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Föhringer Ring 6, 80805 Munich, Germany
bDepartment of Physics, CERN — Theory Division,

CH-1211 Geneva 23, Switzerland

E-mail: bonetti@mpp.mpg.de, grimm@mpp.mpg.de,

stefan.hohenegger@cern.ch

Abstract: We consider five-dimensional supergravity theories with eight or sixteen super-

charges with Abelian vector fields and ungauged scalars. We address the question under

which conditions these theories can be interpreted as effective low energy descriptions of

circle reductions of anomaly free six-dimensional theories with (1,0) or (2,0) supersymme-

try. We argue that classical and one-loop gauge- and gravitational Chern-Simons terms

are instrumental for this question.

Keywords: Chern-Simons Theories, Superstring Vacua, Supersymmetric Effective Theo-

ries

ArXiv ePrint: 1303.2661

Open Access doi:10.1007/JHEP05(2013)124

mailto:bonetti@mpp.mpg.de
mailto:grimm@mpp.mpg.de
mailto:stefan.hohenegger@cern.ch
http://arxiv.org/abs/1303.2661
http://dx.doi.org/10.1007/JHEP05(2013)124


J
H
E
P
0
5
(
2
0
1
3
)
1
2
4

Contents

1 Introduction 1

2 Six-dimensional origin of five-dimensional theories 2

2.1 N = 2 supersymmetric theories 2

2.2 N = 4 supersymmetric theories 5

3 Conclusions 6

1 Introduction

In this note we address the question whether it is possible to determine if a given five-

dimensional supergravity theory can be understood as the effective low-energy description

of an anomaly-free six-dimensional supergravity theory on a circle. Our investigation is

motivated by the following considerations. On general grounds, it is an interesting prob-

lem to study the constraints that gravity places on low-energy quantum field theories. For

instance, even-dimensional chiral theories are subject to the requirement of cancellation of

gravitational anomalies. In the spirit of [1–4], one can maybe look for analogue constraints

in odd-dimensional theories by exploring classes of models that cannot be seen as a cir-

cle reduction of an anomaly-free even-dimensional theory. More specifically, the study of

five-dimensional quantum field theories with coupling to gravity has recently attracted a

lot of attention, partly related to the attempt to find an effective world-volume action for

multiple M5-branes [5–10]. Given the great number of new insights, it would be desirable

to classify those theories which are consistent at the quantum level. This is a formidable

task and therefore it is advantageous to first try to understand a subset of these theories,

namely those that come from a circle reduction from six dimensions (see figure 1). Of

course, not all consistent five-dimensional theories arise in such a circle compactification.

Well-known examples include Calabi-Yau threefold reductions of M-theory that in general

do not admit a six-dimensional lift if the threefold is not elliptically fibered [11–13].

Deciding upon this question is generically a highly non-trivial task, for various reasons.

On the one hand, in order to extract the low-energy effective action of a six-dimensional

theory on a circle one needs not only to perform a classical dimensional reduction, but

also to integrate out massive excitations such as Kaluza-Klein modes. Five-dimensional

quantum effects due to these massive excitations can make a direct comparison to a pos-

sible higher-dimensional action prohibitively difficult. On the other hand, the structure

of six-dimensional supergravities is quite rich and is not completely under control. The

study of non-Abelian interactions among self-dual tensors, in particular, remains an open

problem in the context of (2, 0) theories and has been investigated in (1, 0) models in the

regime where gravity is decoupled [14–16].
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Figure 1. Five dimensional effective low-energy theories coupled to gravity which arise

through compactification of anomaly-free six-dimensional theories form a subset of all apparently

quantum-consistent theories.

Even if we do not have control over the full class of six-dimensional supergravities, we

can still formulate non-trivial conditions for a given five-dimensional theory to be lifted to a

specific subset of six-dimensional models. Moreover, there are objects at the quantum level

of the theory that are robust under dimensional reduction. Anomalies, and in particular

gravitational ones, are examples of such objects, since they are mostly sensitive to more

general features of the theory rather than intricate details of the action [17]. In this note, we

discuss the possibility to study them using classical and one-loop gauge and gravitational

Chern-Simons terms in the theory obtained by compactification on a circle. Reversing

the logic, we try to argue that a careful study of Chern-Simons terms in a generic five-

dimensional gauge theory allows to obtain non-trivial information about the spectrum (and

thus also about the quantum-consistency) of a potential six-dimensional parent theory.

The two setups that we investigate admit eight and sixteen supercharges, respectively.

Firstly, we suppose we are given a five-dimensional Abelian action with eight supercharges

and we explore the possibility to lift it to a (1, 0) theory with simple gauge group. We

find that non-trivial necessary conditions can be formulated in terms of the Chern-Simons

sector only. Secondly, we take an Abelian theory with sixteen supercharges and we search

for a possible lift to an Abelian (2, 0) theory. As before, a necessary condition on the

Chern-Simons couplings, accompanied by suitable kinetic terms to fix the normalization of

the fields, is found.

2 Six-dimensional origin of five-dimensional theories

2.1 N = 2 supersymmetric theories

The minimal amount of supersymmetry in five-dimensions consists of eight real super-

charges and will be referred to asN = 2 supersymmetry. We consider minimal supergravity

coupled to n Abelian vector multiplets and a number of massless neutral hypermultiplets.

The supersymmetric action of such a theory contains the topological couplings

S
(5)
CS =

1

(2π)2

∫ [
kABC A

A ∧ FB ∧ FC + κAA
A ∧ Tr (R ∧R)

]
, (2.1)
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where AA, A = 1, . . . , n+ 1 denotes collectively the graviphoton and the vectors from the

vector multiplets, FA = dAA are the corresponding Abelian field strengths, and R is the

curvature two-form. Supersymmetrizations of the second term are discussed in [18, 19].

If anN = 2 theory can be seen as the circle reduction of a six-dimensional theory, it has

to come from a (1, 0) theory: for one, if the six-dimensional theory had more supersymme-

try, we would find more than eight supercharges in five dimensions.1 For another, it seems

impossible to lift the five-dimensional gravitino of an N = 2 theory to a consistent, inter-

acting six-dimensional theory with no supersymmetry. Note that a five-dimensional theory

with massless U(1) gauge fields can arise as low energy effective action of a possibly non-

Abelian six-dimensional theory on a circle. This is what happens when the gauge group is

broken to the five-dimensional Coulomb branch by giving a VEV to the scalars in the five-

dimensional vector multiplets. For simplicity, in the following we study the possibility to lift

the five-dimensional theory to a non-Abelian (1, 0) with simple gauge group G. The gener-

alization to semi-simple G is straightforward. The inclusion of U(1) factors is also possible,

but would make the analysis of the six-dimensional action and anomalies more involved.

The first step in the search for a parent six-dimensional theory is to determine if the

five-dimensional spectrum can be lifted to six-dimensions. Five-dimensional hypermulti-

plets directly lift to six-dimensional hypermultiplets, which are allowed in the (1, 0) theory.

To understand the possible lift of the vector sector to six dimensions one has to divide the

n+ 1 five-dimensional vector fields AB into three sets:

• the vector A0 that lifts to the Kaluza-Klein vector in the reduction of the six-

dimensional metric on a circle;

• the vectors Aα, α = 1, . . . , T + 1 that lift to components of T six-dimensional tensor

multiplets and a single tensor in the supergravity multiplet;

• the vectors Ai, i = 1, . . . , rank(G) that lift to Cartan elements of six-dimensional

gauge group G.

Furthermore, to allow for a consistent six-dimensional parent theory, the constants kABC
and κA in (2.1) have to split in such a way to accommodate the following Chern-Simons

terms for the above mentioned classes of vector fields

S
(5)
CS =

1

(2π)2

∫ [
− 1

2
ΩαβA

0FαF β +
1

2
bαΩαβCij A

βF iF j − 1

8
aαΩαβA

βTrR2

]
(2.2)

+
1

(2π)2

∫ [
k0A

0F 0F 0 + kij A
0F iF j + kijk A

iF jF k + κ0A
0TrR2

]
,

where we suppressed wedge products for brevity. As discussed for example in [4, 13], only

the Chern-Simons terms in the first line can be lifted to a classical six-dimensional action,

while the terms in the second line cannot be obtained by classical reduction on a circle. As it

has been shown in [20], however, such terms can arise at the one-loop level by integrating out

1Here we consider only simple compactifications on a circle. In particular, we do not discuss any

compactification mechanism which (partially) breaks supersymmetry.

– 3 –



J
H
E
P
0
5
(
2
0
1
3
)
1
2
4

massive spin-1/2, spin 3/2, or two-forms charged underA0 orAi. It is precisely the interplay

between these two subsets of Chern-Simons terms that allows us to formulate necessary

conditions for the five-dimensional theory to come from an anomaly-free (1, 0) theory.

Let us recall briefly the six-dimensional interpretation of the first line of terms in (2.2).

The constant symmetric matrix Ωαβ has signature (1, T ) and is identified with the SO(1, T )

invariant metric associated to the moduli space SO(1, T )/SO(T ) of the scalars in the ten-

sor multiplets in six-dimensions. The matrix Cij is identified with the Cartan matrix of

the gauge group G. The constant vectors bα and aα contain crucial information about the

anomaly of the six-dimensional parent theory. Indeed, they are the coefficient of the Green-

Schwarz terms that cancel factorisable anomalies. Note also that the vector bα determines

the kinetic term of six-dimensional vectors.

As mentioned above, the requirement of anomaly cancellation in the parent (1, 0) the-

ory allows us to formulate necessary conditions on the Chern-Simons terms for the lift to

six-dimensions to be possible. In the following, we focus on six-dimensional gravitational

anomalies, since they do not depend on many details of the charged hypermultiplet spec-

trum in six dimensions. Recall that gravitational anomalies are canceled provided that [4]

H − V = 273− 29T , aαΩαβa
β = 9− T , (2.3)

where T , V , H are the number of six-dimensional tensor multiplets, vector multiplets, and

hypermultiplets, respectively. To check the first condition in (2.3) directly we would need

to know the number of hypermultiplets H in six dimensions. This number, however, is in

general different from the number of neutral massless hypermultiplets in five dimensions,

since some charged hypermultiplets become massive after breaking of the gauge group, and

therefore do not appear in the five-dimensional effective action.

This problem can be circumvented by studying the Chern-Simons terms in (2.2). In

particular, the couplings k0 and κ0 encode information about the gravitational anomaly

cancellation conditions (2.3). To see this, recall that each massless field in the six-

dimensional theory gives rise to a Kaluza-Klein tower of massive modes in five dimen-

sions. They are all minimally coupled to the Kaluza-Klein vector A0, with charge propor-

tional to the Kaluza-Klein level. The massive modes of six-dimensional chiral fermions and

(anti)self-dual tensors are capable of generating the couplings k0, κ0 in (2.2) by running in

five-dimensional one-loop diagrams. The total value of k0, κ0 is obtained by summing the

contribution of all Kaluza-Klein modes of all relevant fields.2 This sum yields [20]

k0 =
1

24
(T − 9) , κ0 =

1

24
(12− T ) . (2.4)

These expressions hold under the assumption that the first condition in (2.3) is satisfied,

but they only involve the number T of tensor multiplets of the theory, which can be read

off from range of the α indices in (2.2). Combining (2.4) with the second condition in (2.3)

we get the following necessary conditions for the Chern-Simons terms (2.2) to be lifted to

2The sum over Kaluza-Klein levels is regularized using the Riemann zeta function. For instance
∑

n n→
ζ(−1) = −1/12.
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six-dimensional theory free of gravitational anomalies:

24 k0 = −aαΩαβa
β = T − 9 , 24κ0 = aαΩαβa

β + 3 = 12− T . (2.5)

These equations encode three independent requirements and cannot be trivially satisfied

by rescaling A0 and Aα.

One can formulate similar tests on the Chern-Simons coefficients in (2.2) to check if

the candidate parent theory is free of purely gauge anomalies. Such conditions involve

a comparison between bαΩαβb
β and the coupling kijk, which contains crucial information

about the six-dimensional charged hypermultiplet spectrum [21, 22]. While it was only

shown for specific examples [22], and not yet in general, that the knowledge of the Chern-

Simons coefficients allows to check cancellation of six-dimensional gauge anomalies, we

believe that such a statement should hold in general. In a similar way, we suspect that

conditions involving aαΩαβb
β and the Chern-Simons coupling kij can be used to test if the

six-dimensional theory is free of mixed gauge-gravitational anomalies.

2.2 N = 4 supersymmetric theories

We can apply the strategy outlined so far also to five-dimensional theories with sixteen

supercharges, denoted N = 4. We restrict to the theory of n Abelian vector multiplets

coupled to supergravity. Recall that the N = 4 supergravity multiplet contains six vectors.

Five of them form the 5 representation of the SO(5)R R-symmetry group, while the sixth

one is a singlet.3 The singlet will be denoted A0, and the remaining ones together with the

n gauge fields from the vector multiplets are denoted AA, A = 1, . . . , n+ 5. The collective

index A is a fundamental SO(5, n) index. The associated constant metric is denoted ηAB.

With this notation the topological sector of the action reads

S
(5)
CS =

1

(2π)2

∫ [
− 1

2
ηAB A

0 ∧ FB ∧ FC + κ0A
0 ∧ Tr (R ∧R)

]
. (2.6)

To the best of our knowledge it has not been shown that the gravitational Chern-Simons

coupling can be supersymmetrized. We will see, however, that in some circumstances it can

be generated at the quantum level from a six-dimensional theory with sixteen supercharges

on a circle. We thus expect it to be an admissible coupling in the five-dimensional N = 4

action.

In contrast to the N = 2 case, the Chern-Simons sector of an N = 4 theory is too

simple to provide any test that cannot be trivially satisfied by means of rescaling of A0,

AA. Therefore, we also need to record some kinetic terms in order to fix this ambiguity.

This requires some additional notation. Each vector multiplet contributes five scalars

to the spectrum. These 5n scalars parametrize the coset space SO(5, n)/SO(5) × SO(n).

This is conveniently described in terms of matrices LA
i, LA

I , where i, I are fundamental

indices of SO(5), SO(n) respectively. These matrices satisfy

ηAB = δijLA
iLB

j − δIJLAILBJ , GAB = δijLA
iLB

j + δIJLA
ILB

J , (2.7)

3This structure is fixed by identifying the five-dimensional gravity multiplet.
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where GAB is a non-constant, positive-definite matrix that enters the gauge coupling

function. The needed kinetic terms are

S
(5)
kin =

1

(2π)2

∫ [
R ∗ 1− 1

2
dσ∧∗dσ− 1

2
e2σ/

√
6GABF

A ∧∗FB − 1

2
e−4σ/

√
6F 0 ∧∗F 0

]
, (2.8)

in which σ is the scalar in the gravity multiplet. The sum S
(5)
CS + S

(5)
kin can be supersym-

metrized since it coincides with part of the standard form of the five-dimensional N = 4

action as found e.g. in [23], up to field redefinitions.4

The five-dimensional N = 4 theory under examination can come from circle reduction

of a (2, 0) or (1, 1) theory. Since (1, 1) theories are non-chiral, we cannot use anomalies as

a check of the quantum consistency of the candidate parent theory. For this reason, in the

rest of this section we formulate necessary conditions for the lift of the five-dimensional

theory to a (2, 0) theory, and we do not give conditions for the lift to a (1, 1) theory.

Furthermore, since a six-dimensional action for non-Abelian (2, 0) is not known, we explore

the possibility to lift the five-dimensional theory to an Abelian (2, 0) theory.

Recall that such a theory has only tensors as matter multiplets. Cancellation of gravita-

tional anomalies requires a number T = 21 of them. This implies that the five-dimensional

theory must have exactly 26 vectors in addition to the singlet A0. This provides a first ele-

mentary check on (2.6). A far less trivial check comes from the gravitational Chern-Simons

coupling κ0. It cannot be generated by reduction of the classical Abelian (2, 0) action on

a circle, and it is rather generated by one-loop diagrams in which massive Kaluza-Klein

modes run in the loop. This coupling has been computed in [20] with the result

κ0 =
1

4
. (2.9)

If in S
(5)
CS + S

(5)
kin a different value of κ0 appears, the theory cannot be lifted to an Abelian

(2, 0) theory.

3 Conclusions

In this work we explored the space of supersymmetric five-dimensional effective theories.

We addressed the question whether or not a given theory can effectively arise from an

anomaly-free six-dimensional theory on a circle at low energies. By focusing on a certain

class of six-dimensional theories we formulated explicit constraints on the spectrum and

supersymmetry content of the six-dimensional theory in terms of the five-dimensional

Chern-Simons couplings. We note that our findings based on Chern-Simons terms alone

cannot be viewed as a classification of all five-dimensional theories that can arise in a

circle compactification in the spirit of figure 1. However, we provided a setup in which

this question can be posed systematically and checked for a given example. Therefore,

4More precisely, we have performed an overall rescaling of the action, together with the redefinitions

σthere = σhere/
√

2, A0
there = A0

here/
√

2, AA
there = AA

here/
√

2. Our form of the action is best suited for

comparison between tree-level and one-loop terms. It is such that the action and the vectors both have

period 2π. It has been inferred by deriving S
(5)
CS from M-theory on K3 × T 2 making use of the effective

action discussed in [24].
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we see our work as a first step towards a systematic analysis of consistency conditions for

five-dimensional quantum field theories in the presence of gravity.

It is an interesting task to extend our approach to more general six-dimensional the-

ories. In particular, one might ask to which extent our results can be used to explore the

possibility of a lift to a non-Abelian (2, 0) theory. To address this question, a remark is due.

There are two familiar realization of (2, 0) theories in string theory and M-theory. On the

one hand, they are the world-volume theory of a stack of M5 branes. On the other hand,

these theories can arise from Type IIB on a singular K3. In the former setup gravitational

anomalies on the world-volume of the stack of M5 branes can be canceled by anomaly

inflow from the eleven-dimensional bulk [25, 26]. In this way, the number of tensor multi-

plets is not restricted to be 21. Note instead that in the Type IIB setup anomaly inflow

is not available, and indeed the theory possesses 21 tensor multiplets even in presence of

non-Abelian interactions among the tensors. We can argue that the condition (2.9) is still

valid in this case, while it is probably not required if we allow six-dimensional gravita-

tional anomalies to be canceled by inflow from some higher-dimensional bulk theory. To

systematically approach the non-Abelian theory from five-dimensions remains an exciting

challenge and might yield intriguing insights about the nature of (2, 0) theories.

One might also hope to apply the same strategy to theories in other dimensions.

In particular, the study of circle compactifications from four to three dimensions can

be motivated by the duality of F-theory and M-theory compactifications and the match

of their effective actions. In the three-dimensional theory Chern-Simons terms are also

generated at one loop. It was shown in [22, 27] that they capture information about the

four-dimensional chiral spectrum and its anomalies. Focusing as in five dimensions on the

Coulomb branch, the Chern-Simons terms are specified by a constant matrix ΘAB for the

coupling
∫

ΘAB A
A ∧ FB. These encode both the four-dimensional gaugings of axions,

as well as the one-loop contributions from integrated out massive matter. As in five

dimensions this matter includes modes that become massive in the Coulomb branch and

fields that are Kaluza-Klein modes. However, in contrast to five dimensions one cannot

infer all relevant information for the four-dimensional Green-Schwarz mechanism from

the Chern-Simons terms alone [27, 28]. The four-dimensional analogs of aα, bα introduced

in (2.2) do not appear in Chern-Simons terms and one needs to extend the analysis to

other couplings of the effective action. Including these couplings one could proceed in

a similar manner as in the five-dimensional case and check if a given three-dimensional

theory can effectively arise from a four-dimensional anomaly-free theory.

Finally, let us note that it is significantly more complicated to apply the presented

strategy to compactifications that are not on circles, but on general higher-dimensional

geometries. To make any concrete statements about the underlying theory one would

need finer information about the effective actions and their corrections. Moreover, when

turning to string theory, also massive extended modes can arise, correct the effective

theory, and induce dualities.5 Formulating the criteria which allow an effective theory to

arise from string theory is a giant mountain dwarfing the hill climbed in this work.

5Higher-dimensional theories might be distinguished by the representations of the massive modes [29],

but this does not imply that a distinction can be made on the level of the low-energy effective theories.
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