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f Institució Catalana de Recerca i Estudis Avançats (ICREA),
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1 Introduction

The study of strongly-coupled, confining gauge theories in four dimensions is notori-

ously difficult. Gauge/gravity dualities [1–4] offer an unprecedented opportunity to make

progress on the analytical side. The basic idea (holography) is that instead of studying

directly the strongly-coupled gauge theory, one studies a weakly-coupled gravity theory

in a curved background in five dimensions, and the field-theory observables can be com-

puted by looking at the boundary values of fields (and extended objects) that are allowed

to propagate in the bulk of the geometry. Since the two descriptions are supposed to be

completely equivalent, if the gauge theory is a consistent quantum theory (an ultraviolet

complete theory) then the dual description must be given by a consistent theory of quantum

gravity such as string theory or M-theory. As is well known, the latter theories reduce to

a tractable limit, namely classical supergravity, in the gauge theory limit of large number

of colors, Nc →∞, and strong coupling, λ→∞.

Two prominent examples of four-dimensional, confining gauge theories of phenomeno-

logical interest are Quantum Chromodynamics (QCD), the well-established theory of strong

nuclear interactions, and Technicolor (TC) [5–13], a hypothetical scenario for the dynamical

origin of electro-weak symmetry breaking. Since neither of these theories is strictly speak-

ing a large-Nc theory, nor are they strongly coupled at all energy scales, they cannot be

described in the supergravity approximation of string or M-theory. It is therefore interest-

ing to find as large a class of gauge theories as possible that share some of the fundamental

properties of QCD or TC and that can be described with supergravity. Within this class of

theories one then searches for generic results, the hope being that these may also be appli-

cable to QCD or TC. Examples of this type of results are provided by the meson spectrum

computed in [14] for the model of [15–17], which shows a remarkable agreement with real-

world QCD, or the computation of the shear viscosity to entropy density ratio for the quark-

gluon plasma (see in particular [18] and references therein), in which leading-order calcu-

lations performed in simple holographic models yield results that are remarkably close to

the real-QCD ones. Further directions in which this approach has been applied include the

computation of the QCD and Yang-Mills spectrum [19, 20], the behavior of QCD at finite
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temperature [21, 22] and/or finite chemical potential [19, 23], the construction of new mod-

els of electroweak symmetry breaking [24–41], and the description of some strongly-coupled

systems of interest for the condensed matter [42–44] and cosmology [45–54] communities.

In this paper we revisit the glueball spectrum in four-dimensional, confining SU(Nc)

Yang-Mills gauge theories with large-Nc, intended as approximations of real QCD and/or of

realistic TC models, in the limit in which the number of matter fields is small (Nf � Nc).

The two main questions we want to ask are: (i) What is the spectrum of scalar glueballs,

and how does it depend on the details of the gravity model? (ii) Is it possible that one

such glueball be anomalously light with respect to the rest of the spectrum, the corre-

sponding physical state being predominantly the dilaton, and how does this depend on

other dynamical features of the model?

The models we consider are generalizations of the Witten model [15] in that they

depend on two dynamical scales. The starting point is a renormalization group flow between

two conformal field theories (CFT) in five (six) dimensions. The dual supergravity solution

is a domain-wall like geometry that interpolates between two AdS6 (AdS7) spaces. Since

this geometry can be embedded into massive Type IIA string theory (M-theory), we will

refer to it as the ‘string model’ (‘M-theory model’). Each flow is characterized by the scale

Λflow at which the ‘transition’ between the ultraviolet (UV) and the infrared (IR) fixed

points takes place. The choice of this scale is equivalent to a choice of units, and hence all

the flows are physically equivalent. In order to produce a four-dimensional confining theory

we then compactify the theory on a circle (torus) with appropriate boundary conditions

following [15]. On the gravity side the solutions are constructed by placing a black hole

at the bottom of the geometry and performing a double analytic continuation so that the

circle (one of the circles) shrinks to zero size. The scale at which this happens is essentially

the confinement scale ΛQCD. In this way we obtain a continuous family of four-dimensional,

confining theories parametrized by the dimensionless ratio Λflow/ΛQCD.

We then focus on the first question above, namely the spectrum of scalar fluctuations.

Interestingly, we find that this contains two types of states, one that is sensitive to the

value of Λflow/ΛQCD and one that is virtually insensitive to it. Moreover, a subset of the

latter states is common to both the string and the M-theory models, suggesting a certain

‘universality’.

The second question is related to the first one. In the context of TC, and in particu-

lar of walking TC [55–57], a multi-scale variant of TC, already in early papers [57, 58] it

was suggested that an anomalously light scalar particle might be present in the spectrum,

the so-called ‘dilaton’. There exists a vast literature on the subject [59–94], but a clear

systematic understanding of what specific types of models give rise to a light dilaton is

still missing. The phenomenological relevance of this question arises from the fact that

such a particle might coincide with the Higgs particle discovered at the LHC experiments

ATLAS [95] and CMS [96], because the main properties of the Higgs particle are due to

the fact that it is itself a dilaton.

From the gauge/gravity perspective, there exist classes of models that resemble in

many crucial aspects the dynamical properties of walking theories [97–101]. In one such

class, an anomalously light scalar composite state has been identified [102, 103]. However,
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the systematics behind this discovery is far from clear: it is not evident whether supersym-

metry plays any role in the mechanism that makes the scalar light, and it is not known

what other backgrounds would admit such a state. It is known that the lightness of the

scalar is related to a large VEV of a dimension-six operator, it is known that this is also

related to the fact that the gravity dual exhibits hyperscaling violation over some finite

range of the radial direction, and it is known that such a dimension-six operator is present

in vast classes of gravity duals (see for instance [104, 105]).

It is hence interesting to pose the same question in the class of models that we con-

sider. We find that, generically, no parametrically light state exists regardless of the value of

Λflow/ΛQCD. Presumably, the reason is that in these top-down models there is no parametric

separation between the scales associated to the explicit and the spontaneous breaking of

scale invariance. However, as we explain in the last section, it is possible to extend these

models further by modifying the boundary conditions in the UV in such a way that a light

state appears. As expected, though, this can only be done at the expense of introducing a

considerable amount of fine-tuning.

2 General formalism

In this section we collect a set of general, technical results that are repeatedly employed

in the main body of the paper. We also set the notation and conventions used throughout

the paper, and we highlight a few technical subtleties of general validity and interest.

2.1 Five-dimensional σ-model

The action of the five-dimensional σ-model we are interested in may in general involve n

scalars Φa coupled to five-dimensional gravity. We write the action as

S5 =

∫
d5x
√
−g5

(
R5

4
− 1

2
Gabg

MN∂MΦa∂NΦb − V (Φa)

)
, (2.1)

where capital roman letters refer to five-dimensional space-time coordinates, with a =

1 , . . . , n the σ-model indexes, Gab is the σ-model metric, gMN is the space-time metric,

with signature {− , + , + , + , +}, g5 = det gMN , and R5 is the corresponding Ricci scalar.

Unless we specify otherwise, we are looking for ‘domain-wall-like’ solutions in which the

metric takes the form

ds2
5 = e2Aηµνdxµdxν + dr2 , (2.2)

with A = A(r) and Φa = Φa(r), and where the Greek indexes refer to the Minkowski

directions µ, ν = 0, . . . , 3. The classical equations of motion derived from this action are

Φa ′′ + 4A′Φa ′ + GabcΦb ′Φc ′ − V a = 0 , (2.3)

6A′ 2 + 3A′′ +GabΦ
a ′Φb ′ + 2V = 0 , (2.4)

6A′ 2 −GabΦa ′Φb ′ + 2V = 0 , (2.5)

where the ′ denotes derivative with respect to the radial direction r, V a = Gab ∂V/∂Φb,

and Gabc is the σ-model connection (we follow the conventions of [106]).
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2.2 Spectrum of bound states

Let us assume that the class of backgrounds described by the five-dimensional σ-model

provides the dual gravity description of some four-dimensional, confining gauge theory.

The confinement scale is set by the end-of-space of the geometry. We want to compute the

mass spectrum of scalar bound states of such a theory by fluctuating the bulk equations

and boundary conditions. The fluctuations of the scalars Φa and of the metric couple in a

quite non-trivial way. Furthermore, because of the diffeomorphism invariance of the grav-

ity theory, many combinations of the original scalar and gravity fluctuations are spurious

(pure gauge), and must be removed. Also, given that the backgrounds are often known

only numerically (since the equations for the fluctuations must be solved numerically), and

because some of the background functions diverge in the UV and in the IR, it is necessary

to introduce two regulators 0 < rI � rU , solve for fixed rI and rU , and then take the limit

rU → +∞ and rI → 0.

In order to proceed, it is convenient to use the gauge-invariant formalism developed

in [107–109], and extended in [110] to the general case in which the σ-model does not admit

a superpotential. We apply at rI and rU the boundary conditions discussed in [106], taking

the special limit in which divergent boundary masses are added for all the σ-model scalars.

After the regulators are removed, this effectively enforces the correct boundary conditions

(regularity in the IR and normalizability in the UV) dictated by holography. Roughly

speaking, the reason is that a large boundary mass penalizes the non-normalizable mode

in the UV and the singular one in the IR. We refer the reader to [106] for the derivation of

the boundary conditions from the boundary actions of the σ-model itself.

Given a σ-model with n scalars and action of the form (2.1), the scalar physical fluc-

tuations are given by gauge-invariant functions denoted by aa and satisfying the bulk

equations [110]

0 =
[
D2
r + 4A′Dr + e−2A�

]
aa (2.6)

−
[
V a
|c −R

a
bcdΦ̄

′bΦ̄′d +
4(Φ̄′aVc + V aΦ̄′c)

3A′
+

16V Φ̄′aΦ̄′c
9A′2

]
ac,

while the boundary conditions are given by [106][
δab + e2A�−1

(
V a − 4A′Φ′a − λa|cΦ̄

′c
) 2Φ̄′b

3A′

]
Drab

∣∣∣
ri

= (2.7)

=

[
λa|b +

2Φ̄′aΦ̄′b
3A′

+ e2A�−1 2

3A′

(
V a − 4A′Φ̄′a − λa|cΦ̄

′c
)(4V Φ̄′b

3A′
+ Vb

)]
ab
∣∣∣
ri
.

The meaning of all the notation is explained in detail in [106].1

From the point of view of the gravity calculation, the two matrices λa|c (one defined

in the UV and the other in the IR) are completely arbitrary, and come from the fact that

one can add a localized mass term for any of the σ-model scalars, without this affecting

1In particular, note that Rabcd is the Riemann tensor of the σ-model metric Gab, not of the space-time

metric gMN .
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the boundary conditions for the background functions. However, as explained above, by

taking λ→ ±∞, and then taking the two regulators to their physical values, one recovers

the standard requirements of normalizability and regularity, and hence we do so. The

boundary conditions take in this case the simpler form:[
e2A�−1 2Φ̄′c

3A′

](
Φ̄′bDr −

4V Φ̄′b
3A′

− Vb
)
ab
∣∣∣
ri

= −ac
∣∣∣
ri
. (2.8)

All the calculations of the spectra are performed in the following way. We choose a

third value r̄ of the radial coordinate, with rI � r̄ � rU , and replace �→M2 in the equa-

tions above for a fix trial value M2 > 0, where M2 is the four-dimensional mass squared

of the fluctuations. We select n independent n-vectors uaj (in the internal space of the

σ-model), so that detuaj 6= 0. We impose the IR boundary conditions on the n fluctuations

aIj(rI) and their derivatives, using the n-vector uaj , together with eq. (2.8), and use the

bulk equations to evolve the resulting n independent solutions up to r̄, obtaining aIj(r̄).

The UV (r = rU ) is treated similarly, and evolving down we obtain aUj(r̄). With this data,

we build the 2n× 2n real matrix

µ(M2) =


aIj(r̄) | aUk(r̄)

|
|

∂raIj(r̄) | ∂raUk(r̄)

 , (2.9)

and compute detµ. We then iterate by varying M2, and look to find the zeros of detµ(M2).

At this point we have the spectrum, for the given choices of rI and rU . We can then repeat

the whole procedure for different values of the regulators, and study the extrapolation to

the physical limits.

2.2.1 The probe approximation

We briefly digress in this subsection, to explain an important property of the system of

equations and boundary conditions for the fluctuations. The crucial observation we start

with is that the gauge-invariant variables aa are defined by [107–109]:

aa = ϕa − Φ̄′
a

6A′
h , (2.10)

where ϕa is the fluctuation of the scalars with respect to their background values, i.e.

Φa(xµ, r) = Φ̄a(r) + ϕa(xµ, r) , (2.11)

while h(xµ, r) is related to the (four-dimensional) trace of the fluctuation of the metric.

In particular, h couples to the trace of the stress-energy tensor at the boundary. In this

sense, if the lightest state in the theory is predominantly h, up to small mixing terms with

the sigma-model scalars, it is the pseudo-dilaton.2, 3

2In models with spontaneous breaking of exact scale invariance, one has to treat the massless dilaton

separately. This is not a realistic situation, and hence we do not discuss it in this paper.
3We emphasize that, since only the combinations aa are gauge-invariant, both ϕa and h can be separately

changed by a gauge transformation. However, fluctuations of scalar fields whose background is constant
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All the complications in the bulk equations and in the boundary conditions come from

the mixing of the fluctuations of the scalars with those of the metric, specifically with h.

Let us hence do the following exercise: what do the bulk equations and boundary conditions

look like in a case where the probe approximation is legitimate? A way to define what is

meant by probe approximation is that we can think of situations in which

Φ̄′ a

A′
� 1

for all a = 1 , . . . , n and for every r > 0. We also make the simplifying assumption that the

σ-model metric be flat, in the sense that Gabc = 0. We then use these two assumptions to

rewrite the bulk equations and boundary conditions in the drastic approximation in which

Φ̄′ a/A′ = 0. This is equivalent to stating that the scalars do not back-react on the geometry.

In this limit, we see that the bulk equations become

[
∂2
r + 4A′∂r +M2e−2A

]
aa − Gab

∂2V

∂Φb∂Φc
ac = 0 , (2.12)

and the boundary conditions reduce simply to

aa
∣∣∣
ri

= 0 . (2.13)

These are the familiar equations one is used to (from the AdS/CFT literature) for a system

of probes, the dynamics of which is influenced by the background, but not the other way

around. Notice in particular that the boundary conditions reduce simply to Dirichlet, and

that only a mass term (second field-derivative of the potential) enters the bulk equations,

besides the three terms that come from the Laplacian in curved space.

To some extent, this digression is intended to illustrate the fact that in more familiar

cases these seemingly complicated equations reduce to the usual results. But we also want

to make a far more important point. The probe approximation is defined by the very

assumption that the dilaton decouples from the fluctuations of the scalars. Indeed, in the

limit we are considering in this digression, there is no remnant of h to be found anywhere.

In particular, if a light pseudo-dilaton is present, it cannot be found in the probe approxi-

mation. It is hence necessary to use the complete boundary conditions in order to even ask

one of the questions we are interested in, and there is no such a thing as a limit in which

one can neglect the back-reaction.

Notice another very important fact, visible from the complete form of the boundary

conditions and bulk equations. When dealing with a set of n scalars, there exist two distinct

sources of mixing between their fluctuations: besides the obvious one coming from the scalar

potential (and from the σ-model metric, if curved), there is a less obvious one that arises

do not mix with the metric and are gauge-invariant (and “non-dilatonic”) by themselves. For this reason,

as long as the pseudo-dilaton is parametrically lighter than the other bound states, its properties are well

approximated by those of the fluctuation h. This is reminiscent of what happens in a spontaneously-broken

gauge theory, where processes mediated by the massive gauge bosons are for all practical purposes (and

as long as the mass is small) determined by the physics of the corresponding would-be Goldstone bosons.

This holds true irrespectively of the fact that the Goldstone mode can be, for instance, gauge-fixed to zero.
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due to the fact that for any of the fields having a non-trivial (r-dependent) bulk profile,

their fluctuations mix with h, and hence all of the fields that have a role in determining the

bulk geometry ultimately mix with one another. This also means that in order to compute

the spectrum of glueballs of a Yang-Mills theory (or closely related) one must use the bulk

equations and boundary conditions we reported here, since it is understood the the bulk

dynamics is supposed to be determined by the dynamics of the glue.

2.3 Wilson loops

Given a supergravity background that can be obtained as the low-energy theory of a su-

perstring theory, one can compute the expectation value of the rectangular Wilson loop

extended over a time interval T and a space interval LQQ by using the standard prescrip-

tion [111, 112]. As we will see, it is more natural to work in a new radial coordinate ρ,

which will be defined for all the models we are interested in later on. We embed an open

string with endpoints separated along a space-like direction on a regulating brane at some

large value of the radial coordinate ρU , and allow the string to fall into the radial direction.

We start from the string-frame metric in ten dimensions and define the functions (for

convenience, we follow the notation of [101]):

F 2 ≡ gttgxx , (2.14)

G2 ≡ gttgρρ , (2.15)

V 2
eff(ρ, ρ̂o) ≡

F 2(ρ)

F 2(ρ̂o)G2(ρ)

(
F 2(ρ)− F 2(ρ̂o)

)
, (2.16)

Z ≡ ∂ρ

(
G(ρ)

∂ρF (ρ)

)
, (2.17)

LQQ(ρ̂o) = 2

∫ ρU

ρ̂o

dρ̃
1

Veff(ρ̃, ρ̂o))
, (2.18)

EQQ(ρ̂o) = 2

∫ ρU

ρ̂o

dρ̃

√
F 2(ρ̃)G2(ρ̃)

F 2(ρ̃)− F 2(ρ̂o)
. (2.19)

The origin of F and G is the Nambu-Goto action:

S =
1

2πα′

∫
[0,T ]

dτ

∫
[0,2π]

dσ
√
−g . (2.20)

Making the choice of parameterization t = τ , x = x(σ) and ρ = ρ(σ), which means that

the string is stretched along the space-like directions, yields

S =
T

2πα′

∫
dσ
√
F 2x′ 2 +G2ρ′ 2 , (2.21)

where the prime refers to derivatives with respect to the world-sheet coordinate σ. From the

classical equations of motion derived from this action one finds that the profile of the string

is determined by the minimum value ρ̂o reached by the string profile, and the Euclidean

distance LQQ and energy EQQ are given by the expressions we wrote above, with 2πα′ = 1.

Let us remind ourselves of some important general results. In order for the calculation

of the Wilson loop to be doable, and to yield a confining linear potential at long distances,

one must find that (see also [113])
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• F 2 is monotonically increasing,

• limρ→+∞ Veff = +∞,

• Veff ∝ ρ for ρ→ 0.

If all of this is verified, then one also finds that the string tension is

σ ≡
dEQQ
dLQQ

∣∣∣∣
LQQ→∞

= F (0) . (2.22)

Furthermore, if Z < 0 for any ρ > 0, then the function LQQ(ρ̂o) is monotonically

decreasing. In particular, this means that LQQ is a single-valued function of ρ̂o and hence

that there are no phase transitions as LQQ varies from zero to infinity [114–116].

Let us explain this point in some more detail. A dramatic signature of the presence

of an intermediate region where the physics changes drastically (such as is the case for

walking theories) would be the emergence of a first-order quantum phase transition in the

(weakly-coupled) system living on the probe. This has been observed to take place in

the walking solutions within the conifold [101]. Namely, for ρ̂0 in the walking region, one

finds that the string configurations are unstable. In terms of the separation this happens

because the same value of LQQ corresponds to three distinct configurations, with different

energy EQQ, and thus inevitably LQQ(ρ̂0) is not monotonic. But confinement necessarily

means that dLQQ/dρ̂0 < 0 near the end of space, when ρ̂0 → 0. Also, UV-completeness

requires that dLQQ/dρ̂0 < 0 in the far-UV, when ρ̂0 → ρU . Hence, there can be only two

possibilities: either dLQQ/dρ̂0 < 0 for every possible ρ̂0, in which case the behavior of the

quark-antiquark potential resembles qualitatively that of a QCD-like theory, or there may

exist some intermediate range of ρ̂0 for which dLQQ/dρ̂0 > 0. It turns out that this is com-

paratively easy to check, and does not require to actually integrate LQQ. From the careful

analysis of the expression of LQQ one finds that the sign of dLQQ/dρ̂0 is controlled by the

sign of Z defined in eq. (2.17). Hence, by simply looking at the sign of Z we can exclude

the presence of such non-trivial discontinuous behaviors. We anticipate here that in all the

models we are going to discuss in the paper, Z < 0, so that there is no phase-transition of

this special type in any of them.

For later reference we close this section by reproducing the famous calculation of [111,

112], namely the calculation of the rectangular Wilson loop in AdS5 × S5, with T � LQQ.

The ten-dimensional metric of Type IIB is given by (there is no distinction between string-

frame and Einstein-frame, since the dilaton is constant and we fix it to Φ = 0):

ds2
10 =

r2

R2
dx2

1,3 +
R2

r2

(
dr2 + r2dΩ2

5

)
(2.23)

= e2 ρ
Rdx2

1,3 + dρ2 + R2dΩ2
5 , (2.24)

where R is the radius and dΩ2
5 is the metric of S5. The background functions F and G are

– 8 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
3

given by

F 2 =
r4

R4
= e4 ρ

R , (2.25)

G2 =
r2

R2
= e2 ρ

R . (2.26)

The separation LQQ is finite in the limit ρU → +∞, and depends only on ρ̂0:

LQQ(ρ̂0) =
2
√
πRΓ

(
3
4

)
e−

ρ̂0
R

Γ
(

1
4

) . (2.27)

As for EQQ, there is a divergent term, that we need to subtract:

EQQ(ρ̂0) = R

(
2e

ρU
R −

2
√
πΓ
(

7
4

)
e
ρ̂0
R

3Γ
(

5
4

) )
(2.28)

After subtracting the divergent part, the finite energy ĒQQ is

ĒQQ = −
πR2Γ

(
3
4

)2
Γ
(

1
4

)
Γ
(

5
4

) 1

LQQ
, (2.29)

in perfect agreement with [111, 112], up to the fact that we took α′ = 1
2π instead of α′ = 1

(or, equivalently, up to the fact that our definition of R differs by factors of α′).

2.4 Running gauge couplings and glueballs

In this section we remind the reader of a few aspects of the gauge theory dual that will be

important in subsequent sections.

As is well known, in the simple case of N = 4 SYM, which is dual to Type IIB string

theory on AdS5 × S5, the gauge theory coupling is given by

1

g2
YM

=
T3(2πα′)2e−Φ

2
, (2.30)

where T3 is the tension of a D3-brane. This result can be derived, for example, by placing

a D3-brane probe in the AdS5 × S5 background, expanding the Dirac-Born-Infeld action

to quadratic order in the gauge fields, and reading off the coefficient in front of this term.

With the replacement Tp = (2π)−p(α′)
−p−1

2 , modified with respect to [117] by the

convention from [118] that gs = eΦ∞ , one has4

1

g2
YM

=
e−Φ

4π
=

eΦ∞−Φ

4πgs
. (2.31)

This shows that the running gauge coupling is given by the exponential of the ten-

dimensional dilaton. In the specific case of N = 4 SYM the field Φ is constant, as expected

4In [117] one finds that
Tp

k
= (2π)−p(α′)

−p−1
2

gs
, and the dilaton Φ is chosen so that Φ∞ = 0. Which is, of

course, equivalent to the present expressions.
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for a CFT, and hence this translates into the relation 4πgs = g2
YM , the ’t Hooft coupling

being λ ≡ g2
YMNc = 4πgsNc. This is the famous result implying that the ’t Hooft large-Nc

limit is the classical limit in which gs → 0.

The gauge theory operator dual to Φ is actually the N = 4 Lagrangian,

L = TrFµνF
µν + · · · . (2.32)

Normalizable states of Φ on the gravity side thus correspond to poles in the two-point

function of L. Normalizable modes of other supergravity fields correspond to poles of two-

point functions of other operators. In particular, normalizable modes of the scalars in the

five-dimensional effective actions (the σ-models) that we will consider correspond to poles

of scalar operators. Since all these states correspond to bound states of gluons and adjoint

matter in the gauge theory, we will collectively refer to them as ‘glueballs’.

Consider now a higher-dimensional case that will be of interest in this paper, namely

the five-dimensional gauge theory living on the world volume of Nc D4-branes. The dual

effective five-dimensional string-frame metric can be written as

ds̃2
5 = g̃xxdx2

1,3 + g̃ηηdη
2 , (2.33)

where η is the fifth coordinate. The five-dimensional gauge coupling is given by an expres-

sion analogous to (2.30), namely by

1

g2
5

=
T4(2πα′)2

2
e−Φ =

e−Φ

16π3
√
α′

=
e−Φ

16π3`s
, (2.34)

where `s is the string length. Note that this is dimensionful, as expected for a gauge

theory in five dimensions. If η is periodically identified with period 2πR5, then the

effective four-dimensional physics at energies below ΛQCD = 1/R5 is controlled by the

four-dimensional coupling

1

g2
4

=
T5(2πα′)2

2
e−Φ

∫
dη
√
g̃ηη =

2πR5

g2
5

√
g̃ηη =

e−ΦR5

8π2

√
g̃ηη
α′

. (2.35)

This is dimensionless, as expected. We will see later that, in models in which confinement is

generated dynamically, ΛQCD sets the confinement scale, hence our choice of nomenclature.

We conclude with three important observations. First of all, in the case D > 4,

for example in the D4-brane theory, the effective four-dimensional gauge coupling entails

other functions besides the dilaton. It is hence necessary to include the σ-model scalars

they involve in the calculations yielding the properties of the glueballs. Secondly, the

ten-dimensional dilaton Φ is in general not one of the scalars of the five-dimensional σ-

model, but some complicated combination of them whose determination requires knowing

the lift to ten dimensions. And finally, the dilaton and the functions appearing in the

metric are not constant if the background is dual to a confining theory (for which there is

a running of the gauge coupling), and hence one cannot use the probe approximation. A

particularly striking illustration of all of these aspects is provided by the Klebanov-Strassler

system [119], for which the dilaton is constant, and yet the dual gauge couplings run.
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2.5 Embedding probe D8-branes

All the Type IIA backgrounds we will consider have an internal space that consists of a

circle parameterised by an angle η and an internal four-dimensional manifold parameterised

by the angles θ, ϕ, ψ and ξ (the model-dependent details will be explained in due time).

It is hence possible, in principle, to study the embedding of a probe D8-brane that extends

in the four Minkowski directions and wraps the internal four-dimensional manifold. The

embedding is then characterised by the functions ρ(σ) and η(σ). The idea of [16, 17] is to

find embeddings of this type which have a U-shape in the (ρ, η)-plane, study the physics

of fluctuations of such embeddings and interpret the results in terms of the mesons of the

dual (chiral symmetry-breaking) strongly-coupled large-Nc theory with a small number of

fundamental quarks.

We will show that this program can be repeated in several relevant examples later

on. We report here the general setup of the derivation of the embedding functions. The

starting point is the DBI action, in terms of the (string-frame) induced metric g̃MN :

SD8 = −T8

∫
d4xdθdϕdψdξdσ e−Φ

√
−det (g̃ +B2 + 2πα′F2) , (2.36)

We assume that F2 = B2 = 0 for simplicity, and use the embedding ansatz ρ = ρ(σ) and

η = η(σ). After integrating over the other eight dimensions, and fixing the constants so

that the normalisations cancel, the action takes the form

SD8 = −
∫

dσ

√
F̃ 2η′ 2 + G̃2ρ′ 2 , (2.37)

which, aside from the replacements F,G → F̃ , G̃ has the same form as the action we

looked at for the rectangular Wilson loop. Hence, all the same considerations apply, once

this replacement is done. In particular, this will allow us to straightforwardly check whether

the U-shape embeddings exist for any values of the parameter ρ̂0, which (as in the case of

the string probe) is the turning point of the configuration in the radial direction ρ.

3 A string theory model

In this section we study a multi-scale, confining four-dimensional theory with a string

theory dual. On the gauge theory side, the 4D theory is obtained by compactifying a

5D CFT on a circle with appropriate boundary conditions. On the gravity side, the

starting point is massive Type IIA supergravity [120]. Compactification of this theory

on S4 as in [121] yields the six-dimensional F (4) gauged supergravity constructed by

Romans [122–124]. This six-dimensional theory admits two AdS6 backgrounds (one of

which is supersymmetric), and can be further truncated to a 6D σ-model containing only

one scalar φ coupled to gravity. A class of solutions driven by φ that interpolates between

the two AdS6 geometries was constructed in [125]. Reducing the 6D σ-model on a circle

finally produces the 5D σ-model that we will use in our calculations, and that contains

a second scalar χ coming from the size of the circle. As already explained, fluctuations

of these scalars will correspond to a subsector of the 0++ spectrum of glueballs. The
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Figure 1. Diagramatic representation of the relations between various theories in reference to the

compactification of F (4), D = 6 supergravity.

quantum numbers can be fixed by considering how these modes couple to a D4-brane, as

was done for the Witten model for instance in [126]. In the case of χ, the argument for

assigning positive parity and charge is parallel to that in [126], while the new scalar φ is

directly related to the dilaton in 10D, the couplings of which were detailed in section 2.4.

We note that, thanks to recent progress on non-abelian T-duality [127–130], the Type

IIA truncation can be dualized to a Type IIB truncation, which provides an alternative

lift of the 5D σ-model to ten dimensions on which we will comment following [131]. We

display in figure 1 the relations between all the theories mentioned here.

3.1 The model

3.1.1 The σ-model in five dimensions

We start from the five-dimensional formulation of the model, useful for the computation

of the spectrum, and then present the successive steps needed for its embedding in string

theory. The action is given by (2.1) supplemented by appropriate boundary terms, for

which we follow the conventions in [106]. In the specific case we are interested in, there are

n = 2 scalars Φa = (φ, χ), and the σ-model metric is

Gab = diag {2, 6} , (3.1)

so that Gabc = 0. The potential is

V = e−2χ V(φ) , (3.2)

with

V(φ) =
1

9

(
e−6φ − 9e2φ − 12e−2φ

)
. (3.3)

3.1.2 The σ-model in six dimensions

The same system can be rewritten also in six dimensions. This is actually its natural

definition, since the model is a consistent truncation of the F (4) gauged supergravity in
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D = 6 constructed by Romans, that has been later discovered to be the S4-reduction of

massive Type IIA. Let us briefly summarize here the 6D gravity theory. It is understood

that the equations we will get must agree with those of the 5D case. The σ-model consists

of only one scalar φ, for which we write the action as

S6 =

∫
d6x
√
−g
[
R6

4
− gMN∂Mφ∂Nφ − V(φ)

]
, (3.4)

where the potential V(φ) has been defined earlier. The ansatz for the six-dimensional

metric that takes the 6D σ-model to the 5D σ-model is

ds2
6 = e−2χds2

5 + e6χdη2 , (3.5)

where 0 ≤ η < 2π is the coordinate of the circle, whose size is parameterized by the second

scalar χ appearing in the 5D model. This metric can be rewritten in a number of ways

that will be useful below:

ds2
6 = e2A−2χdx2

1,3 + e−2χdr2 + e6χdη2 (3.6)

= e2A−2χ
(
dx2

1,3 + e−2A+8χdη2
)

+ dρ2 (3.7)

= e2Â
(

dx2
1,3 + e−2Â+6χdη2

)
+ dρ2 . (3.8)

Note that we made the change of radial variable e−χdr = dρ, that Â = A − χ is the

six-dimensional warp-factor, and that the particular value Â = 3χ ∝ ρ, or equivalently

A = 4χ ∝ ρ, yields (locally) the AdS6 geometry.

3.1.3 Lift to massive Type IIA

The 10D background within massive Type IIA contains the metric, the dilaton Φ, the

four-form F4 and the mass parameter m, as detailed in [121, 132, 133]. The Einstein-frame

metric reads

ds2
10 = (sin ξ)

1
12X

1
8 ∆

3
8

[
ds2

6 +
1

g2
dΩ̃2

4

]
, (3.9)

where we fix the radius of the sphere to g = 1 in order to be consistent with the conventions

we adopted for the 6D and 5D σ-model equations. The various functions appearing in the

metric are

X = eφ , (3.10)

∆ = X−3 sin2 ξ + X cos2 ξ , (3.11)

dΩ̃2
4 = X2dξ2 + X−1∆−1 cos2 ξ

1

4

[
dθ2 + sin2 θdϕ2 + (dψ + cos θdϕ)2

]
, (3.12)

where the angles describing the sphere are chosen to have the ranges

0 ≤ θ ≤ π , 0 ≤ ϕ < 2π , 0 ≤ ψ < 4π , −π
2
≤ ξ ≤ π

2
. (3.13)
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However, notice that the (sin ξ)
1
12 factor in the metric yields a singularity at the equator in ξ.

One has to restrict to 0 < ξ ≤ π
2 and thus consider just one of the hemispheres. The bound-

ary at ξ = 0 corresponds merely to the presence of an O8 plane [132, 133]. The scalar in X

parameterizes an inhomogeneous deformation of the S4 in which a three-sphere is preserved.

The Ramond-Ramond (RR) four-form is given by

F4 =
2

3g3
∆−2(sin ξ)

1
3

(
6X−2 − X−6 sin2 ξ + 3X2 cos2 ξ − 4X−2 cos2 ξ

)
ε(4)

+
1

2g3
∆−2X−3(sin ξ)

4
3 cos4 ξ ε(3) ∧ dX , (3.14)

where ε(4) and ε(3) are the volume forms of the four- and three-sphere, respectively:

ε(4) =
1

8
cos3 ξ sin θ dξ ∧ dθ ∧ dϕ ∧ dψ =

1

8
cos3 ξ dξ ∧ ε(3) , (3.15)

ε(3) = sin θ dθ ∧ dϕ ∧ dψ . (3.16)

For later convenience, we define

G1 =
1

12g3
∆−2 cos3 ξ(sin ξ)

1
3

(
6X−2 − X−6 sin2 ξ + 3X2 cos2 ξ − 4X−2 cos2 ξ

)
dξ

− 1

2g3
∆−2X−3(sin ξ)

4
3 cos4 ξ dX , (3.17)

so that F4 = G1 ∧ ε(3). In addition, the background is supported by a non-vanishing

Romans mass

m =
2

3
g . (3.18)

The parameters g and m are related respectively to the number of D4 and D8 branes. In

principle they can be taken to be independent as in [132, 133], but we chose to identify

them for simplicity and to make contact with [121].

Finally, the ten-dimensional dilaton is given by

eΦ = (sin ξ)−
5
6 ∆

1
4X−

5
4 , (3.19)

which allows us to rewrite the metric in string frame:

ds2
s = eΦ/2ds2

10 = (sin ξ)−
1
3X−

1
2 ∆

1
2

[
ds2

6 +
1

g2
dΩ̃2

4

]
. (3.20)

We conclude by noticing that if we set φ = 0 then X = 1 = ∆ and dX = 0. In this case

the internal space is the round four-sphere and F4 is proportional to its volume form.

3.1.4 Lift to Type IIB

The same σ-model can be uplifted to Type IIB as shown in [131]. This is due to the

possibility of performing a non-abelian T-duality along an SU(2) ⊂ SO(4) isometry of the

internal S3 ⊂ S4. The ten-dimensional metric takes the same form as in Type IIA except

for the fact that the metric on the internal space is a different deformation of S4 that reads

dΩ̃2
4 = X2dξ2 + X−1∆−1 cos2 ξ

1

4

[
e−4Θdσ2 +

σ2

σ2 + e4Θ

(
dθ2 + sin2 θdϕ2

)]
, (3.21)
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where

eΘ =
1

2g
X−

3
4 ∆−

1
4 (sin ξ)−

1
6 cos ξ , (3.22)

and the angles θ, ϕ and ξ have the same meaning as in the massive IIA case. The new

coordinate σ no longer has a clear geometric interpretation and its range has not been

determined. We only observe that for fixed Θ (or equivalently for fixed ξ) asymptotically

the three-dimensional manifold interpolates between R3 and R1 × S2. In addition to the

singularity at ξ = 0 present in the type IIA geometry, T-duality generates a further one at

ξ = π
2 , so one needs to remove also the would-be pole. It would be interesting to understand

if these singularities are also due to the presence of orientifold planes. The first steps

towards the identification of the dual to the supersymmetric fixed point were given in [134].

The dilaton Φ and NS B-field are given by

e−2Φ =
1

4g2
∆−1X(sin ξ)

4
3 cos2 ξ(σ2 + e4Θ) , (3.23)

B = − σ3

σ2 + e4Θ
sin θdθ ∧ dϕ , (3.24)

while the RR sector reads

F1 = mσ dσ − G1 , (3.25)

F3 =
σ2

σ2 + e4Θ

[
σG1 +me4Θdσ

]
∧ sin θdθ ∧ dϕ , (3.26)

F5 = 0 . (3.27)

with G1 defined in (3.17). Notice that in this case the non-trivial fluxes call for an inter-

pretation in terms of a number of D5- and D7-branes, in the appropriate limit, as opposed

to the D4- and D8-branes of the massive Type IIA case [132, 133].

3.2 Finding solutions

Once we have defined the model in all relevant dimensions (five, six and ten), we need to

solve the corresponding equations and hence fix the backgrounds of interest.

3.2.1 Fixed points

First of all, we notice that the potential V of the six-dimensional theory has two critical

points at

φUV = 0 → V(φUV ) = −20

9
, (3.28)

and at

φIR = − log 3

4
→ V(φIR) = − 4√

3
. (3.29)

These define the two different AdS6 solutions of F (4) supergravity [122–124], the first one

being supersymmetric. We call them UV and IR, respectively, because the second one has

a lower value of

v ≡ V(φ) , (3.30)

which allows for the existence of a flow joining the two, as first constructed in [125].
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With our conventions, the curvature of the AdS6 spaces is related to the value of the

potential at the extrema as R2 = −5/v. This gives the radii

R2
UV =

9

4
, R2

IR =
5 · 31/2

4
. (3.31)

From the expansion of the potential at quadratic order around the extrema one reads off

the mass of the scalar

m2
UVR

2
UV = −6 , m2

IRR
2
IR = 10 . (3.32)

Correspondingly, the operator dual to the scalar φ has dimensions

∆UV = 3 , ∆IR =
1

2

(
5 +
√

65
)
. (3.33)

Note that whereas ∆UV , 5−∆UV and ∆IR are positive, 5−∆IR is not. This signals that,

for the flow to exist, one has to tune the coefficient of ∆IR (corresponding to the VEV in

the IR) to vanish in such a way that the fixed point is reached along the direction of an

irrelevant operator.

The five-dimensional σ-model is described by the equations

− 1

18
e−2χ(r)

(
−6e−6φ(r) + 24e−2φ(r) − 18e2φ(r)

)
+ 4A′(r)φ′(r) + φ′′(r) = 0 ,

1

27
e−2χ(r)

(
e−6φ(r) − 12e−2φ(r) − 9e2φ(r)

)
+ 4A′(r)χ′(r) + χ′′(r) = 0 ,

6A′(r)2+2φ′(r)2+6χ′(r)2+
2

9
e−2χ(r)

(
e−6φ(r)−12e−2φ(r)−9e2φ(r)

)
+3A′′(r) = 0 ,

3A′(r)2 − φ′(r)2 − 3χ′(r)2 +
1

9
e−2χ(r)

(
e−6φ(r) − 12e−2φ(r) − 9e2φ(r)

)
= 0 , (3.34)

where the ′ denotes derivatives with respect to r. Changing radial coordinate according to

dr = eχdρ , (3.35)

we find that the equations become:

∂2
ρφ+

(
4∂ρA− ∂ρχ

)
∂ρφ =

1

2

∂V
∂φ

, (3.36)

∂2
ρχ+

(
4∂ρA− ∂ρχ

)
∂ρχ = −1

3
V , (3.37)

3∂2
ρA + 6(∂ρA)2 + 2(∂ρφ)2 + 6(∂ρχ)2 − 3∂ρA∂ρχ = −2V , (3.38)

3(∂ρA)2 − (∂ρφ)2 − 3(∂ρχ)2 = −V . (3.39)

Note that the combination

0 = −12(3.37) + (3.38) + 2(3.39)

= 3
[
(4∂ρA− ∂ρχ) (∂ρA− 4∂ρχ) + ∂2

ρA− 4∂2
ρχ
]
, (3.40)
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is solved by

A = 4χ . (3.41)

This gives rise to the two AdS6 solutions. Indeed, in this case we are left with the following

three equations for φ and χ:

∂2
ρφ + 15∂ρφ∂ρχ =

1

2

∂V
∂φ

, (3.42)

∂2
ρχ + 15(∂ρχ)2 = −1

3
V , (3.43)

−(∂ρφ)2 + 45(∂ρχ)2 = −V . (3.44)

The last two equations can also be combined into

∂2
ρχ = −1

3
(∂ρφ)2 , (3.45)

which shows that χ and A = 4χ are both linear in ρ at the critical points where ∂ρφ = 0,

as anticipated above for the AdS6 solutions. In summary, the AdS6 solutions take the form

φ = φ0 =

{
0 , − log 3

4

}
,

χ = χ0 + χ1ρ ,

χ1 =

{
2

9
,

2

3 4
√

3
√

5

}
, (3.46)

where the integration constant χ0 is completely free for the time being. Substituting (3.46)

into (3.5) we see that the the five-dimensional metric takes the form

ds2
5 = e8χ0e8χ1ρdx2

1,3 + e2χ0e2χ1ρdρ2 (3.47)

= (χ1r)
8 dx2

1,3 + dr2 (3.48)

= z−
8
3

[
(3χ1)8 dx2

1,3 + dz2
]

(3.49)

= z−2+ 2
3
θ
(
dx2

1,3 + dz2
)
, (3.50)

where we have changed coordinates according to

χ1r = eχ0+χ1ρ , r = 3z−1/3 , (3.51)

and we have performed an obvious rescaling of the Minkowski coordinates. The boundary

(UV) lies at r → +∞ or z → 0 respectively. As expected from the compactification of

an AdS space on a circle, the 5D metric exhibits hyperscaling violation with hyperscaling

coefficient θ = −1 satisfying the null energy condition [135].
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3.2.2 Flows between the two fixed points

The first type of backgrounds we are interested in realize an RG flow between the two

fixed points described above. The geometry dual to this flow interpolates between the

AdS6 solutions while preserving Poincaré invariance in the x1,3 and η directions. This

means that the metric takes the form (3.8) with Â = 3χ. The equations for the remaining

scalar in this geometry are:

∂2
ρφ+ 5∂ρÂ∂ρφ =

1

2

∂V
∂φ

, (3.52)

∂2
ρÂ+ (∂ρφ)2 = 0 (3.53)

5(∂ρÂ)2 − (∂ρφ)2 = −V . (3.54)

Only two equations in this system are independent. Notice that (3.54) takes the form of

a constraint, that together with one of the first two equations implies the other one. We

resort to numerics for solving the system, tuning the IR boundary conditions in such a

way that asymptotically

φ(ρ) ' φIR + φ̃ e
−(5−∆IR) ρ

RIR , (3.55)

Â(ρ) ' ρ

RIR
− 1

4
φ̃2 e

−2(5−∆IR) ρ
RIR . (3.56)

From the set of three integration constants that characterize the solutions we have fixed

two to vanish. The first one is a harmless additive constant in Â and the second one

corresponds to the VEV of the operator dual to φ in the IR, that has to be set to zero for

the flow to exist, as explained above.

The remaining constant φ̃ > 0 labels the family of solutions interpolating between the

two critical points (3.28) and (3.29) as shown in figure 2. By varying φ̃ we change the scale

at which the transition between the CFTs occurs. However, since this is the only scale in

the theory, all solutions in this one-parameter family are physically equivalent, the only

difference between them being a choice of units.

Another important point is that, generically, in the UV both the ∆UV = 3 relevant

operator and its VEV will be turned on and given in terms of φ̃. Then, in principle it

is not possible to interpret the flow as being purely due to either explicit or spontaneous

breaking of conformal invariance.

3.2.3 Simple confining solutions

Let us focus now on solutions that have constant φ = φ0 corresponding to either of the fixed

points (3.28)–(3.29) of the six-dimensional potential. In each of these solutions we can place

a horizon at the bottom of the AdS6 geometry and perform a double analytic continuation

to obtain a confining solution [15], the so called AdS-soliton. These solutions take the form:

φ = φ0, (3.57)

χ = χ0 +
log 2

15
− 1

5
log

[
cosh

(√
−5v

2
ρ

)]
+

1

3
log

[
sinh

(√
−5v

2
ρ

)]
, (3.58)
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Figure 2. The continuous, blue curves are members of the one-parameter family of solutions of

the σ-model that interpolate between the critical values φUV and φIR. The long-dashed, red line

corresponds to the IR fixed point. The short-dashed, green line corresponds to the UV fixed point.

A = A0 +
4 log 2

15
+

4

15
log
[

sinh
(√
−5vρ

) ]
+

1

15
log

[
tanh

(√
−5v

2
ρ

)]
, (3.59)

where we have fixed an integration constant so that the space ends at ρ = 0 and we recall

that v ≡ V(φ0) is the value of the potential at either fixed point. Since the integration

constant A0 can be absorbed in a rescaling of the Minkowski coordinates, in the following

we will conventionally set A0 = χ0. The integration constant χ0 is fixed by the requirement

that the 6D metric be regular at ρ = 0. Near this point the metric takes the form

ds2
2 ∝ e6χdη2 + dρ2

= e6χ0 22/5

(
−5v

4

)
ρ2dη2 + dρ2 + · · · . (3.60)

Since η is periodically identified with periodicity 2π, in order to avoid a conical singularity

we must fix

χ0 =
1

6
log

(
− 4

22/5 5v

)
. (3.61)

Specifying to the values of v (3.28)–(3.29) at each of the fixed points this expression yields

χ0 =
1

6
log

9

25× 22/5
(UV) , (3.62)

χ0 =
1

6
log

√
3

5× 22/5
(IR) . (3.63)

Notice that for ρ� 1 we have A ' 4χ, namely in the UV we recover the AdS6 geometry.

The general solution in which φ interpolates between the two fixed points can be found

only numerically, and it is the main subject of the study of the spectrum we are going to

carry out.
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3.2.4 Multi-scale confining solutions

Above we obtained confining solutions by placing a black hole at the bottom of each of the

two AdS6 solutions of our model. Consider now the one-parameter family of solutions which

interpolate between these two fixed points. On the gauge theory side these are RG flows be-

tween two CFTs. A given flow is parametrized by the scale at which the ‘transition’ between

the UV CFT and the IR CFT takes place. In each flow we can again place a black hole at

the bottom of the geometry and perform a double analytic continuation to obtain a confin-

ing theory. This is now characterized by two scales, the confinement scale and the scale at

which the flow takes place, but the physics will only depend on the ratio of these two scales.

In order to find the solutions, we consider the IR expansion around the point where

the space smoothly closes off. As above, without loss of generality we choose coordinates

so that the space ends at ρ = 0. This means that the scalar φ is regular at this point,

while the scalar χ and the metric function A have a logarithmic divergence. Under these

circumstances the solution near ρ = 0 takes the form

φ=

(
φ̃− log(3)

4

)
−
e−6φ̃

(
3− 4e4φ̃ + e8φ̃

)
ρ2

4
√

3

+
1

36
e−12φ̃

(
−12 + 28e4φ̃ − 17e8φ̃ + e16φ̃

)
ρ4 +O

(
ρ6
)
,

χ=χ0 +
1

60

(
20 log(ρ) + 4 log(2) + 5 log

(
25

3

))
−
e−2φ̃

(
sinh(4φ̃) + 2

)
ρ2

9
√

3
(3.64)

+
5

162
e−4φ̃

(
sinh(4φ̃) + 2

)2
ρ4 +O

(
ρ6
)
,

A=χ0 +
1

60

(
20 log(ρ) + 5 log

(
25

3

)
+ 32 log(2)

)
+

7e−2φ̃
(

sinh(4φ̃) + 2
)
ρ2

18
√

3

+
e−4φ̃

324

(
108 cosh(4φ̃)−2

(
20 cosh(8φ̃)+52 sinh(4φ̃)+59

)
+27 sinh(8φ̃)

)
ρ4+O

(
ρ6
)
.

The constants in the expression for χ have been chosen in such a way that χ0 is given

by (3.63). The parameter φ̃ determines the scale at which the flow takes place. The actual

solutions cannot be found explicitly in closed form, but only numerically. Interestingly,

by noticing that V is smaller at the non-supersymmetric fixed point, one can see that the

profile of φ looks like a kink (cf. figure 2) in which in the UV the scalar φ is close to the

supersymmetric fixed point (φ = 0), while in the IR it is close to the non-supersymmetric

fixed point (φ = −1
4 log 3). In particular, this means that we must focus in the range

0 ≤ φ̃ ≤ 1
4 log 3, so it is convenient to parametrize φ̃ as

φ̃ =
log 3

8

[
1− tanh

(s∗
2

)]
. (3.65)

The limit s∗ → +∞ corresponds to φ̃→ 0. In this limit we see from (3.64) that the IR value

of φ is φ(ρ = 0)→ −1
4 log 3. In other words, the scalar reaches the value of the IR fixed point

before the theory confines. In the gauge theory language this means that the confinement

scale is much smaller than the scale at which the transition between fixed points takes place.
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As a consequence there is some energy range in the IR in which the dynamics is that dictated

by the IR CFT, and below this range the theory eventually confines. In the gravitational

language this limit corresponds to the case in which the size of the black hole at the bottom

of the flow is much smaller than the radial position of the kink in the geometry. In the

opposite limit, s∗ → −∞, we see that φ̃→ 1
4 log 3 and therefore φ(ρ = 0)→ 0. In this limit

the confinement scale is much larger than the scale at which the flow would have taken place,

the scalar φ remains approximately constant and equal to its UV value, and confinement

takes place before the theory can probe any physics associated to the IR fixed point.

The numerical solutions of the equations are shown in figure 3. In the profile for φ

we can clearly see the kink form anticipated, with the position of the kink approximately

given by s∗. We always set up the numerics in such a way that all the solutions end at

ρ = 0. The scale s∗ is visible also in ∂ρχ and ∂ρA. However, notice the vertical scale of

the latter two plots: because the values of V at the two fixed points in the six-dimensional

gravity theory are so close to one another, the functions A and χ change only very little

along the one-parameter family of solutions.

3.3 Spectrum of four-dimensional scalar bound states

Since we have the model formulated in five-dimensional language, we can proceed to

compute the spectrum following section 2. Let us rewrite the system in a form which

is more convenient for our purposes, starting from the bulk equations. First of all, the

σ-model metric is Gab = diag {2, 6}, which means that the covariant derivative with

respect to the σ-model is just the partial derivative, but also that Rabcd = 0. We have to

replace � = M2 > 0, the four-dimensional mass, and change radial variable according to
∂
∂r

= e−χ ∂
∂ρ

. We then have

0 =
[
e−2χ∂2

ρ + e−2χ (4∂ρA− ∂ρχ) ∂ρ + e−2AM2
]
aa − (m2)ac a

c , (3.66)

where we defined

(m2)ac≡Gab
∂2V

∂Φc∂Φb
+

4

3∂ρA

(
∂ρΦ

a ∂V

∂Φc
+Gab

∂V

∂Φb
∂ρΦ

dGdc

)
+

16V

9(∂ρA)2
∂ρΦ

a∂ρΦ
bGbc .

(3.67)

The boundary conditions read:

e−2χ∂ρΦ
c∂ρΦ

dGdb ∂ρa
b
∣∣∣
ri

=

[
−3∂ρA

2
e−2AM2δc b + ∂ρΦ

c

(
4V ∂ρΦ

dGdb
3∂ρA

+ Vb

)]
ab
∣∣∣
ri
. (3.68)

Notice an important subtlety: the correct form of the boundary conditions has been

multiplied by M2 in this expression, which is fine as long as M2 6= 0. In particular, a

superficial reading of these equations and boundary conditions might yield the incorrect

conclusion that there is an exactly massless mode. This is not the case, and one should

focus only on M2 6= 0. Another technical remark is that, due to the specific form of the

potential V = e−2χV(φ), by looking at the equations and boundary conditions we notice

that A and χ appear only in the combination e2A−2χ, which means that the equations,
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Figure 3. The solutions for the functions φ, ∂ρχ and ∂ρA to the system of equations in the

five-dimensional σ-model that descends from massive Type IIA string theory, as a function of the

radial direction ρ. The continuous blue curves show various solutions that differ by the choice of

s∗, the long-dashed green curve is the solution with φ = 0, and the short-dashed red curve is the

solution with φ = − 1
4 log 3.

and the spectrum, for the confining solutions obtained from the expansion in eq. (3.64)

do not depend on the integration constant χ0.

We perform a numerical study of the complete spectrum (fluctuating both φ and χ)

for different values of s∗. For s∗ → ±∞ this calculation enables us to recover the result

for the cases of constant φ. The outcome is shown in figure 4. Recall that we perform the

calculation with regulators ρI and ρU kept finite. Hence, the spectrum does depend on
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Figure 4. Spectrum for the confining solutions in the string theory model as s∗ is varied, with

ρI = 10−3 and ρU = 8. The spectrum at the two fixed points is recovered in the limits s∗ → −∞ (UV

fixed point) and s∗ → +∞ (IR fixed point), as indicated in the figure. The overall normalization is

chosen so that the first state among those that are insensitive to s∗ has unit mass.

the choices of these two scales. However, we performed an extensive numerical study of its

dependence (see the appendix), in order to choose values such that the spectrum we show

is in agreement (within numerical precision) with the results obtained by extrapolating

towards the physical limits ρI → 0 and ρU → +∞.

As expected, the spectrum smoothly interpolates between the case in which φ = 0

(for s∗ � 0) and φ = − log 3
4 (for s∗ � 0). Notice that there is a major difference between

fluctuations associated with φ and with χ. At the two fixed points, the fluctuations of φ

effectively decouple from the rest of the system, since φ′ = 0 on the background, but this

is not the case for generic values of φ. Nevertheless, one of the scalar fluctuations has a

mass that depends very strongly on s∗, and is mostly due to the fluctuations of φ, while

the other (which results mostly from the mixing of h with χ) is virtually insensitive to

s∗. As a result, the spectrum contains two towers of states, one that strongly depends on

s∗ and one that is virtually insensitive to it. Motivated by this fact, and given that only

ratios of masses are physically meaningful, we have chosen the overall normalization so

that the first state among those that are insensitive to s∗ has unit mass. The numerical

values of the masses at each of the fixed points are given in table 1. As a consistency

check, we note that, within numerical accuracy, the ratios at the UV fixed point agree

with those of the scalar gravitational modes in the AdS6 soliton shown in table 1 of [136].

3.4 Other observable quantities

Here we discuss some results for other physical observables, all of which are related to the

probe-approximation treatment of the system of extended objects allowed to propagate
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IR (s∗ → +∞) UV (s∗ → −∞)

0.86

1 1

1.82

2.29

2.46 2.46

2.81

3.37

3.54 3.54

3.81

4.41

4.58 4.58

4.80

5.43

5.60 5.60

5.80

Table 1. Numerical values of the masses of scalar bound states at each of the two fixed points in

the string model.

from the boundary into the bulk of the ten-dimensional geometry. For concreteness, we

restrict to the Type IIA description.

3.4.1 Wilson loop

First we focus on strings with endpoints localized at ρ → ∞, dual to a quark-antiquark

pair. We start by rewriting explicitly the ten-dimensional metric in string frame:

ds2
s = (sin ξ)−

1
3X−

1
2 ∆

1
2

[
e2A−2χdx2

1,3 + dρ2 + e6χdη2 +
1

g2
dΩ̃2

4

]
.

The background quantities defined in the general discussion of section 2.3 read:

F 2 ≡ gttgxx = (sin ξ)−
2
3X−1∆ e4A−4χ , (3.69)

G2 ≡ gttgρρ = (sin ξ)−
2
3X−1∆ e2A−2χ . (3.70)

These are independent of the internal angles with the exception of ξ. Dependence on this

coordinate makes the computation of the Wilson loop cumbersome because generically

the string will not be located at constant ξ. This is most easily seen in the limit in which

the quark-antiquark separation LQQ is very large. In this case the dominant contribution

to the string energy comes from the very long part of the string that sits at the bottom

of the geometry and runs parallel to the Minkowski directions. In other words, it comes

from F evaluated at the end-of-space. Therefore, regardless of the value of ξ at which the

string end-points sit at the boundary, the string will move towards the angular value that

minimizes F (0), extend there for a long distance, and then run up again to the boundary.

Now, the minimum of F as a function of ξ depends on the value of φ. Since we have
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that X = eφ takes values between X = 1 and X ' 0.76, the position of the minimum of

F (ξ) varies correspondingly from ξ = π/2 to ξ = π/6. This shows that, for interpolating

geometries, the minimum-energy configuration of the string does not lie at constant ξ. For

this reason, we will simply give the asymptotic behavior of the potential for the multi-scale

confining solutions.

Consider first a string that remains in the vicinity of the UV fixed point, where the

background is close to the AdS6 given by the first case of eq. (3.46). The energy is minimized

at an angular value ξ = π/2 and therefore the relevant functions are

F 2 = e4A0−4χ0 e
8
3
ρ , (3.71)

G2 = e2A0−2χ0 e
4
3
ρ . (3.72)

We can hence reutilize the general AdS5 result reviewed in section 2.3 provided we make

the replacements

R → 3

2
,

LQQ(R) → e−A0+χ0LQQ

(
3

2

)
,

EQQ(R) → eA0−χ0−2φ0EQQ

(
3

2

)
.

The energy as a function of the quark-antiquark separation is then:

EQQ = 3 eA0−χ0−2φ0 e
2
3
ρU −

9πΓ
[

3
4

]2
4 Γ
[

1
4

]
Γ
[

5
4

] 1

LQQ
. (3.73)

We see that in the far UV, for small separation, we recover the behavior of a conformal

theory, and as a result one gets the same Coulombic potential as for the AdS case.

In the opposite limit one has long strings that are probing the geometry near the end-of-

space. We know that the theory is confining, so the computation of the Wilson loop yields

a potential linear in the separation, as can be seen using the simple confining soultions in

section 3.2.3. Multi-scale confining backgrounds will also have a linear potential, with a

string tension interpolating between the values corresponding to the fixed points. Indeed,

the string tension can be exactly computed using eq. (2.22). As we argued, the configuration

will tend to minimize F (0) as a function of the angle ξ. The minimum is a function of

the scale φ̃ (or alternatively s∗) and has a transition from ξ = π/2 for log 2
4 ≤ φ̃ < log 3

4 to

cos ξ =
(

2
3 + 2

6−3e4φ̃

)− 1
2

for 0 < φ̃ < log 2
4 . The resulting tension is thus:

σ =
dĒQQ
dLQQ

= F (0) =


2

3
5

√
3
(

3

3−e4φ̃
− 1
)− 1

6
0 < φ̃ < log 2

4

2
14
15

√
3 e−2φ̃ log 2

4 ≤ φ̃ < log 3
4

(3.74)

Given the maximal and minimal values of φ, we find that 1.9 . σ . 2.9. Notice that these

numerical results are affected by the specific choice we made of the additive integration

constant in the warp factor A.
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By comparing with the spectrum, we learn another interesting thing. We have found

that it consists of two towers of states, the masses in one of which are almost completely

independent of the scale s∗. However, the string-tension does depend on s∗. In particular

this means that in units of the string-tension the spectrum of models that sits close to the

the non-supersymmetric critical point (φ̃ = 0) are actually lighter than in the case in which

the model sits always close to the supersymmetric fixed point.

3.4.2 Gauge coupling

Let us focus again on the equations for the lift to ten-dimensional massive Type IIA. We

know that the dilaton reads

eΦ = (sin ξ)−
5
6 ∆

1
4X−

5
4 , (3.75)

from which we find that the five-dimensional gauge coupling is (see eq. (2.34))

1

g2
5

=
e−Φ

16π3`s
=

(sin ξ)
5
6 ∆−

1
4X

5
4

16π3`s
=

e2φ

16π3`s
, (3.76)

where in the last step we have set ξ = π/2 for concreteness. On the other hand, the

component of the string-frame induced metric along the circle takes the form

g̃ηη = (sin ξ)−
1
3X−

1
2 ∆

1
2 e6χ . (3.77)

Using (2.35) we also find the four-dimensional coupling

1

g2
4

=
e−Φ

√
g̃ηη R5

8π2`s
=

(sin ξ)
2
3Xe3χR5

8π2`s
=

eφ+3χR5

8π2`s
, (3.78)

where again we have set ξ = π/2 in the last step. Note that the formulas for both couplings

were motivated in section 2.4 by placing a D4-brane in the ten-dimensional geometry. We

emphasize that we use the action of a D4-brane placed at a constant value of ξ as a tool

to read off the gauge couplings, but this does not mean that the D4-brane will stay there

at rest: since the metric depends on ξ, generically there will be a force on the D4-brane.

We show the running couplings in figure 5. First of all, notice that the five-dimensional

coupling does behave as one would expect: since the six-dimensional theory is the dual of a

flow between two fixed points, the five-dimensional coupling shows the expected behavior.

The four-dimensional coupling exhibits three important features. Unsurprisingly, it

diverges at the end of the space in the IR. Surprisingly though, the effect of the scale s∗
is virtually invisible: the various curves, obtained with different choices of s∗ are almost

identical, with small discrepancies that can barely be resolved.

The third feature deserves some explanation. Given that the four-dimensional gauge

coupling goes to zero in the UV, one might think that this is the dual of an asymptot-

ically free theory. However, this not the case because the four-dimensional coupling is

the gauge coupling of the lightest gauge bosons obtained by compactifying on a circle the

five-dimensional dual theory. Smallness of the coupling in the far-UV is just due to the

blowing up of the circle, the volume of which diverges when ρ → +∞. On the one hand,

this is welcomed, since it means that the theory in the far-UV is indeed five-dimensional.
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Figure 5. The five-dimensional gauge coupling g25 and the four-dimensional gauge coupling g24 in

the string model as a function of ρ, for a sample of confining solutions that differ by the choice of

scale s∗.

On the other hand, it also means that the whole KK tower of gauge bosons is becoming

light, and hence while the individual coupling may be small, the collective effect results in

the interaction being strong, as is clear from the behavior of the five-dimensional coupling.

In other words, the four-dimensional coupling looses meaning at high energies.

3.4.3 The U-shaped embedding of probe D8

Let us now consider the embedding function for probe D8-branes in the massive Type IIA

lift. We start by rewriting the ten-dimensional metric in string frame, specifying explicitly

the internal metric and the dilaton Φ:

ds2
s = (sin ξ)−

1
3X−

1
2 ∆

1
2

[
e2A−2χdx2

1,3 + dρ2 + e6χdη2 +
1

g2
dΩ̃2

4

]
,

dΩ̃2
4 = X2dξ2 +X−1∆−1 cos2 ξ

1

4

[
dθ2 + sin2 θdϕ2 + (dψ + cos θdϕ)2

]
,

eΦ = (sin ξ)−
5
6 ∆

1
4X−

5
4 .

The embeddings we are interested in are those in which the D8-brane extends along x1,3 and

wraps the round S3 inside the deformed S4. Choosing ξ, η as the eight and ninth worldvol-

ume coordinates, the D8 embedding is then specified by a function of two variables ρ(ξ, η).
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Figure 6. Embedding of the probe D8-brane in the string model, in the case of confining solutions

with φ = 0, for various choices of ρ̂o > 0, and using ρU = 35 as a cutoff.

Note that, unlike in the usual case discussed in [16, 17] and subsequent papers, here it is not

consistent to assume that the embedding is independent of ξ because the metric depends

explicitly on this coordinate. The exception is when φ = 0, since then the metric becomes

ξ-independent. We therefore focus on this case and leave a general analysis for future work.

The φ = 0 solution is given by

φ = 0 ,

χ = −1

6
log

25

6
− 1

5
log cosh

(
5ρ

3

)
+

1

3
log sinh

(
5ρ

3

)
,

A =
1

6
log

25

6
+

4

15
log sinh (5ρ) +

1

15
log tanh

(
5ρ

3

)
,

Substituting these expressions in the DBI action one finds that the latter is given by

SD8 = −36π2T8

7g4

∫
d4x

∫
dσ e4A−4χ

√
e6χη′ 2 + ρ′ 2 , (3.79)

which comparing with (2.37) yields (neglecting the constants):

F̃ 2 = e8A−2χ , (3.80)

G̃2 = e8A−8χ . (3.81)

The resulting D8 embeddings are shown in figure 6. As in [16, 17], when ρ̂o → 0 we recover

the antipodal configuration in which the end-points of the embedding are separated by

∆η = π, and more generally we find that the separation ∆η is a monotonically decreasing

function of ρ̂o. It would be interesting to use this family of embeddings to study the meson

spectrum following [16, 17].

4 An M-theory model

In this section we construct the M-theory dual of a multi-scale, confining four-dimensional

theory. On the gauge theory side, the four-dimensional theory is obtained by compactifying
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a 6D CFT on a torus with appropriate boundary conditions. On the gravity side, the start-

ing point is 11D M-theory. Compactification of this theory on S4 as in [137] yields maximal

7D gauged supergravity with SO(5) R-symmetry group [138]. This 7D theory admits two

AdS7 backgrounds. One of these solutions is supersymmetric and believed to provide the

dual description of the N = (2, 0) 6D CFT living on a stack of M5-branes. Both solutions,

as well as the flow between them, can be described in terms of a seven-dimensional σ-model,

with a single scalar φ, to which the 7D supergravity can be truncated. Further reducing

on a circle provides the link with Type IIA supergravity (on the gravity side) and with

the SYM theory living on a stack of D4-branes (on the field theory side). Generically the

size of the M-theory circle is not constant, and this produces a running dilaton in the ten-

dimensional description. A final compactification on another circle yields Type IIA string

theory on S1×S4, or equivalently M-theory on T 2×S4. If appropriate boundary conditions

are imposed on the T 2, the resulting effective four-dimensional field theory provides one of

the simplest examples of a confining theory with a gravity dual [15]. On the gravity side,

confinement occurs through the smooth shrinking to zero size of the second circle in the IR.

This physics can all be described in terms of either the seven-dimensional σ-model with one

scalar mentioned above, or in terms of a five-dimensional σ-model with three scalars, where

the two extra scalars, χ and ω, arise from the sizes of the two circles in the T 2. Fluctua-

tions of these scalars provide a subsector of the 0++ spectrum of glueballs. The quantum

numbers of ω and χ were assigned in [126]. The additional scalar φ was not considered be-

fore, but its quantum numbers must be the same since it mixes non-trivially with the other

scalars, and moreover it is directly related to the ten-dimensional dilaton through the uplift.

The confining model proposed by Witten [15] corresponds to the simple case in which

the scalar φ is set to zero and hence consistently truncated from the five-dimensional

σ-model. We will show how this construction can be easily generalised to the case in

which φ is retained and acquires a non-trivial bulk profile, thus describing a flow between

two fixed points (in the case in which the confinemenent scale vanishes). We will also

show how to construct an alternative lift to ten-dimensional Type-IIB, which makes use of

non-abelian T-duality based on the symmetries of an S3 ⊂ S4. The relationships between

the different theories mentioned here are schematically summarised in figure 7.

4.1 The model

4.1.1 The σ-model in five dimensions

We start from the five-dimensional formulation of the model that is used in the compu-

tation of the spectrum. In subsequent sections we will give the details of the uplift to M-

and string-theory. The action is given by (2.1) with n = 3 scalars, Φa = (φ, ω, χ). The

σ-model metric is

Gab = diag

{
1

2
, 1,

15

4

}
, (4.1)

so that Gabc = 0. The potential is

V =
1

2
e−2χ V(φ) , (4.2)
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Figure 7. Diagramatic representation of the relations between various theories discussed in the

paper.

with

V(φ) =
1

4
e
− 8√

5
φ − 2e

− 3√
5
φ − 2e

2√
5
φ
. (4.3)

Assuming the usual domain-wall type form of the metric

ds2
5 = e2Adx1,3 + dr2 , (4.4)

the classical equations that follow from this action are

0 =−e−2χ(r)

−2e
− 8φ(r)√

5

√
5

+
6e
− 3φ(r)√

5

√
5
− 4e

2φ(r)√
5

√
5

+ 4A′(r)φ′(r) + φ′′(r) , (4.5)

0 = 4A′(r)ω′(r) + ω′′(r) , (4.6)

0 =
4

15
e−2χ(r)

(
1

4
e
− 8φ(r)√

5 − 2e
− 3φ(r)√

5 − 2e
2φ(r)√

5

)
+ 4A′(r)χ′(r) + χ′′(r) , (4.7)

0 = 6A′(r)2+
1

2
φ′(r)2+ω′(r)2+

15

4
χ′(r)2+e−2χ(r)

(
1

4
e
− 8φ(r)√

5 −2e
− 3φ(r)√

5 −2e
2φ(r)√

5

)
+3A′′(r) ,

(4.8)

0 = 6A′(r)2 − 1

2
φ′(r)2 − ω′(r)2 − 15

4
χ′(r)2 + e−2χ(r)

(
1

4
e
− 8φ(r)√

5 − 2e
− 3φ(r)√

5 − 2e
2φ(r)√

5

)
, (4.9)

where ′ indicates differentiation with respect to the radial direction r.

4.1.2 The σ-model in seven dimensions

The 5D σ-model can be obtained from the 7D σ-model

S7 =
1

2

∫
d7x
√
−g
[
R− gMN∂Mφ∂Nφ− 2V(φ)

]
, (4.10)

– 30 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
3

assuming the following ansatz for the seven-dimensional metric:

ds2
7 = e−2χds2

5 + e3χ+2ωdz2 + e3χ−2ωdη2 . (4.11)

We see that χ and ω originate from the sizes of the two circles in the T 2, with coordinates

z and η. We assume a periodicity of 2π for both of them.

The 5D domain-wall ansatz (4.4) lifts to the 7D form

ds2
7 = dρ2 + e2Âdx1,3 + e3χ+2ωdz2 + e3χ−2ωdη2 , (4.12)

where

dρ = e−χdr , Â = A− χ . (4.13)

As we will see, the flow solutions between the two AdS7 spaces enjoy 6D Poincaré

invariance along the (x1,3, z, η) directions. In the case of confining solutions, the η circle

will contract to zero size, thus breaking the symmetry to 5D Poincaré invariance along the

(x1,3, z) directions. Since the latter will be a symmetry of all the backgrounds of interest,

we will impose the restriction

A =
5

2
χ+ ω (4.14)

on all our solutions (but not on their fluctuations). Under these conditions the 7D metric

takes the form

ds2
7 = dρ2 + e2Â

(
dx2

1,3 + dz2 + e−4ωdη2
)
. (4.15)

This suggests that, in 7D, it is convenient to work with a different linear combination of

scalars, (b, c), defined through

ω ≡ −1

2
b , (4.16)

χ ≡ 2

3
c+

2

9
b , (4.17)

so that (4.15) takes the form

ds2
7 = dρ2 + e2Â

(
dx2

1,3 + dz2 + e2bdη2
)
, Â = c− b

6
. (4.18)

The motivation for the choice of b is that it directly measures the size of the contractible

circle, whereas that of c is fixed by the requirement that the equations of motion simplify

in terms of these new variables. This set of equations is given by

∂2
ρφ + 6∂ρφ∂ρc =

∂V
∂φ

, (4.19)

∂2
ρb + 6∂ρb∂ρc = 0 , (4.20)

∂2
ρc + 6(∂ρc)

2 = −2

5
V , (4.21)

together with the constraint

6(∂ρc)
2 − 1

6
(∂ρb)

2 − 1

5
(∂ρφ)2 = −2

5
V . (4.22)
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Upon use of the restriction (4.14), eqs. (4.19)–(4.22) are equivalent to eqs. (4.5)–(4.9).

Note that the metric (4.18) restricted to the (ρ, η)-plane is, in general, topologically

a cylinder. However, if an end-of-space exists in the ρ coordinate, at which the size of

the S1 parameterized by η vanishes, then one is left with a conical singularity unless

the functions b and c are such that near the end-of-space this becomes the metric of a

plane. Since only the derivatives of b and c enter the equations of motion (4.19)–(4.22),

the requirement that no conical singularity be present can always be satisfied, at the only

price of fixing an otherwise undetermined integration constant.

4.1.3 The lift to Type IIA and to M-theory

The ten-dimensional Type IIA solution can be obtained by lifting the five-dimensional

system on S1×S4. Since maximal supergravity in 7D can be truncated to minimal super-

gravity by keeping precisely the scalar φ, we will use the considerably simpler embedding

formulas of [139]. The background has a non-trivial metric, dilaton Φ and F4 form. The

string-frame metric is given by the following equations

ds2
6 = e−

5
4
χ+ 1

2
ωds2

5 + e
15
4
χ− 3

2
ωdη2 , (4.23)

ds2
10 = ∆

1
2

[
e

3
4
χ+ 1

2
ωds2

6 + e
3
2
χ+ω 1

g2
dΩ̃2

4

]
, (4.24)

where we recall that 0 ≤ η < 2π is the coordinate on the circle. The metric on the internal

space reads

dΩ̃2
4 = X3dξ2 +

1

4
X−1∆−1 cos2 ξ

[
dθ2 + sin2 θdϕ2 + (dψ + cos θdϕ)2

]
, (4.25)

where we defined the functions

X = e
φ√
5 , (4.26)

∆ = X4 sin2 ξ +X cos2 ξ . (4.27)

The four angles describing the four-dimensional manifold are parameterized by the three

angles describing an S3, i.e.

0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , 0 ≤ ψ ≤ 4π , (4.28)

and an additional angle −π
2 ≤ ξ ≤

π
2 . For X = ∆ = 1 this manifold is S4, while for generic

values of φ one has a deformed four-sphere with preserved S3. As above, in order to make

contact with the lower-dimensional σ-models one should set the radius of the internal

manifold to unity, g = 1.

The four-form is given by

F4 =
1

g3
∆−2

(
4X−3 −X−8 sin2 ξ + 2X2 cos2 ξ − 3X−2 cos2 ξ

)
ε(4)

+
5

g3
∆−2X−4 sin ξ cos4 ξε(3) ∧ dX , (4.29)

– 32 –



J
H
E
P
0
5
(
2
0
1
4
)
0
0
3

where ε(3) and ε(4) are the volume forms of the spheres in three and four dimensions, as in

the previous section. Finally, the dilaton is given by

e
4
3

Φ = ∆
1
3 e3χ+2ω . (4.30)

Notice how, for φ 6= 0, the dilaton depends on the radial direction, but also on the internal

angle ξ. Remember that the relation between string and Einstein frame is

ds2
s = eΦ/2ds2

E . (4.31)

The solution can be further lifted to eleven-dimensional supergravity. In this case, the

four-form is unchanged, while the metric is given by a lift which assumes the existence of

another S1 parameterized by 0 ≤ z < 2π. The metric is

ds2
11 = e−

2
3

Φds2
10 + e

4
3

Φdz2 , (4.32)

= ∆1/3

(
ds2

7 +
1

g2
dΩ̃2

4

)
, (4.33)

where the external seven-dimensional metric is given by eq. (4.11).

4.1.4 The lift to Type IIB

The Type IIA background preserves the symmetries of the S3 in the internal space. It is

hence natural to construct an alternative lift to Type IIB, by non-abelian T-duality along

one of the SU(2) factors contained in the SO(4) isometry.

The string-frame metric in IIB takes the same form as in IIA, that is:

ds2
10 = ∆

1
2

[
e
Â
2 ds2

6 + eÂ
1

g2
dΩ̃2

4

]
, (4.34)

where again we reinstated the radius of the internal manifold, to be fixed to g = 1 to

recover the lower-dimensional σ-models. The internal manifold is no longer S4 but

dΩ̃2
4 = X3 dξ2 +X−1 ∆−1 cos2 ξ

1

4

[
e−4Θ dσ2 +

σ2

σ2 + e4Θ

(
dθ2 + sin2 θ dϕ2

)]
, (4.35)

with the warp factor

eΘ =
1

2g
e
Â
2 X−

1
2 ∆−

1
4 cos ξ . (4.36)

Note that the T-dualization has produced a singularity at ξ → ±π
2 . The rest of the NS

sector reads

e−2Φ =
1

4g2
e−2Â ∆−1X−1 cos2 ξ

(
σ2 + e4Θ

)
, (4.37)

B = − σ3

σ2 + e4Θ
ε(2) , (4.38)

with ε(2) = sin θ dθ ∧ dϕ the volume form of the S2. In addition, the non-vanishing RR

sector is

F1 = −G1 , (4.39)
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F3 =
σ3

σ2 + e4Θ
G1 ∧ ε(2) = F1 ∧B , (4.40)

where we have defined G1 from the IIA (or M-theory) 4-form as

F4 ≡ G1 ∧ ε(3) .

4.2 Finding solutions

Once we have defined the model in all relevant dimensions (five, seven, ten and eleven), we

need to solve the corresponding equations and hence fix the backgrounds of interest.

4.2.1 Fixed points

First of all, we notice that the potential V (as opposed to V ) admits two stationary points

φUV and φIR:

φUV = 0 → V(φUV ) = −15

4
, (4.41)

φIR = − log 2√
5

→ V(φIR) = − 5

22/5
. (4.42)

They define two non-equivalent AdS7 geometries, which happen to be the two known critical

solutions of the compactification of M-theory on S4. The labeling comes from the fact that,

since V(φIR) < V(φUV ), there exist RG flows that start near the latter and end at the for-

mer [140]. As above, we will denote by v ≡ V(φ) the value of V at either of the fixed points.

With the conventions used here, one finds that the curvature of the AdS7 spaces is

given by R2 = −15/v, which yields

R2
UV = 4 , R2

IR = 3 · 22/5 . (4.43)

By expanding the potential to quadratic order in φ one finds that

m2
UVR

2
UV = −8 , m2

IRR
2
IR = 12 , (4.44)

which means that the field φ is dual to an operator of dimensions

∆UV = 4 , ∆IR = 3 +
√

21 . (4.45)

Notice that while ∆UV , 6−∆UV and ∆IR are positive, 6−∆IR is negative. This implies

that in order for a flow connecting the two to fixed points exist, one has to dial the

coefficient of the ∆IR to zero, in such a way as to switch off the VEV of the corresponding

dual operator in the IR.

4.2.2 Flows between the two fixed points

We want to start by looking for solutions to the classical equations that realise such a flow

in the dual six-dimensional theory, as done in [140]. Hence, we set b = 0, and c = Â. The

equations of motion for the only non-trivial remaining scalar φ coupled to gravity are

∂2
ρφ+ 6∂ρÂ∂ρφ =

∂V
∂φ

, (4.46)
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Figure 8. The continuous, blue curves are members of the one-parameter family of solutions of

the σ-model that interpolate between the critical values φUV and φIR. The long-dashed, red line

corresponds to the IR fixed point. The short-dashed green line corresponds to the UV fixed point.

5∂2
ρÂ+ (∂ρφ)2 = 0 , (4.47)

30(∂ρÂ)2 − (∂ρφ)2 = −2V . (4.48)

Note that the last equation is a constraint and that the three equations are not inde-

pendent: the constraint plus one of the first two imply the other. We solve this system

numerically, by tuning the boundary conditions appropriately. Asymptotically in the IR,

we must impose that the solution behaves as

φ(ρ) ' φIR + φ̃ e
−(6−∆IR) ρ

LIR , (4.49)

Â(ρ) ' ρ

LIR
− 1

20
φ̃2 e

−2(6−∆IR) ρ
LIR . (4.50)

Notice that in principle this should depend on three integration constants. However,

we fixed to zero an additive integration constant in Â, and as we explained we have to

impose that the VEV of the dual field theory operator vanishes, which removes another

integration constant in φ.

The result is the one-parameter family depicted in figure 8. By varying φ̃ > 0 one

finds a whole family of possible solutions that interpolate between the values of φ at the

two critical points (4.42), and represent the RG flows between the fixed points of the dual

six-dimensional field theory. The choice of φ̃ is equivalent to the choice of the scale at

which the transition takes place. Since this is the only scale in the theory, all the solutions

in this family differ merely by a choice of units and are therefore physically equivalent.

4.2.3 Simple confining solutions

Let us focus now on solutions that have constant φ = φ0 corresponding to the fixed points

of the seven-dimensional potential. In each of these solutions we can place a horizon at

the bottom of the AdS7 geometry and perform a double analytic continuation to obtain a

confining solution à la [15], the so called AdS-soliton. In these solutions b varies in such a
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way that the η-circle closes off smoothly at some ρ = ρ0 that we choose to set to ρ0 = 0

without loss of generality. In this case, the general solution is given by

φ = φ0 , (4.51)

c =
1

6
log

[
1

x
sinh(xρ)

]
, (4.52)

b = log

[
2

x
tanh

(x
2
ρ
)]

, (4.53)

where

x =

√
−12v

5
, v = V(φ0) . (4.54)

This solution is simply the seven-dimensional AdS-soliton written in an unusual radial

coordinate, and in it a number of integration constants have been fixed. In particular, an

integration constant has been chosen to avoid a conical singularity in the IR (see the last

paragraph of section 4.1.1), and another integration constant has been fixed arbitrarily

without loss of generality, since it can be absorbed in a rescaling of the gauge theory

coordinates. In five-dimensional language, this solution takes the form

φ = φ, ω = −1

2
b, χ =

2

3
c+

2

9
b ,

A =
1

18
b+

5

3
c , dρ = e−

2
3
c− 2

9
bdr . (4.55)

4.2.4 Multi-scale confining solutions

In the previous section, we obtained confining solutions by placing a black hole at the

bottom of each of the two AdS7 solutions of our model. Consider now the one-parameter

family of solutions which interpolate between these two fixed points, as reviewed in

section 4.2.2. In the CFT these are RG flows between two CFTs. A given flow is

parametrized by the scale at which the ‘transition’ between the UV CFT and the IR CFT

takes place. In each flow we can again place a black hole at the bottom of the geometry

and perform a double analytic continuation to obtain a confining theory. This is now

characterized by two scales, the confinement scale and the scale at which the flow takes

place, but the physics will only depend on the ratio of these two scales.

In order to find the solutions, we consider the IR expansion around the point where

the space smoothly closes off. As above, without loss of generality we choose the boundary

conditions so that this happens at ρ = 0. As explained above, we also fine-tune the choice

of integration constants in such a way as to forbid the IR-relevant deformation. This

means that in looking for non-trivial solutions to the equations we will allow for only one

additional integration constant in the system, the scale s∗. Because we will keep the end-

of-space fixed at ρ0 = 0, the value of s∗ encodes the ratio between the confinement and the

scale at which the flow takes place, so physical quantities will only depend on s∗. Under
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these circumstances the solution near ρ = 0 takes the form

φ(ρ) = − log(2)√
5

+ φ̃−
e
− 8φ̃√

5

(
2− 3e

√
5φ̃ + e2

√
5φ̃
)
ρ2

22/5
√

5

+
e
− 16f0√

5

(
−2 + e

√
5φ̃
)(
−1 + e

√
5φ̃
)(
−18 + 17e

√
5φ̃ + 6e2

√
5φ̃
)
ρ4

20 24/5
√

5
+O(ρ6) ,

b(ρ) = log(ρ)−
e
− 8φ̃√

5

(
−1 + 4e

√
5φ̃ + 2e2

√
5φ̃
)
ρ2

5 22/5

+
e
− 16φ̃√

5

(
31− 128e

√
5φ̃ + 162e2

√
5φ̃ + 76e3

√
5φ̃ + 34e4

√
5φ̃
)
ρ4

250 24/5
+O(ρ6) ,

c(ρ) = +
log(ρ)

6
+
e
− 8φ̃√

5

(
−1 + 4e

√
5φ̃ + 2e2

√
5φ̃
)
ρ2

15 22/5

− 1

375
5
√

2e
− 16φ̃√

5

(
13− 44e

√
5φ̃ + 51e2

√
5φ̃ − 2e3

√
5φ̃ + 7e4

√
5φ̃
)
ρ4 +O(ρ6) , (4.56)

where φ̃ is the free constant that parametrizes the family of solutions. Notice that in order

for the solutions to approach in the UV the φ = 0 solution (the UV fixed point), one has

to choose 0 ≤ φ̃ ≤ log 2/
√

5. It is therefore convenient to parametrize φ̃ as

φ̃ =
log 2

2
√

5

(
1− tanh

(s∗
2

))
, (4.57)

The limit s∗ → +∞ corresponds to φ̃→ 0. In this limit we see from (4.56) that the IR value

of φ is φ(ρ = 0)→ − log 2/
√

5. In other words, the scalar reaches the value of the IR fixed

point before the theory confines. In the gauge theory language this means that the confine-

ment scale is much smaller than the scale at which the transition between fixed points takes

place. As a consequence there is some energy range in the IR in which the dynamics is that

dictated by the IR CFT, and below this range the theory eventually confines. In the gravi-

tational language this limit corresponds to the case in which the size of the black hole at the

bottom of the flow is much smaller than the radial position of the kink in the geometry. In

the opposite limit, s∗ → −∞, we see that φ̃→ log 2/
√

5 and therefore φ(ρ = 0)→ 0. In this

limit the confinement scale is much larger than the scale at which the flow would have taken

place, the scalar φ remains approximately constant and equal to its UV value, and confine-

ment takes place before the theory can probe any physics associated to the IR fixed point.

We use the expansion (4.56) to set up the IR boundary conditions for the numerical

study of the backgrounds. The result of the procedure is shown in figure 9. One can clearly

see that all the solutions interpolate between the two simple confining solutions described

in section 4.2.3, with the parameter φ̃ controlling the scale at which the transition takes

place. Note that these two solutions are very close to each other, because the two critical

points have values of V that are themselves very close to each other, and that all the

solutions have a linear-dilaton behaviour in the far UV.
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Figure 9. Multi-scale confining solutions for several values of φ̃. We show the functions φ, ∂ρc, b

and ∂ρΦ as a function of ρ. For the latter we have assumed ξ = π
2 , in which case Φ = φ√

5
+ 3

2c−
1
4b.

4.3 Spectrum of four-dimensional scalar bound states

Since the σ-model metric is trivial Gab = diag
{

1
2 , 1,

15
4

}
also for this model, the same

simplifications take place as for the model of the previous section, namely that the covariant

derivative with respect to the σ-model is just the partial derivative, and also thatRabcd = 0.

After changing the radial variable according to ∂
∂r

= e−χ ∂
∂ρ

, one thus finds the same formal

expressions for the equations of motion and the boundary conditions for the fluctuations

as those given in eqs. (3.66), (3.67), and (3.68).

We perform a numerical study of the complete spectrum for different values of s∗. The

result is shown in figure 10. We see that in the limits s∗ → ±∞ the spectrum converges

smoothly to the cases in which φ is constant. The numerical values of the glueball masses

at the fixed points are shown in table 2. We also note that, despite the fact that for

non-constant φ there is mixing among all the scalars, this mixing is small, and as a result

only one of the three towers of states shows an explicit dependence on s∗. This is the

tower of states corresponding to fluctuations of φ, whose bulk equations depend on which

critical point the background is close to.

4.4 Other physical quantities

In this section we look at various other quantities that may be used to characterize the

long-distance behavior of the dual field theory, all of which are studied by using extended

objects as probes of the dynamics.
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Figure 10. Spectrum for the confining solutions in the M-theory model as s∗ is varied, with

ρI = 0.001, ρ̄ = 4 and ρU = 15. The spectrum at the two fixed points is recovered in the limits

s∗ → −∞ (UV fixed point) and s∗ → +∞ (IR fixed point), as indicated in the figure. The overall

normalization is chosen so that the first state among those that are insensitive to s∗ has unit mass.

4.4.1 Wilson loops

To compute the expectation value of the Wilson loop, we assume that we have a solution

for c, φ and b of the class in figure 9. We then write explicitly the string-frame metric

ds2
10 = e

2
3

Φ∆1/3
[
e2(c− b6)dx2

1,3 + dρ2 + e2(c+ 5
6
b)dη2 + dΩ̃4

]
= ∆

1
2 e(c−

b
6)
[
e2(c− b6)dx2

1,3 + dρ2 + e2(c+ 5
6
b)dη2 + dΩ̃4

]
=

(
e

4φ√
5 sin2 ξ + e

φ√
5 cos2 ξ

) 1
2

e(c−
b
6)
[
e2(c− b6)dx2

1,3 + dρ2 + · · ·
]
. (4.58)

For simplicity, we consider a string whose endpoints lie at ξ = π
2 . Unlike in the previous

section, in this case the entire string lies at this value of ξ. This follows from the fact

that, for the allowed values of φ ≤ 0, the minimum of the ξ-dependent prefactor in the

metric (4.58) always lies at cos2 ξ = 0. We therefore set ξ = π
2 in the following.

Under these circumstances, the functions controlling the behavior of the string

embedding are

F 2 = gttgxx = e
4 φ√

5
+6c−b

, (4.59)

G2 = gttgρρ = e
4 φ√

5
+4c− 2

3
b
. (4.60)

The result of the numerical study of the Wilson loop is shown in figure 11. The main result

is that at large LQQ we find the expected linear behavior. The long-distance behavior is

governed by the the string tension σ = F (0), which depends on the IR behavior of the

background. In particular, for the extreme case φ = 0 one has σ = 1, while φ = − log 2√
5
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IR (s∗ → +∞) UV (s∗ → −∞)

1 1

1.02

1.77 1.77

1.96

2.36

2.50 2.51

2.78 2.78

2.90

3.40

3.55 3.55

3.75 3.75

3.84

4.40

4.54 4.55

4.71 4.72

4.78

5.38

5.52 5.52

5.67 5.67

Table 2. Numerical values of the masses of scalar bound states at each of the two fixed points in

the M-theory model.

yields σ = 2−
2
5 . The short-distance behavior is ĒQQ ∝ 1/L2

QQ. The origin of this is that,

despite the fact that the ten-dimensional geometry is not asymptotically AdS in the UV,

the eleven-dimensional lift to M-theory is.

4.4.2 Gauge coupling

We compute the gauge coupling of the dual field theory by embedding D4-branes extended

in the four-dimensional Minkowski directions as well as along the S1 spanned by η. We

assume that the probes have a configuration for which ξ = π
2 and setting α′ = 1 for

convenience we find that:

1

g2
5

=
e−Φ

16π3`s
=

e
− φ√

5
− 3

2
c+ 1

4
b

16π3`s
, (4.61)

1

g2
4

=
2πR5

g2
5

√
g̃ηη =

ebR5

8π2`s
. (4.62)

We show in figure 12 the result of using these equations with a set of solutions which differ

only by the choice of s∗. Several features are worth noticing. First of all, the difference

between the various backgrounds is barely visible. Second, the fact that the dilaton diverges

linearly in the UV means that the five-dimensional coupling does so as well. Finally,
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Figure 11. The result of the study of the Wilson loop in the M-theory model for confining solutions

which differ by the choice of s∗.

contrary to what happened in the string model, the asymptotic value of the g4 coupling is

a large constant. Again, this is the result of the linear-dilaton behaviour of the background.

4.4.3 D8 embedding

We focus on the Type IIA lift and embed a probe-D8 in the background. We recall the

expressions of the metric (in string-frame) and of the dilaton:

ds2
10 =

(
e

4φ√
5 sin2 ξ + e

φ√
5 cos2 ξ

) 1
2

e(c−
b
6)
[
e2(c− b6)dx2

1,3 + dρ2 + e2(c+ 5
6
b)dη2 + dΩ̃2

4

]
,

dΩ̃2
4 = e

3φ√
5 dξ2+

1

4
e
− φ√

5

(
e

4φ√
5 sin2 ξ+e

φ√
5 cos2 ξ

)−1

cos2 ξ
[
dθ2+sin2 θdϕ2+(dψ+cos θdϕ)2

]
,

e
4
3

Φ =

(
e

4φ√
5 sin2 ξ + e

φ√
5 cos2 ξ

) 1
3

e2c− 1
3
b .

We use an ansatz in which the brane extends in the four Minkowski dimensions and wraps

the internal S4. The embedding is then specified by the functions ρ(σ) and η(σ). As clear

from the expression of the metric, the ξ-dependence is somewhat problematic, in the sense

that it makes the integration over this angle complicated. For our purposes, we hence
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Figure 12. The five-dimensional gauge coupling g25 and the four-dimensional gauge coupling g24 in

the M-theory model as a function of ρ, for a sample of confining solutions that differ by the choice

of scale s∗.

focus only on the case

φ = 0 , (4.63)

c =
1

6
log

[
1

3
sinh(3ρ)

]
, (4.64)

b = log

[
2

3
tanh

(
3ρ

2

)]
, (4.65)

that is, the original Witten model [15]. This means that we are reproducing the result

of Sakai and Sugimoto [16, 17], which we include here for completeness. The DBI action

becomes

SD8 = −8π2T8

3

∫
d4x

∫
dσ

√
F̃ 2η′ 2 + G̃2ρ′ 2 , (4.66)

where

F̃ 2 = e16c− 2
3
b , (4.67)

G̃2 = e14c− 7
3
b . (4.68)

The result of the numerical study is shown in figure 13. The equivalent embedding

can be found for the confining solution based on the non-susy fixed point. Notice the clear

similarity with what we found in the string model.
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Figure 13. Embedding of the probe D8 in the Witten model, in the case of confining solutions

with φ = 0, for various choices of ρ̂o > 0, and using ρU = 35 as a cutoff.

5 Discussion

This section is devoted to the discussion of the physical implications of the work presented

in the main body of the paper. In particular, we critically compare results obtained

with different models, and address the two fundamental questions we started with,

related to the concept of universality of gauge/gravity results, and to the physics of the

four-dimensional dilaton.

5.1 Comparing spectra of glueballs

In figure 14 we show the comparison between six different calculations of the glueball spec-

trum of a QCD-like (or, rather, Yang-Mills-like) theory based on gauge/gravity dualities in

the large-Nc limit,5 as well as some lattice results. The normalization for the second and

third (fifth and sixth) columns is that explained in section 3.3 (section 4.3), namely the

mass of the lightest state that is common to the UV and IR fixed points is set to unity. The

first column is the spectrum of the Witten model, i.e. the UV fixed point of the M-theory

model of section 4.3, according to [126], so for consistency we have simply set the mass of

the lightest state to unity. The fourth column is the spectrum obtained by considering the

string model at either fixed point and truncating φ from the spectrum [141, 142].

Figure 14 exhibits several interesting features. First, there is a set of states that [126]

included in their calculation that we have truncated away, and viceversa. For the states

that both [126] and we kept, the agreement is fairly good; it is possible that the small

discrepancies are simply due to the numerical nature of the calculations. Similarly, our

calculation for the string-theory model agrees well with [141, 142] for the common part of

the spectrum, but in our calculation we kept one more tower of states.

Second, the six towers shown in figure 14 agree to a remarkable degree on the subset

of the spectrum highlighted with dotted lines, suggesting a certain universality of this

5We do not compare with the results from [143] since this reference worked in the probe approxi-

mation. Despite existing similarities in the spectra, we also do not pursue a detailed comparison with

semi-phenomenological models such as [144].
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Figure 14. Spectrum of 0++ glueballs according to several different calculations. Left to right:

the spectrum of the Witten model (the M-theory model at the UV fixed point) according to [126]

(red) and according to our calculations in section 4.3 (black), the spectrum obtained from the

M-theory model at the IR, non-supersymmetric fixed-point, also discussed in section 4.3 (purple),

the spectrum obtained by considering the string model at either fixed point and truncating φ from

the spectrum [141, 142] (blue), the spectrum obtained from the string theory model at the UV,

supersymmetric fixed point discussed in section 3.3 (brown) and at the IR, non-supersymmetric

fixed point, also discussed in section 4.3 (pink). The normalisation of the spectra is discussed in

the main text. The dotted lines, which lie at M = {1, 2.5, 3.54, 4.56}, highlight the subset of states

that is common to all the models (within numerical precision). Finally, in the last column we report

lattice results for SU(Nc) Yang-Mills, with Nc = 3 , . . . , 8 (left to right), as discussed in the text.

part of the spectrum. Establishing whether this is an artifact of the specific mechanism

implementing confinement on the gravity side or a truly generic feature of large-Nc

Yang-Mills theories would require further study.

Third, the lightest state is a bit lighter than what one might have expected based on the

splitting within the rest of states in the common subset. This splitting is δM ' 1.03, as can

be seen from the dotted lines in figure 14, which is somewhat smaller than the ∆M ' 1.5

between the first and the second state. As explained in the main body of the paper, the ori-

gin of this fact is clear on the gravity side: the physical states are admixtures of fluctuations

of the five-dimensional scalars and of the four-dimensional dilaton, and the lightest of such

states is also the one which contains the largest dilaton component, making it somewhat

special. Thus, although none of the models discussed in this paper admits a naturally light

dilaton, the physics of the lightest state is appreciably affected by the dilaton dynamics.
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Fourth, all the towers of states have masses that asymptotically behave as

Mn ' M0 + n δM , i.e. the masses (rather their squares) are linear in the excitation

number, failing to reproduce the Regge behaviour. This is of course expected in this type

of supergravity backgrounds.

It would be very interesting to know whether such pattern also emerges in the large-Nc

extrapolation of lattice calculations (see [145–149]). Since this extrapolation is difficult

(see below), in the last column of figure 14 we compare with finite-Nc lattice data taken

from [150]. We show the results for the states that the authors of [150] refer to as A++
1 , ob-

tained from lattice calculations with finite lattice spacing (NL = 12) for SU(Nc) Yang-Mills

theories with Nc = 3 , . . . , 8 (left to right in the plot). Where available, we included the first

three excited states. Notice that in the process we selected only states that have negligible

mixing with lattice artifacts such as multi-glueballs and bi-torelon states (see [150] for a

discussion), and we did not include the extrapolation to large-Nc. Again, we normalise

the lightest state to unity, and show also the statistical uncertainty of the lattice results.

The outcome of this comparison, while encouraging, is at present inconclusive. On

the one hand, it looks as if the first excited universal state that we identified on the

supergravity side, with M ' 2.5, also appears in the lattice data. On the other hand,

this data also seems to show that an intermediate state with M ∼ 1.8 − 2 is present,

which would agree with the calculations in the M-theory model, but not in the string

model. However, several considerations must be kept in mind when interpreting this. For

example, it is possible that this mode is present in the full string model, as opposed to

the subset of modes that we truncated the model to. Also, the lattice data show that the

extrapolation to large-Nc is difficult. Notice for example how the excited states for odd

and even Nc exhibit a different pattern. This might well be just a statistical fluctuation,

or instead an indication of the fact that the lattice data is still too far from the large-Nc

limit, and that we are therefore misidentifying the states. Furthermore, the error quoted is

only statistical, the continuum limit has not been implemented, and it might be that the

intermediate state is actually a two-glueball state. (Although the analysis in [150] would

disfavour this possibility, it does show that some contamination is present.) It would be

very useful if lattice studies such as the one in [150] could be improved systematically.

5.2 Dilaton, fine-tuning and naturalness

All the models of strongly-coupled confining theories that we have studied have a spectrum

of glueballs that resembles what is expected from a generic Yang-Mills theory, in which

no parametrically light pseudo-dilaton appears. However, it is interesting to investigate

the degree of fine-tuning that would be needed in order to make the lightest state

parametrically light.

With this aim, we perform an exercise that to some extent is a repetition of a similar

one in [106], in the context of a model inspired by the Goldberger-Wise mechanism.

However, we are dealing with a more realistic set-up. Since all the theories we studied

share a common subset of glueball states, we concentrate for simplicity on the string model

with φ = 0 and consider the truncation to χ. We redo the calculation of the spectrum,

but now we change the boundary conditions in the UV, allowing for a finite value of the
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Figure 15. Mass of the scalar glueballs in the string theory model with φ = 0, computed keeping

a finite value of the λU term in the UV boundary conditions, and for finite UV cutoff. The two

top panels show the result with ρU = 3, the two lower panels with ρU = 3.5. In all cases the

background is the confining one, and we used ρI = 10−3 in the numerical study. δ is a model-

dependent parameter that in the present case is δ ' 0.4.

constant λU (rather than taking the limit λU → −∞, as in the body of the paper). This

is implemented by holding in place a finite UV-cutoff ρU , chosen to be small. We show

some of the results of this study in figure 15.

Before we explain its physical meaning, let us briefly summarise the results of the

exercise. We show in the figure how the spectrum gets modified by the choice of the

UV-localized boundary potential. We explained earlier in the paper that this boundary-

localised term is the gravity formulation of the details about the regulator procedure one

needs to implement in the UV. It is important to notice that for generic values of λU one

finds very good agreement with the results we showed in the main body of the paper,

for all the theories we discussed, in spite of the fact that we are here using low values of

the UV cutoff. This corroborates that the physical results do not depend significantly on

the regulator procedure adopted in the UV. In particular it confirms that, had we carried

out the procedure with other (allowed) choices of the boundary potential, we would have

gotten the same results.

There is a dramatic exception: there exists a very special value of λU ' −1
3e
−δχ(ρU )

(where δ ' 0.4) for which the lightest mass can be made arbitrarily light. Actually, one

can make the lightest state into a tachyon, signifying that not all possible choices of λU
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are admissible. For a generic λU , the result we quoted in the paper about the mass of the

lightest state is in fact an upper bound. Yet, reducing the mass requires to finely adjust

the choice of λU to lie in a very narrow range below this special value. The range depends

strongly on the UV cutoff one chooses, as can be seen in figure 15 from the comparison

between ρU = 3 and ρU = 3.5. Already for ρU ' 4 it becomes difficult to find this range

numerically. Remember that ρU is related to the logarithm of the cutoff scale in the dual

theory, and that we used always ρU > 8 in the main body of the paper.

What is the origin of this phenomenon, at the technical level? With some algebra, one

can convince oneself that, irrespectively of the bulk dynamics, the bulk equations for the

gauge-invariant fluctuations aa always admit a solution with M2 = 0, given by a ∝ Φ′ a

A′ .

This being a system of second-order linear equations, there exists also another independent

massless solution, which is not known in closed form, and any superposition of the two is

still a massless solution. Effectively, this solution results from the undoing of the mixing

between the fluctuations of the five-dimensional scalar fields with the dilaton h. But in

general this mode is unphysical, since it does not satisfy the boundary conditions. The

actual physical states all result form the mixing of h with the σ-model scalars.

By fine-tuning the boundary potential in the UV, one can effectively achieve the can-

cellation of this mixing. As a result, there always exists, for any σ-model and as long

as one works with a finite UV cutoff, a special range of values of the λa |c matrix in the

UV boundary conditions such that the resulting spectrum contains a very light scalar, the

composition of which is dominantly h. But this is accomplished at a cost: this range of

possible numerical values shrinks to zero very fast once we take the UV cutoff to infinity,

and ultimately reduces to a pathological singular value.

Let us now explain the physical meaning of this exercise. As suggested in the title of this

subsection, we want to explain what role the concept of fine-tuning has in all of this paper.

All the complete models we considered are based on backgrounds that asymptotically in

the far-UV are AdS. The dual field theories are hence UV-complete. Irrespectively of the

fact that one might consider them not to be fully realistic models of nature (for example,

the UV fixed points live in higher dimensions), these are not effective field theories but

UV-complete. As such, there is no sense in which a fine-tuning problem can arise.

This statement is however tainted by the observation that we have been considering

the models in complete isolation. If we were to suggest that these models be used

to construct the electroweak symmetry breaking sector of the Standard Model (in the

spirit of technicolor), we would need to add to the system new elementary degrees of

freedom (quarks, leptons and gauge bosons) and new weakly-coupled interactions (the

SU(3) × SU(2) × U(1) of the Standard Model, and some couplings replacing the Yukawa

interactions). Setting aside complications related with realistic model-building and with

holographic renormalisation, the simplest possible way to achieve this would be to allow

the additional degrees of freedom to propagate on the UV-boundary, and to add specific

localised couplings. In field theory terms, this would render the theory as a whole

UV-incomplete, because most of the Standard-Model interactions do not admit a UV

fixed point. Hence, the whole procedure we carried out would have to be considered in the

framework of an effective theory, and the UV-cutoff ρU would be given a physical meaning.
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Let us pretend that we are in this scenario, and ask ourselves how it affects the UV

boundary conditions. Perturbative corrections, coming from loops of the weakly-coupled

sector, would affect the boundary potential of those scalars that couple to the standard-

model fermions and gauge bosons. Hence, one in general expects that the physical result

of the calculation of any observable quantity (in particular, the spectrum of scalar states),

will be modified with respect to what results from the analogous calculations performed

for the strongly-coupled sector in isolation. In particular, it was emphasised in [151]

that the mass of the lightest glueball might be significantly affected, because this scalar

contains a significant contamination from the dilaton, and the latter will necessarily couple

to the fermions and gauge bosons of the standard model, in analogy with what happens

for the Higgs particle of the Standard Model. In particular, it might turn out that the

resulting physical mass is actually lighter than one would have expected on the basis of

the strong-coupling calculation.

The exercise in this subsection shows a concrete realisation of this possibility: by

dialing the value of what is effectively a localized mass term we could make the mass of

the lightest state arbitrarily light. However, the exercise we performed shows explicitly

two remarkable facts that we want to stress. First of all, the relation between the physical

mass of the lightest state in the spectrum, and the boundary-localised mass term (which

one might want to infer from the divergent loop diagrams of the weakly-coupled sector) is

highly non-linear (because the strongly-coupled interactions are), and does not allow for

simple naive dimensional analysis estimates (because there is no way to treat the scalar

glueballs as weakly-coupled objects in a low-energy effective theory). Most importantly,

the degree of fine-tuning one has to accept in order to carry out such cancellation

procedure is catastrophically large: it takes a very accurate choice of λU in order to reduce

the mass of the lightest state by a factor of two, and this choice is rendered practically

impossible by its strong dependence on the UV cutoff. Unless the UV cutoff is very low,

with all the other problems that would come with it.

The spectrum we quoted in the paper is the result one gets for any typical choice

of the boundary term λU , and hence it is the natural result to be expected also once the

strongly-coupled sector is coupled to the Standard-Model (or to any other external physical

sector). It is still possible that by accurately choosing λU one can make the (pseudo-)dilaton

light, irrespectively of the strong dynamics, hence invoking some conspiracy between the

strongly-coupled and weakly-coupled sectors of the full theory. But in the models we looked

at in this paper, this can be done only at the price of a large fine-tuning.

If one is to accept that some fine-tuning is to be expected, this is actually technically

possible. Indeed, in this case the lightest state is predominantly a dilaton, and as such its

leading order couplings to the standard-model fields are qualitatively the same as those of

the Higgs particle recently discovered by the LHC.

We are not going to pursue this line of arguments any further, since one main reason for

looking at strongly-coupled models of electroweak symmetry breaking is to solve the natu-

ralness problem. It would be satisfactory to find a model where the lightness of the scalar

state has a natural dynamical explanation, rather than being the result of fine-tuning. We

conclude by reminding the reader that in the special case studied in [102, 103], a light state is
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present in regions of the parameter space of the strongly-coupled theory, without having im-

plemented any fine tuning with the boundary conditions (λU → −∞ in those calculations).

5.3 Future directions

We close by summarising a few directions for future investigation suggested by our results:

• We proposed two one-parameter families of models, within Type IIA supergravity,

which generalise the Witten model, and we showed that the U-shaped D8 embedding

by Sakai and Sugimoto exists also for all these models. In would be interesting to

repeat the exercise of computing the spectrum of mesons, baryons, glueballs with

spin, and in general all the excited states in these new contexts.

• We proposed alternative lifts to Type IIB supergravity for all the models considered,

constructed by making use of non-abelian T-duality. It would be interesting to study

these lifts, and understand whether there is any concrete sense in which the resulting

models are phenomenologically interesting.

• We showed that, at the price of fine-tuning, it is possible to make the lightest

glueball in these models parametrically light compared to the rest of the spectrum.

In this limit, we expect the physics of this state to look similar to that of the

Higgs boson recently discovered at the LHC. It would be interesting to study in

more detail the properties of such a light state in this regime, and possibly build a

phenomenological model of electroweak symmetry breaking based on this scenario.

In particular, it would be interesting to compute the decay constant of the light

scalar, and to compare to the LHC data.

• We showed that a special sequence of 0++ glueballs appears in the spectrum of all

the models we constructed. It would be interesting to understand to what extent

this is a robust feature of large-Nc Yang-Mills theories.

• While the models of flow between fixed points that we considered yield a spectrum

of glueballs with no parametrically light scalar, and yielding no distinctive features

in the string and D8 probes, these results are most likely model-dependent. It would

be interesting to find other models of holographic flows of this type and see whether

their physics shows more dramatic effects due to the intrinsic multi-scale nature of the

dynamics. For example, we expect this to be the case in models in which the scales of

explicit and spontaneous breaking of scale invariance can be parametrically separated.
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A About the spectra of the string model

In this appendix we collect some technical aspects regarding the computation of the

spectra of scalar bound states in the theory defined by the confining backgrounds of the

string model.

It is of some interest to write explicitly the bulk equations, specifying for the case in

which we fix the background scalar φ = 0:

0 =

[
∂2
ρ +

10

3
coth

(
10ρ

3

)
∂ρ +

8

3
+ 2−

14
15 cosh

4
5

(
5ρ

3

)
M2

]
a1 , (A.1)

0 =

[
∂2
ρ+

10

3
coth

(
10ρ

3

)
∂ρ+

1000

3

(
1+4 cosh

(
5ρ

3

))−2

+2−
14
15 cosh

4
5

(
5ρ

3

)
M2

]
a2 . (A.2)

Since φ is constant in the background, there is no mixing between a1 and a2. Moreover,

its fluctuations coincide with a1 and obey Dirichlet boundary conditions:

a1
∣∣
ρi

= 0 , (A.3)

while the boundary conditions for a2 are unilluminating and we do not reproduce them here.

We report on the results obtained by computing the spectrum of bound states for the

critical solutions in which φ is constant (i.e. in the limits in which the scale s∗ = ±∞).

These are displayed in figure 16. We want to show how the results depend on the cutoffs

ρI and ρU . First of all, we notice from the top panels in the figure that by keeping ρU
large and varying ρI , for ρI � 0 the lightest state does show some suppression. Also, we

observe that when ρI is close to the end-of-space, the whole spectrum converges smoothly

to the physical results.

By looking at the bottom panels in the figure, in which we kept ρI = 10−3 very close to

the end-of-space, but varied ρU , we see that for very small values of ρU the spectrum looks

distorted, with various unphysical features emerging. Also in this case the convergence

towards the physical result is smooth, and in particular the values of ρI and ρU that we

use in the body of the paper are safely in the region where the discrepancy between the

numerical results and the extrapolation to the physical limit is negligibly small.

One can think of this part of the study in analogy to what is done numerically on the

lattice. Given that we must work with (unphysical) cutoffs, we perform our calculations for

finite values of ρI and ρU , and then extrapolate the results from finite ρU to the physical

ρU → +∞, which broadly speaking corresponds to the continuum-limit extrapolation (in

the language of lattice calculations). Also, we must extrapolate to the limit ρI → 0. This is

somewhat reminiscent of the procedure that allows to evaluate and possibly remove finite-

size effects on the lattice, in the sense that for finite ρI the model contains two IR-scales:
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Figure 16. Spectrum of the confining solution in the string model. In the top panels we show the

dependence of the spectrum on ρI , keeping ρU = 15 fixed. In the bottom two plots we show the

spectrum as a function of the UV cutoff ρU , while keeping ρI = 10−3 fixed. The left panels are for

φ = 0, while the right panels have φ = − log 3
4 .

the physical confinement scale and the scale set by the finite volume of the system. The

latter being unphysical, we want to perform our calculations in the regime where finite-

volume effects are negligible, and hence we need to check what choices of ρI are close

enough to the end of space to yield physical results. We performed this kind of study for

all the models discussed in the paper, but we report only on the case of the F (4) theory,

since the others are similar, and would add nothing to the present paper.
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