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1 Introduction

The supersymmetric solutions of 10- and 11-dimensional supergravity theories have found

widespread applications in compactifications, string solitons, black holes, dualities and in

the AdS/CFT correspondence. Many examples of such solutions have been constructed,

and some progress has been made to identify the geometry of all such solutions. All the

maximally supersymmetric solutions has been classified up to a discrete identification [1].

The Killing spinor equations (KSEs) of D = 11 [2–4] and IIB supergravity [5, 6] have been

solved for one Killing spinor, and some near maximally supersymmetric solutions have been

classified [7–11]. Far more significant progress has been made in heterotic supergravity
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where the KSEs have been solved in all cases, and the possible fractions of supersymmetry

and the geometry of all the backgrounds have been identified [12, 13]. In IIA supergravity

less progress has been made. It is known that the only maximally supersymmetric solu-

tion up to a discrete identification is Minkowski spacetime and that all backgrounds that

preserve 31 supersymmetries are actually maximally supersymmetric [14].

In this paper, we initiate the solution of KSEs of IIA supergravity for backgrounds

which preserve one supersymmetry. As we demonstrate, there are four different cases to

consider. In this work, we solve the KSEs for two of the four cases. The final aim is to

bring the status of the classification of supersymmetric solutions of IIA supergravity to a

similar standard to that of D = 11 and IIB supergravities.

To solve the KSEs of IIA supergravity, we shall use spinorial geometry [4]. This relies

on using the gauge symmetry of the KSEs to bring the Killing spinor into a canonical

form. Then utilizing a realization of spinors in terms of forms, one can express the KSEs

in terms of a linear system, with the unknowns being the components of the fluxes and of

the spin connection. The linear system can then be solved to express the fluxes in terms of

the geometry and to find the conditions on the geometry. The conditions on the geometry

are usually expressed as a linear relation between the components of the spin connection.

The final results can be organized in irreducible representations of the isotropy group of

the Killing spinor.

The gauge group of IIA supergravity is Spin(9, 1) and the IIA supersymmetry param-

eter is in the 32-dimensional Majorana representation ∆32. Spin(9, 1) has several orbits

on ∆32 each giving a distinct local geometry.1 There are four such orbits with isotropy

groups Spin(7), Spin(7) n R8, SU(4) and G2 n R8. Here, we shall solve the KSEs for the

first two of the orbits and the other two cases will be reported elsewhere. A representative

of the first two orbits is

ε = f(1 + e1234) + g(e5 + e12345) . (1.1)

If f, g 6= 0 the spinor represents the Spin(7) orbit while if either f = 0 or g = 0, the spinor

represents the Spin(7) nR8 orbit. In the former case, one can further choose without loss

of generality that f = ±g. In the latter case, the f = 0 and g = 0 cases are symmet-

ric, so without loss of generality we shall take g = 0 and also set f = 1 with a gauge

transformation.

The existence of a Spin(7) or Spin(7)nR8 invariant Killing spinor imposes rather weak

conditions on the geometry and these conditions have been summarized in equations (3.3)

and (4.2), respectively. In particular, Spin(7) backgrounds admit two commuting vector

fields one of which is timelike and Killing while the other is spacelike. The timelike Killing

vector field leaves all the fields and the Killing spinor invariant. A more detailed analysis

of the geometric conditions can be found in section 3.1, and the expression of all the fields

in terms of the geometry can be found in section 3.2. It turns out that not all components

1Because the holonomy of the supercovariant connection is SL(32,R), and thus much larger than

Spin(9, 1), one expects that globally the Killing spinor will change orbit under Spin(9, 1) from patch to

patch. Nevertheless solving the KSEs for each orbit captures the local geometry.
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of the fluxes are expressed in terms of the geometry. We have also verified that our results

contain those of [15] that describe the solution of the KSEs of common sector backgrounds

admitting a Killing spinor with isotropy group Spin(7). The inclusion of the common sector

Spin(7) backgrounds into the IIA Spin(7) ones is not a surprise as in both cases the Killing

spinor representative is the same.

The geometric conditions imposed on the spacetime as a consequence of the existence

of a Spin(7) nR8 invariant Killing spinor are the same as those found in [12] for heterotic

backgrounds admitting a Spin(7) n R8 invariant Killing spinor. These are the most gen-

eral heterotic backgrounds preserving one supersymmetry. Furthermore, the conditions

imposed by the KSEs on the IIA dilaton and 3-form flux are the same as those of het-

erotic supergravity. Although a relation between the IIA Spin(7) n R8 backgrounds and

the heterotic Spin(7) n R8 ones was expected as they both have the same Killing spinor

representative, the property we proved, i.e. that the conditions on the geometry and the

expression for the 3-form flux are the same in both cases, was not expected. As a result all

solutions of IIA supergravity with a Spin(7)nR8 invariant Killing spinor are extensions of

those of heterotic supergravity that include the addition of 0-, 2- and 4-form fluxes.2 We

also give the expression of the remaining IIA fluxes in terms of the geometry. The condi-

tions on the geometry as well as the expression of all the fields in terms of the geometry

can be found in sections 4.1 and 4.2, respectively.

This paper has been organized as follows. In section 2, we state the KSEs, choose

representatives for the Killing spinors and investigate some of the global properties of

spacetime. In section 3, we solve the KSEs of IIA supergravity for Spin(7) invariant Killing

spinors and give the conditions on the geometry of spacetime. In section 4, we solve the

KSEs of IIA supergravity for Spin(7)nR8 invariant spinors and give the conditions on the

geometry of spacetime. In section 5, we state our conclusions. In appendices A and B, we

collect various useful formulae such as the integrability conditions of the IIA KSEs, the

expression for the supercovariant curvature as well as a selection of properties of Spin(7)

representations. In appendix C, we give the form spinor bilinears of (1.1). In appendices D

and E, we give the solutions of the linear systems for the Spin(7) and Spin(7) n R8 cases,

respectively.

2 Killing spinor equations and Killing spinor representatives

2.1 Killing spinor equations

The Killing spinor equations of type IIA supergravity [16–20] are the vanishing condition

of the supersymmetry variations of the fermions evaluated at the locus where all fermions

vanish. In the conventions of [21], the KSEs are given by the vanishing conditions of

DM ε ≡ ∇M ε+
1

8
HMP1P2ΓP1P2Γ11ε+

1

8
eΦS̃ΓM ε

+
1

16
eΦF̃P1P2ΓP1P2ΓMΓ11ε+

1

8 · 4!
eΦG̃P1···P4ΓP1···P4ΓM ε ,

2Using this, we conclude that there are IIA solutions with strictly one supersymmetry. Such a solution

with a Spin(7) n R8 invariant Killing spinor is a pp-wave propagating on an 8-dimensional manifold with

Spin(7) holonomy.
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Aε ≡ ∂PΦΓP ε+
1

12
HP1P2P3ΓP1P2P3Γ11ε+

5

4
eΦS̃ε

+
3

8
eΦF̃P1P2ΓP1P2Γ11ε+

1

4 · 4!
eΦG̃P1···P4ΓP1···P4ε , (2.1)

where ∇ is the spin connection, H is the NS-NS 3-form field strength, S̃, F̃ , G̃ are the RR

k-form field strengths, and Φ is the dilaton. For later convenience, we set

S = eΦS̃ , F = eΦF̃ , G = eΦG̃ . (2.2)

The spinor ε is in the Majorana representation of Spin(9, 1). The first and second equations

in (2.1) are associated with the gravitino and dilatino supersymmetry transformations,

respectively. In particular, the first KSE is a parallel transport equation with respect to

the supercovariant connection D of the spin bundle while A is an algebraic condition on

the spinor ε. In what follows, we shall seek solutions to the conditions Dε = Aε = 0

without making simplifying assumptions on the fields, the Killing spinor or the geometry

of spacetime.

2.2 Choice of Killing spinors

The holonomy group3 of the supercovariant connection D of generic type IIA backgrounds

is SL(32,R), while the gauge group of the KSEs is Spin(9, 1). The former can be seen from

the expression of the supercovariant curvature in appendix A. Backgrounds that are related

by a gauge transformation have the same geometry, up to a choice of frame. Because of

this, the different types of geometries that appear in supersymmetric backgrounds can be

locally labeled by the orbits of the gauge group on the space of spinors. The gauge algebra

acts on the Majorana representation of Spin(9, 1) and has four distinct orbits with isotropy

algebras Spin(7), Spin(7) n R8, SU(4) and G2 n R8. The general analysis how all these

orbits arise can be found in [26]. Here, we shall explain how the first two arise that we use

for our analysis.

The Majorana representation ∆32 of Spin(9, 1) decomposes into a chiral and an anti-

chiral Majorana-Weyl representation as ∆32 = ∆+
16 ⊕ ∆−16. So the Killing spinor can be

written as ε = ε+ + ε−. It is known that Spin(9, 1) has a single orbit in ∆+
16 with isotropy

algebra Spin(7)nR8. Thus the Spin(7)nR8 orbit arises by asserting that ε = ε+. In such

case, a representative for the orbit can be chosen as

ε = 1 + e1234 , (2.3)

where we have used a realization of spinors in terms of forms in a basis described in

either [12] or [26]. For the other 3 orbits ε− 6= 0. To see how that Spin(7) arises, observe

that under Spin(7) ⊂ Spin(7) n R8, the isotropy group of ε+, the ∆−16 representation

decomposes as ∆−16 = ∆1 ⊕∆7 ⊕∆8. The Spin(7) orbit of Spin(9, 1) arises by asserting

that ε+ takes values in ∆+
16 and ε− takes values in ∆1. A representative for the orbit can

be chosen as

ε = f(1 + e1234) + g(e5 + e12345) . (2.4)

3The holonomy group of the supercovariant connection of D = 11 [22, 23] and IIB supergravities [24, 25]

is also in SL(32,R).
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When g 6= 0, we can use the gauge symmetry, which is generated by boosts along the 5-th

direction, to set f = ±g, which leads to a significant simplification of the solution to the

Killing spinor equations. We shall solve the KSEs for f = g . The solution corresponding

to f = −g is obtained from the f = g one by, for each term, adding a sign for every plus

and minus index appearing.4

2.3 Some global aspects

The existence of a Killing spinor, and in particular of a parallel spinor with respect to D,

implies that there is a global nowhere vanishing section of the spin bundle S. The mere

existence of a nowhere vanishing section of S does not impose a topological condition on

the spacetime manifold M as S has rank 32 which is much larger than the dimension of M .

So it always admits a nowhere vanishing section. Nevertheless, D is a specific connection

and the existence of a parallel section of S with respect to D may impose some additional

conditions which are not apparent. For example, if the Killing spinor is restricted to lie in a

certain sub-bundle of S, because of a so far unknown property of the theory, then both the

topology and geometry of M can be restricted. For example in the two cases we investigate

here, if in addition we restrict the Killing spinor to have isotropy group Spin(7) n R8 or

Spin(7) everywhere on the manifold M , then the structure group of M reduces to these

isotropy groups. However in general, since the holonomy group of D is SL(32,R), even if

the Killing spinor is chosen in one chart to lie in a given orbit of Spin(9, 1) it is expected

that parallel transport will change the type of orbit when it crosses to another chart and

so the structure group may not reduce. In the analysis that follows, we shall assume that

there is a chart such that the isotropy group of the Killing spinor is either Spin(7)nR8 or

Spin(7) and use this to solve the KSEs. Of course our results can be extended to the whole

spacetime provided that the spinors maintain their type of orbit everywhere on spacetime.

3 Solution of the KSEs for the Spin(7) backgrounds

Having identified the Killing spinor, one can easily solve the KSEs using spinorial geometry.

We have not given the linear system that arises from the KSEs. Instead, we have presented

its solution in appendix D. This expresses the fluxes in terms of the geometry and iden-

tifies the conditions that restrict the geometry of spacetime. The latter are expressed as

relations between the components of the spin connection. The results in appendix D have

been written in SU(4) representations but they can be re-organized in irreducible Spin(7)

representations.

3.1 Geometry of spacetime

To identify the geometry of spacetime, it is convenient to use the spinor bilinears associated

with the Spin(7) invariant spinor ε. These are explicitly stated in appendix B. To continue,

4This corresponds to a reflection of time and one spatial coordinate (the 0 and 5 directions) which might

not be a symmetry of the theory as the transformation is not part of the component of Spin(9, 1) which is

connected to the identity element. However, here we just view the transformation as a solution generating

transformation.
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choose the basis in the space of form spinor bilinears5 given by

K = f2e0 , X = e5 , φ , (3.1)

where φ is the fundamental Spin(7) self-dual 4-form. Clearly K is time-like, X is space-like6

and φ is transverse to both K and X, i.e. iKφ = iXφ = 0.

It follows that the tangent space TM of spacetime M has two preferred directions

and therefore decomposes, everywhere that f 6= 0, as TM = I2 ⊕ E, where I2 is a trivial

bundle and E is a rank 8 bundle which consists of the directions transverse to X and K.

Introducing a frame adapted to this splitting of M as (e0, e5, ei), the spin connection ∇
decomposes in various components. We define

∇(8)
i Y j = ∂iY

j + Ωi,
j
kY

k (3.2)

i.e. ∇(8) denotes the component of ∇ for which both spacetime and frame indices are

restricted along E.

The conditions on the geometry of spacetime imposed by the solution of KSEs for a

spin(7) invariant Killing spinor are

LKg = 0 , LKε = 0 ,

LXε = −f
−4

4
KA(iXdK)BΓABε+ (X log f2)ε− 1

4
XA(iXdX)BΓABε ,

∂5Φ =
1

2
θ5 + ∂5 log f2 ,

∂iΦ =
3

4
θi +

3

4
∂i log f2 − 1

4
(de5)5i , (3.3)

where the spinorial Lie derivative is defined as

LKε = ∇Kε+
1

4
∇AKBΓABε = 0 , (3.4)

and similarly for LX , and

θi = − 1

36
∇(8)mφmk1k2k3φ

k1k2k3
i , θ5 = − 1

42
φk1k2k3k4∇k1φ5k2k3k4 . (3.5)

The 1-form θi is defined in analogy to the Lee form for manifolds with a Spin(7) structure.

The remaining conditions which arise from the KSEs express the IIA fluxes in terms of the

geometry and the corresponding expression will be given in the next section.

The first geometric condition in (3.3) implies that K is a Killing vector. In fact K

leaves all the fields of the theory invariant, i.e.

LKΦ = LKS = LKF = LKH = LKG = 0 . (3.6)

In addition, the second condition in (3.3) implies that the Killing spinor ε is invariant under

the motion generated by K. X is not Killing but commutes with K

[X,K] = 0 , (3.7)

5Note that the bilinear in fact is f2e5, but it is convenient to instead choose X = e5 for the basis.
6From now on, we shall denote both the 1-forms K and X and their associated vectors with the same

symbol.
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as a consequence of the first three conditions in (3.3). As a result one can adapt coordinates

on the spacetime independently for both K and X. The third condition in (3.3) also implies

that X leaves the Killing spinor ε invariant up to possible rotations which always have an X

or K direction. The remaining two conditions in (3.3) can be seen as a generalization of the

well-known conformal balance condition which arises from the dilatino KSE in the context

of heterotic supergravity [12]. However, the numerical coefficient is not the standard one.

It is straightforward to do a Gray-Hervella type of decomposition for 10-dimensional

manifolds with a Spin(7) structure. In such a decomposition two of the classes would have

been represented by θi and θ5, so the conditions in (3.3) imply that both are restricted.

Note that the Lee form θi that appears also represents one of the Gray-Hervella classes of

8-dimensional manifolds with a Spin(7) structure [27, 28].

3.2 Fields in terms of geometry

To express the field strengths of supersymmetric IIA backgrounds in terms of the geometry,

it is convenient to first decompose the space of forms along the e0 and e5 directions and

the rest, and then further decompose the directions transverse to e0 and e5 in terms of

irreducible representations of spin(7). For the latter, we use that the space of 2-, 3- and

4-forms on R8 decompose in irreducible Spin(7) representations as

Λ2(R8) = Λ7 ⊕ Λ21 , Λ3(R8) = Λ8 ⊕ Λ48 , Λ4(R8) = Λ1 ⊕ Λ7 ⊕ Λ27 ⊕ Λ35
− , (3.8)

where Λ35
− denotes the 35-dimensional subspace of anti-self dual 4-forms.

Using this, we can write

F = F(0) e
0 ∧ e5 + e0 ∧ F0(1) + e5 ∧ F5(1) + F(2) , (3.9)

where

F(2) =
1

2
Fije

i ∧ ej = F 7 + F 21 (3.10)

and similarly

H = e0 ∧ e5 ∧H(1) + e0 ∧ (H7
0(2) +H21

0(2)) + e5 ∧ (H7
5(2) +H21

5(2)) +H(3) ,

H(3) =
1

3!
Hijke

i ∧ ej ∧ ek = H8 +H48 ,

G = e0 ∧ e5 ∧ (G7
(2) +G21

(2)) + e0 ∧
(
G8

0(3) +G48
0(3)

)
+ e5 ∧

(
G8

5(3) +G48
5(3)

)
+G(4) ,

G(4) =
1

4!
Gijkle

i ∧ ej ∧ ek ∧ el = G1 +G7 +G27 +G35 , (3.11)

where the number in the parenthesis is the degree of the forms in the directions transverse

to (e0, e5).

Typically, the KSEs express some of the components of the fluxes in the above de-

compositions in terms of the geometry. As we shall see several components remain uncon-

strained. In particular, we find that

F = −
(
S +

1

2
θ5

)
e0 ∧ e5 + e0 ∧

(
−3

4
θ +

1

4
d(8) log f2 +

1

4
(de5)5(1)

)
(3.12)

−e5 ∧ (de0)5(1) +
1

96
φi
k1k2k3∇0φjk1k2k3e

i ∧ ej + F 21

– 7 –
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H = −d(e0 ∧ e5) + e5 ∧ H̃21
5(2) +H(3)

G = e0 ∧ e5 ∧
(
(de0)7(2) − H̃

21
5(2) − F

21
(2))

)
− e0 ∧H(3)

+e5 ∧ ?(8)

((
1

4
[d(8) log f2 + (de5)5(1)]−

3

4
θ

)
∧ φ+ dφ

)
+G(4) , (3.13)

where H̃21
5(2) = H21

5(2) + (de0)21(2) and7

G(4) = − 1

14

(
θ5 + 4∂5 log f2

)
φ+

1

4
iφde5

(2) +G27

− 1

21 · 4!

(
φ(i1

k1k2k3∇m)φ5k1k2k3 +
21

4
θ5δmi1

)
φmi2i3i4e

i1 ∧ ei2 ∧ ei3 ∧ ei4 ,(3.14)

where d(8) and ?(8) are the exterior derivative and the Hodge star operation along the

directions transverse to (e0, e5), respectively.

The components that have not been expressed in terms of the geometry, like F 21, H(3)

and others, are not constrained by the KSEs. The above expressions for the field strengths

together with the conditions on the geometry are the full content of the KSEs admitting

as a solution a Spin(7) invariant spinor.

As a further confirmation of our result, one can compare them with those found in [15]

for the common sector. It is straightforward to verify that when the additional fields of

IIA supergravity are set to zero, both the geometric conditions and the expressions of the

fluxes in terms of the geometry become those of common sector backgrounds which admit

one Spin(7)-invariant Killing spinor.

4 Solution of the KSEs of Spin(7) n R8 backgrounds

4.1 Geometry of spacetime

As in the previous case, to describe the geometry one finds that the Killing spinor bilinears

of a Spin(7) nR8 invariant spinor are

e− , e− ∧ φ . (4.1)

These have been computed in appendix B, where φ is the fundamental self-dual 4-form of

Spin(7).

The conditions imposed on the geometry by the existence of a Spin(7) n R8 Killing

spinor are

LKg = 0 , ∇Kε = 0 , dK ∈ spin(7,R)⊕s R8 . (4.2)

and

2∂iΦ = θi − (de−)−i , (4.3)

7We have defined iφψ = k
3!·k!φ

m
i1i2i3ψmi4...ik+2e

i1 ∧ · · · ∧ eik+2 and

?(8)ψ = 1
k!·(8−k)!ψj1...jkε

j1...jk
i1...i8−ke

i1 ∧ · · · ∧ ei8−k .
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where K = e− and θ is the Spin(7) Lee form as in (3.5). These conditions imply that

LKε = 0 as in the Spin(7) case.

The first condition in (4.2) implies that K is Killing. In fact K leaves all the fields

invariant including the dilaton, i.e.

LKΦ = LKS = LKF = LKH = LKG = 0 . (4.4)

All the conditions on the geometry that arise from the KSEs are identical to those

found in [12] in the context of heterotic backgrounds preserving one supersymmetry. In

particular, (4.3) is precisely the condition found for the solution of the dilatino KSE in

heterotic theory. Furthermore, we shall see below that the 3-form field strength is pre-

cisely that one finds as a solution of the KSEs for heterotic backgrounds preserving one

supersymmetry. Therefore in this case, the Killing spinor of the IIA theory is parallel with

respect to a connection ∇̂ with skew-symmetric torsion,

∇̂ε = 0 , (4.5)

where the skew-symmetric torsion is the 3-form field strength H.

4.2 Fields in terms of geometry

To express the form field strengths in terms of the geometry of spacetime, we introduce a

light-cone frame (e−, e+, ei) as for the heterotic backgrounds in [12]. Then we decompose

the fields as in the previous Spin(7) case with the (e0, e5) frames replaced by (e−, e+).

Using these decompositions, the solution of the linear system can be organized as

F = Se− ∧ e+ + e− ∧ F−(1) + F(2) ,

H = de− ∧ e+ − 1

4 · 4!
φi
k1k2k3∇−φjk1k2k3e− ∧ ei ∧ ej + e− ∧H21

−(2) +H(3) ,

G = F(2) ∧ e− ∧ e+ + e− ∧
(

1

7
?(8) (F−(1) ∧ φ) +G48

−(3)

)
+G(4) , (4.6)

where

H(3) = − ?(8) dφ+ ?(8)(θ ∧ φ) ,

G(4) =
1

4
iφF

7
(2) +G27 . (4.7)

The fields that have not been expressed in terms of the geometry, like F−(1), F(2) and

others, are not restricted by the KSEs.

As has already been mentioned, these solutions are an extension of the heterotic back-

grounds which preserve one supersymmetry and satisfy dH = 0. So we can take any

solution of the KSEs of the heterotic theory, including those that preserve more than one

supersymmetry, and add on them the additional IIA field strengths as described in (4.6).

In such a case, the solution of the KSEs of IIA supergravity will be automatically satisfied.

Then to find a supergravity solution, it will remain to solve the IIA field equations and

Bianchi identities.
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5 Conclusions

There are four types of supersymmetric IIA backgrounds that preserve one supersymme-

try which are locally characterized by the four orbits of Spin(9, 1) in the 32-dimensional

Majorana spinor representation. We have solved the KSEs for two of these orbits with

isotropy groups Spin(7) and Spin(7) n R8 without making any additional assumptions on

the fields. We have found all geometric conditions imposed on the spacetime and the

expression of the fluxes in terms of the geometry. We have also verified that when our re-

sults for backgrounds with a Spin(7) invariant Killing spinor are restricted to the common

sector, then they coincide with those found in [15] for the common sector backgrounds

admitting a Spin(7) invariant Killing spinor. Furthermore, the IIA solutions of the KSEs

with a Spin(7) nR8 invariant Killing spinor are an extension of the heterotic backgrounds

preserving at least one supersymmetry. In particular, the IIA KSEs imply exactly the same

conditions on the geometry of spacetime and give the same expression for the 3-form field

strength H in terms of the geometry as the heterotic KSEs. As a result all solutions of

the heterotic KSEs can be embedded in the IIA backgrounds which admit a Spin(7) nR8

invariant Killing spinor.

To find all solutions of the KSEs of type II and D = 11 supergravities remains an

open problem. It is not known in general what fractions of supersymmetry supergrav-

ity backgrounds preserve or what their geometry is. For a suggestion about the former

see [29]. The only 10- or 11-dimensional supergravity for which both the possible fractions

of preserved supersymmetry and the geometry of the backgrounds is known is the heterotic

theory [12, 13]. However the techniques applied to solve the problem in the heterotic theory

are not directly applicable in the type II and D = 11 supergravities. Nevertheless, there are

methods that can be applied to find the geometry of supersymmetric backgrounds of type

II and D = 11 theories with a very small number of supersymmetries [4–6]. Moreover, it is

possible to classify the backgrounds which preserve a large number of supersymmetries [7–

10]. To complete the task to find the geometry of all IIA backgrounds that preserve one

supersymmetry, it remains to solve the KSEs for the remaining two orbits with isotropy

groups SU(4) and G2 nR8. This will be presented elsewhere.
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A Conventions and integrability conditions

Our IIA supergravity conventions including the form of KSEs, apart from relabeling some

of the fields, are similar to those of [21]. For spinors, we use the same conventions as those

employed in type IIB supergravity in the context of spinorial geometry, cf. [5], e.g. we

choose Γ11 = −Γ01···9.
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It is well-known that the integrability conditions of the KSEs imply some of the field

equations and Bianchi identities. Because of this, it is useful to derive the field equa-

tions and Bianchi identities from the integrability conditions of the KSEs.8 For this, the

integrability conditions of the KSEs (2.1) can be written as

[DM ,A]ε = 0 (A.1)

and

[DM ,DN ]ε ≡ RMN ε = 0 (A.2)

where the the explicit expression for the supercovariant curvature RMN is given below.

It is a well-known property of supergravity that after a judicious Γ-trace of the above

integrability conditions, one gets a linear expression in terms of the field equations and

Bianchi identities of the theory. In particular, we find9

Iε = ΓM [DM ,A]ε

=
(
FΦ− FG(3)Γ

(3) +BG(5)Γ
(5)

)
ε

+
(
−3FF(1)Γ

(1) + FH(2)Γ
(2) +BF(3)Γ

(3) + 2BH(4)Γ
(4)

)
Γ11ε (A.3)

and

IM ε = ΓN [DM ,DN ]ε

=

(
−1

2
EM(1)Γ

(1) − 1

4
EP

PΓM +
1

2
FΦΓM + FG(3)Γ

(3)
M − 5BGM(4)Γ

(4)

)
ε (A.4)

+

(
FHM(1)Γ

(1) + FF(1)Γ
(1)

M −BFM(2)Γ
(2) +

1

3
BHM(3)Γ

(3) +BH(4)Γ
(4)

M

)
Γ11ε

where we have defined

EMN := RMN −
1

12
GM(3)GN

(3) +
1

96
gMNG(4)G

(4) +
1

4
gMNS

2

−1

4
HM(2)HN

(2) − 1

2
FMPFN

P +
1

8
gMNF(2)F

(2) + 2DM∂Nφ , (A.5)

FΦ := �Φ− 2(∂Φ)2 − 3

8
F(2)F

(2) − 1

96
G(4)G

(4) +
1

12
H(3)H

(3) − 5

4
S2 , (A.6)

FHMN :=
1

4

(
DPHMNP − 2(∂PΦ)HMNP −

1

2
GMN(2)F

(2)

−FMNS +
1

1152
εMN (4)(4̃)G

(4)G(4̃)

)
, (A.7)

FFM :=
1

4

(
DPFMP − (∂PΦ)FMP +

1

6
GM(3)H

(3)

)
, (A.8)

FGM1M2M3 :=
1

4!

(
DPGM1M2M3P − (∂PΦ)GM1M2M3P −

1

144
εM1M2M3(3)(4)H

(3)G(4)
)

(A.9)

BHM1···M4 :=
1

4!
D[M1

HM2M3M4] , (A.10)

8In order to perform the necessary computations the Mathematica package GAMMA [30] has been used.
9In the formulae below (n) denotes n contracted indices.
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BFM1M2M3 :=
3

8
(D[M1

FM2M3] − (∂[M1
Φ)FM2M3] −

1

3
HM1M2M3S) , (A.11)

BGM1···M5 :=
1

4 · 4!
(D[M1

GM2···M5] − (∂[M1
Φ)GM2···M5] − 2F[M1M2

HM3M4M5]) (A.12)

where

S = eΦS̃ , F = eΦF̃ , G = eΦG̃ . (A.13)

For completeness, the formula for the supercovariant curvature is

RMN = [DA,DB]ε = R1
MN ε+R2

MNΓ11ε , (A.14)

where

R1
MN =

1

32
S2ΓMN −

1

4
Γ[MDN ]S +

1

64
ΓMNF(2)F

(2) − 1

16
Γ[M

P1FN ]
P2FP1P2

− 1

128
ΓMN

(2)(2̃)F(2)F(2̃) +
1

32
Γ[M

P1P2P3FN ]P1
FP2P3 +

1

384
ΓMN

(4)SG(4)

− 1

96
Γ[M

(4)DN ]G(4) +
1

768
ΓMNG(4)G

(4) − 1

96
Γ[M

(3)SGN ](3) −
1

24
Γ(3)D[MGN ](3)

+
1

96
ΓP (3)GMNP

QG(3)Q −
1

96
Γ[M

PGN ]
(3)GP (3) −

1

256
ΓMN

(2)(2̃)G(2)Q1Q2
G(2̃)

Q1Q2

+
1

64
Γ[M

P1P2P3GN ]P1

Q1Q2GP2P3Q1Q2 +
1

192
Γ[M

(2)(3)GN ](2)
QG(3)Q

+
1

18432
ΓMN

(4)(4̃)G(4)G(4̃) −
1

2304
Γ[M

(3)(4)GN ](3)G(4) −
1

16
Γ[MF (2)HN ](2)

+
1

32
Γ[M

(2)(2̃)HN ](2)F(2̃) −
1

16
ΓP1P2P3F[M |P1|HN ]P2P3

− 1

8
ΓP1P2HMP1

QHNP2Q

−1

8
ΓPFP

QHMNQ +
1

4
Γ(2)RMN(2) (A.15)

and

R2
MN = −1

8
Γ[M

(2)DN ]F(2) +
1

16
Γ[M

PSFN ]P −
1

4
ΓPD[MFN ]P +

1

16
SFMN

− 1

96
Γ[M

(3)FN ]
QG(3)Q +

1

384
Γ[M

P (4)FN ]PG(4) +
1

384
Γ(4)FMNG(4)

− 1

96
ΓMN

P (3)FP
QG(3)Q +

1

32
Γ[M

PF (2)GN ]P (2) −
1

192
Γ[M

(2)(3)F(2)GN ](3)

+
1

32
Γ[M

P1P2P3FP1
QGN ]P2P2Q +

1

32
F (2)GMN(2) −

1

64
Γ(2)(2̃)F(2)GMN(2̃)

+
1

16
Γ[M

(2)SHN ](2) +
1

4
Γ(2)D[MHN ](2) +

1

384
Γ[M

(2)(4)HN ](2)G(4)

+
1

96
Γ(2)(3)H(2)[MGN ](3) −

1

16
ΓPGP [M

(2)HN ](2) −
1

32
Γ[M

(2)HN ]
(2̃)G(2)(2̃)

− 1

48
Γ(3)HMN

QG(3)Q (A.16)

It can be easily seen from this that the holonomy of the supercovariant connection for

generic IIA backgrounds is contained in SL(32,R).
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B Spin(7) formulae

B.1 Fundamental form

The linear system that arises from the solution of the KSEs in the context of spinorial

geometry is written in SU(4) representations. However, this can be re-organized in Spin(7)

representations. For this we have used the fundamental self-dual Spin(7) invariant 4-form

φ =
1

4!
φi1i2i3i4e

i1 ∧ ei2 ∧ ei3 ∧ ei4 = Re χ− 1

2
ω ∧ ω , (B.1)

where

ω = −(e1 ∧ e6 + · · · e4 ∧ e9) , χ = (e1 + ie6) ∧ . . . (e4 + ie9) .

In the Hermitian basis

eα =
1√
2

(ea + iea+5) , eᾱ =
1√
2

(ea − iea+5) , a = 1, . . . , 4 (B.2)

of SU(4) representations, we have

ωαβ̄ = −iδαβ̄ , χα1α2α3α4 = 4εα1α2α3α4 , (B.3)

and

φαβ̄γδ̄ = δαβ̄δγδ̄ − δγβ̄δαδ̄ , φα1α2α3α4 = 2εα1α2α3α4 . (B.4)

The contractions of φ are

φil1l2l3 φ
jl1l2l3 = 42δji ,

φi1i2l1l2 φ
j1j2l1l2 = −4φi1i2

j1j2 + 12δ j1j2[i1i2] ,

φi1i2i3l φ
j1j2j3l = −9δ

[j1
[i1
φi2i3]

j2j3] + 6δ j1j2j3[i1i2i3]

(B.5)

where

δi1i2...in[j1j2...jn] = δ[i1
[j1δ

i2
j2 · · · δin]

[jn] . (B.6)

Using that φ is constant in the local Lorentz frame we get

∇AφB1B2B3B4 = 4ΩA,[B1

Cφ|C|B2B3B4] , (B.7)

which can be used to express the spin connection in terms of ∇φ as follows:

gAB4∇AφB1B2B3B4 = −ΩC
,Clφ

l
B1B2B3 + 3Ωl1,l2[B1

φl1l2B2B3] , (B.8)

1

4!
φj1j2j3j4∇j1φij2j3j4 = −Ωl

,li −
1

2
Ωl1,l2l3φi

l1l2l3 , (B.9)

1

3!
φj1j2j3j4∇j1φaj2j3j4 = −7Ωl

,la , (B.10)

1

4!
φk

j1j2j3∇Aφij1j2j3 = ΩA,ik −
1

2
ΩA,l1l2φ

l1l2
ik , (B.11)
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1

3!
φk

j1j2j3∇Aφbj1j2j3 = 7ΩA,bk , (B.12)

1

8
φ[k

l1l2l3∇|l1|φj1j2]l2l3 = −Ω[j1,j2k] +
1

2
Ω[j1,|l1l2|φ

l1l2
j2k]

−3

4
Ωl1,l2[j1φ

l1l2
j2k] +

1

4
Ωl1

,l1l2φ
l2
j1j2k , (B.13)

1

3!
φk

l1l2l3∇l1φail2l3 = Ωi,ak + δikΩ
l
,la −

2

3
Ωl1,l2aφ

l1l2
ik , (B.14)

where a, b, . . . ∈ {0, 5} or {−,+}.

B.2 Decomposition of Spin(7) representations

As we have explained, the fields and geometric conditions can be decomposed in irreducible

Spin(7) representations. In this paper, we have used the decomposition of Λ2(R8), Λ3(R8)

and Λ4(R8) in terms of Spin(7) representations. The result is stated in (3.8). To perform

the computation, we have used the projections

ψ
(7)
ij ≡

1

4

(
ψ[ij] −

1

2
φijklψ

kl

)
ψ

(21)
ij ≡ 1

4

(
3ψ[ij] +

1

2
φijklψ

kl

)
, (B.15)

associated to the decomposition of ψ ∈ Λ2(R8) = Λ7 ⊕ Λ21 with Λ21 = spin(7).

We have also found convenient to write the decompositions expressed in (3.8) as

ψ2 =
1

2
va(γa)ije

i ∧ ej +
1

2
χije

i ∧ ej , χijγ
ij
a = 0 , (B.16)

ψ3 =
1

3!
wmφ

m
ijke

i ∧ ej ∧ ek +
1

3!
vaiγ

a
jke

i ∧ ej ∧ ek , vaiγ
ai
j = 0 , (B.17)

ψ4 = zφ+
1

4!
vaγaimφ

m
jkle

i ∧ ej ∧ ek ∧ el +
1

4!
zabγ

a
ijγ

b
kle

i ∧ ej ∧ ek ∧ el (B.18)

+
1

4!
wimφ

m
jkle

i ∧ ej ∧ ek ∧ el, zab = z(ab), za
a = 0; wij = w(ij), wi

i = 0, (B.19)

where we have used that the Spin(7) gamma matrices γa, a, b = 1, . . . , 7, give an isomor-

phism between R7 and Λ7, i.e. γa as 2-forms in Λ2(R8) lie in the 7-dimensional represen-

tation. It is easy to observe then from the above expressions that the 48 representation

is associated with a gamma-traceless gravitino, the 28 representation is the symmetric

traceless vector representation, and the 35 representation is the symmetric traceless spinor

representation.

C The form spinor bilinears of Spin(7) and Spin(7) n R8 spinors

The IIA spinors are Majorana, so for the computation of the bilinears one can use either

the Majorana or Dirac inner products. The conventions for these can be found in [5]. In

IIA supergravity apart from the Killing spinor ε, one can define another globally defined

spinor ε̃ = Γ11ε. Considering the spinor ε in (1.1), the form bilinears of ε and ε̃ are a 0-form

σ(ε, ε̃) = −2fg , (C.1)
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two 1-forms

κ(ε, ε) = f2(e0 − e5) + g2(e0 + e5) ,

κ(ε, ε̃) = −f2(e0 − e5) + g2(e0 + e5) , (C.2)

a 2-form

ω(ε, ε) = 2fge0 ∧ e5 , (C.3)

a 4-form

ζ(ε, ε̃) = −2fgφ , (C.4)

and two 5-forms

τ(ε, ε) = f2(e0 − e5) ∧ φ+ g2(e0 + e5) ∧ φ ,
τ(ε, ε̃) = −f2(e0 − e5) ∧ φ+ g2(e0 + e5) ∧ φ , (C.5)

where φ is the invariant Spin(7) 4-form defined in appendix B and we have normalized the

Killing spinor with an additional factor of 1/
√

2.

D The N = 1 Spin(7) solution

In this appendix we present the solution of the Killing spinor equations for one Killing

spinor with stability subgroup Spin(7). The solution is organised in terms of irreducible

SU(4) ⊂ Spin(7) representations. This is due to the way that a basis is constructed in the

space of spinors in the context of spinorial geometry, which we use to solve the KSEs. Note

that all representations below are irreducible, i.e. for the (1,1) and (1,2) representations

the trace part is projected out. In particular, we have the trivial SU(4) representation

relations

df0 = 0, df5 = −f
2

Ω0,05, dΦ0 = 0, H0γ
γ = Ωγ

,5γ − Ωγ,5
γ , (D.1)

dΦ5 = −1

2
Ωγ

,5γ − Ω0,05 −
1

2
Ωγ,5

γ , H5γ
γ = −2Ωγ,0

γ , (D.2)

εγ̄1 γ̄2 γ̄3 γ̄4Gγ̄1γ̄2γ̄3γ̄4 = 3Gγ1γ2
γ1 γ2 − 9Ωγ

,5γ + 24Ω0,05 + 15Ωγ,5
γ , (D.3)

Fγ
γ = −2Ωγ,0

γ , F05 = −S +
1

2
Ωγ

,5γ +
1

2
Ωγ,5

γ , (D.4)

G05γ
γ = 2Ωγ,0

γ , Ωγ
,0γ = −Ωγ,0

γ , Ω0,γ
γ = Ωγ,0

γ , (D.5)

Ω5,γ
γ = −1

2
Ωγ

,5γ +
1

2
Ωγ,5

γ , Ω5,05 = 0, (D.6)

the fundamental SU(4) or (1,0) representation relations

dfα = −f
2

Ω0,0α, εα
γ̄1 γ̄2 γ̄3Hγ̄1γ̄2γ̄3 = −3G0αγ

γ − 6Ωα,05, (D.7)

dΦα =
1

2
εα
γ̄1 γ̄2 γ̄3Ωγ̄1,γ̄2γ̄3 − Ωγ

,αγ −
3

4
Ω0,0α +

1

4
Ω5,5α −

1

2
Ωα,γ

γ , (D.8)

εα
γ̄1 γ̄2 γ̄3G5γ̄1γ̄2γ̄3 = −3Ω0,0α − 3Ω5,5α − 6Ωα,γ

γ , H05α = Ω0,0α − Ω5,5α, (D.9)

εα
γ̄1 γ̄2 γ̄3G0γ̄1γ̄2γ̄3 = 3G0αγ

γ + 6Ωα,05, H γ
αγ = −G0αγ

γ , (D.10)
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F0α = −1

2
εα
γ̄1 γ̄2 γ̄3Ωγ̄1,γ̄2γ̄3 + Ωγ

,αγ −
1

4
Ω0,0α −

1

4
Ω5,5α +

1

2
Ωα,γ

γ , (D.11)

G5αγ
γ = −1

2
εα
γ̄1 γ̄2 γ̄3Ωγ̄1,γ̄2γ̄3 + Ωγ

,αγ +
3

4
Ω0,0α +

3

4
Ω5,5α −

3

2
Ωα,γ

γ , (D.12)

F5α = 2Ωα,05, Ω0,5α = −Ωα,05, Ω5,0α = −Ωα,05, (D.13)

the 4⊗ 4̄ or (1,1)-traceless representation relations

H0αβ̄ $ Ωβ̄,5α − Ωα,5β̄, H5αβ̄ $ −Fαβ̄ −G05αβ̄ − 2Ωα,0β̄, (D.14)

Gαγβ̄
γ $ Ωβ̄,5α + Ωα,5β̄, Ωβ̄,0α $ −Ωα,0β̄, (D.15)

the symmetric bi-fundamental representation relations

ε(α1

γ̄1 γ̄2 γ̄3Gα2)γ̄1γ̄2γ̄3 = 6Ω(α1,α2)5, Ω(α1,α2)0 = 0 (D.16)

the skew-symmetric bi-fundamental representation relations

H−0α1α2
= −2Ω−5,α1α2

, H−5α1α2
= −2Ω−0,α1α2

, G−05α1α2
= 2Ω−0,α1α2

, (D.17)

F−α1α2
= −2Ω−0,α1α2

, G−α1α2γ
γ = 4Ω−5,α1α2

, H+
0α1α2

= −2Ω+
α1,5α2

, (D.18)

H+
5α1α2

= −F+
α1α2

−G+
05α1α2

− 2Ω+
α1,0α2

, (D.19)

Ω−α1,0α2
= Ω−0,α1α2

, Ω−α1,5α2
= Ω−5,α1α2

, (D.20)

and the traceless (1,2) representation relations

Hαβ1β2
$ −G0αβ1β2

, (D.21)

G5αβ1β2
$

2

3
εβ1β2

γ1 γ2Ωα,γ1γ2 +
2

3
εβ1β2

γ1 γ2Ωγ1,αγ2 − 2Ωα,β1β2
, (D.22)

where in all the above relations that involve (1,1) and (1,2) traceless representations, we

have denoted the equality of the traceless parts with $ and suppressed the trace parts.

The solution described above in terms of SU(4) representations can be rewritten after

some computation in terms of Spin(7) representations. Using that and some of the results

of appendix C, the final result can be expressed as in section 3. In addition, although the

above equations involve explicit components of the spin connections and thus may appear

non-covariant, this is not the case. All the components of the connection that appear in the

solution of the KSEs above are part of the co-torsion in a Gray-Hervella type of analysis

and therefore transform like tensors.

E The N = 1 Spin(7) n R8 solution

In this appendix we present the solution to the Killing spinor equations for one Killing

spinor with stability subgroup Spin(7)nR8. As in the Spin(7) case, the solution is organised

in terms of irreducible SU(4) ⊂ Spin(7) representations. In particular have, the trivial

SU(4) representation relations are

dΦ+ = 0, H−γ
γ = 2Ω−,γ

γ , H+γ
γ = 0, (E.1)
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Fγ
γ = − 1

24
εγ̄1 γ̄2 γ̄3 γ̄4Gγ̄1γ̄2γ̄3γ̄4 +

1

24
εγ1 γ2 γ3 γ4Gγ1γ2γ3γ4 , (E.2)

Gγ1γ2
γ1 γ2 =

1

6
εγ̄1 γ̄2 γ̄3 γ̄4Gγ̄1γ̄2γ̄3γ̄4 +

1

6
εγ1 γ2 γ3 γ4Gγ1γ2γ3γ4 , (E.3)

G−+γ
γ = − 1

24
εγ̄1 γ̄2 γ̄3 γ̄4Gγ̄1γ̄2γ̄3γ̄4 +

1

24
εγ1 γ2 γ3 γ4Gγ1γ2γ3γ4 , (E.4)

F−+ = S, Ωγ,+
γ = 0, Ω−,−+ = 0, Ω+,γ

γ = 0, Ω+,−+ = 0, (E.5)

the (1,0) representation relations are

dΦα =
1

6
εα
γ̄1 γ̄2 γ̄3Hγ̄1γ̄2γ̄3 − Ωα,γ

γ + Ω−,+α, Hαγ
γ = 2Ωα,γ

γ , (E.6)

H−+α = 2Ω−,+α, F−α =
1

3
εα
γ̄1 γ̄2 γ̄3G−γ̄1γ̄2γ̄3 −G−αγγ , (E.7)

F+α = 0, G+αγ
γ = 0, (E.8)

Ωγ
,αγ = −1

4
εα
γ̄1 γ̄2 γ̄3Hγ̄1γ̄2γ̄3 +

1

2
εα
γ̄1 γ̄2 γ̄3Ωγ̄1,γ̄2γ̄3 + Ωα,γ

γ , (E.9)

Ωα,−+ = Ω−,+α, Ω+,+α = 0, G+γ1γ2γ3 = 0, (E.10)

the (1,1) trace-less relations are

H+αβ̄ $ −2Ωα,+β̄, Fαβ̄ $ G−+αβ̄, Gαγβ̄
γ $ 0, Ωβ̄,+α $ −Ωα,+β̄, (E.11)

the symmetric bi-fundamental representation relations

Ω(α1,α2)+ = 0, ε(α1

γ̄1 γ̄2 γ̄3Gα2)γ̄1γ̄2γ̄3 = 0, (E.12)

the skew-symmetric bi-fundamental representation relations

H−−α1α2
= 2Ω−−,α1α2

, H−+α1α2
= 0, F−α1α2

= G−−+α1α2
, (E.13)

G−α1α2γ
γ = −2G−−+α1α2

, H+
+α1α2

= −2Ω+
α1,+α2

, F+
α1α2

= G+
−+α1α2

, (E.14)

Ω−α1,+α2
= 0, Ω−+,α1α2

= 0, (E.15)

and the traceless (1,2) representation relations

Hαβ1β2
$ −2

3
εβ1β2

γ1 γ2Ωα,γ1γ2 +−2

3
εβ1β2

γ1 γ2Ωγ1,αγ2 + 2Ωα,β1β2
, (E.16)

G+αβ1β2
$ 0, (E.17)

where in all the above relations that involve (1,1) and (1,2) traceless representations, we

have denoted the equality of the traceless parts with $ and suppressed the trace parts.

The solution described above in terms of SU(4) representations can be rewritten in terms

of Spin(7) representations using the relations in appendix C, and the final result is given in

section 4. In addition, as has been mentioned in the previous appendix, all the components

of the connection that appear in the solution of the KSEs above are part of the co-torsion

in a Gray-Hervella type of analysis and therefore transform like tensors leading to covariant

expressions.
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