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1 Introduction

String flux compactification has been extensively studied in the last decade opening up a

strength relation among geometry and the construction of stable four-dimensional vacuum

solutions. We now understand that they are geometrical extensions of those exact solutions

constructed in the absence of fluxes corresponding to Calabi-Yau compactifications. Even

more, flux compactification solves the so called moduli stabilization problem and gives us

stringent insights about the possibility to construct four-dimensional de Sitter (dS) vacua.

At the present stage it is commonly accepted that dS vacua can be gathered from a flux

compactification in the presence of orientifold planes and anti D3 branes1 [5, 6] or by the

inclusion of non-geometric fluxes [7–9]. Also, it is well known that for supersymmetric

flux backgrounds, Einstein’s equation is satisfied if we demand Bianchi identity and su-

persymmetry. Although flux compactification brings a consistent scenario for dS (see for

instance [10, 11] for some interesting discussions), the presence of localized sources intro-

duce singular points at which the fluxes, for most of the cases [5], have not an analytical

expression and are not exact solutions of the equations of motion. This is a consequence of

taking trivial fluxes (not depending on internal coordinates or moduli), an assertion valid

only in a dilute flux limit.

Another problem faced by flux string compactification involves reproducing a minimal

supersymmetric effective theory in four-dimensions which could embed a supersymmetric

extension of the Standard Model of particles while preserving chirality and solving the

hierarchy problem for the Higgs boson. However, as result of the last experiments run in

the LHC, the possible presence of supersymmetry at low scales as TEV’s is close to be

discarded and therefore, supersymmetry appears to be non essential for solving the hier-

archy problem. Although such a problem remains unsolved it opens up the possibility to

consider non-supersymmetric string compactifications, i.e., models on which susy breaking

scale is close to the string compactification scale [12]:

Mp > Ms > MKK > Mcomp ∼ mSUSY > minflaton. (1.1)

Hence, it is desirable to consider more generic flux scenarios which allow us to face these

kind of problems. One possibility concerns turning on non-constant fluxes. Compactifica-

tion in the presence of fluxes depending on the internal coordinates or moduli have been

considered previously [13, 14], while examples of U-folds with flux in string theory and

M-theory were studied in [15]. Further studies on non-trivial flux compactifications were

considered in [16–18]. More recently, it was constructed a family of exact solutions of com-

pactifications threaded by fluxes depending on internal coordinates by [1, 2] and sourced

by branes of diverse dimensionalities. Specifically the authors show that for a compactifi-

cation on a fibered internal space given by a warped product of a four-dimensional torus

and a punctured sphere, it is possible to satisfy Bianchi identity and supersymmetric condi-

tions for suitable choices of meromorphic functions depending on the complex coordinates

of the sphere. In the same way as F-theory, these flux compactifications with meromor-

1See for instance [3, 4] for recent discussions on possible classical extra constraints.
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phic functions, dubbed G-theory, gives a geometrical interpretation of the U-duality group

(see [19, 20]), by replacing the tori by an auxiliary K3.

In this work we study generic conditions upon which a flux configuration depending on

the same internal coordinates of the sphere, with a similar compactification on T 4 ×z S2,

satisfy Einstein’s equations. By turning on 3-form fluxes and the dilaton, sourced by 5-

and 7-branes respectively, we find that a family of solutions of Einstein’s equations are

given precisely by meromorphic functions on S2. For that, we have make an extensive use

of the Global Residual Theorem [21] in complex analysis, which states that on a compact

space with singular points the total sum of residues related to meromorphic functions

vanishes. This allows us to prove that by the simple use of “meromorphic fluxes” on the

sphere, — meaning that we construct meromorphic functions formed by non-trivial closed

string potentials and warping factors — , it is possible to satisfy Bianchi identities, tadpole

conditions and Einstein’s equations, circumventing some results followed by the well known

no-go theorem [5] as having a constant warping factor in the absence of a five-form flux

or the necessity to have orientifold 3-planes to obtain a Minkowski vacuum with no one-

form fluxes. Moreover, these family of solutions are compatible with those constructed by

the same method described in [1, 2] by the used of G-theory. We also find that different

solutions to Einstein’s equations are related by U-dualities.

Once we show this, we focus on the construction of supersymmetric solutions by the

use of U-dualities in the same context as the family of solutions studied in [1, 2]. Based

on these solutions, we construct a non-supersymmetric solution in the effective space-time

which is stable for some regions on the complex coordinates of the internal sphere, at

least at leading order with respect to the location of singularities. Although we consider

this an important step through the construction of dS vacua with possible implications on

cosmological issues, we leave this important task for future work.

Our work is organized as follows: in section 2 we review the flux configuration taken

through all our study as well the construction of the punctured two-dimensional sphere

by following the results studied in [1, 2]. After that we concentrate on solving Einstein’s

equations. As mentioned, we make an extensive use of the Global Residue Theorem. Since

our flux configuration break half of supersymmetries in the effective theory, we also review

the calculation of the corresponding soft terms from the DBI action of a set of D5 branes

warping a 2-cycle of the compact space [22–24] which precisely source the 3-form RR fluxes.

In section 3 we show three supersymmetric solutions, compatible with Bianchi identities,

fulfilling the supersymmetric conditions and compatible with the Einstein’s solutions pre-

sented in the previous section. Finally, in section 4 we construct a non-supersymmetric

solution based on the supersymmetric solutions and show their linear stability assuming

spherical symmetry in the four-dimensional space-time. In section 5 we present our con-

clusions about the use of “meromorphic fluxes”. As reference, in appendix A we show our

index notation and for completeness we review some useful gamma algebra in appendix B,

while in appendix C the non-zero components of the spin connection, necessary to solve

the supersymmetric conditions, are given. Appendix D is devoted to present and prove

the Global Residue Theorem. In appendix E we show the dimensional reduction of the

Dirac-Born-Infeld action of D5-branes into the DBI action of induced D3-branes, required

to compute the corresponding soft terms.
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2 Flux compactification

For simplicity, we are interested in studying consistent string compactifications in Type IIB

threaded with non-constant 3-form fluxes plus a non-trivial dilaton field. In such scenario,

the low energy action for the bosonic sector in the string frame reads (see appendix A

for notation)

S =
1

2κ2
10

∫
d10x
√
−g
(
e−2φ

[
R+ 4(∂φ)2 − 1

12
H2

3

]
− 1

12
F 2

3

)
− 1

4κ10

∫
C4∧H3∧F3 , (2.1)

where

H3 = dB2 F3 = dC2 . (2.2)

This action is symmetric under SL(2,R) keeping the metric invariant while the doublet

(C2, B2) and the complex dilaton S = e−φ − iC0 transforms as

S → aS − ib

icS + d
,

(
C2

B2

)
→

(
a b

c d

)(
C2

B2

)
, (2.3)

for ad − bc = 1. For a = d = 0 and b = −c = 1 the above symmetry reduces to S-duality

under which the complex 3-form

G3 = F3 − iSH3 , (2.4)

transforms accordingly. The Killing Spinor Equations (KSE) read [25, 26]

δΨM = ∇M ε−
1

4
/HMσ

3ε+
eφ

16
/F 3ΓMσ

1ε (2.5)

δλ =

(
/∂φ− 1

2
/Hσ3

)
ε+

eφ

8
/F 3σ

1ε , (2.6)

where ε contains the two Majorana-Weyl spinors of the same chirality, and σ1 and σ3 are

the corresponding Pauli matrices. The fluxes are contracted as usual with the Gamma

matrices ΓM in the curved background as

/HM =
1

2
HMNOΓNO, /G =

1

3!
GMNOΓMNO , (2.7)

where G stands either for F3 or H3. By taking a compactification on a six-dimensional

space, ΓM decomposes into internal and external components as

Γµ = γµ ⊗ 1, Γm = γ5 ⊗ γm , (2.8)

with the ten dimensional spinors ε1,2 decomposing as

εa = ξ+ ⊗ ηa+ + ξ− ⊗ ηa− ,

where ξ and ηa , a = 1, 2, stands for the components of the chiral spinors in the internal and

compact space respectively, with the subscripts ± representing the corresponding chirality.

It is useful at this point to define the 2-tuples η and η̃ as

η = {η1
+, η

2
+} η̃ = {η2

+,−η1
+} , (2.9)

which we will use to denote solutions to the KSE.
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2.1 The anzatz

In this work we are interesting in constructing type IIB supersymmetric (SUSY) and non-

supersymmetric (non-SUSY) solutions by compactifying the internal six dimensions on a

T 4 fibration over S2 in the presence of non-trivial 3-form fluxes. For that, let us start by

considering a non-compact six-dimensional space consisting on the warped product T 4×zC.

The 10-dimensional metric is given by

ds2 = e2A(z,z̄)ηµνdx
µdxν + gij(z, z̄)dyjdyj + Ω2(z, z̄)dzdz̄, (2.10)

where the fluxes, as well as the torus metric, dilaton φ and warping factors are taken

to vary only over the complex plane and i, j : 1, · · · , 4 run over T 4 coordinates. In this

background, the internal Killing spinor equation for the gravitino, eq. (2.5) decomposes

into two equations related to C and T 4 as

/∂Aηa − 1

4
eφ /F η̃a = 0 , (2.11)(

∇i +
(−1)a

4
Hi

)
ηa − (−1)a

8
eφ /Fγiη̃

a = 0 , (2.12)

while the corresponding dilatino variation, eq. (2.6) reads(
/∂φ+

(−1)a

2
/H

)
ηa − eφ

2
/F η̃a = 0 , (2.13)

for a = 1, 2. The RR and NS-NS 3-form fluxes F3 and H3 are the field strengths related

to the 2-form potentials

B2 =
∑
i,j

bij(z, z̄)dyi ∧ dyj ,

C2 =
∑
i,j

cij(z, z̄)dyi ∧ dyj , (2.14)

with bij and cij real functions on z and z̄.

Our next step is to consider a compactification threaded by these potentials. To do

that, it is necessary to curl up the complex plane into a compact two-dimensional space.

As studied in [13] this is accomplished by adding branes. Under their presence, the internal

geometry backreacts generating a deficit angle of π/6 for each brane, where for the critical

case of 24 branes the complex plane curls up into a two-dimensional punctured sphere.

In the background described by the metric (2.10) we can consider the presence of 3-, 5-

and 7-branes wrapping 0-, 2- or 4-cycles in T 4 respectively while extending on the whole

four-dimensional space-time. These branes are expected to induce shift symmetries on the

corresponding potentials by encircling the singular points in S2. Since we are considering

only the presence of 3-form fluxes and the dilaton φ, only five and seven branes are going

to be taken into account.

Under this approach, the Bianchi identities have to be supplemented with delta-like

local sources to compensate the flux. Therefore, our anzatz involves the presence of branes

– 4 –
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located at singular points zp on C making it to curl up to S2 such that the dilaton φ and

the RR and NS-NS potentials C2 and B2 fulfill Einstein equations, Bianchi identities and

the Killing equations of motion (for a SUSY case) while the total 5-brane must vanish on

the internal space.

As said, the presence of a bound state of q1 D5-branes and q2 NS5-branes induces a

shift symmetry of the type bij → bij +q1 and cij → cij +q2 for q1 , q2 ∈ Z, implying that, at

leading order on zp, RR and NS-NS potentials behave as log (z − zp) with 5-branes located

at the singular points zp in S2. Finally, as observed in [13], U-duality invariance completely

fixes Ω(z, z̄) as

Ω(z, z̄) = 2e2D(z,z̄)|h(z, z̄)|2, (2.15)

with

h(z) =
η(U1)2η(U2)2

Π12
p=1(z − zp)1/12Π12

p=1(z̄ − z̄p)1/12
, (2.16)

where η is the Dedenkin eta function with zeros at the points z = zp at which the branes

are located; the terms in the denominator are added to remove those zeros [13] such that

the metric (2.10) in S2 is regular at every point.2 The functions U1,2(z) are fixed to be

meromorphic functions on the punctured sphere according to [13]. As we shall see, this is

accomplished by constructing complex functions in terms of real functions as the dilaton,

fluxes and warping factors. In the next section we shall conclude similarly by solving

Einstein equations for the internal compact space.

2.2 Einstein equations

Now we want to study — in the SUGRA context — constraints on the previous flux

configuration leading to a Minkowski vacuum. Since in our setup, the internal fluxes are

not constant but functions of internal coordinates, we want to show that by selecting

flux potentials as appropriate real parts of holomorphic functions, we can construct a

consistent compactification scenario where all geometrical and dynamical constraints are

fulfilled while keeping internal fluxes as functions on complex coordinates on the punctured

sphere as shown in [1, 2] where KSE and Bianchi Identity constraints were satisfied.

Let us start by considering the ten-dimensional Einstein equation in the string frame-

work deduced from Type IIB SUGRA action,

e−2φ

(
RMN −

1

2
GMNR

)
= TMN , (2.17)

where TMN has contributions from fluxes and local sources denoted as T fMN and T lMN

respectively. In the trace reversed form, the 4-dimensional components of Einstein equa-

tions read3

e−2φRµν = Tµν −
1

8
TLL e

2Aηµν = e−2φ

(
Rµν(η)− 1

2
ηµνe

−2A∇2e2A

)
, (2.18)

2It is possible to merge the contribution of D(z, z̄) and |h(z, z̄)|2 into a single real function, however in

compactifications with varying dilaton along S2, such real function is always factorized as a product of a

modular invariant function and a real function [27].
3Throughout this work we use

∇2A =
1
√
g
∂M

(√
ggMN∂NA

)
.

– 5 –
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related to the metric (2.10). In a conformal Minkowski vacuum, by contracting with ηµν
one gets that

e−2φ∇2e2A = −1

2
T̂ e2A, (2.19)

where 2T̂ = Tµµ − e2ATmm . By considering constant fluxes it is well known that T̂ must

vanish after integrating the above expression on a compact space [5]. Since 3-form fluxes

and D5-branes contribute positively to T̂ it is concluded that objects with negative tension

must be considered in order to have a Minkoswki vacuum. In the present proposal, we are

considering fluxes and warping factors depending on complex coordinates on S2 for which

the above statements do not follow straightforwardly.

In the presence of only 3-form fluxes, the internal trace Tmm vanishes and

T̂ f = −1

3
e2A

(
F 2

3 + e−2φH2
3

)
, (2.20)

and therefore,

e−2φ∇2e2A =
1

6
e4A

(
F 2

3 + e−2φH2
3

)
− 1

2
e2AT̂ l, (2.21)

where T̂ f is the contribution of internal fluxes while T̂ l is the contribution of 5-branes

located at the singularities in the two-dimensional sphere. Integration of e−2φ∇2e2A on

the internal space S2 vanishes for an appropriate selection of non-constant warping factors

and dilaton in the metric (2.10). To prove it, we are going to make an extensive use of the

Global Residue Theorem (GRT) [21] which establishes that summation of all residues of a

holomorphic function vanishes on a compact space with singularities (see appendix D for

details). A pedestrian way to understand this theorem is to consider that on a compact

space as S2 a closed curve encircling all singularities — at which 5-branes are located —

can be deformed into a curve enclosing no singularities at all. Therefore, due to Stoke’s

law, residues of any holomorphic function on a compact space with singularities sum up

to zero.

Hence, by integrating on the internal space the contribution to the trace of the energy-

momentum tensor, we have that∫
√
g6e
−2φ∇2e2Ad4ydzdz̄ =

∫
T 4×S2

e−2φd ∗6 de2A (2.22)

with

∗6 de2A =
√
g6

(
∂ze

2Adz + c.c
)
∧ d(V4), (2.23)

and g6 the determinant of the metric of T 4 ×z S2. Notice that the differential volume

d(V4) = d4y does not depend on the complex coordinates z and z̄. Now, by defining the

real 1-form ζ1 = ∂ze
2Adz we have∫
T 4×S2

e−2φd ∗6 de2A = V4

∫
S2

√
g4e
−2φd(ζ1 + ζ̄1), (2.24)

where g4 is the determinant of the 4-dimensional torus metric. Let us now assume there

are s singularities on S2 such that the space S2
∗ is defined as

S2
∗ = S2 −

s∑
p=1

Up(zp), (2.25)

– 6 –
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where zp is the location of the singularities on the complex sphere and Up a region around

zp. It follows then that∫
T 4×S2

√
g4e
−2φd∗6de2A = V4

λ∑
p=1

∮
∂Up

√
g4e
−2φ(ζ1+ζ̄1) = V4

∑
p

Res(
√
g4e
−2φζ1(zp)+c.c),

(2.26)

which vanishes for a closed ζ1 on S2
∗ — or equivalently if ∂zA is holomorphic — and for

∇2(
√
g4e
−2φ) = 0 which is satisfied by ∂zg4 and ∂zφ holomorphic on S2

∗ . Notice that this

happens even for a non-trivial warping factor A. Settling down these functions we see that

a consistent flux compactification to a Minkowski vacuum must satisfy∫
√
g6 e

4A
(
T̂ f + T̂ l

)
d4ydzdz̄ = 0. (2.27)

Notice that for constant fluxes, T̂ f is negative for 3-form fluxes, forcing the presence of

orientifold planes with a negative contribution through T̂ l such that total T̂ vanishes for

a constant warping factor A. We shall see that for non-constant fluxes we can turn on

3-form fluxes with a non-trivial warping factor A without requiring the presence of orien-

tifold 3-planes.

2.3 Flux contribution

Let us start by studying under which conditions integration of T̂ f∫
√
g6e

4A
(
F 2

3 + e−2φH2
3

)
d4ydzdz̄, (2.28)

vanishes for non-trivial 3-form fluxes. For that let us consider two simple cases:

1. There is no NS-NS flux, i.e., H3 = 0. Our strategy is to find a configuration such that

the integrand in (2.28) could be written as a holomorphic function (plus its complex

conjugate) and therefore, it would follow — by the Global Residue Theorem — that

the integral over the punctured sphere would vanish. Notice first that

F 2
3 = 2|∂zcij |2. (2.29)

By taking ∂zcij = ±i∂ze−2A for fixed values of i and j (cij = −cji), we see that∫
√
g6e

4AF 2
3 d

6y = 2

∫
√
g6|∂zA|2d6y

= V4

∫
S2

ω1 ∧ ∗̄2ω1,

=
∑
p

∫
∂Up

ω1 = 0, (2.30)

with ω1 = g
1/4
4 ∂zAdz. This happens if dω1 = 0 which it is true for ∂zg4 and ∂zA being

holomorphic functions on S2
∗ . A trivial case involves A = 0. Notice also the above

relation among ∂zcij and ∂ze
−2A defines in turn a pair of holomorphic functions U±1,ij

for a fixed pair (i, j) given by

U±1,ij = −U±1,ji = e−2A ± icij . (2.31)

– 7 –
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2. There is no RR flux, i.e., F3 = 0. By a similar procedure as before,

H2
3 = 2|∂zbij |2, (2.32)

and by taking ∂zbij = ±i∂ze−2A+φ one gets∫
√
g6e

4A−2φH2
3d

6y = V4

∑
i

∫
∑
∂Ui

g
1/4
4 ∂z(−2A+ φ)dz, (2.33)

which vanishes for ∂zφ, ∂A and ∂g4 being holomorphic. The trivial case happens for

2A = φ. This defines a second holomorphic function

U2,ij = e−2A+φ ± ibij . (2.34)

3. We can now move to a more general case in which both RR and NS-NS fluxes are

turned on. The flux contribution in (2.28) can be written as

4V4

∫
e2D|h(z, z̄)|2e2(2A+σ)

(
|∂zc|2 + e−2φ|∂zb|2

)
dzdz̄, (2.35)

where
√
g4 = e2σ. By defining the same holomorphic functions U1 and U2 as previ-

ously, we can prove by taking

φ = 2A+ σ, (2.36)

that the integral (2.35) reduces to

32V4

∫
e2D|h2(z, z̄)|2|∂zφ|2dzdz̄, (2.37)

which vanishes for ∂zφ being holomorphic (i.e. ∇2φ = 0), implying that the internal

metric of T 4 must also be composed of harmonic elements.

It is important to remark that holomorphic functions U1,ij(z) and U2,ij(z) defined

by (2.31) and (2.34) determine the function h(z, z̄) in (2.16).

2.4 Local source’s contribution

We now compute the contribution of local sources to T̂ l in eq. (2.27). Let us concentrate

on D5-branes and the corresponding action

S =

∫
W6

(−T5 ∗6 1 + µ5C6) , (2.38)

over the D5-brane worldvolume W6 where T5 is the D5-brane tension. Now, since a D5-

brane is a RR charged object in the 10-dimensional space-time, from the action

Sgauge =

∫
X10

(
1

2κ2
10

F7 ∧ ∗F7 + µ5C6 ∧ PD(W6)

)
, (2.39)

where PD(W6) is the Poincaré dual 4-form related to W6, one can compute that the

D5-brane current ∗J6 is given by

∗10 J6 = 2κ2
10µ5PD(W6), (2.40)

– 8 –
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and therefore, the action (2.38) can be written as

S =

∫
X10

ξ6 ∧ ∗10J6 =

∫ √
G10ξ · J, (2.41)

where ξ6 = − 1
2κ2

10µ5
T5 ∗6 1 and ξ · J = ξP1···P6J

P1···P6 . From this action, the tensor T lMN is

given by

T lMN =
1

6!
(GMNξ · J − 12ξM · JN ) , (2.42)

where ξM ·JN = ξMP1···P5J
P1···P5
N . Computing the internal and external parts for D5-branes,

one gets that

Tµµ = −e2ATmm = − 1

3 · 5!

e2A

κ2
10µ5

ξ · J, (2.43)

from which T̂ l = Tµµ . Hence the local sources contribution to the scalar curvature in (2.27) is

− 1

3 · 5!

1

κ2
10µ5

∫
√
g6e

6Aξ · Jd4ydzdz̄ = − 1

3 · 5!

∫
X10

e6Aξ1 ∧ ∗10J6 . (2.44)

Notice that D5-brane’s tension is encoded in the 1-form ξ1. Since dF3 = ∗10J6, the above

integral vanishes due to Bianchi identity and by cancelation of 5-brane charges in S2 by the

use of the GRT (see appendix D). Notice that this term also vanishes for usual compact-

ification scenarios with constant 3-form fluxes where 5-branes are not present or wraping

2-cycles in the compact internal manifold X6.

2.5 Soft terms

Flux compactification on T 4 ×z S2 breaks half of the supersymmetries inherited from the

ten-dimensional effective theory, while an appropriate selection of fluxes can break the

rest of them in 4-dimensions. Therefore, we expect the appearance of soft terms in the

effective potential through the interaction between moduli and four-dimensional photons.

These four-dimensional photons are expected to be present as effective fields induced by

the presence of D5-branes, this is, the Dirac-Born-Infeld (DBI) action of a D5-brane is

effectively proportional to a DBI action of a D3-brane for a D5-brane wrapping a two-cycle

in T 4. A detailed derivation of this result is shown in appendix E. The specific form of

the soft terms are deduced from the Taylor expansion of the involved fields on the effective

D3-branes.

It is important to notice that it is expected that these D5-branes break the same

supersymmetries as the 3-form RR fluxes, since they are precisely the corresponding source.

This is quite the opposite with the standard flux compactification with 3-form fluxes and

D3-branes, where the latter source 5-form fluxes which in principle are not related with

the set of 3-form fluxes. Therefore, in that case, it is necessary to show that the bunch

of D3-branes are compatible with the supersymmetry breakdown produced by the 3-form

fluxes. This happens for a set of BPS D3-branes and ISD 3-form fluxes.

Since we only require local information around the place in which the D-branes are

localized, we define the Taylor expansion of X = {φ,A,D, ln gij} as

eX = eX0 + ∂ze
Xz + ∂̄ze

X z̄ +
1

2
(∂z∂ze

X)z2 + (∂z∂̄ze
X)zz̄ +

1

2
(∂̄z∂̄ze

X)z̄2 + . . . , (2.45)
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where X0 is the value of X at a singular point on S2. Usually, linear terms on z and z̄ must

vanish in order to avoid instabilities coming from transitions among branes and fluxes [22].

In the usual flux compactification scenarios with constant field strengths, the constraint

∂ze
Xz + ∂̄ze

X z̄ = 0 , (2.46)

is achieved by addition of orientifold planes [22]. In our set up, we shall see that linear

terms vanish by the appropriate selection of holomorphic functions U at the singular points

where the corresponding branes are localized. Notice that in the Taylor expansion there

are z and z̄ terms according to our anzats in which all the variables are allowed to vary

only on the compactified complex plane.

As shown [22, 23] the bulk fields couple to the 4-dimensional world-volume fields of

the effective D3-branes via DBI and CS terms. This induces the soft term Lagrangian

Lsoft = F(z, z̄)
(
L(1) + L(2)

)
, (2.47)

where the function

F(z, z̄) =
κ5

κ3

∫
d2ξ
√
det(Fij), (2.48)

as follows from eq. (E.6). The Lagrangians L(1) and L(2) are constructed from the effective

DBI action of a D3-brane, and are given by

L(1) = −(m2)αβφαφ
∗
β −

(
1

3
Aαβγφαφβφγ +

1

2
Bαβφαφβ −

1

2
M θλθλθ + h.c

)
L(2) = −1

2
µαβψαψβ +

1

2
Cαβγφαφ∗βφ∗γ +Mαθ

g ψαλθ, (2.49)

where, following notation in [22, 23], φα are the 3 complex scalars on the gauge

4-dimensional supersymmetric theory on the D3-branes’ worldvolume while the gaugino

and the 3 fermionic partners of the complex scalar fields are denoted by λ and ψα respec-

tively. The indices α, β, γ, run over 1 to 3 indicating the number of fields. The trilineal

terms and gaugino mass are related with the pure (3, 0)-form component of G3 as

Aαβγ =
(2π)1/2

3
eφ0εαβγGzω1ω2 , (2.50)

M θ =
eφ0/2

23/2
Gzω1ω2 , (2.51)

where ω1 and ω2 are complex coordinates on T 4. The B-terms depend on the quadratic

expansion coefficients of the warping factor and axio-dilaton. For C4 = 0 they are given by

m2
zz̄ = 2∂z∂z̄A+ eφ0∂z∂z̄φ ,

Bzz = ∂z∂z̄A+
1

2
eφ0∂z∂z̄φ . (2.52)

– 10 –



J
H
E
P
0
4
(
2
0
1
7
)
1
4
1

The µ and C-terms are given by

Cαβγ =
eφ0π1/2

21/2
εαβδ

(
σδγ − α∗δ̄γ̄

)
, (2.53)

µαβ = −e
φ0/2

23/2
σαβ , (2.54)

Mαθ
g =

eφ0/2

25/2
εαβ̄γ̄αβ̄γ̄ (2.55)

where σαβ and αᾱβ̄ following the conventions of [28] are defined as the symmetric and

antisymmetric part of the (2, 1) and (1, 2) components of G3,

Gαβ =
1

2
εγ̄δ̄β Gαγ̄δ̄ , Gᾱβ̄ =

1

2
εγδ
β̄
Gᾱγδ . (2.56)

Explicitly we have

ααβ =
1

2
(Gαβ −Gβα) , σαβ =

1

2
(Gαβ +Gβα) , (2.57)

and the same terms with bar indices, where by abuse of notation, indices α, β also refer to

the complex coordinates on T 4 ×z S2

3 SUSY solutions

As it is well known for supersymmetric flux backgrounds, Einstein’s equation is satisfied if

we demand Bianchi identity, the equation of motion for the fluxes, and supersymmetry. For

a non-constant flux compactification we have found some solutions to Einstein’s equations

for the particular choice of an internal space given by the fibered product of T 4 and the

punctured sphere S2. It is desirable to show that such solutions are compatible with those

obtained by demanding Bianchi identity and supersymmetry on the flux configuration. Su-

persymmetry is guaranteed if the KSE are solved. A family of solutions to these equations,

while fulfilling Bianchi identity, were constructed in [1, 2] by the use of U -dualities and

toric geometry. In this section we shall construct two different supersymmetric solutions to

the KSE compatible with the solutions to Einstein’s equations of motion found in the sec-

tion 2, meaning that we shall show that it is enough to consider at most, two holomorphic

functions U relating warping factors with field potentials. Our construction is based in the

use of U -dualities and we shall obtain solutions which belong to the family of solutions

found and reported in [1, 2].

Let us start with a 6-dimensional internal space given by a T 4 fibration over S2 with no

fluxes. For sake of simplicity we shall take T 4 as the product of two identical T 2. Therefore,

the 10-dimensional metric is given by [1, 2]

ds2 = ηµνdx
µdxν +

1

v
|dy1 + Udy2|2 +

1

v
|dy3 + Udy4|2 + e2D|h(z)|2dzdz̄ , (3.1)

where U is a holomorphic function of C given by

U(z) = v(z, z̄) + ib(z, z̄), (3.2)
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playing the role of the complex structure on each T 2. It is well known that the above

metric is solution of the 10 dimensional equations of motion in the absence of fluxes for

constants φ and D. Thus, by T-dualizing the metric (3.1), part of the geometry transforms

into fluxes and the six dimensional metric is modified.

Hence, we shall construct non-trivial solutions to the equations of motion by performing

T and S dualities. Then by combining these solutions we shall show that it is possible to

construct new supersymmetric solutions of the equations of motion that are not directly

related with a purely geometric background.

3.1 Solution 1: H 6= 0 and F = 0

By applying T-duality on coordinates y1 and y3 on (3.1) we get the metric

ds2 = ηµνdx
µdxν + vδijdy

idyj + v2|h(z)|2dzdz̄, (3.3)

with the warping factors

gij = vδij , A = 0, e2D = v2 , (3.4)

and the NS-NS potential

B2 = b
(
dy1 ∧ dy2 + dy3 ∧ dy4

)
, φ = D. (3.5)

With the purpose to solve the KSE, as we shall see, the imaginary part of U is related to

the axion coming from the NS-NS sector while the real part corresponds to the saxionic

partner (thorough this work we impose v > 0). This follows from the fact that the gravtitino

variation given in (2.11) is trivially solved by A = 0 and F3 = 0. Notice that this is the

trivial solution for Einstein’s equation in the case 2 shown in (2.34).

Expanding the covariant derivative in terms of the spinor connection (see appendix C

for notation), the internal component of (2.12) corresponding to T 4, reduces to(
2ωiizγ

iz +Hzijγ
zj
)
γzηa + {z → z̄} = 0 , (3.6)

where {z → z̄} stands for the same terms interchanging z by z̄ and underlying indices are

flat indices. The above equation is solved by (B.3) which shows us that γzj are nilpotent

matrices for the given metric. Similarly, for the internal component of (2.12) corresponding

to the compactified complex plane, we get(
∂z +

1

2
ωzzz̄γ

zz̄ − (−1)i

4
Hzijγ

ij

)
ηa = 0 , (3.7)

which by direct substitution of (C.3) and (B.3) and by choosing

γ12ηa = γ34ηa = (−1)a+1 i

v
ηa , (3.8)

the gravitino equations reduce to (
∂z +

1

4

∂zh

h

)
ηa = 0 , (3.9)
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with a similar equation for z̄. Both equations are solved by

ηa =

(
h̄(z̄)

h(z)

)1/4

ηa0 , (3.10)

for a constant chiral spinor ηa0 . For (2.13) we have then(
∂zφ−

(−1)a

2
Hzijγ

ij

)
γzηa + {z → z̄}γ z̄ηa = 0 . (3.11)

After substitution of (3.3), (3.5) and using (3.8) we get

∂̄z̄Ūγ
z̄ηa = 0 , (3.12)

which vanishes for the choice

γ z̄ηa = 0 . (3.13)

This condition implies that half of the components of the chiral fermion are annihilated,

and hence the solution preserves half of the original supersymmetries, this is N = 4 in four

dimensions. Notice that by (3.13) the two internal spinors are orthogonal. At this point,

we can notice that the complex conjugate brings an additional solution by choosing

γzηa = 0, γ12ηa = γ34ηa = (−1)a
i

v
ηa , (3.14)

and

ηa =

(
h(z)

h̄(z̄)

)1/4

ηa0 . (3.15)

This configuration corresponds to a SU(2) structure solution as the one shown in [1, 2] with

vanishing C0 and C2. The holomorphic three-form Ω and the Kähler form J are given by

Ω = h(z)v2dz ∧ (dy2 + idy1) ∧ (dy4 + idy3) ,

J = v
(
dy1 ∧ dy2 + dy3 ∧ dy4

)
+

i

2
|h(z)|2v2dz ∧ dz̄ . (3.16)

Since dJ 6= 0 and dΩ 6= 0 the internal six-dimensional space is a complex manifold with

vanishing torsion classes4 W1 = W2 = W4 = 0, corresponding to a non-Kähler warped

complex manifold.

This choice of Ω and J automatically defines the complex structure with holomorphic

coordinates, dw1 = dy2 + idy1 and dw2 = dy4 + idy3. Notice that the complex structure

for this case is a positive imaginary number. Notice also that the superpotential

W =

∫
G3 ∧ Ω = −i

∫
e−φH3 ∧ Ω, (3.17)

as well as the Kähler derivatives with respect to the dilaton and complex structure mod-

uli, vanish at the minimum implying that we actually have constructed a N = 4 SUSY

Minkowski vacuum.
4The globally defined J and Ω forms are decomposed in terms of the invariant j and Ω2 forms according

with its SU(2) structure. This choice determines uniquely the complex structure for a given metric [29, 30].
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3.1.1 Soft terms for H 6= 0 and F = 0

Given that half of the supersymmetry is broken in the above setup, it is possible to compute

the corresponding induced soft terms on the effective 4-dimensional theory derived from

D5-branes. The vanishing of the linear term (2.46) puts a restriction on the holomorphic

function U(z). Since the holomorphic function is only allowed to vary in the base it is

convenient to split the complex coordinates z in real and imaginary components as,

dz = dy5 + idy6 , (3.18)

for which (2.46) reads5

∂5v = 0 , (3.19)

implying that the saxionic components are only allowed to vary along y6. According

to (2.56) we find that

σab = 0 αω1ω2 = α∗ω̄1ω̄2
= −i

∂̄z̄Ū

2v
, (3.20)

where the mixing of αω1ω2 and αω̄1ω̄2 implies that the flux configuration is composed of

ISD and IASD fluxes in T 4 ×z S2. The vanishing soft terms are then given by

Azω1ω2 = M θ = µαβ = 0 , (3.21)

and

Bzz =
(∂zU)2 − v∂2

zU

2v2
,m2

zz̄ =
1

2v2
|∂zU |2 ,

Czω1
ω1

= Czω2
ω2

= −i
(π)1/2

23/2
∂̄z̄Ū ,M

aθ
g = −i

1

25/2v1/2
∂zU . (3.22)

It is convenient to express all soft terms as functions of the internal space volume. In

particular, since the function h(z) is absent in all the above expressions, the soft terms

only depend on the volume of the fiber in the Einstein frame defined as

V̂4 =

∫
T 4

dy4
√
gE4 . (3.23)

The soft terms are given by

Bzz = −1

2

∂2
zU

V̂4

+
1

2

(∂zU)2

V̂2
4

,m2
zz̄ =

1

2

|∂zU |2

V̂2
4

, (3.24)

and

Maθ
g = − i

25/2

∂zU

V̂1/2
4

. (3.25)

Thus at leading order the soft masses depends inversely on the volume of the compact

space, which is compatible with soft masses arising in the large volume scenario [31].

5We employ the definition of holomorphic derivative compatible with its complex structure, namely,

∂z = ∂y5 + τ∂y6 , with τ the complex structure in S2.
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Since both, (3, 0) and (0, 3) components of G3 are zero, this case corresponds to a

non-scale supersymmetric vacuum with zero cosmological constant.6

3.2 Solution 2: H = 0 and F 6= 0

Consider now the same metric (3.3) with a NS-NS potential C2 given by

C2 = c(z, z̄)(dy2 ∧ dy3 + dy1 ∧ dy4). (3.26)

The S-dual configuration is then given by the metric (2.10) with the parameters

gij = diag (1, 1, 1, 1) , e2A =
1

v
, e2D = v , (3.27)

with a RR field potential C2 and φ = 2A. This flux and metric configuration also leads

to N = 4 in four dimensions. However, the relative orientation of the internal spinors

changes, implying different solutions for the Killing equations. It is important to notice

that this solution, obtained by S-duality, corresponds to the trivial solution A = 0 corre-

sponding to the holomorphic function U1 shown in (2.31) which fulfils Einstein’s equations.

It seems that S-duality relates different solutions of Einstein’s equations. As in the previous

solutions, we also require a single holomorphic function U = e−2A + ic.

A direct substitution of (3.27) and (3.26) on the first Killing spinor equation (2.11)

leads to

∂Uγz
(
η1

+ + η2
+

)
+ ∂̄z̄Ūγ

z̄
(
η1

+ − η2
+

)
= 0 , (3.28)

which is solved by taking

η1
+ = −η2

+, γ z̄η1
+ = 0 , (3.29)

or

η1
+ = η2

+, γzη1
+ = 0 , (3.30)

for which we have used (B.3) and

γ14ηa = γ23ηa = (−1)aiηa . (3.31)

The second set of Killing spinor equations (2.12) decomposes on two equations correspond-

ing to T 4 and S2. For the toroidal contribution, the gravitino variation reduces to

2ωiizγ
iiz +

(
3Fijzγ

jz − Fjkzδji γ
kz
)
ηa + {z → z̄} = 0 , (3.32)

which vanishes by relabelling the dummy indices and by the nilpotency of the gamma

matrices (B.3). For the complex plane contribution, all contractions of the form γijz̄γz
vanish and thus the gravitino variation reduces to(

∂z +
1

2
ωzzz̄γ

zz̄

)
ηa +

(−1)i

8
eφ
(
F23zγ

23 + F14zγ
14
)
η̃a = 0. (3.33)

6From a phenomenological point of view, the absence of µ-terms may potentially lead to problems in

the CMSSM by generating the right electroweak scale (µ-problem). However, since only two coordinates

are allowed to vary, these results are compatible with universal masses for the squarks and sleptons with

vanishing gaugino mass.
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By substitution of (C.3) and (3.29) in (3.31) we get(
∂z +

1

4

∂zh

h
+

1

4

∂zU

v

)
ηa = 0 , (3.34)

with a similar equation for the complex conjugate coordinate z̄. The set of coupled differ-

ential equations are solved by

ηa =

(
h̄(z̄)

h(z)v

)1/4

ηa0 . (3.35)

From equation (2.13) we realize that for φ = 2A and H = 0, the dilatino variations

and (2.11) have the same form and are both satisfied fulfilled by (3.29). We notice that

this configuration is a special case of a SU(2) structure solution presented in [1] with

Ω = h(z)v1/2dz ∧ (dy4 + idy1) ∧ (dy3 + idy2) ,

J =
(
dy2 ∧ dy3 + dy1 ∧ dy4

)
+

i

2
|h(z)|2vdz ∧ dz̄ , (3.36)

and vanishing torsion clasesW1 =W2 =W3 =W4 = 0 corresponding to a Kähler manifold

with holomorphic coordinates dw1 = dy4 + idy1 and dw2 = dy3 + idy2 with a positive and

imaginary complex structure. As in the previous case, the superpotential and all Kähler

derivatives vanish at the minimum showing that we have constructed a N = 4 SUSY

Minkowski vacuum. This is confirmed by studying the generated soft terms.

3.2.1 Soft terms for H = 0 and F 6= 0

By direct substitution of (3.3) and (3.5) into (2.46) we realize that the linear term corre-

sponding to the warping factor v and the dilaton vanish for ∂5v = 0. The associated soft

terms σαβ and ααβ for the ISD and AISD components of G3 are then given by

σαβ = 0 , αw1w2 = α∗w1w2
=
∂zU

2
. (3.37)

The vanishing soft terms are

Azw1w2 = M θ = µαβ = 0 , (3.38)

while the scalar masses and the B term are given by

m2
zz̄ =

1

2v3
|∂zU |2 , Bzz =

(∂zU)2 + v(v − 1)∂2
zU

2v3
. (3.39)

Similarly, the C and MaI
g terms are

Czw1
w1

= Czw2
w2

=
(π)1/2

23/2
∂̄z̄Ū ,M

aθ
g =

1

25/2v1/2
∂zU . (3.40)

Notice that as in the previous case, the trilineal terms vanish due to the absence of (3, 0)-

forms. Also this pattern of soft terms is compatible with a non-scale supersymmetric

vacuum with vanishing cosmological constant.
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On the other hand, in the Einstein frame, the non-vanishing soft terms suppressed by

the internal volume are

Bzz =
1

2

∂2
zU

V̂4

− 1

2

∂2
zU

V̂2
4

+
1

2

(∂zU)2

V̂3
4

,m2
zz̄ =

1

2

|∂zU |2

V̂3
4

, (3.41)

and

Maθ
g =

1

25/2

∂zU

V̂1/2
4

. (3.42)

3.3 SUSY solution with H 6= 0 and F 6= 0

In this section we propose a non-trivial supersymmetric flux configuration by combining the

solutions showed in section 3.1 and 3.2. Specifically we propose an internal metric related

to the presence of RR and NS-NS potentials supported on 3-cycles such that F3 ∧H3 = 0

with a metric given by (2.10) with conformal factors

gij = diag (v2, v2, v2, v2) , e2A =
1

v1
, e2D = v1v

2
2 , (3.43)

and potential fluxes

C2 = c
(
dy2 ∧ dy3 + dy1 ∧ dy4

)
, B2 = b

(
dy1 ∧ dy2 + dy3 ∧ dy4

)
, eφ =

v2

v1
. (3.44)

Notice that these potentials are both self-dual (SD) in T 4 and correspond to a solution

of Einstein equations given by the family (2.36). For this case we require two holomor-

phic functions U1 and U2 given by the trivial solutions constructed above. Observe that

eq. (2.11) does not depend on the NS fluxes, and in consequence can be similarly reduced

as (3.28). Thus the choice

η1
+ = −η2

+, γ z̄η1 = 0 , (3.45)

or

η1
+ = η2

+, γzη1 = 0 , (3.46)

solves the first Killing equations (2.11). Hereafter we shall use condition (3.45) to solve the

rest of the Killing spinor equations but a similar result is obtained by considering the second

condition (3.46). These solutions establishes a N = 2 SUSY four-dimensional theory.

Hence, the toroidal internal component of (2.12) reduces to

2
(
ωijzγ

jz +Hijzγ
jz
)
ηa + eφ

(
Fijzγ

jz − Fjkzδji γ
kz
)
η̃a + {z → z̄} = 0 , (3.47)

which is satisfied by the nilpotency of γjz (see B.3). For m = {z, z̄}, the relevant eigenvalues

for the gamma matrices are

γklηa = (−1)i
i

v2
ηa , (3.48)

for any k 6= j. Using these eigenvalues and (3.45), the gravitino variation reduces to(
∂z +

1

4

∂zh

h
+

1

4

∂zU1

v1

)
ηa = 0 . (3.49)
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For arbitrary v1,v2 we have

ηa =

(
h̄(z̄)

h(z)v1

)1/4

ηa0 , (3.50)

which matches with (3.35). Since this background satisfies both KSE and Bianchi identities

is in consequence a solution of the equations of motion. For the second solution in (3.46),

the corresponding solution to gravitino equation is given by the complex conjugate of (3.50).

In this case the holomorphic 3-form and Kähler form are given by

Ω = h(z)v
1/2
1 v2

2dz ∧ (dy2 − idy1) ∧ (dy4 + idy3) ,

J = v2

(
dy1 ∧ dy2 + dy3 ∧ dy4

)
+

i

2
|h(z)|2v1v

2
2dz ∧ dz̄ . (3.51)

This corresponds to a manifold with vanishing torsion clases W1 = W2 = W4 = 0 and

holomorphic coordinates dw1 = dy2 − idy1 and dw2 = dy4 + idy3. The complex structure

is again purely imaginary. Since H3 ∧ F3 = 0 we also have a vanishing superpotential W
leading to a Minkowski N = 2 SUSY vacuum.

The existence of these solutions can be anticipated by comparison of (3.15) and (3.29).

On one hand, these conditions are compatible in the sense that both solutions are annihi-

lated for the same γ matrix. On the other hand the contributions of the NS and RR sectors

add linearly. However, by changing the relative sign of the two cycle supported by either

C2 or B2 these conditions change, and all internal components of the internal spinors are

annihilated breaking SUSY. The 4-cycle in T 4 the RR and NS-NS fluxes are supported

on, represent a linear combination compatible with SUSY preservation.7 Thus by keeping

either ASD or SD cycles for both sectors the solution of the equations of motion is still

supersymmetric. As we shall see in the next section, an independent linear combination of

these cycles will leads us to a non SUSY configuration.

3.3.1 Soft terms for H 6= 0 and F 6= 0

When both fluxes are turned on, the linear terms in the expansion (2.46) vanishes by im-

posing

∂5v1 = ∂5v2 = 0 . (3.52)

Thus the real part of the two holomorphic functions are restricted to vary on one direction

of the base. For this case, we realize that the symmetric and antisymmetric parts of (2.56)

are now,

σw̄1w̄1 = −σw̄2w̄2 = σ∗w1w1
= −σ∗w2w2

=
∂zU1

2
, (3.53)

(3.54)

σw̄1w̄2 = − i

2

v1

v2
∂zU2 , σw1w2 = − i

2

v1

v2
∂̄z̄U2 , (3.55)

7In the following we always refer to ASD and SD with respect to T 4. IASD or ISD are referred to

T 4 ×z S
2
∗.
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thus, the trilineal term is now absent and the gaugino mass is zero, this is

Azw1w2 = Ma = Maθ
g = 0 . (3.56)

For the scalar masses m2
ij and B-term, we have

m2
zz̄ =

1

2v3
1v

2
2

(
v2

2|∂zU1|2+v3
1|∂zU2|2−v2

1v2∂z∂̄z̄Re(Ū1U2)
)
, (3.57)

Bzz =
1

2v3
1v

2
2

(
v3

1(∂zU2)2+v2
2

[
(∂zU1)2+(v2

1−v1)∂2
zU1

]
−v2

1v2

[
∂zU1∂zU2+v1∂

2
zU2

])
, (3.58)

and the C and µ terms are

Czw1
w1

= −Czw2
w2

= −i
π1/2

23/2
∂̄z̄Ū2 , Czw1

w2
= Czw2

w1
=
π1/2

23/2

v2

v1
∂̄z̄Ū1 , (3.59)

µw1w1 = −µw2w2 = − 1

25/2

v
1/2
2

v
1/2
1

∂̄z̄Ū1 , µw1w2 = µw2w1 =
i

25/2

v
1/2
1

v
1/2
2

∂̄z̄Ū2 , (3.60)

which is compatible with a non-scale SUSY minima. Notice that the soft terms of the

previous cases are recovered by set either U1 or U2 to a constant. In the Einstein frame

the m2 and B terms are

m2
zz̄ = −∂z∂̄z̄Re(Ū1U2)

V̂4

+
v2

1|∂zU2|2

2V̂2
4

+
v3

2|∂zU1|2

2V̂3
4

,

Bzz = −∂zU1∂zU2 + v1∂
2
zU2 − v2∂

2
zU1

2V̂4

− v2
2∂

2
zU1

2V̂2
4

+
v2

1(∂zU2)2

2V̂2
4

+
v3

2(∂zU1)2

2V̂3
4

, (3.61)

and the C and µ terms

Czw1
w1

= −i
π1/2

23/2
∂̄z̄Ū2 , Czw1

w2
=
π1/2

23/2

v2
2

V̂4

∂̄z̄Ū1 ,

µw1w1 = − 1

25/2

v2∂̄z̄Ū1

V̂1/2
4

, µw1w2 =
i

25/2

v1∂̄z̄Ū2

V̂1/2
4

. (3.62)

From (3.61) we realize that at leading order on V̂4 the squarks and sleptons becomes

tachyonic with positive contributions at subleading order. In the other hand the absence

of trilinear terms as well of gaugino mass, is related to the absence of (3, 0) and (0, 3)-forms.

This result is compatible with a non-scale SUSY vacuum (vanishing vev’s of the auxiliary

fields for the axio-dilaton and Kähler moduli).

4 Non-SUSY case

By properly choosing the orientation of the two cycles the field potentials C2 or B2 are

supported on, we argue that SUSY shall be broken while still a solution of the equations

of motion. Let us consider the case of the metric (2.10) with conformal factors

gij = v2δij , e
2A =

1

v1
, e2D = v1v

2
2 , (4.1)
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and potential fluxes

C2 = c
(
dy2 ∧ dy3 − dy1 ∧ dy4

)
, B2 = b

(
dy1 ∧ dy2 + dy3 ∧ dy4

)
, eφ =

v2

v1
. (4.2)

Notice that the RR potential is ASD contrary to the corresponding potential in the previous

SUSY solution. This condition together with (3.45) implies that

/Fηa = 0 , (4.3)

thus by (2.11) we have that

∂zU1γ
zηa + ∂̄z̄U1γ

z̄ η̃a = 0 , (4.4)

which is satisfied by

γzηa+ = γ z̄ηa+ = 0 , (4.5)

implying that all internal spinors vanish and SUSY is broken. Some comments are in order:

eq. (4.3) implies that F3 is a primitive 3-form8 which forces H3 to be a primitive as well

by solving the KSE. This statement is translated to the condition that the KSE shall be

satisfied if both NS and RR fluxes are either SD or ASD.

Now let us prove that the above solution is indeed a solution of the equations of motion.

In absence of F1 and F5 fluxes, the respective equations of motion are trivially solved .

Einstein equation (in the Einstein frame) reads

GeMN = T φMN + T f
MN , (4.6)

where

GeMN = RMN −
1

2
gMNR ,

T φMN =
1

2

(
∂Mφ∂Nφ−

1

2
gMN (∂φ)2

)
,

and the flux contribution to the energy stress tensor is given by

T f
MN =

eφ

4

(
FMIJF

IJ
N −

1

6
gMNF

2

)
+
e−φ

4

(
HMIJH

IJ
N −

1

6
gMNH

2

)
.

The four-dimensional component of the Einstein tensor reads

Geµν =
1

23|h(z)|2(v1v2)4

(
|v2∂zU1 + v1∂zU2|2 + 2v2

2|∂U1|2 + 2v2
1|∂U2|2

)
ηµν , (4.7)

while the dilaton and flux contributions to the four-dimensional energy-stress tensor are

T φµν =
|v1∂zU2 + v2∂zU1|2

23|h(z)|2(v4
1v

4
2)

ηµν ,

T f
µν =

v2
2|∂U1|2 + v2

1|∂U2|2

22|h(z)|2(v4
1v

4
2)

ηµν , (4.8)

8The primitive condition implies that gnp̄Fmnp̄ = 0 and similarly for H3.
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showing that our configuration is an exact solution to four-dimensional Einstein equations.

For the internal components we see that the only non-zero components are

Gezz = (Gez̄z̄)
∗ = −(v2∂zU1 + v1∂zU2)2

23v2
1v

2
2

, (4.9)

which cancels out with the dilaton and flux contribution to the internal energy-stress tensor.

The dilaton equation of motion is

1
√
g
∂M
(√
ggMN∂Nφ

)
=

1

12

(
eφF 2 − e−φH2

)
, (4.10)

notice that the flux contribution only involves quadratic terms. Because of this, the change

from SD to ASD in the cycles supporting the RR and NS fluxes are still a solution of the

equations of motion but not of the KSE. A straightforward calculation shows us that the

flux contribution is

1

12

(
eφF 2 − e−φH2

)
=
v2

2∂z∂̄z̄|U1|2 + v2
1∂z∂̄z̄|U2|2

2|h(z)|2v7/2
1 v

7/2
2

, (4.11)

which exactly cancels out with the dilaton contribution.

4.1 Soft terms for the non-SUSY case

For the case of section 4, we have that α = 0 and σ has non-zero components. This can

be seen as the G3 decomposes as a sum of the terms coming from the NS and RR sector

given in sections 3.1 and 3.2 respectively. Explicitly,

σzz = −σ∗z̄z̄ =
∂U1

2
, σw1w2 = −i

v1

2v2
∂̄z̄Ū2 , σw̄1w̄2 = −i

v1

2v2
∂̄zŪ2 . (4.12)

For this case there the non-vanishing soft terms are,

MaI
g = 0 , (4.13)

while the trilineal term and gaugino mass are given by

Azw1w2 = − π1/2

21/2 · 3
v2

v1
∂zU1 , M I = − 1

25/2

v
1/2
2

v
1/2
1

∂zU1 . (4.14)

The scalar masses and B terms are given by (3.57). The µ and C terms are

Czw1
w1

= −Czw2
w2

= −i
π1/2

23/2
∂̄z̄Ū2 , Cw1w2

z = −π
1/2

23/2

v2

v1
∂zU1 , (4.15)

µzz = − 1

25/2

v
1/2
2

v
1/2
1

∂zU1 , µw1w2 = i
1

25/2

v
1/2
1

v
1/2
2

∂̄z̄Ū2 , (4.16)

For this case, we have non-zero (3, 0)-form, which leads us to SUSY breaking with non-zero

auxiliary field for the axio-dilaton and Kähler moduli. The trilinear term and gaugino mass

in the Einstein frame are rewritten as

Azw1w2 = − π1/2

21/2 · 3
v2

2

V̂4

∂zU1 , M θ = − 1

25/2

v2

V̂1/2
4

∂zU1 . (4.17)

The squarks/sleptons massses, µ and B terms have the same dependence on the internal

volume V̂ as in (3.61) and (3.62).
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4.2 Stability analysis

In this part we want to study stability of the metric (4.1). For that we shall consider a simple

but illustrative case in which we are going to take into account only spherical symmetric

perturbations of the warping factors on the four-dimensional space-time. This is

e2A → e2A + εδA(t, r) , (4.18)

e2D → e2D + εδD(t, r) ,

gii → gii + εδg(t, r) ,

φ→ φ+ εδφ(t, r)

where r is a radial coordinate in the four-dimensional space and ε is the constant pertur-

bative parameter. In the following we shall omit the radial and time dependence of the

variations. The linearized four-dimensional Einstein equations are solved by the relations

e−2D∇2δD− e−2A∇2δA + f1δA = 0 ,

1

gii
∇2δg− e−2A∇2δA + f2δA = 0 ,

∇2δφ+ 2e−2A∇2δA + f3δA = 0 , (4.19)

together with,

∂t,r

(
e−2DδD + e−2AδA +

2

gii
δg + 2δφ

)
= 0 ,

∂t

(
3e−2DδD +

1

gii
δg

)
= 0 ,

∂t

(
3e−2AδA + 2δφ+

1

gii
δg

)
= 0 , (4.20)

and the relations among the variations

f4e
−2AδA =

e−2D

16
δD , f5e

−2AδA =
1

4gii
δg , (4.21)

where f∗ (z, z̄), with ∗ = {1, 2, 3, 4} are functions on z and z̄.9 Combining (4.19) and (4.21),

we obtain

∇2δX + F∗δX = 0 , (4.22)

where δX = {A,D, g} and F∗ ≡ F∗(z, z̄). For δφ, we notice that,

3e−2AδA+ 2δφ+
1

gii
δg =M(r, z, z̄) ,

3e−2DδD +
1

gii
δg = N (r, z, z̄) , (4.23)

9The explicit form of f∗, although relevant for the following discussion, is omitted since it is a quite

intricate function of z and z̄.
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which together with (4.19), gives(
1+

2

3

1

16f4−1

)
∇2δφ+

2

3

f3e
2A

16f4−1
δφ+2

(
∇2M−∇2N
3(1−16f4)

)
− M−N

3(16f4−1)
f3e

2A = 0 . (4.24)

For M = N the above expression reduces to

∇2δφ+ F4δφ = 0 . (4.25)

The functions F∗ are given by

F∗e−2A =

(
f1

16f4 − 1
,

f1

16f4 − 1
,

f2

4f5 − 1
,

f3

16f4 − 1

)
. (4.26)

Notice that the functions F∗ parametrises the mass of the variations. In order to study

their stability we must show that all functions F∗ are positive, at least for some region on

the parameter space of S2.

4.2.1 An example

Since a generic numerical analysis is beyond the scope of this work, we select a very simple

case in which the holomorphic functions are specifically given by

U1(z) = log z , U2(z) = log z + z h(z) = zn , (4.27)

standing for the presence of branes at the singular point z = 0, around which fluxes B2 and

C2 get a monodromy. Notice that this example approximates the holomorphic functions

to leading order on zp = 0. With the purpose to find stability, we explore the region (z, z̄)

using the parametrization, z = reiθ around the origin shown in figure 1, where we find that

indeed, there exists a region for which all variations posses a positive squared mass.

Although this particular example is far from realistic, we can see that for some internal

parameters in S2, the φ-perturbations are stable.

5 Conclusions and final remarks

By considering a specific non-trivial flux configuration composed by only 3-form fluxes and

a real dilaton, we have studied conditions to solve four-dimensional Einstein’s equations

related to type IIB string compactification on a six-dimensional space given by the fibered

product T 4×z S2, were the two-dimensional sphere is punctured by the presence of 5- and

7-branes (charged under RR or NS-NS fields). We have found that such solutions exist by

demanding the presence of ‘meromorphic fluxes” on S2. By “meromorphic fluxes” we refer

to meromorphic functions which real part is given by non-trivial closed string potentials

(NS-NS or RR) and imaginary component given by also non-trivial warping factors of the

given background. By this simple request on the fluxes, we are able to prove also that

Bianchi identity and tadpole conditions are fulfilled.

Moreover we observe that by considering meromorphic fluxes we can circumvent some

standard results from a constant flux compactification. For instance, it is well known
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Figure 1. Mass for variations δA, δg and δφ. Blue regions indicate that all mass are positive,

while white regions are related to tachyonic variations.

that in order to obtain a Minkowski vacuum it is required either the presence of only 1-

form fluxes or — if one is considering 3-form fluxes — it is necessary the presence of an

orientifold 3-plane. Also, in such a case, it is understood that in the absence of 5-form

fluxes, the warping factor must be constant. In a meromorphic flux compactification (at

least on T 4×z S2) it is possible to obtain a Minkowski vacuum with only 3-form fluxes and

no orientifold 3-planes.

Contributions of fluxes and local sources to the trace of the energy-momentum tensor

in 4D Einstein’s equations vanishes due to the Global Residue Theorem, which states that

the sum of residues on a compact space, S2 in our case, vanishes for meromorphic functions.

Based on these facts, we constructed a family of solutions of Einstein’s equations and

found that they correspond to a family of solutions constructed by the use of U-dualities

in G-theory and by fulfilling the Killing equations of motion preserving half of the super-

symmetries in the effective model [1, 2]. Moreover, we observed that different solutions

connected by U-dualities correspond to different solutions of Einstein’s equations.

We then constructed supersymmetric solutions with different flux configurations for

which we only required two different meromorphic functions U . Also we have computed the

corresponding soft terms. It is important to notice that their behaviour is similar as those

computed in a large volume compactification. We also presented a non-supersymmetric

solution related to a compactification threaded by non-trivial NS-NS and RR 3-form fluxes.

We showed that, by assuming spherical symmetry, this configuration can be stable for some

regions of the moduli space of S2.

Notice that in order to construct the punctured two-dimensional sphere, we have made

use of the results shown in [13], where it is computed how branes curl up the complex

plane by a deficit angle. In our case, they are 5- and 7-branes (some of them sourcing
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the 3-form fluxes and the real dilaton), and it is possible that some of them have negative

charge and/or negative tension. Hence, although the presence of five or seven-dimensional

orientifold planes are not discarded, orientifold 3-planes are. It will be desirable to consider

more generic compactifications with fluxes depending on all 3 complex coordinates and look

for generic conditions on which it is possible to obtain de Sitter and Minkowski vacua.

String compactification is the key scenario to connect string theory with four-

dimensional physics. Although Calabi-Yau compactifications are exact vacuum solutions

it was shown that more generic scenarios were required to step close to realistic effective

models. Compactification with trivial fluxes has established a rich setup to explore the vast

possibilities given by string theory. However it may be time to go further. We believe that

compactification threaded by non-trivial fluxes, in particularly by meromorphic functions,

is the next step towards more realistic models.
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A Notation

We follow the following index notation:

{M,N,P, . . .} : label 10-dimensional space-time coordinates, from 0, · · · ,9.
{µ,ν, . . .} : label 4-dimensional space-time coordinates from 0, · · · ,3.
{m,n, . . .} : label 6 dimensional coordinates of the compact space T 4×S2 from 1, · · · ,6.
{i, j,k, . . .} : label coordinates of T 4 from 1, · · · ,4.

zp : singular points on S2

{a,b, . . .} : label spinorial indices in the compact space T 4×S2.

{α,β,γ, . . .} : indices denoting the number of scalars in the soft term lagrangians.

{θ, . . .} : label the number of spinors in the soft lagrangian terms.

{u,v,w, . . .} : complex coordinates on T 4.

{I,J,K, . . .} : label D-brane’s worldvolume coordinates. (A.1)

B Useful gamma identities

The gamma matrices are defined in curved coordinates as

{γm, γn} = 2gmn (B.1)
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Some useful gamma identities useful are

γmn =
1

2
[γm, γn] ,

γmno =
1

2
{γm, γno} ,

γmnop =
1

2
[γm, γnop] , (B.2)

we frequently use the eigenvalues of the gamma matrices with two indices acting on a chiral

spinor. These eigenvalues depends on the metric as

γmnη = (gmn − gmmgnn)1/2η . (B.3)

And the factorization of gamma matrices

γmnp = γnpγm m 6= n 6= p ,

γmnpq = −γnpqγm m 6= n 6= p 6= q ,

γmnpγq = γmnδpq + γpnδnq + γnpδmq − γmnpq , (B.4)

where we can lower and upper indices by contraction with gmn.

C Non-zero components of spin connection

For the covariant derivative we employ the definition

∇m = ∂m +
1

4
ωmabγ

ab , (C.1)

where as usual

ωabµ = 2eν[a∂[µe
b]
ν] − e

ν[aeb]σeµc∂νe
c
σ (C.2)

where the underliying variables are related with flat indices. As usual the metric and the

components of the vielbein are related by gmn = ηmnemme
n
n.

The non-zero spin-connection for the anzats given in (2.10) are

ωµµz =
eA−D∂̄A

|h|
, ωµµz̄ =

eA−D∂A

|h|
,

ωiiz =
e−D∂̄gii

2g
1/2
ii |h|

, ωiiz̄ =
e−D∂gii

2g
1/2
ii |h|

,

ωzzz̄ =
∂zh

2h
+ ∂zD , ωz̄zz̄ = − ∂̄zh̄

2h̄
− ∂̄zD . (C.3)

D Global residue theorem

For completeness we reproduce the prove of the Global Residue Theorem [21]. Consider

a meromorphic function ω(z) defined on a compact space with singularities denoted M.
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The singularities can in principle be essential unremovable or m-order poles. In any case,

according to Riemann’s theorem, we can write the function ω(z) as

ω(z) =
g(z)

f(z)
, (D.1)

where g(z) is a holomorphic function with no singularities, and f(z) tends to zero as z

approaches the singularities. The meromorphic function defines then a 1-form ω1 = ω(z)dz,

which is closed in the space

M∗ = M −
∑
p

Up, (D.2)

where Up is a vicinity of the singularity zp. It follows then

ω1 ∈ H1(M2/
∑
Up,Z). (D.3)

The Global Residue Theorem states that the total sum of residues of ω on M vanishes.

This is proven as follows:∑
p

Respω =
∑
p

∫
∂Up

ω1 =

∫
∂M∗

ω1 =

∫
M∗

dω1 = 0, (D.4)

where in the last term we have used Stoke’s theorem.

D.1 Bianchi identity

The Global Residue Theorem, tells us that holomorphic functions on compact spaces with

singularities integrate to zero over a closed non-contractible curve, or in other words, that

all residues related with those singularities sum up to zero. In our case this also implies

that Bianchi identities for H3 and F3 are globally fulfilled and thereof, total internal 5-

brane charge vanishes. This guarantees that Bianchi identities are fulfilled for F3 and H3

while cancelling tadpoles for D5 and NS5-branes.10

Here we want to show how fluxes H3 and F3 satisfy Bianchi identity in the compact

space S2 punctured by the presence of 5-branes. Since in the present work we are consid-

ering only 3-form fluxes from the RR and NS-NS potential given in (2.14), we have

F3 =
∑
ij

2Re(f1) ∧ dyi ∧ dyj , (D.5)

where the complex 1-form f1 is given by11

f1 = (∂Zcij)dz. (D.6)

In the complex plane, with no singularities, Bianchi identity for F3 is satisfied for cij(z, z̄)

being harmonic conjugate, or equivalently, as the imaginary part of a holomorphic function

U(z). However, once the complex plane has been compactified by addition of singular

10Cancelation of NS tadpoles is significative since their presence establishes an obstacle to a satisfactory

picture of supersymmetry breaking [32].
11Notice we have omitted the indices i, j in f1 just for simplicity.
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sources (branes sitting at points in S2) Bianchi identity for F3 is altered. Here, we want

to show that indeed, in a compact space,
∫
dF3 = 0 in spite of the presence of brane

singularities. Notice that this implies tadpole cancelation for 5-brane charged sources.

It follows from the Global Residue Theorem [21] that∮
∂Up

f1 =
1

2πi

∑
p

Res (∂zcij(zp)) = 0 , (D.7)

since ∫
Σ4

dF3 =

∫
S2
∗

(df1 + d̄f1)

∫
Σij

dyi ∧ dyj ,

=
∑
p

(∮
∂Up

f1 +

∮
∂Up

f̄1

)∫
Σij

dyi ∧ dyj ,

= 0, (D.8)

where in the last line we have used Stoke’s theorem with Σij being a 2-cycle in T 4. Hence,

although the local contribution of dF3 is different from zero nearby a singular 5-brane

location, the global contribution of all sources vanish. Bianchi identity for F3 integrated

over S2 implies tadpole cancelation for D5-branes wrapping 2-cycle in T 4 and extended in

the 4-dimensional space-time. A similar analysis holds for the NS-NS flux H3 related to

NS5-branes sitting a point in S2. Notice as well that having a non-constant dilaton in our

set up, implies the presence of 7-branes wrapping a 4-cycle in T 4 and extending as well

in the whole 4-dimensional space-time. Both sets of branes, five- and seven-branes, can

induce a D3-brane charge and interacting terms in the effective 4-dimensional action.

Now, in order to prove that integration on the internal space of T̂ l vanishes, we want to

fix the values of the residues on each singularity compatible with integer flux quantization.

Since the fluxes Hzij = ∂zbij are meromorphic functions on S2 we can write by Riemann

theorem that

∂zbij =
∑
n

αn,ij(z − zp)n +
∑
m

βm,ij(z − zp)−m, (D.9)

such that ∫
∂Up

∂zbijdz =
1

2πi
β1(zp), (D.10)

since the charge attributed to H3 comes from a NS5-brane, one can choose that

β1(zp) = 2πi(µ5 + iν5)k, µ5 ∈ Z/2, (D.11)

and then
∫
H3 ∈ Z. It follows from Bianchi identity of H3 that total NS5-brane charge

vanishes, this is ∑
p=1

β1,p = 0, (D.12)

and similarly for RR D5-brane charge.
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E Effective DBI theory

Dirac-Born-Infeld theory for a set of D5-branes [33] is

SD5
DBI = κ5

∫
d5σ e−φ

√
det(∗FIJ)detQij , (E.1)

where

∗ FIJ = FMNDIX
M DJX

N (E.2)

with I, J running over the brane’s worldvolume coordinates and FMN = GMN +BMN and

DIX
M = ∂IX

M + [AI , X
M ], where we are ignoring the presence of magnetic two-form

fields on the D5-brane’s world volume. It follows that

(∗F)IJ = FIJ + FImDJX
M + FmnDIX

m∂JX
n. (E.3)

By taking a D5-brane wrapping a two-cycle in T 4, we can decompose the scalar fields Xm

in a Fourier series and keep the zero modes for which

(∗F)IJ =

[
Fµν + Fmn∂µXm∂νX

n bim∂νX
m

0 Fij

]
(E.4)

At first order

det(QIJ) = 1− σ2

4
[XI , XJ ]2 + . . . (E.5)

Therefore, the effective theory can be expressed as

SD5
DBI =

κ5

κ3
SD3
DBI0

(
1− σ2

4
[XI , XJ ]2 + . . .

)∫
d2ξ
√
det(Fij) , (E.6)

where DBI0 correspond to the abelian D3-brane action. Thus, at first order, in our anzats

the DBI action decomposes into a D3 non-abelian part times a common factor. According

to our ansatz, the internal integral depends only on the complex coordinates (z, z̄) of S2
∗.

It follows that soft masses can be computed using the DBI action for D3-branes.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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