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Abstract: Starting with a N = 4 supersymmetric Yang-Mills theory in four dimensions

with gauge group SU(3N) we perform an orbifold projection leading to a N = 1 supersym-

metric SU(N)3 Yang-Mills theory with matter supermultiplets in bifundamental represen-

tations of the gauge group, which is chiral and anomaly free. Subsequently, we search for

vacua of the projected theory which can be interpreted as spontaneously generated twisted

fuzzy spheres. We show that by adding the appropriate soft supersymmetry breaking terms

we can indeed reveal such vacua. Three cases are studied, where the gauge group is sponta-

neously broken further to the low-energy gauge groups SU(4)×SU(2)×SU(2), SU(4)3 and

SU(3)3. Such models behave in intermediate scales as higher-dimensional theories with a

finite Kaluza-Klein tower, while their low-energy physics is governed by the corresponding

zero-modes and exhibit chirality in the fermionic sector. The most interesting case from

the phenomenological point of view turns out to be the SU(3)3 unified theory, which has

several interesting features such as (i) it can be promoted to a finite theory, (ii) it breaks

further spontaneously first to the MSSM and then to SU(3)×U(1)em due to its own scalar

sector, i.e. without the need of additional superfields and (iii) the corresponding vacua lead

to spontaneously generated fuzzy spheres.
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1 Introduction

The Standard Model (SM) is the most successful theory of elementary particle physics to

date, bearing a remarkable agreement to the experimental data. However, the main limita-

tion it confronts is the presence of a large number of free parameters in the theory. In order

to reduce these parameters one is usually led to introduce more symmetry. Grand Unified

Theories (GUTs) are very good examples of such a procedure [1–4], where (approximate)

gauge coupling unification can be achieved. Moreover, LEP data [5] seem to suggest that

a further symmetry, namely N = 1 global supersymmetry [6, 7], should also be required.

In addition to gauge coupling unification it is important to understand the origin of

the Higgs and Yukawa sectors, which in the SM are introduced in an ad hoc manner

and include most of its free parameters. A popular proposal is that gauge-Higgs-Yukawa

unification can be achieved in higher dimensions. Pioneering studies in this direction were

the Coset Space Dimensional Reduction (CSDR) [8–10] and the Scherk-Schwarz reduction

mechanism [11]. In these frameworks the four-dimensional gauge and Higgs fields are simply

the surviving components of the gauge fields of a pure gauge theory defined in higher

dimensions. Moreover in the CSDR the addition of fermions in the higher-dimensional
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gauge theory leads naturally to Yukawa couplings in four dimensions. A major achievement

in this direction is the possibility to obtain chiral theories in four dimensions [12, 13].

On the other hand, the theoretical efforts to establish a unified description of all funda-

mental interactions including gravity led to the development of superstring theory, which

is consistent only in ten dimensions. In addition, the heterotic string theory [14] suggests

that the gauge group in ten dimensions is E8 × E8 or SO(32), which are large enough to

accommodate the gauge group of the SM. The heterotic string theory is related via cer-

tain dualities to the type II superstring theories, which include D-branes. The discovery

of D-branes paved a new road towards the unification of fundamental interactions [15].

After the discovery that stacks of branes naturally lead to non-abelian structures it was

proposed that one could start with the SM or some extension of it in four dimensions and

subsequently embed this local picture in a global context [16].

In order to bring in contact the superstring theory and the low energy phenomenology

it is crucial to dimensionally reduce the original theory to four dimensions. A toroidal

dimensional reduction from ten to four dimensions leads to N = 4 supersymmetry in

four dimensions, which is not phenomenologically acceptable. The obvious way to obtain

N = 1 four-dimensional models, which might be realistic, is to reduce the theory on

suitable manifolds such as Calabi-Yau manifolds [17] or manifolds with an SU(3)-structure

(see e.g. [18, 19]). It is worth noting that using the CSDR scheme it is possible to obtain

also the soft supersymmetry breaking sector of the four-dimensional theory [20–23].

However, motivated by the celebrated duality between four-dimensional N = 4 Super-

symmetric U(N) Yang-Mills (SYM) theory and Type IIB string theory on AdS5 ×S5 [24],

the authors of [25] used orbifold techniques similar to [26, 27] to break some of the super-

symmetries. Considering different embeddings of a Z3 discrete group in the R-symmetry

group of the N = 4 SYM theory and performing an orbifold projection of the original

theory they determined N = 0, 1, 2 theories, i.e. with reduced supersymmetry. Moreover,

the initial gauge group SU(3N) (realised on 3N D3 branes) is broken down to SU(N)3.

Similar ideas have been developed also in the case where the extra dimensions are

matrix approximations of smooth manifolds, i.e. fuzzy spaces. In [28–30] it was shown

that starting with a higher-dimensional gauge theory and dimensionally reducing it over

a fuzzy coset space several interesting features appear. Most importantly the theory is

renormalizable in four as well as in higher dimensions. Moreover, non-abelian structures

appear in four dimensions even if one starts with an abelian gauge theory in higher dimen-

sions. However, the accommodation of chiral fermions in four dimensions turns out to be

a difficult task in this context.

Motivated by the idea of deconstruction of dimensions [31, 32], the above approach

was reversed in [33, 34] in order to further justify the renormalizability of the theory

and in an attempt to build chiral models in theories arising from fuzzy extra dimensions.

Moreover, the reversed procedure gives the hope that not even the initial abelian gauge

theory is necessary in higher dimensions, but the non-abelian gauge theory can emerge

from fluctuations of the coordinates [35]. This approach consists in starting with a four-

dimensional gauge theory with an appropriate content of scalar fields and a potential which

can lead to vacua which are interpreted as dynamically generated fuzzy extra dimensions
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and they include a finite Kaluza-Klein tower of massive modes. The inclusion of fermions in

such models showed that the best one could achieve so far is to obtain theories with mirror

fermions in bifundamental representations of the low-energy gauge group [36, 37]. Although

mirror fermions do not exclude the possibility to make contact with phenomenology [38],

it would be desirable to obtain exactly chiral fermions.

The purpose of the present paper is to show that it is indeed possible to construct chiral

unification models in this context upon introducing an additional geometrical structure,

namely an orbifold structure as in [25]. Our starting point is an orbifold projection of

a N = 4 SYM theory, which is a perfectly well-defined quantum field theory. We will

show that a twisted extra-dimensional fuzzy sphere can arise dynamically in such orbifold

models, breaking the full SU(N)3 gauge theory spontaneously down to a chiral effective

theory with unbroken gauge group such as e.g. SU(3)3. Thus the scalar fields acquire a

geometrical interpretation in terms of extra dimensions. Moreover, the same type of fuzzy

orbifolds can be used to break the gauge symmetry spontaneously down to the Minimal

Supersymmetric Standard Model (MSSM) and furthermore to the SU(3)c ×U(1)em. Thus

fuzzy extra dimensions are realized in a chiral model which is not only renormalizable but

may even be finite and phenomenologically viable.

Similar constructions have been studied in the framework of YM matrix models [39,

40], which were however not phenomenologically viable. The mechanism we present here

resolves the unrealistic features of these models and therefore it opens up the possibility

to carry over our results to a theory describing dynamical noncommutative spacetime and

gravity. Fuzzy spheres have been shown to appear as classical solutions in this framework

in [41, 42], while orbifold techniques have been applied in the matrix model in [43].

The outline of the paper is the following. In section 2 the basics of the projection of

the N = 4 supersymmetric Yang-Mills theory due to a Z3 orbifold is reviewed and the

field content and the superpotential of the projected theory are presented. In section 3 the

twisted fuzzy sphere is introduced and its relation to the ordinary fuzzy sphere is presented.

Subsequently, the potential of the orbifold projected theory is studied and a search for vacua

which develop dynamically spherical fuzzy extra dimensions is performed. It is argued that

such vacua can only be obtained when the appropriate soft supersymmetry breaking terms

are included in the potential. Having determined the general form of such vacua we proceed

in section 4 to the study of specific anomaly-free models. Requiring that these models are

phenomenologically viable and focusing on the minimal cases, we study the gauge groups

SU(4)× SU(2)× SU(2),SU(4)3 and SU(3)3. In section 5 the previous models are revisited

and their spontaneous breaking down to the MSSM and the SU(3)c × U(1)em is studied.

The most interesting case from the phenomenological point of view turns out to be the

SU(3)3, which can be promoted to a finite theory and it has predictive power. Section 6

summarises our conclusions.

2 Z3 orbifolds of N = 4 SYM

In this section we review the basics of the Z3 orbifold projection of the N = 4 Supersym-

metric Yang-Mills (SYM) theory [44, 45], in order to make the paper self-contained and to
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fix our notation. In particular we discuss the action of the discrete group on the various

fields of the theory and the resulting superpotential of the projected theory.

Before introducing the orbifold projection, the theory under consideration is the N = 4

supersymmetric SU(3N) gauge theory.1 This theory contains, in N = 1 language, a

SU(3N) vector supermultiplet and three adjoint chiral supermultiplets Φi, i = 1, 2, 3. The

component fields are the SU(3N) gauge bosons Aµ, µ = 1, . . . , 4, six adjoint real scalars2

φa, a = 1, . . . , 6, transforming as 6 under the SU(4)R R-symmetry of the theory and four

adjoint Weyl fermions ψp, p = 1, . . . , 4, transforming as 4 under the SU(4)R. The theory

is defined on the Minkowski spacetime, whose coordinates are denoted as xµ, µ = 1, . . . , 4.

In order to discuss orbifolds we have to consider the discrete group Z3 generically as

a subgroup of SU(4)R. There are three possibilities here, which have a direct impact on

the amount of remnant supersymmetry [25]. The first possibility is to embed the group Z3

maximally in SU(4)R, in which case we are generically led to non-supersymmetric models.

Secondly, the discrete group can be embedded in an SU(3) subgroup of the full R-symmetry

group, leading to N = 1 supersymmetric models with R-symmetry U(1)R. Specifically, this

embedding can be viewed through the following decompositions of the vector and spinor

of SU(4)R under SU(3) × U(1)R,

SU(4)R ⊃ SU(3) × U(1)R

4 = 13 + 3−1,

6 = 32 + 3−2. (2.1)

It is then clear that the spinor of SU(4)R decomposes into a singlet, which corresponds

to the gaugino of the N = 1 theory and a triplet ψi, where the superpartners of the

complex scalars are accommodated. The last possibility is to embed Z3 in a specific SU(2)

subgroup of SU(4)R, in which case there exist two surviving gaugini and therefore the

remaining supersymmetry is N = 2.

Let us next discuss in more detail the case where Z3 is embedded in SU(3), that leads

to N = 1 supersymmetric models. In order to proceed we consider a generator g ∈ Z3.

This generator is conveniently labeled (see [27]) by three integers −→a ≡ (a1, a2, a3) which

satisfy the condition a1 + a2 + a3 ≡ 0 mod 3. This condition is equivalent to the statement

that the discrete group is indeed embedded in SU(3) and therefore it reflects the fact that

N = 1 supersymmetry is preserved [46].

The Z3 acts non-trivially on the various fields of the theory depending on their trans-

formation properties under the R-symmetry. The geometric action of the Z3 rotation on

the gauge and the gaugino fields is trivial, since they are singlets under SU(4)R. On the

other hand, the action of Z3 on the complex scalars is specified by the matrix

γ(g)ij = δijω
ai , (2.2)

where ω = e
2πi
3 , while the corresponding action on the fermions ψi is given by

γ(g)ij = δijω
bi , (2.3)

1The gauge group is taken to be SU(3N) for notational convenience as it will be clear in the following.
2In the following we shall often work with the three complex scalars φi, i = 1, 2, 3, which correspond to

the complexification of the six real ones.
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where

b1 = −
a2 + a3 − a1

2
,

b2 = −
a1 − a2 + a3

2
,

b3 = −
a1 + a2 − a3

2
. (2.4)

In the case under study the three integers have the values −→a = (1, 1,−2), which implies

bi = ai.

However, since the matter fields also transform non-trivially under the gauge group,

the discrete group acts on their gauge indices too. The action of this rotation can be

described by the matrix

γ3 =







1lN 0 0

0 ω1lN 0

0 0 ω21lN






. (2.5)

Let us note that in general the blocks of this matrix could have different dimensionality

(see e.g. [16, 47, 48]), However, anomaly freedom of the projected theory typically requires

that the dimension of the three blocks is the same as will become obvious in the following.

There is an interesting exception to this rule which will be discussed in section 4.1.

In order to derive the projected theory under the orbifold action, one has to keep the

fields which are invariant under the combined action of the discrete group on the geometry

and on the gauge indices [27]. For the gauge bosons the relevant projection is

Aµ = γ3Aµγ
−1
3 . (2.6)

Therefore, in view of (2.5), the gauge group SU(3N) of the original theory is broken down

to H = SU(N) × SU(N) × SU(N) in the projected theory.

For the complex scalars, which transform non-trivially both under the gauge group

and the R-symmetry, the projection is

φi = ωaiγ3φ
iγ−1

3 , (2.7)

or, exhibiting the gauge indices which are denoted as I, J ,

φi
IJ = ωI−J+aiφi

IJ . (2.8)

This means that J = I + ai and therefore it is easy to see that the fields which survive the

orbifold projection have the form φI,I+ai
and they transform under the gauge group H as

3 ·

(

(N,N, 1) + (N, 1, N) + (1, N,N )

)

. (2.9)

For the fermions the situation is practically the same. More specifically in this case

the relevant projection is

ψi = ωbiγ3ψ
iγ−1

3 (2.10)
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or, equivalently,

ψi
IJ = ωI−J+biψi

IJ . (2.11)

Then the surviving fermions have the form ψi
I,I+bi

and they transform under H in the

representations (2.9), exactly as the scalars. This is just another manifestation of the

N = 1 remnant supersymmetry. Moreover, the structure of the representations (2.9)

guarantees that the resulting theory does not suffer from any gauge anomalies.3

Let us next note two important features of the projected theory. First the fermions

transform in chiral representations of the gauge group. Indeed, the representations (2.9) are

complex bifundamental ones, and their complex conjugates do not appear in the projected

theory. Secondly, there are three fermionic generations in the theory. This is expected

since as we noted before the theory contains three chiral supermultiplets under N = 1,

leading to three generations.

Concerning the interactions among the fields of the projected theory, let us consider the

superpotential of the N = 4 supersymmetric Yang-Mills theory, which has the form [44, 45]:

WN=4 = ǫijkTr(Φ
iΦjΦk), (2.12)

where the three chiral superfields of the theory appear. Clearly, the superpotential after

the orbifold projection has the same form but it encodes only the interactions among the

surviving fields of the resulting N = 1 theory. Therefore it can be written as

W
(proj)
N=1 =

∑

I

ǫijkΦ
i
I,I+ai

Φj
I+ai,I+ai+aj

Φk
I+ai+aj ,I , (2.13)

where the relation a1 + a2 + a3 ≡ 0 mod 3 was taken into account.

3 Orbifolds for fuzzy spheres

3.1 Twisted fuzzy spheres

In the present section we introduce the ”twisted fuzzy sphere” S̃2
N , which is a variant

of the ordinary fuzzy sphere [49] compatible with the orbifolding. It is defined by the

following relations

[φi, φj ] = iǫijk(φ
k)†, (3.1)

φi(φi)† = R2, (3.2)

where (φi)† denotes hermitean conjugation of the complex scalar field φi and [R2, φi] = 0.

The relation (3.1) is compatible with the Z3 group action (2.7), in contrast to the usual

fuzzy sphere. Nevertheless the above relations are closely related to a fuzzy sphere. This

can be seen by considering the untwisted fields φ̃i, defined by

φi = Ω φ̃i, (3.3)

3On the contrary, had we considered that the matrix (2.5) contained blocks of different dimensionality

the projected theory would be anomalous and therefore additional sectors would be necessary in order to

cancel the gauge anomalies.
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for some Ω 6= 1 which satisfies

Ω3 = 1, [Ω, φi] = 0, Ω† = Ω−1 (3.4)

and4

(φ̃i)† = φ̃i. i.e. (φi)† = Ωφi. (3.5)

Then (3.1) reduces to the ordinary fuzzy sphere relation

[φ̃i, φ̃j ] = iǫijkφ̃
k, (3.6)

generated by φ̃i, as well as to the relation

φ̃iφ̃i = R2. (3.7)

This justifies to call the noncommutative space generated by φi a twisted fuzzy sphere.

It is remarkable that this construction is possible only for Z3 and for no other Zn, thus

providing a justification for our choice of orbifold group.

Now let us discuss two different realizations of this twisted fuzzy sphere. The most

obvious solution of (3.1) is given by Ω = ω and

φi = ω λi
(3N), (3.8)

where λi
(3N) denote the generators of SU(2) in the 3N -dimensional irre-

ducible representation.

A second realization of a twisted fuzzy sphere (3.1) is given by

φi = Ω (1l3 ⊗ λi
(N)), (3.9)

where the matrix Ω is given by

Ω = Ω3 ⊗ 1lN , Ω3 =







0 1 0

0 0 1

1 0 0






, Ω3 = 1l. (3.10)

The transformation φi = Ω φ̃i (3.3) relates the ”off-diagonal” orbifold sectors (2.9) to

block-diagonal configurations as follows,

φi =







0 (λi
(N))(N,N,1) 0

0 0 (λi
(N))(1,N,N)

(λi
(N))(N,1,N) 0 0






= Ω







λi
(N) 0 0

0 λi
(N) 0

0 0 λi
(N)






. (3.11)

We observe that the untwisted fields φ̃i, which generate the fuzzy sphere, acquire a block-

diagonal form. Each one of these blocks satisfies separately the fuzzy sphere relation (3.6)

and therefore it is natural to reinterpret this configuration as three fuzzy spheres of fuzziness

4Here [Ω, φi] is understood before the orbifolding.
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N . The solution φi can thus be interpreted as twisted configuration of three fuzzy spheres

compatible with the orbifolding. Further insight can be gained by noting that Ω3 can be

diagonalized as Ω3 = U−1diag(1, ω, ω2)U , so that φi can be interpreted as a combination

of two basic solutions (3.8) and an untwisted fuzzy sphere.

The solution (3.9) breaks completely the gauge symmetry SU(N)3. This geometrical

interpretation is helpful to understand the fluctuations around these fuzzy orbifolds. How-

ever, for our purposes it will be useful to consider solutions which do not break the SU(N)3

gauge symmetry completely but they break it down to a smaller gauge group. We shall

study such solutions in the following paragraph and present specific applications in the

sections 4 and 5.

3.2 Dynamical generation of twisted fuzzy spheres

Let us now show how the above geometries can arise as a vacuum solution of the field theory

which was considered in section 2. As it was previously described, the superpotential of

the theory after the orbifold projection has the form (2.13). Therefore one can easily read

off the corresponding potential, which is5

V
(proj)
N=1 (φ) =

1

4
Tr([φi, φj ]†[φi, φj ]), (3.12)

where φi denotes the scalar component of the superfield Φi. The minimum of this potential

is obtained for vanishing vevs of the fields. It is therefore obvious that vacua with the

geometry of fuzzy spheres cannot be obtained.

Searching for fuzzy sphere vacua would mean looking for a minimum which satisfies

[φi, φj ] = iǫijkφ
k, (3.13)

which however is not compatible with the orbifold projection described in sections 2 and

3.1. However, a different minimum that is compatible with the orbifold has the form (3.1)

as it was argued in the previous section.

Clearly, such a minimum calls for the following modifications in the theory. First of

all, we have to add N = 1 soft supersymmetry breaking (SSB) terms of the form6

VSSB =
1

2

∑

i

m2
i φ

i†φi +
1

2

∑

i,j,k

hijkφ
iφjφk + h.c., (3.14)

where hijk vanishes unless i + j + k ≡ 0 mod 3. Of course a set of SSB terms in the

potential is necessary anyway in order for the theory to have a chance to become realistic,

see e.g. [50]. After the addition of these soft terms as well as of the D-terms the full

potential of the theory becomes

V = V
(proj)
N=1 + VSSB + VD, (3.15)

5Here we restrict to the scalar sector, since this is the relevant one for the search of fuzzy sphere vacua.

Moreover, the gauge indices are suppressed.
6Here we present a set of scalar SSB terms. However, there exist of course other soft terms such as

1

2
Mλλ, where λ is the gaugino and M its mass, which has to be included in the full SSB sector [50].
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where VD = 1
2D

2 = 1
2D

IDI includes the D-terms of the theory. These D-terms have the

form DI = φ
†
iT

Iφi, where T I are the generators of the representation of the corresponding

chiral multiplets. Let us note that in VD apart from the summation over the indices i

(labelling the chiral supermultiplets) and I (the gauge group index), a summation over the

three gauge group factors is also implied.

In order to allow for twisted fuzzy sphere vacua, we now make the choice hijk = ǫijk

and m2
i = 1. A more general possibility will be investigated in section 5. Then the

potential (3.15) can be brought in the form

V =
1

4
(F ij)†F ij + VD, (3.16)

where we have defined

F ij = [φi, φj ] − iǫijk(φk)†. (3.17)

The first term of the potential is positive definite, and vanishes if the relation (3.1) holds.

Therefore the global minimum of the potential is realized by a twisted fuzzy sphere S̃2
N

(14), at least for a suitable range of parameters in the potential. The quartic term VD will

typically only modify its radius, as in the case of the ordinary fuzzy sphere [33–35]. This

vacuum will be studied in more detail below. The expression (3.17) will be interpreted in

the following as the field strength on the spontaneously generated fuzzy extra dimensions.

In general, the potential may have several different local minima, which may be given

e.g. by twisted fuzzy spheres with various radii; we will not discuss possible meta-stable

vacua or phase-transitions here.

We have to specify the embedding of the SU(2) corresponding to the fuzzy sphere

structure of the vacuum into the SU(4)R R-symmetry of the original N = 4 SYM theory.

Few group theory remarks are crucial in order to make the situation clear. One can easily

check the following structure in SU(4)R and its maximal subgroups,

SU(4)R ⊃ SU(2)I × SU(2)II × U(1)

∪ ∩

SU(4)R ⊃ SU(2)α × SU(2)β , (3.18)

where SU(2)α is the diagonal subgroup of the SU(2)I × SU(2)II . Moreover, the diagonal

subgroup of SU(2)α × SU(2)β is the SU(2)A that corresponds to the maximal embedding

in SU(3) according to the decomposition SU(4)R ⊃ SU(3) × U(1)R ⊃ SU(2)A × U(1)R.

Clearly, in the maximal embedding it holds that

SU(3) ⊃ SU(2)A

3 = 3. (3.19)

Let us now study further the vacuum and its geometric interpretation. The scalar

fields φi are governed by the potential (3.15), which includes the F- and D-terms as well

as the SSB terms. Under suitable conditions, this potential clearly has a twisted fuzzy

sphere solution

φi = Ω

(

1l3 ⊗ (λi
(N−n) ⊕ 0n)

)

, (3.20)
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where 0n denotes the n× n matrix with vanishing entries. The gauge symmetry is broken

from SU(N)3 down to SU(n)3. This vacuum should be interpreted as R
4 × S̃2

N with a

twisted fuzzy sphere in the φi coordinates.

In order to understand the fluctuations of the scalar fields around this vacuum, the

transformation φi = Ωφ̃i is useful. Fluctuations around the ordinary fuzzy sphere S2
N are

known to describe gauge and scalar fields on S2
N [35, 51], and in particular they all become

massive from the point of view of R
4. We have seen in (3.11) that the twisted sphere S̃2

N

is mapped by Ω into three fuzzy spheres φ̃i embedded in the diagonal N × N blocks of

the original 3N × 3N matrix. Therefore all fluctuations can be understood as fields on the

three diagonally embedded untwisted fuzzy spheres:

φ̃i = λi
(N) +Ai, (3.21)

and the field strength (3.17) reduces to the field strength on a fuzzy sphere

F ij = [φi, φj ] − iǫijk(φk)† = Ω2([φ̃i, φ̃j ] − iǫijkφ̃k) (3.22)

as long as (3.4) and (3.5) hold. The vacuum can thus be interpreted at intermediate

energy scales as R
4 × S2

N with three (untwisted) fuzzy spheres in the φ̃L
i coordinates.

Moreover, due to the orbifolding condition there are no off-diagonal components relating

these different spheres. It now follows as in [33, 34, 36] that the gauge fields and fermions

can be decomposed into Kaluza-Klein towers of massive modes on S2
N resp. S̃2

N due to the

Higgs effect, as well as a massless sector which will be elaborated below.

4 Chiral models from the fuzzy orbifold

In this section we discuss three particular models which can be constructed in the above

context. In all cases we start by considering the N = 4 SYM theory in four dimensions

with gauge group SU(3N). As we have already mentioned this theory contains, in N = 1

language, an SU(3N) vector supermultiplet and three adjoint chiral supermultiplets Φi

with superpotential

WN=4 = ǫijkTr(Φ
iΦjΦk). (4.1)

Subsequently we choose the discrete group Z3 and embed it in the SU(3) part of

the R-symmetry. Performing the orbifold projection, as it was described in section 2, we

obtain an N = 1 theory with vectors in SU(N)3 and complex scalars and fermions in

chiral representations of the gauge group. In particular, according to (2.9), there are three

families, each transforming under the gauge group H as

(N,N, 1) + (N, 1, N) + (1, N,N ). (4.2)

Moreover, the superpotential takes the form (2.13). The difference between the models

lies in the next step of the construction, where the gauge group SU(N)3 will be broken

spontaneously to a unification group. The minimal cases which satisfy the requirement of

anomaly freedom are the gauge groups SU(4) × SU(2) × SU(2),SU(4)3 and SU(3)3.
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4.1 A SU(4)c × SU(2)L × SU(2)R model

In order to obtain the Pati-Salam gauge group SU(4)c×SU(2)L×SU(2)R [52], we decompose

the integer N in two different ways, namely as

N = n1 + 4,

N = n2 + 2. (4.3)

Then we consider the following regular embeddings,

SU(N) ⊃ SU(n1) × SU(4) × U(1),

SU(N) ⊃ SU(n2) × SU(2) × U(1). (4.4)

The full gauge group is accordingly decomposed as

SU(N)3 ⊃ SU(n1) × SU(4) × SU(n2) × SU(2) × SU(n2) × SU(2) × U(1)3. (4.5)

Performing a shuffling of the group factors and ignoring the U(1)s7 it is easy to see that

the original representations (2.9) are decomposed as follows,

SU(n1) × SU(n2) × SU(n2) × SU(4) × SU(2) × SU(2)

(n1, n2, 1; 1, 1, 1) + (1, n2, n2; 1, 1, 1) + (n1, 1, n2; 1, 1, 1) +

+(1, 1, 1; 4, 2, 1) + (1, 1, 1; 1, 2, 2) + (1, 1, 1; 4, 1, 2) +

+(n1, 1, 1; 1, 2, 1) + (1, n2, 1; 1, 1, 2) + (1, 1, n2; 4, 1, 1) +

+(n1, 1, 1; 1, 1, 2) + (1, n2, 1; 4, 1, 1) + (1, 1, n2; 1, 2, 1). (4.6)

First of all it is important to note that the theory is anomaly free. This is merely due

to the special feature of SU(2), where the fundamental representation is self-conjugate.

Therefore, although the structure involves a product of different gauge groups, it is still

not anomalous.

Now utilizing the mechanism of section 3, fuzzy extra dimensions can be dynamically

generated and the unbroken gauge group at low-energies is SU(4)c×SU(2)L×SU(2)R, with

fields transforming under the representations

SU(4) × SU(2) × SU(2)

3 ·

(

(4, 2, 1) + (4, 1, 2) + (1, 2, 2)

)

. (4.7)

This is realized by the following vacuum

φi = Ω

(

02 ⊕ 1l3 ⊗ (λi
(N−2) ⊕ 02)

)

, Ω =

(

1l2 0

0 Ω3 ⊗ 1lN

)

(4.8)

interpreted in terms of twisted fuzzy spheres, where Ω3 is defined in (3.10).

7These may be anomalous and become massive by the Green-Schwarz mechanism and therefore they

decouple at low energies [47].
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Then the quarks and leptons of the SM fit in these representations. For example, the

first generation is represented as

f ∼ (4, 2, 1) =











d1
L u1

L

d2
L u2

L

d3
L u3

L

eL νL











,

f c ∼ (4̄, 1, 2) =

(

d1c
L d2c

L d3c
L ecL

u1c
L u2c

L u3c
L νc

L

)

, (4.9)

and similarly for the other two generations. Moreover, the h ∼ (1, 2, 2) representation

involves the Higgses and the Higgsini.

4.2 A SU(4)c × SU(4)L × SU(4)R model

A further possibility is the gauge group SU(4)c × SU(4)L × SU(4)R, where SU(4)c is again

the Pati-Salam colour gauge group. This gauge group can be obtained by decomposing

N as

N = n+ 4, (4.10)

leading to the decomposition of SU(N)3 to SU(n)3 × SU(4)3 with particle content

SU(n) × SU(n) × SU(n) × SU(4) × SU(4) × SU(4)

(n, n, 1; 1, 1, 1) + (1, n, n; 1, 1, 1) + (n, 1, n; 1, 1, 1) +

+(1, 1, 1; 4, 4, 1) + (1, 1, 1; 1, 4, 4) + (1, 1, 1; 4, 1, 4) +

+(n, 1, 1; 1, 4, 1) + (1, n, 1; 1, 1, 4) + (1, 1, n; 4, 1, 1) +

+(n, 1, 1; 1, 1, 4) + (1, n, 1; 4, 1, 1) + (1, 1, n; 1, 4, 1). (4.11)

This is realized by the following vacuum, interpreted in terms of twisted fuzzy spheres

S̃2
N−4 as in (3.20):

φi = Ω

(

1l3 ⊗ (λi
(N−4) ⊕ 04)

)

, (4.12)

where Ω is defined in (3.10). Decomposing SU(N) ⊃ SU(n) × SU(4) × U(1), the gauge

group is broken to SU(4)3, and the low-energy field content

SU(4) × SU(4) × SU(4)

3 ·

(

(4, 4, 1) + (4, 1, 4) + (1, 4, 4)

)

. (4.13)

This case has been examined originally in [53] and from a phenomenological viewpoint

in [54]. The quarks and leptons of the first family should transform as

f =











d u y x

d u y x

d u y x

e ν a v











∼ (4, 4, 1), f c =











dc dc dc ec

uc uc uc νc

yc yc yc ac

xc xc xc vc











∼ (4, 1, 4). (4.14)
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Clearly, there have to be new heavy quarks and leptons and in addition the supermultiplet

h ∼ (1, 4, 4) still has to be considered.

A very interesting feature which we would like to point out here is that the one-loop

β-function coefficient in the renormalization group equation of each SU(4) gauge coupling

is given by

b =

(

−
11

3
+

2

3

)

·3 + nf

(

2

3
+

1

3

)

·
1

2
· 2 · 3, (4.15)

which for the present case of nf = 3 copies of the supermultiplet (4.13) results in

b = 0. (4.16)

Therefore, we observe that the existence of three families of quarks and leptons leads to one

of the necessary conditions for a finite field theory. Let us mention that this is a general

feature of models with a SU(N)k gauge group, independently of the values of N and k [54].

Therefore it also holds in the following case of SU(3)3.

4.3 A SU(3)c × SU(3)L × SU(3)R model

Let us now turn to another possibility, the trinification group SU(3)c×SU(3)L×SU(3)R [55,

56], which was also studied in [54, 57–60]. In the present case we consider the following

picture. Let us decompose the integer N as

N = n+ 3. (4.17)

Subsequently, let us consider the regular embedding

SU(N) ⊃ SU(n) × SU(3) × U(1). (4.18)

Then the relevant embedding for the full gauge group is

SU(N)3 ⊃ SU(n) × SU(3) × SU(n) × SU(3) × SU(n) × SU(3) × U(1)3. (4.19)

The three U(1) factors decouple from the low-energy sector of the theory, as it was men-

tioned above. The representations (4.2) are then decomposed accordingly (notice the shuf-

fling in the group factors),

SU(n) × SU(n) × SU(n) × SU(3) × SU(3) × SU(3)

(n, n, 1; 1, 1, 1) + (1, n, n; 1, 1, 1) + (n, 1, n; 1, 1, 1) +

+(1, 1, 1; 3, 3, 1) + (1, 1, 1; 1, 3, 3) + (1, 1, 1; 3, 1, 3) +

+(n, 1, 1; 1, 3, 1) + (1, n, 1; 1, 1, 3) + (1, 1, n; 3, 1, 1) +

+(n, 1, 1; 1, 1, 3) + (1, n, 1; 3, 1, 1) + (1, 1, n; 1, 3, 1). (4.20)

This is realized by the following vacuum, interpreted in terms of twisted fuzzy spheres

S̃2
N−3 as in (3.20):

φi = Ω [1l3 ⊗ (λi
(N−3) ⊕ 03)]. (4.21)
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Considering the decomposition (4.18), the gauge group is broken to K = SU(3)3. Fi-

nally, the surviving fields under the unbroken gauge group K transform in the follow-

ing representations,

SU(3) × SU(3) × SU(3)

3 ·

(

(3, 3, 1) + (3, 1, 3) + (1, 3, 3)

)

. (4.22)

These are the desired chiral representations of the unification group SU(3)c × SU(3)L ×

SU(3)R. The quarks of the first family transform under the gauge group as

q =







d u h

d u h

d u h






∼ (3, 3, 1), qc =







dc dc dc

uc uc uc

hc hc hc






∼ (3, 1, 3), (4.23)

and the leptons transform as

λ =







N Ec ν

E N c e

νc ec S






∼ (1, 3, 3). (4.24)

Similarly, the corresponding matrices for the quarks and leptons of the other two families

can be written down.

4.4 A closer look at the masses

A vital issue of our construction is whether there exist massless and massive modes at the

same time. Clearly we need both of these sets; the massless modes in order to obtain chiral

fermions and the massive modes in order to reproduce the Kaluza-Klein tower and provide

undoubtful justification that the theory develops fuzzy extra dimensions.

A way to see this through the embeddings we presented before is the following. Let us

work out the case of SU(3)3, since the same arguments apply to the other two cases as well.

Under the final gauge group SU(3)3 the fermions transform in the representations (4.22),

hence they are chiral. Therefore they remain massless since they are protected by chi-

ral symmetry.

On the other hand, looking at (4.20) we can make two crucial observations. First of

all, it becomes clear from the vacuum solution (4.21) that the scalar fields which acquire

vevs in this vacuum are the following,

〈(n, n, 1; 1, 1, 1)〉, 〈(1, n, n; 1, 1, 1)〉, 〈(n, 1, n; 1, 1, 1)〉. (4.25)

Then all the fermions, apart from the chirally protected ones, obtain masses, since we can

form the invariants

(1, n, n; 1, 1, 1)〈(n, n, 1; 1, 1, 1)〉(n, 1, n; 1, 1, 1) + cyclic permutations, (4.26)

(n, 1, 1; 1, 1, 3)〈(n, n, 1; 1, 1, 1)〉(1, n, 1; 1, 1, 3) etc., (4.27)
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and the corresponding ones for all the other fermions. In these invariants the field in

the middle is the scalar field which acquires the vev (4.21), while the other two are

fermions, i.e. the invariants are trilinear Yukawa terms and they are responsible for the

fermion masses after the spontaneous symmetry breaking. Therefore a finite Kaluza-Klein

tower of massive fermionic modes appears, consistent with the interpretation of the vac-

uum (4.21) as a higher-dimensional theory with spontaneously generated fuzzy extra di-

mensions. In particular, the fluctuations from this vacuum correspond to the internal

components of the higher dimensional gauge field. Also, as far as the fermions transform-

ing as (1, 1, 1; 3, 3, 1), (1, 1, 1; 3, 1, 3) and (1, 1, 1; 1, 3, 3) are concerned, obviously there does

not exist any trilinear invariant that they could form with one of the scalar fields which

acquire a vev. Therefore, as it was already mentioned, they remain massless and they are

the chiral fermions of the model.

Finally, it is worth noting that in (4.27) the “internal” structure and the “observable”,

low-energy structure appear mixed and therefore these Kaluza-Klein fermion masses may

have an effect on the SU(3)3 phenomenology [61–64].

5 Fuzzy breaking and realistic models

In this section we discuss another possible application of the fuzzy orbifold construction

which was presented in section 3. The three models presented in section 4 are revisited and

the orbifold projection is utilized to study their spontaneous breaking down to the MSSM

and the SU(3)c × U(1)em. It is important to note that we shall focus only on symmetry

breaking patterns where additional superfields are not introduced, namely the models are

broken spontaneously due to their own scalar sector.

In particular, instead of starting with a SU(3N) gauge theory with a large N , we

can start with smaller gauge groups, in particular SU(8),SU(12) and SU(9), in order to

obtain the models SU(4)×SU(2)×SU(2),SU(4)3 and SU(3)3 respectively after orbifolding.

Therefore the initial set-up consists of the N = 4 SYM theory with gauge fields in one of

the above gauge groups. Subsequently a Z3 orbifold projection is performed in the spirit

of section 2.

Alternatively, this procedure may be viewed as a second step of the constructions which

were presented in section 4. Indeed, if such a view is adopted, after the large-N symmetry

breaking, the models presented in the previous section are obtained. They involve a su-

perpotential and the corresponding soft supersymmetry breaking terms. Part of the SSB

sector is naturally inherited from the corresponding one in the large-N models, namely it is

already contained in the expression (3.14) for suitable hijk. This fact justifies further the

use of the same technique, the spontaneous generation of twisted fuzzy spheres, in order to

achieve the spontaneous symmetry breaking down to the MSSM and subsequently to the

SU(3) × U(1)em.

5.1 SU(4) × SU(2) × SU(2) model

The Pati-Salam gauge group can be obtained when the initial gauge group is SU(8). We

perform an orbifold projection of the N = 4, SU(8) SYM theory such that the γ3 of eq. (2.5)
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becomes

γ3 =







1l4 0 0

0 ω1l2 0

0 0 ω21l2






. (5.1)

Then, according to the rules of section 2, the gauge group breaks down to SU(4)×SU(2)×

SU(2), with three chiral supermultiplets transforming as

SU(4) × SU(2) × SU(2)

3 ·

(

(4, 2, 1) + (4, 1, 2) + (1, 2, 2)

)

. (5.2)

The quarks and leptons are accommodated in these representations as in (4.9). The super-

potential (2.13) after the orbifold projection in the present case becomes

W
(proj)
N=1 (h, f, f c) = Y Tr(hf cf), (5.3)

while the soft supersymmetry breaking terms are correspondingly read off from eq. (3.14).

The SSB terms, discussed earlier in section 3.2, are still necessary in this context in order

to generate a potential which leads to twisted fuzzy sphere vacua. However, in the present

case the choice hijk = ǫijk is not sufficient because the GUT and the EW breaking have to

take place at different scales. We shall be more specific on this point when we study the

most interesting case of SU(3)3 in 5.3.

We would like to study the breaking of this model to the standard model, and to see if

this can be done using fuzzy orbifolds of the type (3.1). According to the rules of section

2, the surviving scalars and their superpartners live in

φi, ψi ∈







0 (4, 2, 1) 0

0 0 (1, 2, 2)

(4̄, 1, 2) 0 0






. (5.4)

The first step is to break the SU(4) × SU(2)R to SU(3)c (plus abelian factors), which

can be done with a (4̄, 1, 2). Since we would like the hypercharge

Y = B − L+ 2T 3
R (5.5)

to survive [65], we need a vev which has zero hypercharge, as does νc
L in (4.9). This is

achieved by giving the following vev

〈φ(4̄,1,2)〉 =

(

0 0 0 0

0 0 0 1

)

. (5.6)

This breaks the original nonabelian factors to SU(3)c × SU(2)L, and three U(1)s survive.

Let us note that B − L is not preserved.

Next let us consider the electroweak (EW) breaking. Since the electric charge is given

by [65]

Q = T 3
L +

Y

2
= T 3

L + T 3
R +

B − L

2
(5.7)
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this can be achieved by φ ∈ (1, 2, 2) provided [σ3, 〈φ〉] = 0, i.e. by a diagonal matrix

〈φ(1,2,2)〉 =

(

k 0

0 k′

)

. (5.8)

However, this procedure leads to extra U(1) bosons having masses of the order of the

electroweak scale instead of superheavy ones. Therefore this model does not seem to be

phenomenologically viable.

Nevertheless the following observation seems worthwhile. From the fuzzy orbifold point

of view it is more natural to consider the breaking with the following rank one fields

〈φ(1,2,2)〉 =

(

0 0

0 k

)

and / or

〈φ(4,2,1)〉 =











0 0

0 0

0 0

0 k′











, (5.9)

both of which lead to the desired EW breaking. The point is that these vevs satisfy the

relations of a twisted fuzzy sphere. Indeed, if we denote the vevs as

H1 = 〈φ(4,2,1)〉, H2 = 〈φ(1,2,2)〉, H3 = 〈φ(4̄,1,2)〉, (5.10)

(understood as sub-block matrices of the 8 × 8 matrix φi), we observe that

H1H2 ∼ H3 and cyclic permutations (5.11)

This almost amounts to a fuzzy orbifold vacuum (3.1), which is expected to arise in the

presence of the SSB potential (3.14). Note that the differentHi may well get different scales,

which is necessary anyway as we noted above. In particular, if we denote the modulus of

the vevs corresponding to the |Hi| as ki, then the commutation relations become

[H i,Hj ] = ihijkH
k
, (5.12)

with

hijk ≡
kikj

kk
ǫijk, (5.13)

(no summation implied). This is a slight generalization of the twisted fuzzy sphere to

include more than one scales, and it will be discussed further in section 5.3 in the most

promising case of SU(3)3.

5.2 SU(4)3 model

This model can be obtained by starting initially with a SU(12) gauge theory. We perform

an orbifold projection of the N = 4, SU(12) SYM theory such that the γ3 of eq. (2.5) takes

the form

γ3 =







1l4 0 0

0 ω1l4 0

0 0 ω21l4






. (5.14)
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Then, according to the rules of section 2, the gauge group breaks down to SU(4)3, with

three chiral supermultiplets transforming as

SU(4) × SU(4) × SU(4)

3 ·

(

(4, 4, 1) + (4, 1, 4) + (1, 4, 4)

)

. (5.15)

The quarks and leptons are accommodated as in eq. (4.14). The superpotential (2.13) after

the orbifold projection becomes

W
(proj)
N=1 (h, f, f c) = Y Tr(hf cf), (5.16)

while the soft supersymmetry breaking terms are correspondingly read off from eq. (3.14).

The unification of quarks and leptons within SU(4)c leads to two possible formulae for

the electric charge Q, merely due to the fact that the electric charges of the new heavy

particles are not yet fixed. The two possibilities are [54]

Q1 =
1

2
(B − L) + I3L + I3R,

Q2 =
1

2
(B − L) + I3L + I3R + I ′3L + I ′3R. (5.17)

The quarks and leptons do not transform under SU(2)′L or SU(2)′R and therefore their

electric charges are not affected.

The study of these two different charge assignments in [54] showed that there exist

phenomenological obstacles in the viability of the model. In particular, when the electric

charge is given byQ2 the value of sin2θW becomes 3/14, which is not realistic. In theQ1 case

sin2θW becomes 3/8 as usual. However, the pathology arises at the level of the symmetry

breaking down to the MSSM. This is achieved when the neutral scalar components of f, f c

and h acquire vevs. The study of this symmetry breaking reveals that there is an extra

unwanted U(1) surviving. Since this unbroken U(1) couples to all particles, including the

known quarks and leptons, this model cannot be viable phenomenologically.

5.3 SU(3)3 model

This model is obtained from an SU(9) gauge theory as follows. We perform an orbifold

projection of the N = 4, SU(9) SYM theory such that the γ3 of eq. (2.5) takes the form

γ3 =







1l3 0 0

0 ω1l3 0

0 0 ω21l3






. (5.18)

Then, according to the rules of section 2, the gauge group breaks down to SU(3)3, with

three chiral supermultiplets transforming as

SU(3) × SU(3) × SU(3)

3 ·

(

(3, 3, 1) + (3, 1, 3) + (1, 3, 3)

)

. (5.19)
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First of all, the quarks of the first family transform under the gauge group as in

eq. (4.23) and the leptons transform as in eq. (4.24). The superpotential (2.13) after the

orbifold projection in this case becomes [54]

W
(proj)
N=1 (λ, q, qc) = Y Tr(λqcq) + Y ′ǫijkǫabc(λiaλjbλkc + qc

iaq
c
jbq

c
kc + qiaqjbqkc), (5.20)

where the family superscripts are supressed. The last terms are special in the SU(3)3 case,

and may involve different families. The soft supersymmetry breaking terms, which are

necessary in order to obtain vacua in the form of twisted fuzzy spheres, are correspondingly

read off from eq. (3.14) with the appropriate hijk in order to incorporate different scales

for the GUT and the EW symmetry breaking.8

The spontaneous breaking of this unification model down to the MSSM has been

studied in several publications [54, 57, 59] and it can be achieved in different ways. Here we

would like to mention that in all the known symmetry breaking patterns either additional

superfields have to be introduced in the theory [57] or the breaking has to happen in more

than one steps, e.g. through the left-right symmetric model SU(3) × SU(2)L × SU(2)R ×

U(1)L+R [54].

Here we would like to present a different symmetry breaking pattern, where the initial

SU(3)3 gauge symmetry is spontaneously broken due to the existing scalar sector of the

model, i.e. without the need of any additional superfields, and moreover the breaking

happens in one step. In order to achieve this we shall utilize the fuzzy orbifold techniques

which were presented previously.

Let us recall that the fields of one family can be represented by the following matrix,







03 q 03

03 03 λ

qc 03 03






, (5.21)

where 03 is the 3 × 3 matrix with all the entries zero, or more explicitly as

































0 0 0 d u h 0 0 0

0 0 0 d u h 0 0 0

0 0 0 d u h 0 0 0

0 0 0 0 0 0 N Ec ν

0 0 0 0 0 0 E N c e

0 0 0 0 0 0 νc ec S

dc dc dc 0 0 0 0 0 0

uc uc uc 0 0 0 0 0 0

hc hc hc 0 0 0 0 0 0

































. (5.22)

Obviously the quark blocks cannot acquire a vev, since this would break the colour SU(3)

gauge group factor. Therefore the term Tr(λqqc) in the superpotential cannot play any

role here. The block which corresponds to the lepton supermultiplet may acquire vevs only

8Of course the EW symmetry breaking of the MSSM requires the introduction of extra soft supersym-

metry breaking terms (see e.g. [50]).
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in the directions which have zero hypercharge. This means that out of the nine components

of this block only five may acquire a vev, namely S, ν, νc, N and N c. The first three are

responsible for the breaking down to the MSSM, while the last two take care of the EW

breaking. Such a vacuum may indeed arise here due to the presence of the ǫijkǫabcλiaλjbλkc

term in the superpotential, and moreover we can interpret it again in terms of a twisted

fuzzy sphere.

To see the relation with a twisted fuzzy sphere (3.1), we transform the lepton matrices

as λ′i = Ω3λ
i where Ω3 =







0 1 0

0 0 1

1 0 0






, noting that the relevant term ǫijkǫabcλiaλjbλkc is

invariant (up to sign) under such a transformation. Then λ is transformed to

λ′ =







E N c e

νc ec S

N Ec ν






. (5.23)

Now consider a vacuum solution of the form (superscripts here denote families):

λ′1 =







0 k1 0

0 0 0

0 0 0






, (5.24)

λ′2 =







0 0 0

0 0 k2

0 0 0






, (5.25)

λ′3 =







0 0 0

0 0 0

k3 0 0






, (5.26)

while everything else acquires a vanishing vev. These vevs correspond to the directions of

N,N c and S. The above matrices satisfy

[λ′i, λ′j ] = ihijk(λ
′k)†, (5.27)

where we have defined again

hijk ≡
kikj

kk

ǫijk. (5.28)

This is a generalization of the twisted fuzzy sphere vacuum where more than one scales

may be included. In the present model this is desirable, since at least two scales have to

be introduced, corresponding to the GUT and EW breaking respectively. Moreover, since

the model enjoys N = 1 supersymmetry these scales may in principle remain separate.
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On the other hand, if we transform the lepton matrices as λ′′i = Ω′
3λ

i where Ω′
3 =







0 1 0

1 0 0

0 0 1






, then

λ′′ =







E N c e

N Ec ν

νc ec S






. (5.29)

The same twisted fuzzy sphere vacuum as before, namely the matrices (5.24)–(5.26), cor-

responds now to the directions ν, νc and N c. Therefore, with the above procedure all the

neutral directions acquire a vev and the original SU(3)3 model is spontaneously broken

down to SU(3)c × U(1)em. In particular, at the scale where the directions ν, νc and S

acquire vevs, SU(3)3 is spontaneously broken down to the MSSM. Subsequently, at the

scale where the N and N c directions acquire vevs the breaking down to SU(3)c × U(1)em
takes place. As we have already mentioned these scales are hopefully kept separate by su-

persymmetry. In other words the hierarchy problem is the same as in any supersymmetric

particle physics model.

The remarkable new result of the above procedure is that the spontaneous breaking

of the SU(3)3 model acquires an interesting geometrical explanation. It takes place solely

due to the Higgsing of the twisted fuzzy spheres in the extra dimensions, without the need

of any additional superfields and without the need of any intermediate breaking.

6 Conclusions

The proposal that more than four dimensions may exist in nature is a fruitful arena in

modern theoretical physics in order to study the possibility to achieve unification of all

the fundamental interactions. In an attempt to determine vacua of higher-dimensional

unified theories which could lead to phenomenologically acceptable low-energy models sev-

eral compactification schemes have been developed and a multitude of different manifolds

describing the extra dimensions have been used.

In [28–30] it was proposed that the extra dimensions can be described by matrix ap-

proximations of smooth manifolds, i.e. fuzzy spaces. In spite of several remarkable features

of this approach, chiral fermions could not be accommodated so far in this framework. In

an attempt to overcome this limitation, in [33, 34] a reverse approach motivated by the idea

of deconstruction of dimensions [31, 32] was studied, where the fuzzy extra dimensions are

dynamically generated within a four-dimensional renormalizable field theory. Nevertheless,

only mirror models could be obtained so far.

In the present paper, motivated by [25], we introduced an additional structure in

the above context, based on orbifolds, in order to obtain chiral low-energy models. In

particular we performed a Z3 orbifold projection of a N = 4 SU(3N) SYM theory, which

leads to a N = 1 supersymmetric theory with gauge group SU(N)3. Adding a suitable set

of soft supersymmetry breaking terms in the N = 1 theory, certain vacua of the theory

were revealed, where twisted fuzzy spheres are dynamically generated. It is well known
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that the introduction of a soft supersymmetry breaking sector is not only natural but also

necessary in the constructions of phenomenologically viable supersymmetric theories, with

prime example the case of the MSSM [50]. Such vacua correspond to models which behave

at intermediate energy scales as higher-dimensional theories with a finite Kaluza-Klein

tower of massive modes and a chiral low-energy spectrum. The most interesting chiral

models for low-energy phenomenology which can be constructed in this context turn out

to be SU(4) × SU(2) × SU(2),SU(4)3 and SU(3)3.

Subsequently, the possibility to achieve further breaking of the above models down to

the MSSM and SU(3)c ×U(1)em using twisted fuzzy spheres was studied and it was shown

that this is indeed possible. Thus the spontaneous symmetry breaking of these unification

groups acquires an interesting geometrical explanation in terms of twisted fuzzy spheres.

The most interesting case is the trinification group SU(3)3, which can be promoted even

to an all-loop finite theory (for a review see [66]) and therefore it is suitable to make

predictions [54, 58].

We have thus shown that fuzzy extra dimensions can arise in simple field-theoretical

models which are chiral, renormalizable, and may be phenomenologically viable. Moreover,

since some of these models can be finite with fermions in the adjoint of an underlying

SU(3N) gauge group, these models can be generalized into the framework of Yang-Mills

matrix model such as [43, 67].
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