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1 Introduction

Supersymmetric localization is a valuable tool which offers many insights into the strongly
coupled dynamics of some QFTs by rendering their path integral calculationally tractable.
Exact calculations of physical observables in QFT are clearly of great importance and,
among other things, have lead to numerous explicit confirmations of various dualities, see [1]
for a recent review and a list of references. The plethora of exact results in supersymmetric
localization offers the exciting possibility to extend our understanding of supergravity and
string theory by exploiting the gauge/gravity duality. Our goal here is to study a concrete
setup in which localization results in QFT can make successful contact with supergravity.

The QFT of interest can be thought of as a mass deformation of the four-dimensional
SU(N) N = 4 SYM theory which preserves N = 2 supersymmetry. This theory is well-
studied and is referred to as N = 2∗ SYM. When the theory is placed on the round four-
sphere, S4, Pestun showed that some physical observables can be computed successfully
by employing supersymmetric localization [2]. The localization procedure reduces the path
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integral of the N = 2∗ SYM theory to a finite-dimensional matrix integral. Although
this is a great simplification, the explicit evaluation of this integral is a daunting task
due to the contribution of instantons to the integrand. In the large N limit this matrix
model simplifies significantly and is amenable to a more explicit analysis, see [3–8] as well
as [9, 10] for a review and a more complete list of references. Two observables one can study
explicitly in the planar limit are the partition function (or free energy) of the theory on
S4 as well as vacuum expectation values (vevs) of supersymmetric Wilson lines in various
representations of the gauge group. It should be emphasized that these observables are still
highly non-trivial functions of the ’t Hooft coupling, λ, which are currently only accessible
numerically. In fact, as shown in [3, 5–7], the N = 2∗ theory exhibits an infinite number
of quantum phase transitions as one varies λ from weak to strong coupling. In the strong
coupling regime it is possible to obtain analytic results for the free energy and Wilson line
expectation values as a function of the dimensionless mass parameter, ma, of N = 2∗ on a
four-sphere of radius a. It is natural to try to reproduce these results from the supergravity
approximation of type IIB string theory by employing the gauge/gravity duality.

Indeed this has been successfully done in [11] for the free energy of theN = 2∗ theory on
S4. A solution ofN = 8 five-dimensional SO(6) gauged supergravity was found in [11] and it
was argued that this is the five-dimensional gravitational dual of N = 2∗ on S4. In addition,
the regularized on-shell action of this solution was found to agree with the free energy of
the theory as a function of ma. This five-dimensional gravitational solution is however
not suitable for calculating vevs of Wilson lines via holography. For that purpose one has
to study probe strings and branes in a ten-dimensional solution of type IIB supergravity.
A particularly simple example of an analytically computable observable is offered by the
supersymmetric Wilson line in the fundamental representation of the gauge group discussed
in [2]. In the planar limit of the gauge theory and for λ � 1 it was shown in [4] that the
vev of this line operator is

lnW (C) =
√
λ (1 +m2a2) . (1.1)

Here C is a closed contour along the great circle (or equator) of S4.
Our goal in this paper is two-fold, first we would like to understand how the supergravity

solution of [11] uplifts to a solution of type IIB supergravity. This turns out to be a
somewhat non-trivial task and necessitates the application of some recent results in the
literature on consistent truncations, exceptional field theory, and generalized geometry.
We solve the problem by employing the uplift formulae derived in [12]. The new type
IIB supergravity solution we construct can be thought of as a generalization of the Pilch-
Warner solution [13], summarized in appendix D.1, which is the holographic dual of the
SU(N) N = 2∗ SYM theory on R4.

With this explicit solution at hand, our second goal is to reproduce the result for the
Wilson loop expectation value in (1.1) by a bulk calculation. To this end we study probe
fundamental strings in the new type IIB supergravity solution. We employ the Nambu-Goto
action and find the minimal energy configuration for a string which has the circular Wilson
loop profile, C, on the S4 boundary of the asymptotically AdS5 solution. Via the holographic
dictionary the appropriately regularized on-shell action of this string should be dual to the
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Wilson loop expectation value. Indeed, performing this calculation explicitly we arrive at
the field theory localization result in (1.1). Our results constitute a non-trivial precision
test of the gauge/gravity duality for a non-conformal gauge theory to leading order in

√
λ.

It should be noted that the authors of [4] managed to reproduce the result in (1.1) in
the limit ma � 1 using the type IIB supergravity solution of [13].1 This is possible since
for ma � 1 the radius of S4 becomes large and using the flat-sliced domain wall solution
of [13] is a justified approximation. In the limit ma → 0 the result in (1.1) reduces to the
well-known expectation value of a circular supersymmetric Wilson loop in the conformal
N = 4 SYM, see for example [17, 18]. Our holographic result is valid for general values of
the parameter ma and thus provides a generalization of the analysis in [4, 17, 18].

The mass parameter, m, in the N = 2∗ theory on S4 is in general complex and this
leads to some subtleties in the interpretation and analysis of the supergravity solutions
we study. In particular we find that for general complex values of the parameter ma the
ten-dimensional supergravity saddle point we derive is complex. This is a general feature
of holographic applications of supergravity for QFTs defined on a curved Euclidean space,
see for example [11, 19], and we discuss it in more detail in the main text of the paper.

In the next section we summarize some basic facts about the N = 2∗ theory on S4 as
well as the results from localization for the vev of supersymmetric Wilson lines in the planar
limit of the theory. In section 3 we describe the five-dimensional supergravity solution dual
to N = 2∗ on S4. The uplift of this background to a new solution of type IIB supergravity
is presented in section 4. We study probe fundamental strings in this ten-dimensional
solution in section 5 and show that the regularized on-shell action of the string is equal to
the expectation value of the supersymmetric circular Wilson line in the N = 2∗ theory to
leading order in

√
λ. We present our conclusions and outline several interesting avenues for

future work in section 6. The paper contains four appendices where we collect some of the
technical results needed for our supergravity calculations.

2 Field theory

A convenient way to think of the N = 2∗ theory of interest here is as a supersymmetric
mass deformation of the maximally supersymmetric four-dimensional N = 4 SYM theory.
The field content is a gauge field2 Aµ, six real scalars Xi, and four fermions λm, which are
all in the adjoint representation of the gauge group. The scalars and fermions are in the 6

and 4 representations of the SO(6) R-symmetry group, respectively. It is useful to organize
this field content in N = 2 multiplets. We have a vector multiplet

Aµ , ψ1 = λ4 , ψ2 = λ3 , Z3 =
1√
2

(X3 + iX6) , (2.1)

and a hypermultiplet

λi , Zi =
1√
2

(Xi + iXi+3) , where i = 1, 2 . (2.2)

1The same was done for a supersymmetric Wilson line in pure N = 2 SYM in [14] by studying funda-
mental string probes in the supergravity solution of [15, 16].

2The gauge group is SU(N) and we suppress all gauge indices.
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Here we are interested in studying the N = 2∗ SYM theory in Euclidean signature on
the round four-sphere, S4, of radius a. The corresponding Lagrangian was derived in [2]
and reads3

LS4

N=2∗ = LS4

N=4 + LaN=4 + LR4

m + Lam . (2.3)

The first term on the right hand side of (2.3) is the standard Lagrangian of N = 4 SYM in
flat space but with all regular partial derivatives changed into covariant derivatives on S4.
We note also that since we are in Euclidean signature the complex conjugated fields should
be treated as independent variables. We emphasize this by denoting the conjugate of Zi
by Z̃i, however we still use |Zi|2 to denote the combination ZiZ̃i. The second term in (2.3)
denotes the conformal coupling of the scalars in the theory to the curvature of S4

LaN=4 =
2

a2
Tr
(
|Z1|2 + |Z2|2 + |Z3|2

)
. (2.4)

The third term in (2.3) is the standard mass deformation that breaks the N = 4 supersym-
metry to N = 2. This term is the same as in flat space and reads:4

LR4

m =m2 Tr
(
|Z1|2+|Z2|2

)
+mTr

(
λ2

1+λ2
2+h.c.

)
+m

(
(Z̃1Z2−Z̃2Z1)Z3+h.c.

)
. (2.5)

The last term in (2.3) was introduced in [2] and is necessary to preserve N = 2 supersym-
metry on S4

Lam =
im

2a
Tr
(
Z2

1 + Z2
2 + h.c.

)
. (2.6)

In thisN = 2 notation only an SU(2)V×SU(2)H×U(1)R subgroup of the SO(6) R-symmetry
group of the N = 4 SYM theory is manifest. The mass deformation in (2.5) completely
breaks U(1)R and preserves only a U(1)H subgroup of SU(2)H . The deformation in (2.6)
preserves only a U(1)V subgroup of SU(2)V . Therefore we conclude that the Lagrangian of
the N = 2∗ theory on S4 preserves U(1)V ×U(1)H global symmetry.

It was noted in [20] that N = 4 SYM has an extra continuous symmetry in the planar
limit, namely the compact U(1)s subgroup of the SL(2,R) S-duality group. It was then
observed in [13, 21] that the diagonal U(1)Y subgroup of U(1)s and U(1)R is also preserved
in the planar limit of the N = 2∗ theory on R4. The evidence for this comes from the
holographic dual description of the theory and was shown to hold also for the N = 2∗

theory on S4 in [11]. Our supergravity results below provide further evidence for the
invariance of the N = 2∗ theory under this bonus U(1)Y symmetry.

2.1 Results from localization

One can use supersymmetric localization to show that the path integral for the N = 2∗ SYM
theory on S4 reduces to a matrix integral over the vevs of the real scalar field X3 [2]. This
integral is in general hard to evaluate explicitly due to the presence of non-trivial instanton

3We follow the notation and conventions of [11].
4The mass parameter m is in general a complex number.
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contributions captured by Nekrasov’s partition function. The calculation is under better
control in the large N limit when one can argue that instantons do not contribute and the
matrix integral becomes manageable [3]. Despite these drastic simplifications it is still not
known how to explicitly evaluate the path integral of the N = 2∗ SYM theory on S4 as a
function of ’t Hooft coupling λ and ma in the limit N � 1. For general values of λ one
should resort to numerics and as shown in a series of papers by Russo and Zarembo the
N = 2∗ SYM theory on S4 in the planar limit possesses a rich phase structure, see [3, 5–7, 9].
In the limit λ � 1 one can solve the problem analytically and find that the free energy of
the theory is

FS4 = −N
2

2
(1 +m2a2) log

λ(1 +m2a2)e2γ+ 1
2

16π2
. (2.7)

As discussed in [4, 11, 22] this quantity is scheme dependent. One way to obtain a scheme
independent observable is to differentiate (2.7) three times with respect to the dimensionless
variable ma, see [11, 22] for a more detailed discussion.

Another interesting set of physical observables computable by supersymmetric local-
ization is given by Wilson loop operators in various representations of the gauge group. Of
main interest in this paper is the expectation value of the following supersymmetric Wilson
line operator in the fundamental representation of the gauge group

W (C) =

〈
1

N
Pexp

[∮
C

dt (iAµ∂tx
µ + |∂tx|X3)

]〉
. (2.8)

Here t parametrizes the contour C given by the great circle on S4 with stereographic coor-
dinates xµ. The real scalar X3 is defined in (2.1) and is singled out by the supersymmetric
localization calculation as the only scalar in N = 2∗ which has a non-zero expectation
value [2]. As shown in [4] in the planar limit of N = 2∗, and in the strong coupling regime
λ� 1, the expectation value of the Wilson loop in (2.8) is given by the simple expression

lnW (C) =
√
λ (1 +m2a2) . (2.9)

One of our goals in this paper is to reproduce this result from the type IIB supergravity
limit of string theory. This can be achieved by studying probe fundamental strings in a non-
trivial classical solution of the supergravity theory that is the holographic dual of the N = 2∗

theory on S4. We now proceed to describe how to construct this supergravity solution.

3 Five-dimensional supergravity

Since the N = 2∗ theory is a deformation of four-dimensional N = 4 SYM it is natural
to expect that its holographic dual description can be constructed as a deformation of the
familiar AdS5 × S5 solution of type IIB supergravity. Finding this solution directly in ten
dimensions is a difficult task since the SO(6) isometry of S5 is broken to U(1)V ×U(1)H . A
more fruitful approach is to use the fact that the lowest lying KK modes on S5 are captured
by the five-dimensional N = 8 SO(6) gauged supergravity theory. The solution of interest
is then realized in five dimensions as a deformation of the maximally supersymmetric AdS5

vacuum by non-trivial profiles for some of the scalar fields in the theory. Using this approach
the gravity dual description of the N = 2∗ SYM theory on R4 and S4 was found in [13]
and [11], respectively. Below we summarize the construction of the solution in [11].
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The maximal SO(6) gauged five-dimensional supergravity was constructed in [23–25].
The bosonic fields in the theory are the metric, 42 scalar fields, 12 2-forms, and the SO(6)

gauge field. Since we are interested in solutions which are deformations of AdS5 and preserve
the Poincaré (for N = 2∗ on R4) or SO(5) (for N = 2∗ on S4) invariance of the boundary,
only the metric and the scalar fields in the theory can be non-trivial.

The five-dimensional gauged supergravity is invariant under the maximal subgroup,
SL(6,R) × SL(2,R), of the E6(6) symmetry enjoyed by the ungauged supergravity and all
the fields in the theory are in representations of this maximal subgroup. The 42 scalars of
interest to us parametrize the coset E6(6) /USp(8). As explained in [24] one can parametrize
this coset space, and thus the 42 scalars of the supergravity theory, by the 27× 27 matrix

X̂ =

(
−4Λ

[P
[I δ

Q]
J ]

√
2ΣIJRβ√

2ΣPQKα Λ
K

R δαβ + Λ α
β δKR

)
. (3.1)

Here the capital Latin indices transform under SL(6,R) and the lower-case Greek indices
transform under SL(2,R). The matrix Λ J

I is 6 × 6 symmetric and traceless, Λ β
α is 2 × 2

symmetric and traceless, and the tensor ΣIJKα is completely antisymmetric and self-dual
in the indices IJK for α = 1, 2 and thus has 20 independent components.

To obtain the action and supersymmetry variations of the supergravity theory one has
to work with a group element of the scalar coset manifold given by the tensor U = eX̂ .
This U tensor can be thought of as the vielbein on the scalar manifold. For our purposes
it turns out to be more convenient to work with the metric on the coset space given by

M = U · UT , (3.2)

where U is transposed and multiplied directly as a 27 × 27 matrix. The elements of the
matrix M can be further split up into representations of SL(6,R)× SL(2,R) as follows

M =

(
MIJ,PQ M Rβ

IJ

MKα
PQ MKα,Rβ

)
. (3.3)

Here the capital Latin index pairs IJ and PQ should be treated as antisymmetric and
therefore transform in the 15 of SL(6,R). The index pair involving one Latin index and
one Greek are in the (6,2) of SL(6,R) × SL(2,R) and so can take twelve different values.
In practice the decomposition in the right hand side of (3.3) is therefore a simple block
decomposition of the 27× 27 matrix on the left hand side into 15× 15, 15× 12 and 12× 12

blocks. Knowing explicitly the components of the matrix M is an essential ingredient in
applying the uplift formulae of [12].

The scalar and gravity sector of the five-dimensional supergravity theory is described
by the following Lagrangian in Euclidean signature

L =

(
R5 +

1

24
tr(∂µM · ∂µM−1)− V

)
, (3.4)

where the trace and matrix multiplication is over the 27 indices of M . To calculate the
scalar potential one also needs to use as input the matrix X̂ in (3.1). We summarize how
this calculation proceeds in appendix B, see also [24].
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3.1 The three-scalar model

To construct the five-dimensional supergravity dual of the N = 2∗ SYM theory on S4 one
can take advantage of the global symmetries of the theory described below (2.6). Imposing
the U(1)V ×U(1)H ×U(1)Y symmetry on the scalars of the supergravity theory results in
a consistent truncation with only four independent scalars, see [11]. In addition one can
consistently set one of these scalars to zero. The three remaining scalars, which we call α,
β, and χ, are precisely the supergravity duals of the three relevant operators which trigger
the RG flow from N = 4 SYM to the N = 2∗ theory

Oα = Tr
(
|Z1|2+|Z2|2

)
, Oβ = Tr

(
Z2

1 +Z2
2 +h.c.

)
, Oχ = Tr

(
λ2

1+λ2
2+h.c.

)
. (3.5)

The scalars α and β belong to the 20′ representation of SO(6) and are specified by the
following matrix Λ I

J in (3.1)

Λ I
J =



−α+ β

−α− β
−α+ β

−α− β
2α

2α


. (3.6)

The scalar χ sits in the 10⊕ 10 representation of SO(6) and the non-zero elements of the
tensor ΣIJKα in (3.1) are given by

ΣIJ52 = −ΣIJ61 =



χ

−χ
−χ

χ


. (3.7)

There are no other scalars in the truncation and thus the matrix Λ α
β vanishes.

To write down the bosonic Lagrangian of this truncation it is convenient to introduce
the following notation

η = eα , z =
tanh

√
β2 + χ2√

β2 + χ2
(β + iχ) , z̃ =

tanh
√
β2 + χ2√

β2 + χ2
(β − iχ) . (3.8)

We should note here that since we are interested in supergravity solutions in Euclidean
signature the complex scalar z should be treated as independent from its formal complex
conjugate z̃. We adopt the notation z̃ to emphasize this fact. Plugging the tensors in (3.6)
and (3.7) into the X̂ matrix in (3.1) one finds that the Lagrangian in (3.4) reads

L =

[
R5 −

12∂µη∂
µη

η2
− 4

∂µz∂
µz̃

(1− zz̃)2
− V

]
, (3.9)
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where

V = −g2

(
1

η4
+ 2η2 1 + zz̃

1− zz̃
− η8

4

(z − z̃)2

(1− zz̃2)2

)
. (3.10)

The constant g = 2/LAdS in (3.11) is the gauge coupling of the five-dimensional supergravity
and sets the scale, LAdS, of the maximally supersymmetric AdS5 solution in the theory.

The five-dimensional solution of interest is a domain wall with S4 slices captured by
the following metric Ansatz

ds2
5 = dr2 + e2A(r)dΩ2

4 . (3.11)

Here dΩ2
4 is the metric on the round S4 given explicitly in (A.1). The three scalars are

functions only of the radial coordinate r. One can plug this Ansatz in the supersymmetry
variations of the maximal supergravity theory and derive a set of BPS equations which
determine the solutions of interest. This was described in [11] to which we refer for more
details. The BPS equations take the form of three non-linear ODEs for the scalar fields in
the model given by

z′ = −3(1− zz̃)(η′)
2(z + z̃) + η6(z − z̃)

2η(1 + z̃2 − (1− z̃2)η6)
,

z̃′ = −3(1− zz̃)(η′)
2(z + z̃)− η6(z − z̃)

2η(1 + z2 − (1− z2)η6)
,

(η′)2 = g2 (1 + z2 − (1− z2)η6)(1 + z̃2 − (1− z̃2)η6)

36(1− zz̃)2η2
.

(3.12)

In addition, there is an algebraic constraint which determines the metric function A(r) in
terms of the scalars

eA =
12(1− zz̃)2(η′)

g2(z2 − z̃2)η3
. (3.13)

This algebraic equation is consistent with the following differential equation for A

A′ = g2 2
(
1 + z2

) (
1 + z̃2

)
− η6

(
1− z2z̃2

)
− η12

(
1− z2

) (
1− z̃2

)
36η3(η′)(1− zz̃)2

. (3.14)

This equation for A′(r) proves to be useful when we take a limit of the three scalar model
appropriate for gravitational domain walls with flat slices in the metric, i.e. with a metric
Ansatz as in (3.11) but with the metric on R4 instead of S4. In this limit, discussed in
more detail in appendix D, the algebraic equation in (3.13) does not hold and we must
resort to the differential one. It is important to note that the BPS equations above are
invariant under two independent discrete symmetries, namely the exchange z ↔ z̃ as well as
{z, z̃} → −{z, z̃}. Solutions related by these symmetries are therefore physically equivalent.

3.2 Solving the BPS equations

Unfortunately we are not able to solve the differential equations in (3.12) analytically.
Following [11] we resort to a linearized analysis in the UV and IR and a numerical solution
of the system in (3.12).
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The metric in (3.11) is asymptotic to H5 (or Euclidean AdS5) and the boundary is at
large values of the coordinate r in (3.11). This corresponds to the UV regime of the gauge
theory. One can linearize the BPS equations in this limit and find the approximate solution

η ≈ 1 +

(
µ2

3
gr +

µ(µ+ v)

3

)
e−gr ,

1

2
(z + z̃) ≈ (µgr + v) e−gr ,

1

2
(z − z̃) ≈ ∓µe−gr/2 ∓

(
2

3
µ(µ2 − 3)gr +

1

3

(
2v(µ2 − 3) + µ(4µ2 − 3)

))
e−3gr/2 ,

e2A ≈ egr

g2
+

2

3g2
(µ2 − 3) .

(3.15)

The higher order term in this linearized solution are fully determined by the two integration
constants µ and v. This UV expansion matches the expectation from the gauge theory. As
discussed in section 2 all three operators in (3.5) are added to the Lagrangian of N = 4 SYM
and their coefficients are related to each other due to supersymmetry. This is manifested in
the BPS equations since the leading source terms in (3.15) are controlled by the parameter
µ. This parameter is related to the dimensionless deformation parameter ma in the gauge
theory and it was shown in [11] that the relation is

µ = ±ima . (3.16)

The freedom to choose a sign in (3.15) and (3.16) is due to the discrete symmetries of the
BPS equations discussed at the end of section 3.1.

The radius of S4 provides an IR cutoff for the dynamics of the gauge theory. This
in turn selects a unique vacuum on the moduli space of the N = 2∗ theory, see [9] for
a nice discussion of the vacuum selection mechanism. It is natural to expect that in the
supergravity solution dual to N = 2∗ on S4 this vacuum selection mechanism is manifested
by a regularity condition in the core of the geometry. It was indeed found in [11] that
the BPS equations in (3.12) and (3.13) admit such a regular solution. This is achieved by
selecting some value r = r∗ where the S4 shrinks smoothly to zero size and the metric is
simply R5, see figure 1.5 This regularity constraint leaves only one integration constant and
the BPS equations have the approximate solution

η ≈ η0 −
η12

0 − 1

108η3
0

g2(r − r∗)2 ,

1

2
(z + z̃) ≈

√
η6

0 − 1

η6
0 + 1

(
η6

0

η6
0 + 2

− η8
0(4η6

0 + 5)

30(η6
0 + 2)2

g2(r − r∗)2

)
,

1

2
(z − z̃) ≈ ∓

√
η6

0 − 1

η6
0 + 1

(
2

η6
0 + 2

+
η2

0(3η12
0 − 10η6

0 − 20)

60(η6
0 + 2)2

g2(r − r∗)2

)
,

e2A ≈ (r − r∗)2 .

(3.17)

5The particular value of r∗ is not a physical parameter since we can change it by shifts of the coordinate r.
When writing down the UV expansion (3.15), we have made use of this shift symmetry to eliminate a similar
non-physical parameter.
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r

IR (r∗)

UV (r →∞)
H5

R5

Figure 1. The regular five-dimensional geometries interpolate between AdS5 in the UV and R5 in
the IR.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

(r-r* )/LAdS

Figure 2. An example of a numerical solution to the BPS equations (3.12)–(3.14). The solution
was obtained by shooting from the IR with η0 = 1/3 and other fields as in (3.17). The blue curve
is η, the yellow one is 300(z + z̃), the green one (z̃ − z)/2, and the red one is g e2A−gr/2.

The higher order terms in this linearized IR solution are determined algebraically by the
single integration constant η0. The sign freedom in the third equation in (3.17) is again
due to the discrete symmetries in the BPS equations. For η0 = 1 the solution is simply H5

and the scalars do not flow.

The full nonlinear solution of the BPS equations can be obtained by numerically in-
tegrating the BPS equations and interpolating between the IR and UV expansions above.
We implement this numerical procedure by “shooting” from the IR at r∗ and integrating
the nonlinear ODEs up to large values of r where the solution can be matched onto the
expansion in (3.15). This is performed for numerous different values of the IR parameter
η0 which leads to a one-parameter family of numerical BPS solutions. A representative
solution is depicted in figure 2. In general the parameter η0 is complex which then results
in complex values for the metric function A(r). For the detailed numerical analysis in this
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paper we have chosen to focus on real values of η0 6= 0 since this leads to real metric func-
tions A(r).6 For real η0 there are two branches of solutions to the system of BPS equations,
one for |η0| > 1 and one for |η0| < 1. Since η is real, the equations in (3.12) imply that η
is monotonic throughout the flow. This means that in order to reach the UV where η → 1

we must select the correct branch of the square root of (η′)2. Similarly the BPS equations
imply that when |η| > 1 both z and z̃ are real whereas for |η| < 1, z and z̃ are pure
imaginary. Correspondingly, the UV integration constants µ and v in (3.15) are either both
real or both imaginary depending on the sign of |η| − 1. We should also stress that due to
the regularity condition in the IR we have only one integration constant, η0, and thus we
should find a relation between the two integration constants µ and v which control the UV
expansion. Indeed such a relation was found numerically in [11] where it was shown that
the numerical results are in very good agreement with the analytic relation7

v(µ) = −2µ− µ log(1− µ2) . (3.18)

We will use these numerical results when we discuss the uplift of this five-dimensional
solution to ten-dimensional type IIB supergravity.

4 From five to ten dimensions

It has long been suspected that the five-dimensional SO(6) N = 8 gauged supergravity is
a consistent truncation of type IIB supergravity on S5. This was established rigorously
only recently in [12, 26]. The utility of this consistent truncation is that one can take
any solution of the five-dimensional supergravity theory and uplift it to a solution of the
ten-dimensional type IIB supergravity. To this end the explicit uplift formulae in [12] (see
also [27, 28]) are very useful. We will not describe in any detail how these formulae are
obtained and will simply apply them to uplift the five-dimensional solution described in the
previous section.

The only information from the five-dimensional theory that one needs in order to uplift
the solution of [11] to ten dimensions is the metric in (3.11) and the scalar matrix in (3.3),
as well as some basic facts about the geometry of S5 that are summarized in appendix A.

The dilaton/axion. The dilaton, Φ, and axion, C(0), of type IIB supergravity parametrize
an SU(1, 1)/U(1) coset space. The SU(1, 1) matrix, mαβ , is given by the following formula

mαβ = ∆4/3YIYJM
Iα,Jβ . (4.1)

The function ∆ is determined by imposing unimodularity, i.e. det(mαβ) = 1. The embed-
ding coordinates, YI , of S5 in R6 are given explicitly in appendix A. The axion and dilaton
can be extracted from the matrix mαβ by using

mαβ =

(
eΦ(C(0))2 + e−Φ −eΦC(0)

−eΦC(0) eΦ

)
. (4.2)

6We have numerically integrated the BPS equations for hundreds of different complex values of η0 and
found regular solutions with complex metric functions.

7We have checked numerically that this relation holds not only for real or pure imaginary values of µ
but more generally on the complex plane.
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The metric. The internal space is topologically S5 but due to the non-trivial values of
the five-dimensional scalar fields, the metric on S5 is not the Einstein one and is determined
by the formula

Gmn = K m
IJ K

n
PQ M IJ,PQ , (4.3)

where K m
IJ are the Killing vectors on the round five sphere, see appendix A for an explicit

expression of these vectors in terms of the embedding coordinates YI . Here the indices
m,n = 1, . . . , 5 refer to the directions on the five sphere. It is important to notice that
the components of the matrix M that appear here and in (4.5) below are components of
the inverse of the matrix in (3.3). In addition, the five-dimensional non-compact metric
in (3.11) acquires a warp factor which depends on the coordinates of S5 and is determined
by the function ∆ in (4.1). The full ten-dimensional metric in Einstein frame takes the form

ds2
10 = ∆−2/3

(
ds2

5 + dΩ2
5

)
, (4.4)

where dΩ2
5 is the line element for the metric on the deformed S5 given by (4.3).

The two-forms. To obtain the ten-dimensional NS-NS two-form B(2) and the R-R two-
form C(2) it is convenient to define A 1

mn = B
(2)
mn and A 2

mn = C
(2)
mn. One then has

A α
mn = −1

g
εαβGnk K k

IJ M IJ
Pβ ∂mY

P , (4.5)

where Gmn is the deformed metric of the five sphere given in (4.3). The corresponding
three-form field strengths are defined in appendix C. The expression on the right hand
side of (4.5) is not manifestly antisymmetric in the indices m and n. However, using
the properties of the matrix M and the Killing vectors K one can show that it is indeed
antisymmetric.

The four-form. The components of the R-R four-form along the S5 are given by

C
(4)
klmn =

4

g4

(√
Ĝ εklmnp Ĝ

pq∆4/3mαβ∂q(∆
−4/3mαβ) + ω̂klmn

)
, (4.6)

where Ĝmn is the metric on the round S5 given in (A.3) and Ĝ is its determinant. The
four-form ω̂ is such that

dω̂ = 16 volS5 = 8 sin 2θ cos2 θ dθ ∧ dφ ∧ σ1 ∧ σ2 ∧ σ3 . (4.7)

The right hand side of (4.7) is proportional to the volume form of the metric on the round
S5 in the coordinates defined in (A.3). The σi are the left invariant one forms of SU(2), the
explicit parametrization we chose for these forms is given in (A.5). To obtain the five-form
flux of type IIB supergravity from the four-form in (4.6) one should use the formula in (C.2).
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4.1 A new solution of type IIB supergravity

Applying these uplift formulae to the five-dimensional model described in section 3 results
in a new supersymmetric solution of type IIB supergravity. It is convenient for our purposes
to present the solution by first defining the following two combinations of the scalar fields
z and z̃

C =
1 + zz̃

1− zz̃
, T =

z + z̃

1 + zz̃
. (4.8)

The metric on the internal S5 is given by

dΩ2
5 =

4

g2η2

(
1

CS
dθ2 +

1

K2
sin2 θ dφ2 + η6 cos2 θ

[
S

K1
(E2

1 + E2
2) +

1

CSK2
E2

3

])
, (4.9)

where we have used dΩ2
5 to denote the deformed metric on S5, see (4.3). We refer to

appendix A for a discussion on how we chose the coordinates on the deformed sphere. The
one forms Ei are deformations of the SU(2) left invariant one-forms σi and are given by

E1 = σ1 +
T sinω

S
(tan θ sin ξ−dθ + cos ξ−σ3) ,

E2 = σ2 +
T sinω

S
(tan θ cos ξ−dθ − sin ξ−σ3) , (4.10)

E3 = σ3 .

We have also found it convenient to define

S = 1 + T cosω ,

K1 = S cos2 θ + C(1− T 2)η6 sin2 θ , (4.11)

K2 = SC cos2 θ + η6 sin2 θ .

Using these definitions, the full ten-dimensional metric in Einstein frame can be written
compactly as

ds2
10 =

(CK1K2)1/4

η
√
gs

(ds2
5 + dΩ2

5) , (4.12)

where ds2
5 is the five-dimensional metric in (3.11) and dΩ2

5 is given by (4.9). Notice that we
have introduced the string coupling constant gs into the ten-dimensional solution by hand.
The dilaton and axion are given by

eΦ =
gs√

CK1K2
(CK1 sin2 φ+K2 cos2 φ) ,

C(0) =
η6
(
C2
(
1− T 2

)
− 1
)

sin2 θ sin 2φ

2gs
(
CK1 sin2 φ+K2 cos2 φ

) .
(4.13)

The NS-NS and R-R two-forms can be written as

B(2) = − cosφ Ψ2 + sinφ dφ ∧Ψ1 , gsC
(2) = sinφ Ψ2 + cosφ dφ ∧Ψ1 , (4.14)
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where we have defined

Ψ2 =
2
√
C2 (1− T 2)− 1

g2
cos θ

[
2

CS
dθ ∧ E3 −

Sη6

K1
sin 2θ E1 ∧ E2

]
,

Ψ1 =
2
√
C2 (1− T 2)− 1

g2K2
cos θ sin 2θ E3 .

(4.15)

The four-form along the internal S5 is given by

C(4) =
8S(CK1 +K2)

gsg4K1K2
cos4 θ E1 ∧ E2 ∧ E3 ∧ dφ . (4.16)

We have checked explicitly that the bosonic fields above obey the equations of motion
of type IIB supergravity, which are given in appendix C. To perform this consistency check
we have used the BPS equations in (3.12) and (3.13). Notice however, that the equations
of motion in appendix C are presented in Lorentzian signature whereas our solution is
Euclidean in ten dimensions. Despite this, we still find a consistency of the BPS equations
with the ten-dimensional equations of motion because some of the ten-dimensional fields
are pure imaginary (or more generally complex). For example, when |η| < 1, the metric,
the axion-dilaton as well as the four-form are all real. However, the two-forms B(2) and C(2)

are pure imaginary. Redefining the two-forms by multiplying them by the imaginary unit
must be accompanied by changing the ten-dimensional equations of motion to the ones
of Euclidean type IIB supergravity. More generally when the ten-dimensional fields are
complex we still find a consistency with the Lorentzian equations of motion even though
a simple redefinition of fields does not result in a solution of the Euclidean theory. In
appendix D we show how, after taking appropriate limits of the five-dimensional scalar fields,
this background reduces to two well-known analytic solutions of type IIB supergravity. It
will be interesting to understand better this analytically continued solution and its relation
to the work of Hull [29].

The supergravity background above can be thought of as sourced by D3-branes. This
implies that the five-form flux through the deformed S5 should be appropriately quantized.
This leads to the following relation between the number of D3-branes, N , and the other
parameters in the solution

N =
4

g4gs`sπ
, (4.17)

here `s is the string length. Furthermore for large values of the coordinate r the geometry
above correctly reduces to AdS5 × S5 with length scales

L2
AdS = L2

S5 =
4

g2
=
√

4Ngsπ `
2
s =
√
λ `2s , (4.18)

where we have used that the ’t Hooft coupling is λ = g2
YMN , and that the Yang-Mills and

string couplings are related via g2
YM = 4πgs.

As discussed above (3.18), for general complex values of the IR parameter η0 all three
scalars and the metric function A(r) are in general complex. However when η0 is real
the five-dimensional metric is also real. The behavior of the ten-dimensional solutions is

– 14 –



J
H
E
P
0
4
(
2
0
1
8
)
1
4
8

somewhat more involved. For |η0| < 1 we find that both C and T , as defined in (4.8),
are real, therefore the ten-dimensional metric is real. For |η0| > 1 we find that the scalar
combination T is imaginary and thus the ten-dimensional background fields are complex.

4.2 Symmetries of the solution

The metric (4.12) exhibits SO(5) × U(1)3 symmetry as expected from the field theory
discussion in section 2. The SO(5) symmetry is generated by the isometries of the four-
sphere present in the five-dimensional metric ds2

5. The U(1)3 symmetries are generated by
the Killing vectors

∂ξ+ , ∂ξ− , ∂φ . (4.19)

The first of these correspond to the U(1)V symmetry of the dual field theory, the second
corresponds to the U(1)H whereas the last one is dual to U(1)R. However, as discussed
below (2.6) the U(1)R is broken by the mass terms (2.5) and (2.6). Indeed we find that
the two-forms in (4.14) as well as the axion and dilaton in (4.13) break the U(1) symmetry
generated by ∂φ. This symmetry is however restored when a shift of φ is combined with a
particular element of the SL(2,R) symmetry group of type IIB supergravity. Under a general
SL(2,R) transformation the R-R and NS-NS 2-forms and the axion-dilaton, τ = C(0)+ie−Φ,
transform as (

C(2)

B(2)

)
7→

(
a b

c d

)(
C(2)

B(2)

)
, τ 7→ aτ + b

cτ + d
, ad− bc = 1 . (4.20)

We therefore see that a shift φ 7→ φ + δ together with the U(1) ⊂ SL(2,R) rotation
generated by (

cos δ sin δ

− sin δ cos δ

)
, (4.21)

leaves the 2-forms as well as the axion and dilaton invariant. This invariance is the super-
gravity manifestation of the bonus U(1)Y symmetry discussed below (2.6).

5 Holographic Wilson loops

The explicit ten-dimensional solution constructed above can be used to study the dynamics
of probe strings and branes which via the holographic dictionary can be mapped to ex-
pectation values of line and surface operators. Our main interest here is to study probe
fundamental strings which are holographically dual to Wilson lines in the fundamental
representation in the gauge theory [30, 31].

The expectation value of a Wilson line operator defined along a contour C can be
calculated holographically by evaluating the renormalized on-shell action for a string with
a world-sheet that ends on the contour C at the H5 boundary and extends in the bulk of
the supergravity solution [30, 31]. More precisely

logW (C) = −SRstring , (5.1)

– 15 –



J
H
E
P
0
4
(
2
0
1
8
)
1
4
8

C
S4

Figure 3. The contour C that defines the Wilson line is a great circle on S4.

where SRstring is the renormalized on-shell action of the fundamental string given by the sum
of the Nambu-Goto action and the coupling to the NS-NS B(2) field

Sstring =
1

2π`2s

∫
d2σ eΦ/2

√
detP [GMN ]− 1

2π`2s

∫
P
[
B(2)

]
. (5.2)

Here P [· · · ] denotes the pull-back of the corresponding bulk fields onto the string world-
sheet parametrized by coordinates σ1 and σ2 and we use the ten-dimensional metric GMN

in Einstein frame. When calculating the on-shell value of the string action, we make use of
the probe approximation and neglect any backreaction of the string on the background. The
calculation then amounts to minimizing the string action, regularizing it, and evaluating
it on-shell.

The Wilson loop operator we consider is the one defined in (2.8). The contour C
is along the great circle of S4, see figure 3, which we parametrize with the coordinate
σ1 = t ∈ [0, 2π].8 The other coordinate on the world-sheet of the probe string can be
identified with the radial variable of the ten-dimensional metric, see (4.12), i.e. σ2 = r. The
coupling to the scalar field in N = 2∗ in (2.8) is manifested in the bulk by the probe string
having a profile along the S5 directions in the ten-dimensional metric. Since translations
along t are a symmetry of the ten-dimensional solution we make the reasonable assumption
that the induced fields only depend on r and not on t. This means that since B(2) has legs
only along the internal S5 directions we immediately find that P [B(2)] = 0. The induced
metric takes the form

P [ds2
10] =

(CK1K2)1/4

η
√
gs

[(
1 +Gmn

dΘm

dr

dΘn

dr

)
dr2 + e2Adt2

]
, (5.3)

where Gmn is the metric on the deformed S5 given in (4.9) and the functions Θm(r) describe
the profile of the string world-sheet on S5. We can identify the functions Θm with the five
coordinates {θ, φ, ω, ξ+, ξ−} in (A.3). Minimizing the string action in (5.2) amounts to
minimizing

eΦ detP [GMN ] = η−2e2A
(
CK1 sin2 φ+K2 cos2 φ

) (
1 +GmnΘ̇mΘ̇n

)
, (5.4)

8The parameter t can be identified with the coordinate ζ4 in (A.1).
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where we use a dot to denote the r-derivative of Θm. Notice that GmnΘ̇mΘ̇n is a sum
of non-negative terms and thus the expression in (5.4) can be minimized by setting it to
zero. This is achieved by keeping the position of the string on the S5 independent of r,
i.e. Θ̇m = 0. The position of the string on S5 is then obtained by minimizing the resulting
function

eΦ detP [GMN ]
∣∣
Θ̇m=0

= η−2e2A
(
CK1 sin2 φ+K2 cos2 φ

)
, (5.5)

along the coordinates of S5. It is not hard to see that the minima of (5.5) are at:9

θ =
π

2
, φ =

nπ

2
, n = 0, 1, 2, 3 . (5.6)

Only one of these minima, φ = 0, corresponds to the Wilson line operator in (2.8). This
can be shown by looking at the corresponding position in the embedding space of the five
sphere, see (A.2)

Y 1 = Y 2 = Y 3 = Y 4 = 0 , Y 5 = cos
nπ

2
, Y 6 = − sin

nπ

2
, n = 0, 1, 2, 3 . (5.7)

This implies that the scalar coupling in the dual Wilson loop operator (2.8) involve only
X3 or X6 for n = 0 or n = 2, respectively, and a linear combination of X3 and X6 for
n = 1, 3. Since the localization setup is adapted to calculate the vev of the Wilson loop
operator defined in (2.8) with a coupling to X3 we focus exclusively on the probe string
sitting at the n = 0 minimum.

The string action for n = 0 reduces to

Sstring =
1

`2s

∫
dr eAη2 =

√
λ

∫
dr̃ eÃη2 , (5.8)

where we have performed the integral over the great circle on S4 parametrized by t, used
the dimensionless variables r̃ = r/LAdS and eÃ = eA/LAdS, and used the relation in (4.18).

We now proceed to evaluate the on-shell action of the probe string described above.
Using the UV expansion in (3.15) one finds that the integrand in (5.8) diverges close to the
boundary as

lim
r̃→∞

η2eÃ =
1

2
er̃ +O(1) . (5.9)

We thus have to regularize the action in (5.8) by adding suitable counterterms. The coun-
terterms should be covariant quantities on the world-sheet boundary, given by the contour
C, built from the ten-dimensional background fields, see for example [32, 33]. The only such
non-vanishing quantity is a “cosmological constant” on the world-sheet boundary. Notice
that the determinant of the (dimensionless) metric on the world-sheet boundary is just η eÃ

and using (3.15) we find that the counterterm in question has the asymptotic behavior

lim
r→∞

η eÃ =
1

2
er̃ +O(r̃e−r̃) . (5.10)

9These minima can also be found by using the Euler-Lagrange equations derived from (5.2) and (5.4).
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Other possible covariant counter terms are given by a positive power, k, of the ten-
dimensional dilaton evaluated on the boundary. One can use (4.13) and (3.15) to show
that these terms approach zero as e−r̃ or faster:

lim
r̃→∞

η eÃ Φk = O(e−(2k−1)r̃) . (5.11)

We therefore conclude that the only infinite or finite counterterm that can be used to
regularize the string action in (5.8) is the one in (5.10). Note that this counterterm gives
identical results for the regularized on-shell action as the background subtraction method
which is often employed in holographic Wilson line calculation [18].

The renormalized on-shell action of the probe string of interest is thus given by

SRstring = lim
r̃UV→∞

√
λ

(∫ r̃UV

r̃∗

dr̃ eÃη2 − eÃ(r̃UV)η(r̃UV)

)
, (5.12)

and, as expected, it is independent of the UV cutoff scale r̃UV. Notice that the integration
range in (5.12) extends all the way to the IR cutoff r∗ in the bulk where the five-dimensional
metric caps off. This is because the string sits on the equator of S4 for all values of the
radial coordinate r in the bulk geometry. We are now ready to use the renormalized action
in (5.12) to determine the vev of the dual Wilson loop, employing the relation in (5.1). Since
the ten-dimensional solution described in section 4.1 can only be obtained numerically we
cannot aim at reproducing the localization result in (2.9) analytically. We can however
use the numerical approach outlined above (3.18) and construct many numerical solutions
for different values of the parameter µ in (3.15). For each of these numerical supergravity
solutions we can then evaluate the regularized probe string action in (5.12). As discussed
above (3.18) we have focused on real or pure imaginary values of µ. Our numerical results
for the regularized string action are plotted in figure 4. It is clear from this figure that,
upon using the identification between the supergravity parameter µ and the dimensionless
mass, ma, see (3.16), we find an excellent agreement between our numerical supergravity
results and the supersymmetric localization result in (2.9). Finally we want to stress that
we have checked that our numerical results for the regularized on-shell action in (5.12) are
in very good agreement with the function

√
1− µ2 also for general values of the complex

parameter µ away from the real and imaginary axis.

6 Conclusions

In this paper we studied the ten-dimensional supergravity dual of the N = 2∗ theory
on S4. To this end we used the five-dimensional supergravity dual of this gauge theory
constructed in [11] and the explicit uplift formulae of [12] to construct a new supersymmetric
solution of type IIB supergravity. We then explored this new background with probe
fundamental strings which are holographically dual to Wilson lines in the fundamental
representation of the gauge group. We identified a simple circular probe string which is dual
to the supersymmetric Wilson line in (2.8). The vev of this Wilson line can be calculated
analytically in the planar limit at large ’t Hooft coupling by supersymmetric localization.
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Figure 4. The yellow dashed curve shows numerical solutions for the on-shell action in (5.12)
divided by

√
λ as a function of the parameter µ. The blue solid curve is a plot of the function√

1− µ2 which should be compared to the field theory result in (2.9).

We showed that the regularized on-shell action of the probe string we consider is equal to
the vev of this supersymmetric Wilson line for general values of the mass parameter in the
N = 2∗ theory. This constitutes a non-trivial test of holography for non-conformal gauge
theories. Our work naturally leads to several interesting questions which can be explored
in the near future.

We have not rigorously shown that the probe string we studied in section 5 is indeed
supersymmetric. It should be possible to do so using κ-symmetry.10 In addition it will be
interesting to explore other supersymmetric Wilson lines in the fundamental representation
in the N = 2∗ theory on S4. These operators are different from the one in (2.8) since
they involve also the scalar X6. To the best of our knowledge their vevs have not been
calculated via supersymmetric localization. Nevertheless our new type IIB supergravity
background should allow to compute these vevs, at least for large λ, by studying suitable
probe fundamental strings.

We have limited our holographic analysis to Wilson loop operators in the fundamental
representation. There are other supersymmetric Wilson loops in the N = 2∗ theory on S4

whose vevs can be computed in the planar limit using supersymmetric localization, see for
example [8, 37–39]. For large values of λ these field theory calculations should be compared
with supergravity. This can be done by studying appropriate probe D3- and D5-branes in
the type IIB supergravity solution discussed in section 4. The vev of the corresponding
Wilson loop operators can then be computed by evaluating the regularized on-shell action
of these probe branes. Much less is known about supersymmetric ’t Hooft line operators or
surface operators in the N = 2∗ theory. From the supergravity perspective these operators

10A recent κ-symmetry analysis for probe branes in asymptotically AdS5 supergravity solutions with
curved boundaries was performed in [34–36] for probe D5- and D7-branes.
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should correspond to probe D1- and D3-branes, respectively and it should be possible to
classify them systematically and compute their expectation values holographically. It will
certainly be interesting to explore this further.

The planar limit of the N = 2∗ SYM theory on S4 exhibits a rich structure of phase
transitions as one varies the ’t Hooft coupling λ. As we demonstrated in this paper the
supergravity solution discussed in section 4 is clearly well-suited for studying holographically
the gauge theory for λ� 1. It is desirable however to develop techniques from string theory
and supergravity which allow us to compute 1/

√
λ corrections to physical observables in

the planar N = 2∗ SYM theory. Some results in this direction were derived in [7, 40] but
it is certainly very interesting to study this further since it offers the exciting possibility to
connect exact localization calculations for non-conformal gauge theories with string theory
corrections to supergravity.

The uplift formulae in [12] provide a concrete tool to construct explicit solutions of type
IIB supergravity by first solving the equations of motion of the five-dimensional N = 8

SO(6) gauged supergravity. Obtaining such five-dimensional solutions is usually a much
simpler enterprise then directly solving the equations of motion of type IIB supergravity.
It is thus natural to apply these powerful technical results to construct explicit uplifts of
other interesting five-dimensional solutions which have found applications in holography.
Two particular examples which should be easily accessible are the gravity dual of the N = 1∗

cousin of the N = 2∗ theory on R4 [41, 42] and S4 [22].

Acknowledgments

We are grateful to Yago Bea, Ioannis Papadimitriou, and in particular to Diego Trancanelli
for initial collaboration on some of the results presented here and interesting discussions.
In addition we would like to thank Henriette Elvang, Ben Niehoff, Silviu Pufu, and Kostya
Zarembo for useful conversations. The work of NB is supported in part by an Odysseus
grant G0F9516N from the FWO. FFG is a Postdoctoral Fellow of the Research Foundation
— Flanders. JvM is a PhD Fellow of the Research Foundation — Flanders. We are also
supported by the KU Lueven C1 grant ZKD1118 C16/16/005, and by the Belgian Federal
Science Policy Office through the Inter-University Attraction Pole P7/37.

A Spherical coordinates

Here we collect some details on the coordinates on S4 and S5 that we used throughout
the paper.

For the five-dimensional metric in (3.11) we employ the following Einstein metric on S4

dΩ2
4 = dζ2

1 + sin2 ζ1

(
dζ2

2 + sin2 ζ2

(
dζ2

3 + sin2 ζ3dζ2
4

))
. (A.1)

Throughout our calculations we have used the following explicit embedding of S5 in R6:

Y 1 = cos θ cos
1

2
(ξ+ + ξ−) cos

ω

2
,

Y 3 = − cos θ sin
1

2
(ξ+ + ξ−) cos

ω

2
,

Y 5 = sin θ cosφ ,

Y 2 = cos θ sin
1

2
(ξ+ − ξ−) sin

ω

2
,

Y 4 = cos θ cos
1

2
(ξ+ − ξ−) sin

ω

2
,

Y 6 = − sin θ sinφ .

(A.2)
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The choice of coordinates in (A.2) is adapted to the symmetries of the problem. Namely the
coordinates {Y 1, Y 2, Y 3, Y 4} can be formally identified with the two-dimensional complex
plane spanned by the scalars Z1,2 in the adjoint hypermultiplet of N = 4 SYM, see (2.2).
Similarly the coordinates {Y 5, Y 6} should be identified with the complex plane spanned
by the scalar Z3 in (2.1). These identifications imply that the U(1)V × U(1)H × U(1)R
symmetries discussed below (2.6) should be identified with the Killing vectors ∂ξ+ , ∂ξ− ,
and ∂φ, respectively. In these coordinates, the Einstein metric on S5 reads

dΩ̂2
5 = dθ2 + sin2 θ dφ2 + cos2 θ

(
σ2

1 + σ2
2 + σ2

3

)
, (A.3)

where σi are the SU(2) left-invariant one-forms which obey the relation:

dσi = εijkσj ∧ σk . (A.4)

Explicitly the one-forms are given by

σ1 = −1

2
(sin ξ−dω − sinω cos ξ−dξ+) ,

σ2 = −1

2
(cos ξ−dω + sinω sin ξ−dξ+) , (A.5)

σ3 = −1

2
(dξ− + cosωdξ+) .

To avoid conical singularities the range of the coordinates on S5 should be

θ ∈ [0, π/2] , ω ∈ [0, π] , ξ+, ξ−, φ ∈ [0, 2π] . (A.6)

To apply the uplift formulae of [12] discussed in section 4 we also need the 15 Killing
vectors of the round five-sphere which can be obtained directly from the six embedding
functions YI via

K m
IJ = −g ĜmnY[I∇nYJ ] . (A.7)

The derivative in (A.7) is with respect to the coordinates on the five-sphere, {θ, φ, ω, ξ+, ξ−},
and Ĝmn is the inverse of the metric in (A.3).

B 5d N = 8 supergravity

Here we collect some formulae from [24] that pertain to our discussion. The scalar potential
of the five-dimensional supergravity action in (3.4) is given by

V = −g
2

32

(
2WabW

ab −WabcdW
abcd
)
, (B.1)

where the W tensors are defined as

Wabcd = εαβδIJVIαabVJβcd , Wab = W c
acb . (B.2)

The VIαab are related to the group element U introduced below (3.1) through a change of
basis. Specifically, the VIαab has curved indices Iα in an SL(6,R)×SL(2,R) representation,
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while the flat indices ab are in an USp(8) representation. The U matrices on the other hand
are written entirely in the SL(6,R)× SL(2,R) basis. The relation between the two objects
is given by a set of gamma matrices:

ΓIα = (ΓI , iΓIΓ0) , and ΓIJ = Γ[IΓJ ] , (B.3)

which transform under SO(7) and have the following properties

{ΓI ,ΓJ} = 2δIJ , and Γ0 . . .Γ6 = −i1 . (B.4)

The explicit relation between the frame fields is then given by the following expression:

V ab
Iα =

1

4

1√
2

(
Γ ab
KL UIαKL + 2Γ ab

Kβ U Kβ
Iα

)
. (B.5)

More information about the relation between USp(8) and SL(6,R) × SL(2,R) representa-
tions and their embedding in E6(6) can be found in [24].

C Type IIB supergravity

To test the uplift formulae of [12], given in section 4, we have checked explicitly that all
ten-dimensional supergravity backgrounds discussed in this paper satisfy the equations of
motion of type IIB supergravity. In this appendix we give the definition of the field strengths
and the equations of motion of the ten-dimensional theory.

The NS-NS three-form flux is defined as

H(3) = dB(2) . (C.1)

The R-R field strengths are defined as

F (1) = dC0 , F (3) = dC(2) − C0H
(3) ,

F (5) = dC(4) − 1

2

(
C(2) ∧H(3) −B(2) ∧ dC(2)

)
.

(C.2)

Notice that C(4) calculated via the uplift formula (4.6) only provides half of the type IIB
five-form. The full five-form flux must be self-dual and is thus given by

F (5) = F (5) + ?10F (5) , (C.3)

where ?10 is the ten-dimensional Hodge dual.
The equations of motion are given by the set of Maxwell equations and Bianchi identities

for the NS-NS sector

dH(3) = 0 , d
(
?10e

−ΦH(3)
)
− F (3) ∧ F (5) − eΦF (1) ∧ ?10F

(3) = 0 , (C.4)

and similarly for the R-R sector

dF (1) = 0 , d
(
?10e2ΦF (1)

)
+ eΦH(3) ∧ ?10F

(3) = 0 ,

dF (3) −H(3) ∧ F (1) = 0 , d
(
?10eΦF (3)

)
+H(3) ∧ F (5) = 0 ,

dF (5) −H(3) ∧ F (3) = 0 ,

(C.5)
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the dilaton equation

∆Φ +
1

2
e−Φ|H(3)|2 − e2Φ|F (1)|2 − 1

2
eΦ|F (3)|2 = 0 , (C.6)

and the ten-dimensional Einstein equation

RMN −
1

2
∇MΦ∇NΦ− 1

2
e−Φ|H(3)|2MN −

1

2
e2Φ|F (1)|2MN −

1

2
eΦ|F (3)|2MN

− 1

4
|F (5)|2MN +

1

8
gMN

(
e−Φ|H(3)|2 + eΦ|F (3)|2 + |F (5)|2

)
= 0 .

(C.7)

We have introduced the notation

|F (p)|2 =
1

p!
F

(p)
M1M2···Mp

F (p)M1M2···Mp , |F (p)|2MN =
1

(p− 1)!
F

(p)
M M1···Mp−1

F
(p)M1···Mp−1

N .

(C.8)
Note that the equations above are presented in Einstein frame. The relation between
Einstein and string frame is given by a rescaling of the metric, G(string)

MN = eΦ/2G
(Einstein)
MN .

D Pilch-Warner and Coulomb branch solutions

To gain some confidence that we have applied the uplift formulae of [12] correctly it is
instructive to reproduce two well-known solutions of type IIB supergravity which can be
obtained as limits of the three-scalar model in section 3.1. The limit we want to take is to
first replace the S4 in (3.11) by R4. Then one can show that it is consistent to set β = 0,
or equivalently T = 0, in the BPS equations in (3.12). In this limit one can integrate the
BPS equations analytically.

D.1 Pilch-Warner

The type IIB supergravity solution found in [13] is the holographic dual of the N = 2∗

theory on R4. It can be obtained by taking T = 0 and keeping the other two scalars
in section 3.1 non-trivial. This procedure is equivalent to taking the limit z = −z̃. The
functions in (4.11) then become11

S = 1, K1 = cos2 θ + η6C sin2 θ, K2 = C cos2 θ + η6 sin2 θ. (D.1)

11Note that K1 and K2 correspond to the functions X1 and X2 in [13]. The scalar C is simply equal to
cosh 2χ, which is in harmony with the conventions in [13].
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The full type IIB supergravity background obtained using the uplift formulae of [12] is then
given by

dΩ2
5 =

4

g2η2

(
dθ2

C
+ η6 cos2 θ

(
σ2

1 + σ2
2

K1
+

σ2
3

K2C

)
+

sin2 θdφ2

K2

)
,

eΦ =
gs√

CK1K2
(CK1 sin2 φ+K2 cos2 φ), C(0) =

η6
(
C2 − 1

)
sin2 θ sin 2φ

2gs
(
CK1 sin2 φ+K2 cos2 φ

) ,
B(2) = −2

√
C2 − 1

g2
sin 2θ cos θ cosφ

(
2

C sin 2θ
dθ ∧ σ3 +

tanφ

K2
σ3 ∧ dφ+

η6

K1
σ2 ∧ σ1

)
,

C(2) =
2
√
C2 − 1

gsg2
sin 2θ cos θ sinφ

(
2

C sin 2θ
dθ ∧ σ3 −

cotφ

K2
σ3 ∧ dφ+

η6

K1
σ2 ∧ σ1

)
,

C(4) =
8 (CK1 +K2)

gsg4K1K2
cos4 θ σ1 ∧ σ2 ∧ σ3 ∧ dφ.

(D.2)
Notice that in this limit we Wick rotate to Lorentzian signature and the five-dimensional
metric is a flat Minkowski domain wall:

ds2
1,4 = dr2 + e2Aηµνdxµdxν , (D.3)

where A does not obey the algebraic BPS equation given in (3.13) since when z = −z̃ the
algebraic expression is not valid. One can obtain an expression for A from the differential
equation it satisfies (3.14). The explicit form for A is

e2A =
η4

C2 − 1
. (D.4)

The full ten-dimensional type IIB metric is then

ds2
10 =

(CK1K2)1/4

η
√
gs

(
ds2

1,4 + dΩ2
5

)
. (D.5)

We have verified that this background matches the one derived in [13] upon setting gs = 1

and changing to mostly minus signature. Note that our η is their ρ, our σ1 is their σ3 and
vice versa, and their complex two-form A(2) is given by

A(2) = C(2) + iB(2) , (D.6)

in our notation. There are two minor typos in [13]. In equation (3.28) of [13] a3 should be
−a3 and in equation (4.9) the denominator should be 4 sinh4(2χ).

D.2 Coulomb branch

An even simpler solution of type IIB supergravity can be obtained by setting β, χ = 0, or
alternatively C = 1, T = 0. This background was studied in [43] and is holographically
dual to an RG flow on the vacuum moduli space of N = 4 SYM, sometimes referred to as
Coulomb branch flow, where a single operator sitting in the 20′ representation of SO(6)
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acquires a vev. To compare our conventions to the ones in [43] we should relate the scalars
of the five-dimensional supergravity in equation (2.4) of [43] to ours in the following way:

X1 = X2 = X3 = X4 =
1

η2
, and X5 = X6 = η4 . (D.7)

For this set of scalars the functions in (4.11) simplify to

S = 1, K1 = K2 = K = cos2 θ + η6 sin2 θ . (D.8)

Using the uplift formulae in [12] one can then find the following simple solution of type IIB
supergravity

dΩ2
5 =

4

g2η2

(
dθ2 +

η6 cos2 θ

K

(
σ2

1 + σ2
2 + σ2

3

)
+

sin2 θ

K
dφ2

)
,

C(4) =
16 cos4 θ

gsg4K
σ1 ∧ σ2 ∧ σ3 ∧ dφ,

eΦ = gs , C(0) = B(2) = C(2) = 0 .

(D.9)

Once again the domain wall is sliced by four-dimensional Minkowski space and the five-
dimensional metric is given by (D.3) where A and the scalar η are determined by

A′ =
g

6
(η4 + 2η−2) , (log η)′ = −g

6

(
η4 − η−2

)
. (D.10)

One can then solve for the metric function A in terms of the scalar η and find

e2A = η2 − η−4 . (D.11)

Finally the full ten-dimensional metric is given by

ds2
10 =

√
K

η
√
gs

(
ds2

1,4 + dΩ2
5

)
. (D.12)

Open Access. This article is distributed under the terms of the Creative Commons
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