

Now let us now consider the dependence of the curve V on the complex structure pa-

rameters {ti}. Suppose that the parameters are chosen so that {log ti} are flat coordinates

on the moduli space of the curve V. They correspond to the Coulomb and mass parameters

of the 5d gauge theory engineered by the corresponding toric Calabi-Yau 3-fold [26–29].

Then, for any contour γe ∈ E ⊂ H1(V) associated to the edge of the web Vtrop we have

∆γeW̃(x) :=

∫
γe

log y d log x = 2π2cγe + 2πi
∑
i

qγe,i log ti + 2πinγe log x, cγe , qγe,i, nγe ∈ Z

(1.33)

If we interpret log ti as a v.e.v. of a 2d background twisted chiral field Σti , then one can

deduce that the defect labeled by γ carries charges qγ,i with respect to the corresponding

global symmetries U(1)ti . All these line defects in 2d can be naturally lifted to 1d ob-

jects in three dimensions, in agreement with their description as string endpoints in brane

constructions of 3d N = 2 theories (see section 3 for details).

The non-constant part of (1.33) can be easily read off from the tropical geometry where

log ti are simply length parameters. If we parameterize the corresponding edge as

e ⊂ {(mξ + α, nξ + β) | ξ ∈ R} ⊂ {(ReX,ReY )} ∼= R2 (1.34)

so that α and β are linear combinations of log ti, then the corresponding electric and

magnetic charges are given by the orientation of the edge:

(mγe , nγe) := c∗γe = (m,n) (1.35)

and

∆γeW̃(x) :=

∫
γe

log y d log x

= 2π2cγe + 2πi(mα− nβ) + 2πinγe log x, cγe , qγe,i, nγe ∈ Z (1.36)

For a cycle γf ∈ F ⊂ H1(V) associated to a face f of the web Vtrop the situation is

slightly more complicated. In general, the period is expected to have the following form:5

∆γf W̃(x) :=

∫
γf

log y d log x (1.38)

=
∑
i,j

nγf ,i,j

2
log ti log tj + 2πi

∑
i

qγf ,i log ti +
∑
α

Nγf ,α Li2

(∏
i

t−αii

)
5It follows, for example, from the fact that the prepotential for the curve V, as a function of Coulomb

and mass parameters ai ∼ log ti has the following form:

F(a) = P3(a) +
∑
β

nβLi3(e−β·a) (1.37)

where P3(a) is a cubic polynomial and nβ are (integer) genus zero Gopakumar-Vafa invariants [30].

Then (1.38) follows as its derivative.

– 9 –
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The quadratic part calculates the area of the face f of the tropical curve. Let us remind

that we have chosen F so that c∗|F = 0, where c∗ is the charge map introduced in (1.18).

However, as will be shown in section 4, for any theory originating from some Lagrangian

description (under certain mild assumptions) all these periods are actually trivial, that is

ni,j = 0 ,

Nα = 0 .
(1.39)

This is related to the conjecture of Aganagic and Vafa [31] (since every knot K is supposed

to correspond [32–34] to a theory TK with a Lagrangian description).

In general, the quadratic terms in (1.38) indicate that these defects should be lifted to

2d objects in 3d described by N = (0, 2) theories. The 2d nature of these objects is also

predicted by the string theory picture which will be considered in section 3.

1.3 “Small” line operators

Consider the “half-index” IS1
t×qD(T ) of the theory T on S1

t ×q D. It has the following

asymptotic behavior, cf. (1.2):

IS1
t×qD(T ) ' e

W̃
~ , ~→ 0 , (1.40)

where ~ := log q defines the conformal structure of the boundary torus S1
t ×q S1

sp = ∂(S1
t ×q

D). Since ~ is basically the ratio of the radii of the “temporal” and “spatial” circles of the

boundary torus, in this limit we can treat the former as “small” and the latter as “large,”

S1
t : “small” as ~→ 0 ,

S1
sp : “large” as ~→ 0 .

(1.41)

The insertion of Wilson and ’t Hooft operators (with respect to U(1)x) wrapping the

“temporal” (or, what we now call “small”) circle corresponds to multiplication by x and y,

respectively. Thus, the Wilson operator supported on S1
t is equivalent to the “small” shift

of the effective twisted superpotential:

∆W̃ = ~ log x (1.42)

as opposed to the “large” shift (1.13) associated to a Wilson operator (1.21) supported on

S1
sp. Similarly, the shift of the effective twisted superpotential associated to the “small” ’t

Hooft loop,

∆W̃ = ~ log y , (1.43)

can be achieved by shifting log x by the amount

∆ log x = ~ , (1.44)

which is again “small” compared to the “large” shift (1.16) associated to the ’t Hooft

operator (1.22) supported on S1
sp.

– 10 –
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Figure 3. Period corresponding to domain wall interpolating between vacuum i and vacuum j of

the theory at a given value of the SUSY parameter x.

Upon compactification on a “temporal” circle S1
t , one finds the effective 2d N = (2, 2)

theory, which is the home to the twisted superpotential W as well as the curve V. From

the viewpoint of this 2d theory, the “large” and “small” line operators have rather different

nature. The former are one-dimensional object in this 2d theory, whereas the latter are

local operators. Upon the lift (1.23) to three dimensions “small” operators become 1d

objects and “large” operators become 1d or 2d objects.

1.4 Parameter walls

In addition to the periods that correspond to line operators, the other two types of periods

shown in figure 1 have the following interpretation. The periods on closed cycles correspond

to a sequence of domain walls that interpolate between the same vacua of the theory. On the

other hand, the periods that start from one asymptotic region and go to another asymptotic

region correspond to domain walls that interpolate between two infinitely massive vacua

of the same theory possibly at different values of the SUSY parameters. Although natural

from the point of view of homology, these periods have an awkward interpretation in the

gauge theory. Instead it is more natural to consider periods on cycles that interpolate

from a point “i” on one tentacle to a point “j” on another tentacle at the same value of

SUSY parameters, see figure 3. They correspond to domain walls interpolating between

two different vacua. We discuss these objects in what follows.

The tension of the domain walls is |∆W̃ij | = |W̃i − W̃j | which is computed by the

period integral along the path shown in figure 3. The spectrum of such walls (sometimes

also called kinks) is interesting in its own right. The whole idea of [1–4] is that one can

identify N = 2 superconformal field theory in two dimensions by the soliton spectrum of its

massive deformations. It was shown in [4] that the soliton spectrum captures the R-charge

of the Ramond ground states.6 A more precise statement is: let Nij be the number (with

6This theme of relating the BPS spectrum to the superconformal spectrum has been pursued recently

for three, four and five dimensional supersymmetric theories [35].
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sign) of kinks interpolating between vacuum i and vacuum j. Define the ordered product,

S =

y∏
ij

Mij , Mij := I −NijTij . (1.45)

Here, the product has been taken over the kinks and ordered according to the phase of

their central charge ∆W̃. I is the identity matrix and Tij is the matrix whose only ij-th

entry is 1 and others 0. Then,

Tr(SS−T )k =
∑
j

e2πiRjk (1.46)

where Rj on the right hand side of the equation are the R charges of the Ramond ground

states. In fact, the r.h.s. is a special limit of the elliptic genus Z(y, e2πiτ )|y=e2πik , a quantity

clearly associated with the superconformal theory. Interestingly, in this limit, the elliptic

genus turns out to be independent of modulus.

This intimate relation between the BPS spectrum and the superconformal spectrum

was later understood in [36] by formulating a partition function Tr(−1)F e2πikJ of the two

dimensional theory on a torus and evaluating it in two ways. At high energies, the partition

function is clearly the previously mentioned limit of the elliptic genus which gives the r.h.s.

of the eq. (1.46). At low energies, it is natural to evaluate the path integral in canonical

quantization. Because of the insertion of R-twist e2πikJ , this quantum mechanics turns

out to be time dependent. The transition amplitude is dominated by a sequence of kink

configurations, each fundamental kink contributing Mij . The time ordering of the kinks

follows from the phase ordering of their central charge ∆W̃ij . The transition amplitude on

1/k-th slice of the cylinder is SS−T . Gluing k of such cylinders and taking the trace gives

us the l.h.s. of eq. (1.46).

In the present context, a similar computation can be performed. The partition function

relevant to derive such relation is formulated by considering the three dimensional N = 2

theory T on T 3 with an insertion of the twist operator e2πikJ , as shown in figure 4. Let

this partition function be ZT
3

T (q, k). Note that equivariant parameter q considered before

in the geometry S1×qD maps to one of the modular parameters of T 3. The kink solutions

are lifted to two dimensional half-BPS domain wall solutions in theory T . This defect

preserves (0, 2) supersymmetry in the 2d support of the defect. Moreover, this support is

precisely a T 2 with modular parameter q, as explained in figure 4. We can evaluate ZT
3

T at

low energies, where the path integral will again be dominated by the domain wall defects.

Instead of simply contributing Sij as in eq. (1.46), the wall contributes its full partition

function. As the support of the domain wall is a torus with modular parameter q, this

partition function is simply the elliptic genus Zij(q) of the (0, 2) theory living on the defect.

This leads us to conjecture the following relation between the T 3 partition function of the

3d N = 2 superconformal theory and the spectrum of its domain walls:

Tr(ZZ−T )k = ZT
3

T (q, k)|SCFT , (1.47)

where Z is the appropriately phase ordered matrix product constructed out of the elliptic

genera Zij of the kink interpolating from vacuum i to vacuum j.
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×q ×q ×q

W

|i〉|j〉

defect defect

(a) (b) (c)

Figure 4. In all the figures ×q stands for the fibration on S1 with equivariant parameter q. Figure

(a) shows the space on which we define ZT
3

T (q, k). The line labelled W stands for the twist operator

insertion e2πikJ . Unwrapping the torus produces a cylindrical slice with vacuum |i〉 on one side

and vacuum |j〉 on the other. The path integral on this geometry is saturated by the BPS kink

configuration. This is shown in figure (b). Figure (c) isolates the support of the defect and illustrates

that it is a two-torus with nome q.

2 Transformation walls and 2d (0,2) theories

There are other half-BPS co-dimension one defects that are present in a 3d N = 2 super-

conformal theory T . In this section we consider such 3d theory with U(1) global symmetry

and discuss the defect wall associated to the SL(2,Z) transformation. This transformation

was defined by Witten in [37].7 Our main interest will be in identifying the 2d degrees of

freedom living on the defect. Before getting into this analysis let us describe the geometric

setup and associated partition functions.

For our purposes, it is most convenient to place T on S1 ×q D. The twisted product

×q can be thought of as turning on a Wilson line on S1 for the SO(2) rotational symmetry

of D. We take the defect to live on the boundary torus. The parameter q finds a natural

interpretation on the boundary, it is the amount with which the boundary circle of D is

rotated as one goes around S1. In other words q := e2πiτ is the nome of the boundary

T 2 and τ , the modular parameter. The partition function of the bulk theory in this

background is called the K-theoretic vortex partition function or the holomorphic block

and has been studied in [7, 32]. The half-BPS defect living on the boundary defines a 2d

(0, 2) superconformal theory on T 2 with nome q. We will be interested in the partition

function of the bulk-boundary system. The partition function of the boundary theory is

nothing but the elliptic genus.

The 3d N = 2 superconformal theory has four complex supercharges Qiα, here i = 1, 2

is the SO(2) R-symmetry index and α = 1, 2 is SU(2) rotation index. It also has four

conformal supercharges Sαi = (Qiα)†. Out of the four supercharges, the 2d boundary or

7One can also consider a 3d theory with U(1)N global symmetry and the action of Sp(2N,Z) on it.
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the defect preserves only two supercharges, Q1
+ and Q2

+. In two dimensions they generate

(0, 2) supersymmetry.8 This supersymmetry is enhanced to (0, 2) superconformal symmetry

in the infrared. The most interesting commutation relations of the algebra (in the NS

sector) are

{Q1,2
+ , (Q1,2

+ )†} = HR ∓
1

2
JR (2.1)

where HR is the dilation generator in the right moving sector and JR is the SO(2) R

symmetry generator. Note that the R symmetry is only present in the right moving sector.

2.1 The index of 2d (0,2) theories

The elliptic genus of the boundary theory can be computed as the index in the radial

quantization:

I := Tr(−1)F qHLaf . (2.2)

Here HL is the left-moving dilation generator and f is a generator of the U(1) flavor

symmetry.9 This trace is protected because both HL and f commute with the supercharges.

Because the index is independent of the coupling, we can simplify our computations by

taking the free field limit and considering each multiplet separately. Most of the (0, 2)

symmetric Lagrangians can be constructed out of three types of multiplets: chiral multiplet,

Fermi multiplet and vector multiplet. Below we compute the contribution of each of the

three types of multiplets to I.

Chiral multiplet. The 2d (0, 2) chiral multiplet Φ satisfies D2
+Φ = 0 and has the super-

space expansion:

Φ = φ+ θ+
1 ψ+ − iθ+

1 θ
+
2 ∂+φ. (2.3)

Let us take this chiral field to have charge 1 under some flavor symmetry f . The boson φ

and all its descendants ∂n−φ along with their conjugates contribute(∏
i=0

(1− xqi)(1− x−1qi)

)−1

. (2.4)

here, x is a fugacity for the U(1) flavor symmetry f . For the fermion ψ+, all its modes

and their conjugate contribute. Also, the equation motion ∂−ψ+ and all its descendants

along with their conjugates contribute but with the opposite sign. As a result, only the

contribution of the zero mode survives(
x

1
2 − x− 1

2

)
. (2.5)

Combining,

IΦ(x; q) =
(x

1
2 − x− 1

2 )∏∞
i=0(1− xqi)(1− x−1qi)

=: x
1
2 θ(x; q)−1. (2.6)

Here we have assumed the canonical left-moving dimension for the scalar field HL = 0.

The index of the chiral multiplet with a general dimension HL = hL is IΦ(xqhL ; q).

8The half-BPS wall defect can either preserve (0, 2) or (1, 1) supersymmetry. We have focused on the

former case. See section 3.2 for an argument about (0, 2) supersymmetry for parameter walls.
9In conventional definition of the elliptic genus, a is set to 1. So what we are considering here is really

a flavored elliptic genus.
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Fermi multiplet. The Fermi multiplet Ψ also satisfies D2
+Ψ = 0. As the name suggests,

it has a fermionic primary. Its expansion in the superspace is:

Ψ = ψ− + θ+
1 G− iθ+

1 θ
+
2 ∂+ψ−. (2.7)

Only the letter ψ− and its conjugate contribute to the index, including their zero modes.

The index of the fermi multiplet is

I(R)
Ψ (x; q) =

(
x

1
2 − x− 1

2

) ∞∏
i=1

(1− qix)(1− qix−1) = −x− 1
2 θ(x; q). (2.8)

again, x is a global U(1) symmetry fugacity. Here also we have assumed HL = 0, for a

Fermi multiplet with general dimension HL = hL, the index is IΨ(xqhL ; q).

Vector multiplet. The easiest way of determining the index of the vector multiplet is

by using the super-Higgs mechanism. As the gauge symmetry is spontaneously broken, the

vector multiplet eats a massless chiral multiplet to become massive. The index formulation

of this phenomenon is

IV Resx→1IΦ = 1⇒ I(R)
V = (q; q)2. (2.9)

We can put the indices of all the constituent multiplets together to compute the index

of 2d (0, 2) theories. The simplest example would be that of a Fermi multiplet interacting

with a chiral multiplet with a superpotential like coupling

SV =

∫
d2xdθ+ΨΦ =

∫
d2x(φG+ ψ+ψ−) (2.10)

The index of this theory is simply the product of the index of the chiral multiplet and the

index of the Fermi multiplet. The global symmetry acts oppositely on these multiplets.

I = − x−
1
2 θ(x; q)

x
1
2 θ(x−1; q)

= 1. (2.11)

Indeed, the coupling SV generates the mass term for both bose and fermi degrees of freedom

and in the infrared we get an empty theory. The index of the empty theory is expected to

be 1. Let us remark that from the index of the basic multiplets one can also compute the

index of the gauge theories that flow to superconformal fixed points. We simply multiply

the index contribution of all multiplets and integrate over the gauge fugacity to impose the

Gauss law. We will not be considering the gauge theory index any further.

2.2 Duality wall in four dimensions

Let us get back to the subject of SL(2,Z) transformation walls in three dimensional theories.

A best way of understanding the action of SL(2,Z) on an N = 2 3d theory T with U(1)

global symmetry is by coupling it to the 4d N = 4 U(1) gauge theory T (4d). Our strategy

for studying the transformation wall in 3d is by thinking of it as a duality wall for a 3d−4d

coupled system. It is convenient to first review the duality wall only in the 4d theory T (4d)
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T (4d)[τ ] T (4d)[ϕ(τ)]

τ

ϕ(τ)

T (4d)[τ ] T (4d)[τ ]

Bϕ

Figure 5. The first figure shows the theory T (4d)[τ ] on the left half-space and the dual theory

T (4d)[ϕ(τ)] on the right half-space. In the second figure we have dualized the theory on the right

back to T (4d)[τ ] while introducing new degrees of freedom Bϕ on the interface.

theory (without boundary). The N = 2 U(1) gauge theory T (4d)[τ ] in four dimensions

with coupling τ admits the action of ϕ ∈ SL(2,Z) duality group

T (4d)[τ ] ∼ T (4d)[ϕ(τ)]. (2.12)

Consider the setup in figure 5, where the coupling of the theory T changes from τ at

x2 = −∞ to ϕ(τ) at x2 = +∞. We dualize theory just on the half space x2 > 0 so that it

has coupling τ . In the process we have introduced new degrees of freedom Bϕ supported at

the three dimensional interface x2 = 0. As this co-dimension one defect or wall is associated

to an element of the duality group, it also called a duality wall. The duality group SL(2, Z)

is generated by T : τ → τ + 1 and S : τ → −1/τ . The three dimensional theory Bϕ can

be explicitly identified for both generators. The theory Bϕ=T is an N = 2 Chern-Simons

theory AdA at unit level. Here A is the four dimensional gauge field restricted to the wall.

The theory Bϕ=S has an N = 2 cross CS term ALdAR at unit level, where AL(AR) is the

bulk gauge field on the left (right) side of the wall restricted to the defect.

2.2.1 Duality wall with boundary

Now let us consider the duality wall in T (4d) living on the half-space x3 ≥ 0 with half-BPS

boundary conditions at x3 = 0. The half-BPS boundary condition is defined by coupling

T (4d) to a general three dimensional N = 2 theory T with U(1) flavor symmetry. This

involves coupling the flavor current of T to the gauge field of T (4d):
∫
A(4d) ∧ ∗J (3d). Let

us first consider the action of the duality group SL(2,Z) on the bulk boundary system

(T (4d), T ) in the absence of any wall at x2 = 0.

As before, the theory T (4d) enjoys the SL(2,Z) duality ϕ : τ → ϕ(τ), where τ is the

gauge coupling and ϕ is an element of SL(2,Z). Moreover, the action of ϕ on T can be

defined by imposing the equivalence between the bulk-boundary tuples

(T [τ ](4d), T ) ∼ (T (4d)[ϕ(τ)], Tϕ). (2.13)

In [37] Witten explicitly identified the SL(2,Z) action on the three dimensional theory

T . The element T : τ → τ + 1 change the θ angle by 2π. The addition of F ∧ F term
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T (4d)[τ ] T (4d)[ϕ(τ)]

τ

ϕ(τ)

T Tϕ

T (4d)[τ ] T (4d)[τ ]

Bϕ

T TB(2d)
ϕ

Figure 6. The first figure shows the system (T (4d)[τ ], T ) on the left half-space and the dual system

(T (4d)[ϕ(τ)], Tϕ) on the right half-space. In the second figure we have dualized the theory on the

right while introducing new degrees of freedom Bϕ on the interface. Now this interface itself has a

two dimensional boundary.

to the four dimensional Lagrangian gives rise to a level 1 Chern-Simons term AdA on

the boundary. This can be thought of as the addition of a background CS1 term for

the U(1) flavor symmetry. Although more involved, it can be shown that the action of

the element S : τ → −1/τ on T results in replacing the bulk-boundary interaction by∫
A(3d) ∧ ∗J (3d) +A(4d)dA(3d) where A(3d) is a new three dimensional field that gauges the

U(1) flavor symmetry. This is equivalent to coupling the four dimensional gauge field not

to the flavor current but rather to the topological current associated to the gauging of the

flavor current. To summarize,

T : add background CS1 term for the U(1) flavor symmetry

S : replace the flavor symmetry by topological U(1) symmetry

Now we are in the position of considering duality walls in this bulk-boundary sys-

tem. Previously we considered the system with T (4d)[τ ] for x2 < 0 and the dual theory

T (4d)[ϕ(τ)] for x2 > 0. In the presence of boundary, we place the tuple (T (4d)[τ ], T ) on

the half-space x2 < 0 and the “dual” tuple (T (4d)[ϕ(τ)], Tϕ) on the other half x2 > 0. We

dualize the bulk-boundary system on the later half back to (T (4d)[τ ], T ) and in the process

introduce new degrees of freedom Bϕ, just like before, but now living on the three dimen-

sional half-space x3 > 0. Everywhere on the boundary, we have the theory T except at

x2 = 0 (and x3 = 0). We have introduced new degrees of freedom on the two dimensional

interface at x2, x3 = 0 which are just the boundary degrees of freedom of Bϕ. This discus-

sion is summarized in figure 6. Completely decoupling the four dimensional bulk theory

living on the half-space x3 > 0 gives us the definition of a two dimensional “transformation

wall” for the three dimensional theory T , see figure 7.

2.3 Transformation wall in three dimensions

As noted earlier, for ϕ = T the theory Bϕ is an N = 2 Chern-Simons theory at unit level.

Gauge invariance of the N = 2 CS action induces a unique 2d boundary theory B(2d)
ϕ : a
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T T

B(2d)
ϕ

Figure 7. Decoupling the bulk from the boundary, we get only the three dimensional theory T
with a duality transformation wall B(2d)

ϕ .

(0, 2) supersymmetric U(1) WZW model at level 1. The index of this theory is just the

index of a chiral multiplet. This has been evaluated in the previous section. We have

IB(2d)
ϕ=T

(x) = x
1
2 θ(x; q)−1 (2.14)

This matches (up to the factor x
1
2 ) with the observation in [7] that in order to raise the

CS level in theory T by 1 on only the half space, one needs to insert the factor of θ(x; q)−1

in the S1 ×q D partition function of T :

ITS1×qD(x)
T−→ IB(2d)

ϕ=T

(x)ITS1×qD(x). (2.15)

Since

θ(x; q) ≈ e− 1
2~ (log x)2

, log q = ~→ 0, (2.16)

in the limit q → 1 (2.15) is reduced to the correct T -transformation of the effective twisted

superpotential and the functions x, y on the curve:

W̃(x)
T−→ W̃(x) +

1

2
(log x)2, (2.17)

x −→ x, (2.18)

y −→ yx. (2.19)

For ϕ = S, the theory Bϕ is an N = 2 theory with cross CS term ALdAR at level

1. From [7], we know that the application of S transformation on theory T on S1 ×q D
changes its partition function ZTS1×qD(x) to

ITS1×qD(x)
S−→
∫
dz

z

θ(x; q)θ(z; q)

θ(xz; q)
ITS1×qD(s) (2.20)

We identify the kernel of integration with the index of the 2d S transformation wall.

IB(2d)
ϕ=S

=
θ(x; q)θ(z; q)

θ(xz; q)
. (2.21)

From the index we can read off the field content of the theory. It has U(1)L × U(1)R
flavor symmetry where U(1)R factor is gauged in the bulk on the right side of the wall.

B(2d)
ϕ=S consists of two Fermi multiplets and one chiral multiplet. The multiplets are charged

(1, 0), (0, 1) and (1, 1) under the U(1)2 flavor symmetry. We can not extract the details of

the interaction from the index as the index is insensitive to the it. It would be interesting
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to relate this two dimensional theory directly to the boundary term of the 3d theory with

cross CS term, Bϕ=S .

In the limit q → 1 (2.20) is reduced to:

W̃(x)
S−→ ext

z

{
W̃(z) + log z log x

}
, (2.22)

x −→ 1/y, (2.23)

y −→ x. (2.24)

where extz denotes extremization w.r.t. z.

Thinking of 2d transformation wall as the boundary of 3d transformation wall allows us

to identify its T 2 partition function and hence, at least, its field content. This construction

can be generalized by considering T (4d) to be N = 4 SYM with gauge group SU(N). On

the boundary, we can consider T to be any three dimensional SCFT with SU(N) flavors

symmetry which is gauged by T (4d) in the bulk. The three dimensional duality wall Bϕ has

been studied and an explicit description for both ϕ = T, S in known as a three dimensional

gauge theory [38]. According to our proposal, the transformation wall B(2d)
ϕ for theory T

is simply the boundary theory of Bϕ.

3 Brane models

In this section we consider a realization of 3d N = 2 theory T associated to a curve

V ⊂ C∗x × C∗y in M-theory and type IIB string theory.

3.1 M-theory construction

Consider M-Theory on R3
016×C23×C45×C∗78×C∗9,10 where lower indices label corresponding

real directions. In particular, the theory is compactified on the circle S1
y along the 10th

direction and on S1
x along the 8th direction. Let us denote the variables parametrizing C∗78

and C∗9,10 by x and y respectively, so that C∗78 ≡ C∗x, C∗9,10 ≡ C∗y and (log |x|, log |y|) are

coordinates on R2
79. An M2-brane on R3

016 has moduli space C2 × (C∗)2 as in (1.8). An

M5-brane on R2
01 ×C45 ×V where V is considered to be embedded in C∗x ×C∗y engineers a

5d theory compactified on a circle with the Seiberg-Witten curve V [39, 40].

Now let us consider a combined system: an M5-brane defined as earlier and a semi-

infinite M2-brane on R2
01 × R+

6 ending on the M5-brane at p ∈ V (see figure 8).

This construction engineers an effective 3d theory with a 2d boundary on R2
0,1. The

boundary theory depends on the position of the M2-brane in C45 ×V — the moduli space

of the effective 3d theory, the same as in (1.9).

Consider a 1d defect Lγ ⊂ R2
0,1 introduced in section 1 localized in the spatial direction

1 and infinitely spread in the time direction 0. The defect can be engineered by the

following geometric configuration: the position of the M2-brane in V changes along the

contour γp ⊂ V ⊂ C∗x × C∗y as we go along the spatial direction. In the limit when the

width of the defect tends to zero we get an M2-brane on R0 × R+
6 × γp attached to the

original M2-brane on R2
01 × R+

6 along Lγ × R+
6 (see figure 9).
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Figure 8. An M2-brane ending at an M5-brane wrapping V ⊂ C∗78 × C∗9,10 .
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Figure 9. Geometric realization of the defect associated to γp ∈ π1(V, p) in the M-theory picture.

The energy of such geometric “excitation” is, of course, infinite. However, one can

make it finite by deforming the M2-brane on R0 ×R+
6 × γp to an M2-brane on R0 × I × γ

where I is a path in R6 × R2
79 connecting the M5-brane with a spatial point p′ on the

M2-brane infinitesimally close to the boundary (see figure 9). After such deformation the

position of the original M2-brane in C∗78×C∗9,10 cannot be constant anymore in the vicinity

of p′. As we go around p′ the M2-brane rotates by 2πnγ in C∗9,10 ≡ C∗y and by 2πmγ

in C∗78 ≡ C∗x.

3.2 Type IIB string theory construction

Let us perform compactification of M-theory on S1
y to obtain type IIA string theory and

then T-duality along S1
x to obtain type IIB string theory. Type IIB string theory is realized

on R3
016×C23×C45×R7× S̃1

x×R9. The M5-brane is translated into a web of 5-branes [29,

39, 40] on R2
01×C45× S̃1

x×Vtrop where Vtrop is a tropical version of the curve V realized as

a graph (representing the web) in R2
79 (see figure 10). The semi-infinite M2-brane ending

on the M5-brane is translated into a D3-brane on R3
0,1 × R+

6 × S̃1
x. The theory on the D3-

brane is 4d N = 4 U(1) SYM compactified on the circle S̃1
x ≡ S1

t with a 3d boundary on

R2
01× S̃1

x, as in section 1. The boundary condition given by a 5-brane web on the boundary

can be understood as a generalization of the Chern-Simons boundary condition realized by

a single five-brane [24, 38, 41].
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Figure 10. Realization of the defect associated to γ ∈ E ⊂ H1(V) in the type IIB string the-

ory picture.

Suppose we can deform the contour γ so that in its vicinity the curve V locally looks

like a tube C∗z holomorphically embedded in C∗x × C∗y ≡ C∗78 × C∗9,10 by x ∝ zmγ , y ∝ znγ

(as shown in figure 9). Then in this vicinity the M5-brane translates into a (mγ , nγ)-

brane — the bound state of mγ NS5-branes and nγ D5-branes — represented by a line

with the slope nγ/mγ in the plane R2
79. The cycles satisfying this assumption lie in the

subgroup E ⊂ H1(V). The M2-brane generating the defect translates into a (nγ ,mγ)

string — the bound state of nγ F1-strings and mγ D1-strings — connecting the D3-brane

with the (mγ , nγ) five-brane corresponding to the cycle γ. This five-brane is supported on

R2
01 × C45 × S̃1

x × e where e is the edge of Vtrop the cycle γ is associated to.

Let us note that the defects realized by pure F1-strings should correspond to the

excitations of the chiral matter fields of the 3d boundary theory engineered by this branes

configuration. The nontrivial D1-F1 bound states and D3-branes considered below are

non-perturbative effects.

The type IIB realization of the defect corresponding to a cycle γf ∈ F ⊂ H1(V)

associated to a face f of Vtrop is shown in figure 11. The M2-brane ending on the cycle

γf is translated into a D3’-brane on R0 × S̃1
x × f where f ⊂ R2

79. From the point of view

of the 3d boundary theory on R2
01 × S̃1

x this defect is two-dimensional. This provides us

with another indication that the defects associated to cycles in F ⊂ H1(Vtrop) are lifted to

2d objects in 3d. Let us note that the energy of the D3’-brane and the tropical limit of∫
γf

log yd log x are both proportional to the area of the face f .

To determine the effective 2d theory realized by the D3-brane stretched over the face

f one can use the technique of [42]. Type IIB superstring theory without branes has 32

independent supersymmetries of the form εLQL+εRQR where QL and QR are supercharges

generated by left- and right-moving worldsheet degrees of freedom and εL and εR are 10-

dimensional spinors satisfying chirality conditions:

εL = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9εL,

εR = Γ0Γ1Γ2Γ3Γ4Γ5Γ6Γ7Γ8Γ9εR.
(3.1)

Introducing a D3’-brane along the directions 0879 reduces the number of supersymmetries
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Figure 11. M-theory and type IIB realization of the defect Lγf for γf ∈ F ⊂ H1(Vtrop). The cycle

γf corresponds to the face f of the brane web.

to 16 by imposing the following condition:

D3’: εL = Γ0Γ7Γ8Γ9εR. (3.2)

The degrees of freedom of the D3’-brane in the absence of any other branes are given

by N = 4 4d vector multiplet containing a vector field Aµ and 6 real bosonic fields

φ1, φ2, φ3, φ4, φ5, φ6 describing the position of the brane. Adding NS5- and D5-branes

(and/or their bound states) bounding the D3-brane imposes additional conditions which

reduce the number of supersymmetries to 4:

NS5: εL = Γ0Γ1Γ4Γ5Γ7Γ8εL, εR = Γ0Γ1Γ4Γ5Γ7Γ8εR,

D5: εL = Γ0Γ1Γ4Γ5Γ8Γ9εR.
(3.3)

One can check that all solutions of (3.1), (3.2) and (3.3) satisfy the following chirality

conditions in the 2d space-time spanned along the directions 08:

εL = Γ0Γ8εL, εR = Γ0Γ8εR. (3.4)

It follows that the effective 2d theory engineered by the D3-brane bounded by 5-branes

has (0, 4) supersymmetry. The remaining massless degrees of freedom10 are given by a

(0, 4) chiral multiplet containing A9, φ1, φ4, φ5 as bosonic components. Finally, adding a

D3-brane along the directions 0168 reduces the supersymmetry to (0, 2) by the following

additional condition:

D3: εL = Γ0Γ1Γ6Γ8εR. (3.5)

The condition that D3’-brane intersects the boundary of the D3-brane along the 2-

dimensional subspace 08 fixes the position of the D3’-brane in the directions 45. This

reduces the (0, 4) multiplet to a (0, 2) chiral multiplet containing A9, φ1 as bosonic fields.

Let us note that a related brane model of (0, 2) theories was considered in [43]. One

can perform T-duality along the direction 4, then lift to M-theory by introducing an extra

10While the massless degrees of freedom do not depend on the shape of the face, one should expect that

the spectrum of massive Kaluza-Klein-like modes does depend on it.

– 22 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
7

�� ��

� ���

����

���

 

�
�

�

��

����

�
�

�

��

���

��	ABCDECF��� ��	ABCDECF���
�CBBFB�	����EB�

Figure 12. An M2-brane stretched between an M5-brane wrapping V ⊂ C∗x × C∗y and an M5’-

brane wrapping C∗y ⊂ C∗x ×C∗y. In the type IIB string theory picture it is translated into D3 brane

stretched between a five-brane web and an NS5’-brane or between the S-dual five-brane web and a

D5’-brane depending on the choice of the compactification circle.

direction 6’ and then compactify on a circle along the 6th direction to transform the branes

in the following way:

NS5 along 014578 → NS5 along 014578

D5 along 014589 → NS5’ along 0156’89

D3’ along 0789 → NS5” along 046’789

D3 along 0168 → D4 along 0146’8

(3.6)

We end up with the same brane setup as was considered in [43].

3.3 Relation to the standard brane model

In this section we describe how this brane construction is related to the brane model

for N = 2 3d (or N = (2, 2) 2d) theories considered previously in the literature (see

e.g. [32, 41, 42, 44–46]).

Let us start again with M-theory on R3
016 × C23 × C45 × C∗x × C∗y and an M5-brane

wrapping R2
01 × C45 × V. Now, instead of a semi-infinite M2-brane let us consider an M2-

brane with a finite extension in the direction 6 stretched between the M5-brane and an

auxiliary M5’-brane on R2
01×C23×C∗y where C∗y is embedded in C∗x×C∗y by fixing a particular

value of x (see figure 12). Since the M2-brane has a finite extension in the direction 6

the effective theory is now purely two-dimensional (instead of three-dimensional with a

boundary) with the spacetime R2
0,1. Fixing the value of x of the M5’-brane corresponds to

a particular choice of the SUSY parameter x of this theory. After introducing an M5’-brane

along C∗x one direction in C∗x × C∗y becomes distinguished which corresponds to the choice

of polarization considered in [8, 33].

If S1
y plays the role of the M-theory circle, as in the previous section, the M5’-brane

becomes a D5-brane (which we will denote as D5’) on R3
016 × S̃1

x in the type IIB picture

(see figure 12, description B). Now let us consider instead S1
x as the M-theory circle. The

M2-brane is then translated into a D3-brane on R3
016 × S̃1

y . The M5-brane becomes the

– 23 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
7

same 5-brane web as in the previous section but with D5 and NS5 branes interchanged.

The 5-branes of the web are supported on R2
01×C45× S̃1

y ×Vtrop. The M5’-brane becomes

an NS5’-brane on R2
01 × C23 × S̃1

y × R7 (see figure 12, description A).

The position of the NS5’/D5’-brane in the direction 7 equals log |x|. The brane con-

struction in the description A can be understood as a generalization of the standard brane

construction [41, 42, 44, 46] of a N = 2 U(1) gauge theory where log |x| can be interpreted

as FI parameter and the vertical position (the value of log |y|) of the D3-brane as the

v.e.v. of the scalar field from the vector multiplet. D5-branes in the web correspond to

chiral multiplets charged w.r.t. this U(1). This assumption means that the effective twisted

superpotential has the form

W̃(z;x) = f(z) + log z log x (3.7)

where the variable z corresponds to the twisted chiral multiplet constructed from the U(1)z
vector multiplet. Then indeed on-shell we have

y := ex
∂W̃
∂x = z. (3.8)

Let us consider the following simple illustrative example: SQED with N ′f chiral mul-

tiplets with charge +1 and Nf chiral multiplets with charge −1. Let the effective CS level

(see e.g. [47]) be k. Then

W̃(z;x) =

Nf∑
i=1

Li2(ze−m̃i)−
N ′f∑
i=1

Li2(ze−mi) +
k

2
(log z)2 + log z log x. (3.9)

Where mi and −m̃i are complex parameters — combinations of real mass parameters and

R-charges. The curve V is given by

Nf∏
i=1

(1− ye−m̃i) = xyk
N ′f∏
i=1

(1− ye−mi). (3.10)

The brane web is shown in figure 13. If it happens that mi = m̃j for some i and j then

the curve becomes reducible with a separate component given by

y = emi . (3.11)

This equation describes an infinite horizontal D5 brane producing a hypermultiplet. Moving

this D5-brane away from the web along C23 corresponds to introducing a complex mass

(see e.g. [46]).

The theory produced by the brane model in the description B does not have a gauge

field. The value of log |x| can be interpreted as a real mass parameter shift for chiral fields

corresponding to D5-branes (which have vertical orientation) in the web. The simple class

of such theories can be obtained by S-transformation (which corresponds to rotation of the

5-brane web by π/2 combined with S-duality) of SQED:

W̃(x) =

Nf∑
i=1

Li2(xe−m̃i)−
N ′f∑
i=1

Li2(xe−mi) +
k

2
(log x)2. (3.12)
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Figure 13. The brane web for SQED with N ′f chirals with charge +1 and Nf chirals with charge

−1. The chiral fields correspond to the fundamental strings stretched between the horizontal semi-

infinite D5-branes and the D3-brane probing the web.

This theory contains N ′f chiral multiplets with charge +1 w.r.t. the global symmetry U(1)x
and Nf chiral multiplets with charge −1. The curve in this case is the following:

Nf∏
i=1

(1− xe−m̃i)y = xk
N ′f∏
i=1

(1− xe−mi). (3.13)

The relation between the curve V and the brane-web given by Vtrop can be interpreted

in terms of topological strings [48]. Let us consider A-model topological strings on local

Calabi-Yau three-fold whose toric diagram is given by Vtrop with complexified Kähler pa-

rameters log ti — length parameters of Vtrop. In the mirror B-model the Calabi-Yau is

defined by the equation A(x, y) = uv. Then, in general, if the D3-brane is probing any

non-vertical 5-brane with the slope k there is a realization of W̃ given by the topological

string disk amplitude [49, 50]:

W̃(x) =
k

2
(log x)2 + c log x+

∑
α,β

Nα,β Li2

(
x−α

∏
i

t−βii

)
,

∣∣∣∣x−α∏
i

t−βii

∣∣∣∣ < 1 (3.14)

The parameter x plays the role of the modulus of the Lagrangian brane defining the bound-

ary condition for the disk. Where Nα,β are integers. This realization of W̃ corresponds

to the type IIB brane description B. The theory can be interpreted as a CS theory for a

non-dynamical vector multiplet associated to the global symmetry U(1)x with some num-

ber (possibly infinite) of chiral fields with masses given by linear combinations of log x as

well as log ti. The theory (3.12) is a particular example of such description (for the region

where x is sufficiently small).

Analogously, for any non-horizontal brane there is a description with a dynamical

U(1)z gauge field corresponding to the type IIB brane description A:

W̃(z;x) =
k′

2
(log z)2+c′ log z+

∑
α,β

N ′α,β Li2

(
z−α

∏
i

t−βii

)
+log z log x,

∣∣∣∣z−α∏
i

t−βii

∣∣∣∣ < 1.

(3.15)

Here log x plays the role of the FI parameter. For example, such description for the lower

semi-infinite leg in figure 13 gives (3.9).
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If we restore dependence on the compactification radius (see e.g. [51]) the contribution

from the chiral field has the following form:

1

R
Li2(e−RM ). (3.16)

If M > 0 this contribution is exponentially suppressed in the decompactification limit

R → ∞. Therefore in the 3d limit only quadratic terms survive in the representations of

type (3.14) or (3.15). This limit can be understood as the tropical limit because, as usual,

one can obtain the tropical curve Vtrop from the ordinary one V given by the equation

A(x, y) = 0 by variabeles (x, y) ∈ C∗×C∗ and all parameters ti ∈ C∗ in the form x = eRX ,

y = eRY , ti = eRTi and taking the limit R → +∞. In the tropical limit log y is a locally

linear function of log x which means that W̃(x) is locally quadratic, that is, corresponds to

CS theory in 3d. The similar situation happens when R is fixed but M →∞ for all chiral

fields. This happens at the ends of non-compact edges of Vtrop. This means that at singular

points of the curve V the theory admits purely CS description without chiral fields.

In the 3d limit the situation when the D3-brane is stretched between NS5’- and NS5-

branes which have the same horizontal position (i.e. log x) corresponds to unbroken U(1)z
gauge symmetry.

Theories constructed by brane models A and B (see figure 11) are related by mir-

ror symmetry, although in general one (or both) of the theories might not have a good

Lagrangian (with finite number of chiral multiplets). While mirror symmetry can be un-

derstood as S-duality of the brane model, S-transformation considered in section 2 can be

realized by S-duality and rotation of the brane web by π/2 (keeping other branes intact)

which in general produces an essentially different theory.

4 Prominent examples

Before describing particular examples let us first consider a general situation when the 3d

N = 2 theory T has Lagrangian description with a finite number of chiral fields and abelian

symmetries {U(1)ξ | ξ ∈ {x} ∪ {ti} ∪ {zj}} where U(1)x and U(1)ti are global symmetries

and U(1)zj are gauge symmetries. The scalar component of the twisted chiral field Σξ

corresponding to the U(1)ξ vector field is log ξ. Suppose the theory has chiral fields Q` with

the charges nξ,` w.r.t. U(1)ξ and complexified mass parameters nx,` log x +
∑

i nti,` log ti.

Then the effective twisted superpotential has the following form:

W̃(zi;x, ti) =
∑
`

Li2

(∏
ξ

ξ−nξ,`

)
+

1

2

∑
ξ,ξ̃

k
ξ,ξ̃

log ξ log ξ̃ (4.1)

The polynomial equations

y = ex
∂W̃
∂x

1 = e
zi
∂W̃
∂zi

(4.2)

define a curve V ′ ⊂ (C∗)s+2 where s is the number of U(1)zi gauge symmetries. Using

resultants one can always eliminate all zi and reduce (4.2) to an equation for two variables
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defining a plane curve V:

A(x, y) = 0. (4.3)

Geometrically this corresponds to the projection V ′ → V ⊂ (C∗)2. We will make the

following assumption (which holds in generic situation): this projection is a map of degree

1, i.e. it is almost everywhere injective and provides a birational equivalence between V ′
and V. Algebraically it corresponds to the fact that A(x, y) 6= (B(x, y))k for some k > 1

and a polynomial B(x, y). Then zi can be considered as (almost everywhere) single-valued

functions on the curve V. When the point p ∈ V goes along a closed cycle, zi(p) also makes

a closed cycle in C∗zi . The monodromies of W̃ then can be computed using the following

basics rules:
mon
γζ=0

log ζ = 2πi

mon
γζ=1

Li2(ζ) = 2πi log ζ
(4.4)

where γζ=ζ0 is a cycle with the winding number +1 around ζ0 in the complex plane

parametrized by ζ. The monodromy of the effective twisted superpotential has therefore

the following simple form:

mon
γ
W̃ = 2π2q0 + 2πi

∑
ξ

qξ log ξ, q0, qξ ∈ Z. (4.5)

Using that the dependence on the starting/ending point of the contour should be of the

form (1.13) it is easy to see that the monodromy of W̃ for any cycle has the form11 (1.33).

In the remainder of the section we consider several illustrative examples, for more examples

see appendix A.

4.1 Supersymmetric Chern-Simons theory

Consider N = 2 Chern-Simons theory with level k for the background U(1)x vector

multiplet:

W̃(x) =
k

2
(log x)2. (4.6)

The curve V is given by:

y = xk. (4.7)

The web in the type IIB brane model contains a single (1, k) brane. There is only one

non-trivial cycle on the curve, γ:

monγ W̃ = 2πik log x− 2π2k, c∗γ = (k, 1). (4.8)

The S-transformed theory is given by

W̃(z;x) =
k

2
(log z)2 + log z log x, (4.9)

which after extremization w.r.t. z is reduced to

W̃(z;x) = − 1

2k
(log x)2. (4.10)

Thus S-transformation of CS-theory effectively inverts CS level: k → −1/k (cf. [41]).

11We also assume that there is no trivial relation between zi’s of the form
∏
i z
`i
i ∝ x and therefore all

qzi must be zero.
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4.2 Theory T∆

Let us consider one chiral multiplet with charge +1 w.r.t. U(1)x and complexified mass

parameter log x and zero effective CS level (the bare CS level is −1/2):

W̃(x) = Li2(x−1). (4.11)

The curve is the following:

y = 1− x−1. (4.12)

In [5, 8, 33] this theory was considered as the one corresponding to a tetrahedron, so that

W̃(x) equals to its hyperbolic volume. The theory is well defined in the region |x| > 1 (in the

limit when the mass is very large Re log x → ∞ the chiral field decouples) corresponding

to the horizontal semi-infinite brane of the brane model shown on the left of figure 14.

Following the general discussion in section 3.3 there is a mirror description of the theory

shown on the right side of figure 14. The mirror theory is U(1) gauge theory with FI-

parameter log x and one massless charged chiral multiplet. It has the following effective

twisted superpotential (cf. [33]):

W̃(x; z) = −Li2(z) + log z log x = Li2(z−1) +
1

2
(log z)2 + log z log x (4.13)

where for the sake of simplicity we suppressed linear and constant terms. Comparing (4.13)

and (4.11) one can see that the mirror descriptions are related by ST -transformation [5, 33].

This corresponds to the fact that the brane web (see figure 14) of this particular theory is

invariant under ST ∈ SL(2,Z) transform in the plane R2
79 parametrized by (log |x|, log |y|).

On the quantum level this relation corresponds to the following identity [7]:

(q−1)−1
∞ IT∆S1×D(x) =

∫
dz

z

θ(−q1/2x; q)

θ(−q1/2xz; q)
IT∆
S1×D(z) (4.14)

where

IT∆
S1×D(x) = (qx−1; q)∞, (ξ; q)∞ :=

∞∏
i=0

(1− ξqi) (4.15)

is the “half-index” for the theory T∆. The right hand side of (4.14) is given by the compo-

sition of T and S transformations considered in section 2.3 (up to rescalings).

The curve of the theory has two independent cycles associated to the horizontal and

vertical semi-infinite branes:

monγ1 W̃ = 0, c∗γ1 = (0, 1),

monγ2 W̃ = −2πi log x, c∗γ2 = (1, 0).
(4.16)

Let us note that the electron of U(1)z is the monopole of U(1)x and vice versa. It is easy to

see that the masses of particles corresponding to γ1,2 are indeed given by |monγ1,2 W̃/2πi|.
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Figure 14. Different descriptions of the theory T∆. The fundamental string stretched between D3

and D5 corresponds to the chiral field neutral in the first case and charged in the second case. For

the first case log x plays the role of a mass parameter, in the second case log x is the FI parameter.

4.3 N = 2 SQED and XYZ theory

Let us consider the theory introduced in section 3.3 with Nf = N ′f = 1, namely SQED

with two chiral fields with charges 1 and −1 and mass m:

W̃(z;x,m) = Li2(ze−m)− Li2(zem)−m log z + log x log z. (4.17)

The curve is given by:

x(1− yem) = (em − y). (4.18)

Or, equivalently:

y(1− xem) = (em − x). (4.19)

From this representation one can see that the theory is equivalent to one of the form (3.12)

and has an alternative description without a dynamical vector field:

W̃(x,m) = Li2(xem)− Li2(xe−m) +m log x. (4.20)

There are 4 independent cycles on the curve:

monγ1 W̃ = 2πim, c∗γ1 = (0, 1),

monγ2 W̃ = 2πim, c∗γ2 = (0,−1),

monγ3 W̃ = 2πi log x+ 2πim, c∗γ3 = (1, 0),

monγ4 W̃ = −2πi log x+ 2πim, c∗γ4 = (−1, 0),

(4.21)

where γ1,2 and γ3,4 are associated to the horizontal and the vertical legs of the brane web

(see figure 15), respectively.

One can also construct a curve using x̃ := em as a distinguished C∗ parameter (and

treating m̃ =: log x as a modulus of the curve):

ỹ(1− x̃em̃)(1− x̃e−m̃) = −x̃−1(1− x̃2)2. (4.22)

This indicates that the theory has description of the form (3.12):

W̃(x̃, m̃) = Li2(x̃em̃) + Li2(x̃e−m̃)− 2 Li2(x̃)− 2 Li2(−x̃)− 1

2
(log(−x̃))2

= Li2(x̃em̃) + Li2(x̃e−m̃)− Li2(x̃2)− 1

2
(log(−x̃))2 (4.23)
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Figure 15. The left picture is provides a natural brane description of SQED (with two charged chi-

ral fields corresponding to two horizontal semi-infinite D5-branes) if we treat log x as the horizontal

coordinate and m as a parameter of the brane web. The right picture provides a natural brane

description of XYZ model if we interpret log x̃ = m as the horizontal coordinate. Three vertical

branes correspond to three chiral fields charged w.r.t. U(1)x̃. The upper semi-infinite brane can be

considered as a bound state of 4 D5-branes.

which is W̃ for XYZ model [33]. We used the following peculiar identity:

2 Li2(x̃) + 2 Li2(−x̃) = Li2(x̃2) (4.24)

which can be understood as equivalence of a combination of 4 chiral fields to a single chiral

field. In the brane model it corresponds to combining 4 branes into one (see figure 15). It

is easy to see that (4.20) agrees with (4.23) since (4.20) is defined up to a function of m

and (4.23) is defined up to a function of m̃.

4.4 CP1 model

Consider SQED with two chiral fields with charge +1 and masses ±m:

W̃(z;x) =
1

2
(log z)2 +

1

2
m2 + log(−x) log z + Li2(z−1em) + Li2(z−1e−m) (4.25)

The curve V is given by the following equation:

− x(1− ye−m)(1− yem) = y. (4.26)

In general for a given x there are two possible values of y corresponding to two differ-

ent vacua.

The curve has 4 independent cycles associated to the external legs of the brane web.

See figure 16:

monγ1 W̃ = 2πim, c∗γ1 = (0, 1),

monγ2 W̃ = −2πim, c∗γ2 = (0, 1),

monγ3 W̃ = −2πi log x, c∗γ3 = (−1, 1),

monγ4 W̃ = 2πi log x, c∗γ4 = (1, 1).

(4.27)

There is no simple Lagrangian description of the mirror theory.12 However (in accor-

dance with the general discussion in section 3.3) there is a description with infinite number

12Here, as in the rest of the paper, we understand mirror symmetry as described in the section 3.3, that

is duality between theories with and without U(1) gauge symmetry corresponding to the S-duality acting

on the type IIB brane construction. It differs from the mirror symmetry of CP1 models considered in [7].

– 30 –



J
H
E
P
0
5
(
2
0
1
4
)
0
4
7

�

��

��

��

Figure 16. The brane web description of SQED with two charged chiral fields corresponding to

two horizontal semi-infinite D5-branes (cf. [44]).

of chiral multiplets. For the D3-brane probing upper (lower) semi-infinite horizontal 5-

brane we have

W̃(x) = ±m log x±
∑
k,j>0

Nk,j Li2(x−ke−2jm), Nk,j ∈ Z≥0 (4.28)

up to a function of m.

5 Duality between 3d N = 2 theories via integrable models

Motivated by the relation [8, 32] to similar structures in SL(2,C) Chern-Simons theory [52–

54], it was recently emphasized that a convenient and useful way to describe the super-

symmetric partition functions (1.2) is by writing q-difference recursion relations that they

satisfy. Such recursion relations can be written in the operator form [5, 7, 33]:

Â(x̂, ŷ; q)Z(T ; q, x) = 0 (5.1)

and interpreted as Ward identities for Wilson and ’t Hooft lines in 4d gauge theory coupled

to the 3d N = 2 theory T . Specifically, at the level of partition functions (1.2), incorpo-

rating Wilson and ’t Hooft line operators is described by operators x̂ and ŷ, respectively:

Z(T + Wilson; q, x) = x̂Z(T ; q, x) = xZ(T ; q, x) , (5.2)

Z(T + ’t Hooft; q, x) = ŷZ(T ; q, x) = Z(T ; q, qx) , (5.3)

which in the equivariant setting (a.k.a. non-trivial Ω-background) generate a non-

commutative algebra [20],

ŷx̂ = qx̂ŷ . (5.4)

Therefore, Ward identities for line operators in a coupled 3d-4d system can be represented

by (polynomial) equations in x̂ and ŷ, similar to (1.6). In fact, in the limit q → 1 these

equations describe the same algebraic variety V that played a key role in this paper, and that

in the simplest case of n = 1 symmetry group U(1)x is just an algebraic curve (1.7). Put

differently, the operator equation (5.1) is a “quantum version” of the algebraic curve (1.7)

associated to a 3d N = 2 theory T .
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The discussion in this section is based on the following observation.13 The quantum

algebraic curves (5.1) of 3d N = 2 theories have the same general form as the Baxter

equation of trigonometric (sometimes also called hyperbolic) integrable systems, such as

the XXZ spin chain or the trigonometric case of the Ruijsenaars model. Therefore, to

every such integrable system we can associate a 3d N = 2 theory There with a distinguished

flavor symmetry U(1)x, such that the Ward identity for line operators in the 3d theory

There is identical to the Baxter equation of the corresponding integrable system:

Integrable System 3d N = 2 theory There

Baxter equation
Ward identity

for line operators

spectral curve A(x, y) = 0 SUSY parameter space V
Quantization Ω-deformation in

q = e~ 3d space-time S1 ×q R2

(5.5)

5.1 Does S stand for “spectral”?

We call this theory There to distinguish it from another 3d N = 2 theory TNS associated to

the same type of integrable system via Nekrasov-Shatashvili duality [51]:

TNS
Nekrasov-Shatashvili←−−−−−−−−−−−−− Integrable

System

Baxter equation as Ward−−−−−−−−−−−−−−−→
identity for line operators

There

Curiously, the two 3d N = 2 theories There and TNS associated to the same integrable

system in general are not the same, as we explain in more detail below.14 Therefore, a

relation between the left-hand side and the right-hand side of this diagram can be viewed

as a non-trivial map between 3d N = 2 theories, which goes via integrable systems in

the middle.

In what follows, we refer to this map between There and TNS as a 3d spectral duality since

the spectral curve V is one of the main ingredients that provides the link. Even though this

name is chosen by analogy with the spectral duality between integrable models [56–63] —

which is also based on identification of spectral curves and whose origin goes back to mirror

symmetry [64] and Langlands duality [65] — it is not clear whether 3d spectral duality

discussed here actually has anything to do with the spectral duality in loc. cit. There

are some hints suggesting that such a relation might exist. For instance, the Langlands

duality that plays a key role in [65] in physics framework corresponds to the S-duality

of the 4d gauge theory [66]. Similarly, we find that the relation between the effective

twisted superpotential of 3d theories There and TNS involves the S-transformation of 3d

13which already played some role in the existent literature [55], albeit in a different context.
14For instance, one of the basic reasons is that the quantization parameter q = e~ in the present approach

comes from the Ω-deformation along the 3d space-time S1 ×q R2 of the N = 2 theory There, whereas in the

Nekrasov-Shatashvili duality ~ = madj is the mass of the adjoint matter multiplet, and no Ω-deformation

is required [51]. This will be discussed in more details below.
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Figure 17. Two rays depicting 3d theories There and TNS supported on two different subspaces of

the five-dimensional space-time S1 × R2
~ × R2, where 5d theory with the Seiberg-Witten curve V

lives. This brane interpretation makes it clear that V plays the role of the SUSY parameter space

for both 3d theories.

N = 2 theories

W̃NS(z; ζ) = W̃here(z) + log ζ log z . (5.6)

To be a little more precise, the Nekrasov-Shatashvili duality relates a 3d N = 2 theory

TNS with a fixed rank of the gauge group to a particular “sector” of the corresponding

integrable model. For instance, in the case of the XXZ spin chain (to be discussed below)

fixing the rank N of the gauge group of the theory TNS corresponds to fixing the total

number of excitations — “magnons” — in the XXZ spin chain. The spectral curve V, on

the other hand, as well as its quantum version (5.1) do not depend on this choice of sector.

Therefore, we conclude that the 3d N = 2 theory There defined by the dictionary (5.5)

can only be dual to a particular version of the theory TNS, viz. the most elementary version

(e.g. with N = 1, or a single magnon) that we call T magnon
NS . Based on this observation

and (5.6) we, therefore, propose that 3d spectral duality relates 3d N = 2 theory There to

the basic version of the Nekrasov-Shatashvili theory, T magnon
NS :

3d theory T magnon
NS

S-transformation←−−−−−−−−−−−−−−→ 3d theory There (5.7)

In what follows we justify this proposal and provide evidence to (5.6) by considering con-

crete examples. Meanwhile, we point out that, in the brane construction of section 3,

the 3d spectral duality (5.7) corresponds to a rotation of the D3-brane / M2-brane by a

90-degree angle,15 see figure 17.

The simple relation by the S-transformation (5.6) between W̃here and W̃NS in the

abelian case (and in the limit q → 1) is not unexpected since the brane model for TNS

considered in [67] is essentially the same (up to a rotation of the NS5′-brane by π
2 ) as the

brane model for There described in section 3.3. Further evidence for the interpretation of

There and TNS as effective world-volume theories on “orthogonal” surface operators in 5d

has already been mentioned in the footnote 14: in the framework of [51] the quantization

15We thank N. Nekrasov for useful discussions on this point.
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parameter ~ = log q is identified with the equivariant parameter of the Ω-background in the

plane orthogonal to the 3d space-time of the theory TNS, whereas in the present framework

~ = log q is the equivariant parameter of the Ω-background along the 3d space-time of the

theory There.

For surface operators associated to knots [32], this agrees with the interpretation of

the quantization parameter q that turns classical (super) A-polynomial curves into quan-

tum operators that annihilate polynomial and homological knot invariants, see e.g. [34,

section 4] for a detailed discussion and comparison with the Nekrasov-Shatashvili limit.

Three-dimensional N = 2 theories on such surface operators associated to knots will be

the subject of section 6.

Since turning on the Ω-background of the form (~, 0) corresonds to quantum deforma-

tion of the classical curve to the Baxter equation with parameter q = e~, one expects that

introducing the general Ω-background (ε1, ε2) will trigger one-parameter refinement of the

Baxter equation. It would be interesting to investigate this direction further.

5.2 XXZ magnet and sinh-Gordon model

In order to keep our discussion concrete and explicit, let us illustrate how 3d spectral

duality (5.7) works in a large class of examples with Baxter equations of the form:

A(x)Q(qx) +D(x)Q(xq−1) = T (x)Q(x) (5.8)

where A(x), D(x), and T (x) are some polynomials in x. In these models, log x is the “true”

spectral parameter. Clearly, the Baxter equation (5.8) can be written in the operator

form (5.1)–(5.4) with

Â(x̂, ŷ; q) = A(x)ŷ − T (x) +D(x)ŷ−1 (5.9)

and in the limit q → 1 leads to the classical spectral curve V defined by the equation:

A(x)y − T (x) +D(x)y−1 = 0 . (5.10)

This class of examples includes sl(2) XXZ spin chain16 [51, 68–70], its modular version

considered in [71], the lattice version of the sinh-Gordon model, and other trigonometric

/ hyperbolic integrable systems. Thus, for the sl(2) Heisenberg XXZ model of length L

both A(x) and D(x) are polynomials of degree L:

A(x) =
L∏
j=1

(xemj/2 − e−mj/2) , (5.11)

D(x) =

L∏
j=1

(xe−m̃j/2 − em̃j/2) (5.12)

and T (x) is an eigenvalue of the transfer matrix T̂ (x). Further specialization to

mj = m̃j = −2πbσ j = 1, . . . , L (5.13)

16Generalization to sl(n) spin chains involves Baxter equations of y-degree n.
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Qi=1,...,L Q̃i=1,...,L Φ

U(N)gauge � � adj

U(1)q −1
2 −1

2 +1

Table 1. Spectrum of the 3d N = 2 theory TNS for the XXZ spin chain of length L.

gives a modular XXZ magnet studied in [71], and a similar specialization to

D(x) = A(x−1) =
(
q

1
4x

1
2 + e−2πbsq−

1
4x−

1
2

)L
(5.14)

gives the lattice sinh-Gordon model with L sites. Here,17 q = e2iπb2 and the parameter

σ := s+ iQ
2 (where Q = b+b−1) determines the q-Casimir of the spin-s principal series rep-

resentation of Uq(sl2). This XXZ magnet is called modular [71] since it enjoys a remarkable

b→ b−1 duality.

Now, let us consider 3d N = 2 theories TNS and There associated to these integrable

systems. Thus, the N -magnon sector of the sl(2) XXZ spin chain of length L is dual — via

the Nekrasov-Shatashvili duality [51] — to the U(N) gauge theory with one adjoint matter

multiplet Φ, L chiral multiplets Qi in the fundamental representation of the gauge group,

and L chiral multiplets Q̃i in the anti-fundamental representation, see table 1. We denote

the mass parameters of these matter multiplets by mi, m̃i, and madj, respectively. Upon

compactification on a circle, one finds effective 2d theory with the twisted superpotential

W̃NS that depends on these mass parameters and the v.e.v.’s σa of the scalar components

in the vector multiplet. As explained in [51], extremization of W̃NS with respect to σa leads

to Bethe equations of the corresponding integrable system. For instance, starting with the

3d N = 2 theory in table 1 one finds Bethe equations of the sl(2) Heisenberg XXZ model

of length L with N magnons.

In our present discussion, in particular in the relation (5.7), we are mostly interested

in the spectral curve (1.7) and its quantization, i.e. the Baxter equation (5.1), which for

the XXZ model in hand have the form (5.8) and (5.10), respectively. The way the Baxter

equation arises from the theory TNS is a little indirect and goes via Bethe equations.

Indeed, one can show that the latter are equivalent to the statement that a polynomial

Q(x) =
∏N
a=1(x − eσa) obeys a q-difference equation (5.8) with A(x) and D(x) given

by (5.11)–(5.12) and

~ = log q = madj (5.15)

The theory TNS was interpreted in [67, 72] as a theory on a surface operator supported on

S1 × R2 in 5d N = 2 gauge theory on S1 × R2
~ × R2, where ~ = log q is the parameter

of the Nekrasov-Shatashvili background [73]. In TNS it plays the role of the twisted mass

for the axial U(1)q symmetry under which Φ has charge +1 and all (anti-)fundamental

multiplets have charge −1
2 , see table 1. This U(1)q symmetry is a rotation symmetry in

17The definition of q here differs from the definition in [71] by qhere = q2
TB.
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φ1 φ2 φ3 φ4 parameter

U(1)gauge 1 1 −1 −1 z

U(1)axial 1 1 1 1 ξ

U(1)t1 1 −1 0 0 t̃1

U(1)t2 0 0 1 −1 t̃2

Table 2. Spectrum of the 3d N = 2 theory There for the modular XXZ magnet of length L = 1.

the two dimensional space orthogonal to the world-volume S1×R2 of the 3d N = 2 gauge

theory TNS.

On the other hand, for the 3d N = 2 theory There defined by the rules (5.5) the

quantum parameter q is the equivariant parameter associated with the rotation symmetry

along the two dimensions of the three-dimensional space-time (where the theory There lives).

Therefore, we interpret There as a theory on the “orthogonal” surface operator supported

on S1×qR2 in the same 5d gauge theory. Indeed, via M-theory lift [39, 40] 5d gauge theory

on a circle is represented by M5-brane wrapped on the curve A(x, y) = 0. In this setup,

described in section 3.1, the surface operator is represented by a M2-brane [18–20] ending

at a point on the curve A(x, y) = 0.

To summarize, we list the similarities and differences between the 3d N = 2 theories

There and TNS associated to the same integrable system:

• relation to integrable systems requires compactifying both theories TNS and There on

a circle;

• extremization of the effective twisted superpotential most directly leads to Bethe

equations in the case of TNS, and to the spectral curve / Baxter equation in the case

of There;

• closely related to the previous point, the theory TNS depends on N , whereas There

does not;

• the quantum parameter ~ = log q is related to the equivariant parameter along the

3d space-time of the theory There, while in TNS it is identified with the mass of the

adjoint multiplet Φ.

In order to illustrate further the difference between the theories There and TNS, let us

now discuss the theory There that, via the rules (5.5), corresponds to the modular XXZ

magnet. In other words, There is a 3d N = 2 theory for which line operators obey a Ward

identity (5.1) identical to the Baxter equation (5.8) with (5.11)–(5.12) and (5.13). For

simplicity, let us consider the basic case of L = 1. In this case, the theory There can be

described as N = 2 SQED with 2 chiral multiplets of charge +1 and masses − log ξ± log t̃1
and 2 chiral multiplets of charge −1 and masses − log ξ ± log t̃2, see table 2. It is clear

that the spectrum of this theory is quite different from that of theory TNS summarized in
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table 1. The effective twisted superpotential W̃here for the theory in table 2 has the form

W̃here(z, x) = Li2(zξ−1t̃2) + Li2(zξ−1t̃−1
2 )

−Li2(zξt̃1)− Li2(zξt̃−1
1 ) + log x log z − 2 log z log ξ (5.16)

where log x plays the role of the FI parameter. Extremizing with respect to z, which

corresponds to the dynamical gauge symmetry of the theory There, one can check that the

space of SUSY parameters V is precisely the spectral curve (5.10) of the modular XXZ

magnet with πbσ = − log ξ and

T (x) = t1x− t2 , t̃i =
ti +

√
t2i − 4

2
. (5.17)

On the quantum level, the partition function of the theory on S1 ×q D is given by

ZThere

S1×qD =

∫
dz

z

θ(z; q)θ2(xξ; q)

θ(xz; q)θ(x; q)θ2(ξ; q)

(qxξ−1t̃2; q)∞(qxξ−1t̃2
−1

; q)∞

(xξt̃1; q)∞(xξt̃1
−1

; q)∞
(5.18)

and satisfies the Baxter equation (5.8).18 The field content of There can be easily read off

from this expression [7].

Let us note that the theory There can in principle be constructed from the curve (5.10)

for any given polynomial T (x). From the viewpoint of TNS the polynomial T (x) is a priori

unknown and should be determined. In particular it depends on the choice the gauge

group of TNS. In the simplest case N = 0, which corresponds to the vacuum since N is the

number of magnons, we have Q(x) = const and T (x) can be determined from the following

condition [67]:

A(x) +D(x)− T (x) = 0 . (5.22)

The same condition can be obtained in the limit q → 1 for general rank of the gauge group

— and, in particular, for U(1) — of TNS assuming it is kept finite, i.e. Q(x) is a polyno-

mial of finite degree. From the condition (5.22) it follows that the spectral curve (5.23)

is degenerate:19

A(x, y) = (1− 1/y)(A(x)y −D(x)) = 0. (5.23)

18When the partition function on S1 ×q D has the form

Z(x) =

∫
dz

z

θ(z)θ(x)

θ(xz)
ZS

−1

(z), (5.19)

i.e. is obtained by the S-transformation (2.20) from ZS
−1

, the Ward identity

Â(x̂, ŷ)Z(x) :=
∑
m,n

Amnx̂
mŷnZ(x) = 0 (5.20)

can be rewritten as a Ward identity on ZS
−1

:∑
m,n

Amnŷ
−mx̂nZS

−1

(x) = 0. (5.21)

19In order to obtain a non-degenerate curve one has to consider ’t Hooft-like limit for the rank of the

gauge group [67].
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The theory There associated to the reduced curve

y =
D(x)

A(x)
=

L∏
j=1

xe−m̃j/2 − em̃j/2
xemj/2 − e−mj/2 (5.24)

contains L chiral multiplets with charges +1 with respect to the global symmetry U(1)x and

L chiral multiplets with charges −1. The corresponding effective twisted superpotential

looks like

W̃here(x) =

L∑
j=1

[
Li2(x−1em̃j )− Li2(x−1e−mj )

]
− 1

2
log x

∑
j

(mj + m̃j) . (5.25)

The effective twisted superpotential of TNS with the gauge group U(1)z and non-zero FI pa-

rameter log ζ is related to it by the S-transformation (5.6), up to a z-independent constant.

There is no non-trivial contribution from the adjoint chiral multiplet in the abelian case.

Then, extremization of W̃NS(z; ζ) with respect to z leads to Bethe equations in the

case of a single Bethe root:

ζ

L∏
j=1

ze−m̃j/2 − em̃j/2
zemj/2 − e−mj/2 = 1 . (5.26)

5.3 Trigonometric Ruijsenaars-Schneider system

The spectral curve of the trigonometric Ruijsenaars-Schneider system [74, 75] (see also [27,

76] for appearance in the context of perturbative 5d Seiberg-Witten theory with adjoint

matter) has the following form:

y =

L∏
i=1

1− xe−mi
1− xe−mit . (5.27)

The corresponding 3d theory There is of type (3.12) and contains L chiral multiplets of

charge +1 w.r.t. U(1)x and mass parameters mi and L chiral multiplets of charge −1 and

mass parameters mi − log t. On the quantum level (5.27) corresponds to the following

difference equation:

Q(qx) =
L∏
i=1

1− xe−mi
1− xe−mitQ(x). (5.28)

It has the following simple solution:

Q(x) =
L∏
i=1

(xe−mit; q)∞
(xe−mi ; q)∞

, (5.29)

given by an eigenvalue of the Baxter operator Q̌(x) acting on space of symmetric polyno-

mials in variables {e−mi} constructed in [77]. The eigenfunctions are given by Macdonald

polynomials Pλ(e−mi ; q, t) [78]. From the point of view of There, (5.29) is the partition

function on S1 ×q D.
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6 Periods of (super) A-polynomial curves

In our study of domain walls and line operators, the central role is played by the complex

Lagrangian submanifold V that we associate to a 3d N = 2 theory T . As we explained

earlier, V has a simple interpretation as the space of SUSY parameters (FI terms and

twisted masses) of the theory T on a finite radius circle, and its ambient space (1.8) can be

identified with the moduli space of 4d N = 4 gauge theory on the half-space S1
t ×R2×R+

coupled to the 3d theory T on the boundary.

Away from the boundary, this four-dimensional gauge theory is simply a 4d N = 4

gauge theory compactified on a circle. Its physics is described by the effective 3d sigma-

model, whose target space is the moduli space of (stable) Higgs bundles [9–11], the so-called

Hitchin moduli space,

M4d = MH(G,C) ∼= Mflat(GC, C) , (6.1)

where in the last relation we used a well know fact that, in one of its complex structures, the

Hitchin moduli space can be identified with the moduli space of flat connections on the Rie-

mann surface C for the complexified gauge group GC. Recently, this interpretation of the

moduli spaceM4d played an important role in the gauge theory approach to the geometric

Langlands program [20, 66], knot homologies [79, 80], and wall crossing phenomena [81].

In our applications, using (6.1) we can write

V ⊂ MH(G,C) ∼= Mflat(GC, C) , (6.2)

where C is a genus-1 Riemann surface and G is a group of rank n (typically, abelian).

Moreover, for simplicity and concreteness we often focus on the case n = 1, relevant to

G = U(1) or G = SU(2). (The latter choice requires to include in (1.1) a quotient by

Z2, the Weyl group of G = SU(2) or GC = SL(2,C).) Then, for suitable 3d N = 2

theories, (6.2) can be identified with the moduli space of classical solutions in SL(2,C)

Chern-Simons theory on a 3-manifold M with a toral boundary C = ∂M = T 2, which in

general is also a complex Lagrangian submanifold of Mflat(GC, C). In particular, when

M = S3 \ K is a complement of a knot K in a 3-sphere, the variety V is the zero locus

of the so-called A-polynomial [82] that determines the full quantum partition function of

SL(2,C) Chern-Simons theory with a Wilson line supported on K [52, 53].

Based on this interpretation of V, it was conjectured [32] that every knot K (or, more

generally, every 3-manifold with boundary) has a dual 3d N = 2 theory TK ,

knot K  3d N = 2 theory TK  SUSY parameter space V (6.3)

such that its SUSY parameter space V can be identified with the moduli space of flat GC
connections on M = S3 \ K, twisted superpotential W̃ with the classical Chern-Simons

action [8], the supersymmetric partition functions (1.2) with variants of the complex Chern-

Simons partition functions on M , etc. See [33] for a more complete dictionary. The 3d

N = 2 theory TK assigned to a knot K can also be thought of as the effective theory

obtained by reduction of the six-dimensional (2, 0) theory of An type on M .
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In the terminology of [20, 66], one can say that (6.2) defines an (A,B,A) brane sup-

ported on a submanifold V in the Hitchin moduli space MH(G,C). Recently, it was

realized that this (A,B,A) brane and the setup (6.2) admit a 2-parameter family of de-

formations (parametrized by complex variables a and t) related to categorification of knot

invariants [83, 84],

knot K  (a, t)-deformation of V ⊂MH(G,C)  colored HOMFLY homology

where the (a, t)-deformation of the space V also can be interpreted as the moduli space of

SUSY parameters in a 3d N = 2 theory TK associated to a knot K in a canonical way.20

In this section, our goal is to apply the results and lessons we learnt earlier to 3d

N = 2 theories TK and moduli spaces V associated to knots. With some abuse of no-

tations, we denote these by TK and V even when we consider them in a more general,

“homological” context that incorporates the (a, t)-deformation of the moduli spaces (6.2).

In particular, for such a theory the corresponding curve (1.7) is given by the zero locus of

the super-A-polynomial,

V : Asuper(x, y; a, t) = 0 , (6.4)

whose explicit form is known for many knots [83, 84, 86].

Mathematically, the problem of computing periods of the 1-form log y dxx on the super-

A-polynomial curve (6.4) is equivalent to a similar computation of masses of BPS states in

5d N = 2 gauge theory on R4 × S1. On the one hand, such theories can be geometrically

engineered via M-theory compactifications on toric Calabi-Yau 3-folds [26, 28], which allows

to identify their Seiberg-Witten curves with the geometry of mirror Calabi-Yau manifolds:

A(x, y; {ti}) = 0 , (6.5)

where A is polynomial in x, y and in the complex structure parameters ti. For a curve V of

this form, the mirror map (between the complex moduli of V and the Kähler parameters of

the Calabi-Yau 3-fold associated to the toric diagram Vtrop) is trivial. Therefore, one can

borrow many results and powerful methods on period computations, including the Picard-

Fuchs equations etc., and in the end specialize to particular values of moduli ti that make

the 5d Seiberg-Witten curve identical to the super-A-polynomial curve (6.4). Put differ-

ently, super-A-polynomial curves (6.4) can be viewed as special cases of 5d Seiberg-Witten

curves (or mirror curves in the geometric engineering of such theories) with parameters

{ti} = {a, t}.
In a different direction, many 5d N = 2 gauge theories correspond to relativistic or

trigonometric integrable systems [27, 68, 69, 76, 87]. This duality identifies the Seiberg-

Witten curves of 5d theories with spectral curves of the corresponding integrable models

and is consistent with our earlier discussion, where the same curve V was also identified

with the space of SUSY parameters on a surface operator in 5d theory.

Returning to 3d N = 2 theories TK associated to knots as in (6.3), the effective twisted

superpotential is expected [83] to be of the form (4.1). As was previously noted, in such

20See also [31, 34] for earlier developments and [85] for a pedagogical introduction.
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cases all periods have the form (1.33), namely for any cycle γ ∈ H1(V):

∆γW̃(x) =

∫
γ

log y d log x = 2π2cγ + 2πi
∑
i

qγ,i log ti + 2πinγ log x, qγ,i, nγ , cγ ∈ Z

(6.6)

For a given γ, one can make a choice of “polarization,” i.e.(
log ỹγ
log x̃γ

)
= Mγ

(
log y

log x

)
, Mγ ∈ SL(2,Z) (6.7)

such that the period∫
γ

log ỹγ d log x̃γ = 2π2c̃γ + 2πi
∑
i

qγ,i log ti, qγ,i, cγ ∈ Z (6.8)

does not depend on the position of the beginning / end-point of the contour.

The fact that there are no non-trivial periods of the form (1.38) is related to the

condition that the curve is quantizable [88]. From (1.33) one can deduce that for the curve

to be quantizable it is necessary that

ti = ±q`i , `i ∈ Z (6.9)

where q = e~. If the first and the third terms in (1.38) are non-zero, then in general

the quantization condition is not satisfied for these periods. However, when (1.39) holds,

the conditions (6.9) are also sufficient for quantizability of the curve V. Among other

things, this explains the observations [34, 83] that super-A-polynomial curves (6.4) seem

to be quantizable when the refinement parameter t is equal to q` for some integer ` ∈ Z.

This also gives evidence to the conjecture [31] that t = −1 specializations of (6.4) provide

infinitely many mirrors of the resolved conifold with the Kähler parameter log a. Indeed,

eq. (6.8) tells us that all periods are proportional to log a.

6.1 Trefoil knot

The simplest non-trivial example of the theory TK is a 3d N = 2 theory (6.3) associated

to the trefoil knot. It is a U(1) gauge theory with the effective twisted superpotential [83]:

W̃(z;x) = −π2/6 + (log z + log a) log x+ 2 log t log z+

Li2(x/z)− Li2(x) + Li2(−at)− Li2(−atz) + Li2(z) (6.10)

that leads to a genus-1 curve (6.4) defined by the zero locus of the super-A-polynomial:

Asuper(x, y; a, t) = c0 + c1y + c2y
2 . (6.11)

In other words, the super-A-polynomial of the trefoil knot is a quadratic polynomial in y,

whose coefficients are polynomial expressions in x, a, and t:

c0 = a2t4(x− 1)x3

c1 = −a
(
1− t2x+ 2t2(1 + at)x2 + at5x3 + a2t6x4

)
c2 = 1 + at3x
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From (6.11) it is easy to see that the curve Asuper(x, y; a, t) = 0 can be identified with the

Seiberg-Witten curve of 5d N = 2 gauge theory with gauge group G = U(4) and Nf = 2

fundamental matter multiplets [27]:21

α(x− em1)y + β
x3(x− em2)

y
= P (x) =

4∏
j=1

(x− eaj ) (6.12)

= x4 + u1x
3 + u2x

2 + u3x+ u4

provided we identify

em1 = −at−3

em2 = 1

u1 = a−1t−1

u2 = 2a−2t−4(1 + at)

u3 = −a−2t−4

u4 = a−2t−6

The tropical limit of the curve Asuper(x, y; a, t) = 0 is shown in figure 18. The graph

has one face which becomes degenerate in the tropical limit (i.e. has zero area). This face

is bounded by two vertical edges of multiplicity two. And the fact that it has vanishing

area corresponds to the fact that there are no non-trivial periods of the form (1.38). Using

the basic rules (4.4) one can compute periods for a set of cycles that form a basis in H1(V):

monγ1 W̃ = −2πi log x− 2πi log a− 6πi log(−t), c∗γ1 = (−1, 0),

monγ2 W̃ = 6πi log x+ 2πi log a+ 8πi log(−t), c∗γ2 = (3, 1),

monγ3 W̃ = 2πi log a, c∗γ3 = (0, 1),

monγ4 W̃ = 2πi log x, c∗γ4 = (1, 0),

monγ5 W̃ = −2πi log a− 4πi log(−t), c∗γ5 = (0, 1),

monγ6 W̃ = 6πi log x+ 4πi log a+ 6πi log(−t), c∗γ6 = (3, 1),

monγ7 W̃ = −4πi log x− 2πi log a− 6πi log(−t), c∗γ7 = (−2, 0),

monγ8 W̃ = −2πi log a− 2πi log(−t), c∗γ8 = (0, 0)

(6.13)

To be more specific, the cycles γ1, . . . , γ6 are associated to external legs, the cycle γ7 is

associated to one of the finite vertical edges and the cycle γ8 is associated to the degener-

ate face.

6.2 Figure-eight knot

The non-deformed A-polynomial for the figure-eight knot (see e.g. [52, 82]):

A(x, y) = (y2 + 1)x2 − y(1− x− 2x2 − x3 + x4) (6.14)

21There are many equivalent ways to write this curve, e.g. introducing x = eλ and making a simple

change of variables it can be brought to a typical “trigonometric form”

y sinh
λ−m1

2
+ Λ2 sinh λ−m2

2

y
=

4∏
j=1

sinh
λ− aj

2
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Figure 18. The tropical limit of the curve for the trefoil knot. The thick vertical part in the middle

consists of two edges of multiplicity two coinciding in the tropical limit.

leads to a curve (1.7) of genus one. It is a specialization of (6.4) at a = 1 and t = −1,

which already is rich enough and interesting enough. The corresponding theory TK has

the following effective twisted superpotential [83]:

W̃ = −Li2(xz) + Li2(x/z)− log x log z . (6.15)

There are a total of six independent cycles with the following periods and charges:

monγ1 W̃ = 4πi log x− 4π2, c∗γ1 = (2, 1),

monγ2 W̃ = −4πi log x+ 4π2, c∗γ2 = (−2, 1),

monγ3 W̃ = 4πi log x− 4π2, c∗γ3 = (2,−1),

monγ4 W̃ = −4πi log x+ 4π2, c∗γ4 = (−2,−1),

monγ5 W̃ = 2πi log x, c∗γ5 = (1, 0),

monγ6 W̃ = −4π2, c∗γ6 = (0, 1),

(6.16)

where the cycles γ1, . . . , γ4 are associated to the tentacles of the amoeba.

Following [89], we note that after a rational change of variables the elliptic curve

A(x, y) = 0 in this example can be written in the standard Weierstrass form

y2 = 4x3 − g2x− g3 (6.17)

with g2 = x
12 and g3 = −161

216 . The same trick can be used to bring A-polynomial curves

for many other knots, including 935, 948, and 10139 discussed in [89], into the Weierstrass

form. It is important to keep in mind, though, that the rational change of variables which

does that in general transforms log y dxx into some other (less canonical) 1-form. Therefore,

even though (6.17) is reminiscent to the form of the Seiberg-Witten curve in SU(2) gauge

theory, the computation of periods that arise from application to knots are rather different

to computation of the periods of the Seiberg-Witten differential.

6.3 “Incompressible operators”

We conclude this section by extending the dictionary [33] of 3d/3d duality to include

incompressible surfaces, which play an important role in low-dimensional topology [90],

but so far managed to escape attention of physicists.
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3d
4dM

(  )(  )a b

Figure 19. Incompressible surface (a) in a 3-manifold M via 3d/3d duality corresponds to (b) a

line operator in 4d gauge theory that ends at a local operator in the corresponding 3d boundary

theory TM .

In fact, the discussion of incompressible surfaces is unavoidable in the present context

where the algebraic curve A(x, y) = 0 plays a central role. Indeed, on the one hand, this

curve contains a great deal of information about the spectrum of incompressible surfaces

in a 3-manifold M [82]. And, on the other hand, as we explained in section 1, the same

algebraic curve — interpreted via 3d/3d duality as a space of SUSY parameters — encodes

the spectrum of line operators in the corresponding 3d N = 2 theory TM . When combined

together, these two relations imply that there should exist a direct link between incom-

pressible surfaces in M and line operators in the theory TM and, as we explain below, it

does indeed.

By definition, a proper embedding of a connected orientable surface Σ ↪→ M into a

3-manifold M with boundary22 is called incompressible if the induced map

π1(Σ)→ π1(M) (6.18)

is injective. Another, closely related definition of an incompressible surface Σ 6= S2 is as a

surface that does not bound any compressing disk, i.e. any disk D ⊂M such that the loop

∂D does not bound a disk in Σ.

An important characteristic of incompressible surfaces is the boundary slope. It turns

out to have a nice physical interpretation and is defined as follows. An incompressible

surface (Σ, ∂Σ) gives rise to a collection of parallel simple closed loops in T 2 = ∂M , see

figure 19a. Choose one such loop and write its homology class as23

(longitude)2n (meridian)m  boundary slop =
2n

m
. (6.19)

Then, the boundary slope of (Σ, ∂Σ) is defined as a rational number 2n
m . For any compact

orientable irreducible 3-manifold M with a toral boundary the spectrum of boundary slopes

consists of only finitely many values of 2n/m [91]. Particular examples of values (n,m)

22which in most of our applications we take to be a knot complement M = S3 \K.
23The origin of the extra factor of 2 in the following formulas is that the variable x that we use in

A-polynomials differs from the canonical one used in the Knot theory literature by xhere = x2
canonical.
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Name Topology Boundary Slope

Σ1 T 2 \ disk = Seifert surface 0

Σ2 T 2 \ 2 disks ±4

Σ′2 T 2 \ 2 disks ±4

Table 3. The spectrum of incompressible surfaces and boundary slopes for the figure-8 knot

complement (cf. (6.16)).

are given by the charges associated to the tentacles of the amoeba associated to the A-

polynomial. For example, in table 3 we list all types of oriented incompressible surfaces

for the figure-eight knot complement with their boundary slopes [92, 93].

In order to explain the promised relation between incompressible surfaces and line

operators, as usual in the discussion of 3d/3d duality [32, 33, 94–97] let us consider the

six-dimensional (2, 0) theory on (S1
t ×q R2) ×M . Since near the boundary M looks like

T 2×R+, after dimensional reduction on M one finds a 4d N = 4 gauge theory on half-space

coupled to 3d N = 2 theory TM on the boundary that we discussed in section 1.

Now, let us incorporate incompressible surfaces by introducing codimension-4 defects

in 6d (2, 0) theory that can be interpreted as end-points of M2-branes ending on M5-branes

and that give rise to surface operators [20]. When such a surface operator wraps a non-

trivial cycle of T 2 = ∂M it gives rise to a line operator in the resulting 4d N = 4 gauge

theory with gauge group U(1). Specifically, the electric charge n of this line operator and

its magnetic charge m are determined by the homology class of the curve in T 2, see [16–19]

and discussing in section 1. Therefore, what we called n and m in the definition (6.19)

of the boundary slope are precisely electric and magnetic charges of line operator in 4d

abelian gauge theory.

This would be the end of the story if our 3-manifold had the form M = R × T 2, but

since it is “capped off” as illustrated in figure 19a, the resulting 4d gauge theory lives on a

half-space with a 3d N = 2 theory TM on the boundary, see figure 19b. Correspondingly,

via 3d/3d duality the codimension-4 surface operator supported on Σ ⊂M maps into a line

operator that terminates at a local operator O on the boundary. When Σ is incompressible

it is natural to refer to the corresponding operator O in 3d N = 2 theory TM as the

“incompressible operator.”

According to the above mentioned result [91], “incompressible operators” in 3d N = 2

theory TM have a finite spectrum of values 2n
m . For a signature of such operators one can

look at the superconformal index I(m,n) in the charge sector (m,n) [5]. For example, for

the figure-eight knot the index I41(m,n) contains the following data

I41(1, 2) = I41(1,−2) = I41(−1,−2) = I41(−1, 2) = q5/2 + q7/2 − q11/2 + . . . , (6.20)

which should be compared with the values of the boundary slope ±4 of incompressible

surfaces in table 3.
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A Basic examples

The following table summarizes some basic examples of effective twisted superpotentials,

corresponding curves, periods and associated charges. Cycles around singular points

(x0, y0) are marked by x ≈ x0, y ≈ y0.

W̃, curve
e/m charges

∆W̃
(∆ log y,∆ log x)/2πi

W̃ = 0 y = 1 (0, 1) 0

W̃ = k log z log x xk = 1 k copies of (1, 0) 2πi log x

W̃ = k
2
(log x)2 y = xk (k, 1) 2πik log x− 2π2k

W̃ = A
2

(log z)2 +B log x log z + C
2

(log x)2

yA = xAC−B
2

(
0 0 1

0 1 0

)
ker

(
A B 0

B C −1

)
(∆ log y) log x

( mod 2π2)

W̃ = β Li2(x) + k
2
(log x)2

y = (1− x)−βxk
(k, 1), x ≈ 0, y ≈ 0

(−β, 0), x ≈ 1, y ≈ ∞
2πik log x− 2π2k

−2πiβ log x

W̃ = Li2(xz) + log x log z

y = (1− x)/x2

(−2, 1), x ≈ 0, y ≈ ∞
(−1, 1), x ≈ ∞, y ≈ 0

−4πi log x+ 4π2

−2πi log x

W̃ = Li2(x) + Li2(z) + 2 log x log z

y = (1− x)(1 + x)2

(1, 1), x ≈ 1, y ≈ 0

(2, 1), x ≈ −1, y ≈ 0

2πi log x− 16π2

4πi log x− 16π2

figure-eight knot

W̃ = −Li2(xz) + Li2(x/z)− log x log z

(y2 + 1)x2 − y(1− x− 2x2 − x3 + x4) = 0

(2, 1), x ≈ 0, y ≈ 0

(−2, 1), x ≈ 0, y ≈ ∞
(2,−1), x ≈ ∞, y ≈ 0

(−2,−1), x ≈ ∞, y ≈ ∞
(1, 0)

(0, 1)

4πi log x− 4π2

−4πi log x+ 4π2

4πi log x− 4π2

−4πi log x+ 4π2

2πi log x

−4π2
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