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on Mn defines a quantum state on the boundary, in the n-fold tensor product of the

torus Hilbert space. We focus on the case where Mn is the link-complement of some n-
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n-component link into sub-links. The formula involves the number of solutions to certain

Diophantine equations with coefficients related to the Gauss linking numbers (mod k)
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is maximally entangled, and hence analogous to a Bell pair, and that the Whitehead link,

which has zero Gauss linking, nevertheless has entanglement entropy. Finally, we show that

the Borromean rings have a “W-like” entanglement structure (i.e., tracing out one torus
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1 Introduction

An important open question in quantum mechanics and quantum information theory is to

understand the possible patterns of entanglement that can arise naturally in field theory.

The local structure of wavefunctions is typically determined largely by the locality of phys-

ical Hamiltonians because interactions create entanglement. However, entanglement is a

global property and very little is known about how it can be organized over long distances.

One way of thinking about this is to consider multiple disjoint regions that are sufficiently

separated so that locality by itself will not prescribe the structure of entanglement. A

challenge is that there is no general prescription for even classifying the patterns of en-

tanglement between multiple disjoint entities. For three qubits, up to local operations,

or more precisely up to SLOCC (Stochastic Local Operations and Classical Communica-

tion) transformations of the state, there are precisely two non-trivial classes of multipartite

entanglement [1] — the GHZ class, represented by the state (|111〉 + |000〉)/
√

2, has the

property that tracing over one qubit disentangles the state, while in the W class, repre-

sented by (|100〉+ |010〉+ |001〉)/
√

3, a partial trace still leaves an entangled state of two
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qubits. A similar analysis of entanglement classes is not known in general for n qubits, or in

the more physical case of LOCC equivalence, let alone for disjoint regions of a field theory.

Recently the AdS/CFT correspondence was proposed as a tool for studying multi-

partitite etanglement. The authors of [2, 3] examined the multi-boundary three-

dimensional wormhole solutions of [4–10] and found non-trivial entanglement, computed

through the holographic Ryu-Takayangi formula [11], between subsets of boundary compo-

nents. One interesting result was that although there were regions of parameter space where

the entanglement between boundaries was entirely multi-partite, it was never of the GHZ

type. In special limits it was also possible to analyze the structure of the CFT wavefunction

in terms of the OPE coefficients. However, it was difficult to carry out a computation of

entanglement entropies in the field theory at a generic point in the parameter space.

While the field theory calculation of multi-boundary entanglement entropies is difficult

in general, one simple case where this can be done is in a topological quantum field

theory [12–14] defined on a manifold Mn, with boundary Σn consisting of a union of n

disjoint components {σ1, σ2, · · ·σn}. The Euclidean path integral for this theory as a

functional of data on the boundary defines a wavefunction on Σn. This wavefunction is

defined on the tensor product of Hilbert spaces Hi associated with the different boundary

components. Because the theory is topological there will be no local dynamics, and

all of the entanglement arises from the topological properties of Mn. This allows us to

focus attention on global features of entanglement, and we can hope that geometric and

topological tools will come to our aid.

Here, we explore these ideas in the context of Chern-Simons gauge theories in three

dimensions (see [12, 15] and references there-in). Bi-partite entanglement of connected spa-

tial sections in such theories was studied in [16–18]. By contrast, we consider Chern-Simons

theory for group G at level k defined on 3-manifolds Mn with disconnected boundaries,

namely n linked tori. More precisely, we will choose Mn to be link complements (see defi-

nition below) of n-component links in S3; the wavefunctions on the tori in this case can be

explicitly written in terms of coloured link invariants. For G = U(1)k this leads to a general

formula for the entanglement entropy of any bipartition of the link into sub-links. Further,

the entropy vanishes if and only if the Gauss linking number vanishes (modulo k)between

the sub-links in the bipartition. It is also possible to construct states with non-zero tripar-

tite mutual information of both signs. For G = SU(2)k we explicitly calculate entanglement

entropies for a variety of 2- and 3-component links, and show that: (a) the Hopf link is the

analog of a maximally-entangled Bell pair, (b) while the U(1) entanglement is only sensitive

to the Gauss linking number, the non-Abelian entanglement also detects more subtle forms

of topology, and (c) GHZ-like states and W-like states are both realizable in terms of links

with different topologies. Overall, multi-boundary entanglement entropy in Chern-Simons

theory computes a framing-independent link invariant with physical motivation, and hence

gives a potentially powerful tool for studying knots and links. Additionally, this setup also

gives a calculable arena for the study of multi-partite entanglement.

Interestingly, at the classical level the three-dimensional theories of gravity studied in

the holographic approach to multi-partite entanglement [2, 3] can themselves be written

as Chern-Simons theories of the group SL(2, R) × SL(2, R). While it is not clear that
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3d quantum gravity is entirely described by Chern-Simons theory [19], it is intriguing to

speculate that we could use our Chern-Simons techniques to directly compute entanglement

in three dimensional gravity.

The rest of the paper is organized as follows: in section 2, we will construct the

multi-boundary states we are interested in, and review some concepts required for later

calculations. In section 3, we will consider Chern-Simons theory for G = U(1)k, and

compute the entanglement entropy for a bi-partition of a generic n-component link into

sub-links. In section 4, we will consider multi-boundary entanglement in G = SU(2)k
Chern-Simons. Here we will study several examples of two and three-component links and

try to extract general lessons from these examples. Finally, we end with a discussion of

open questions and future work in section 5.

2 Multi-boundary states in Chern-Simons theory

We consider Chern-Simons theory with gauge group G at level k. The action of the theory

on a 3-manifold M is given by

SCS [A] =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2.1)

where A = Aµdx
µ is a gauge field (or equivalently, a connection on a priniple G-bundle

over M). The equation of motion corresponding to the above action is

F = dA+A ∧A = 0. (2.2)

Since the equation of motion restricts the phase space to flat connections (modulo gauge

transformations), the only non-trivial, gauge invariant operators in the theory are Wilson

lines along non-contractible cycles in M :

WR(L) = TrR P ei
∮
L A, (2.3)

where R is a representation of G, L is an oriented, non-contractible cycle in M and the

symbol P stands for path-ordering along the cycle L. If M has a boundary Σ, then the

path-integral of the theory on M with Wilson line insertions, and boundary conditions

A|Σ = A(0) imposed on Σ,1 namely

Ψ(R1,L1),··· ,(Rn,Ln)[A
(0)] =

∫
A|Σ=A(0)

[DA]eiSCS [A]WR1(L1) · · ·WRn(Ln) (2.4)

is interpreted as the wavefunction of a state in the Hilbert space H(Σ;G, k) which Chern-

Simons theory associates to Σ. In this paper, we consider states in the n-fold tensor product

H⊗n, where H = H(T 2;G, k) is the Hilbert space of Chern-Simons theory for the group G

1When M has a boundary, then the action must be augmented by including certain boundary terms,

which correspond to picking a Lagrangian submanifold in phase space. We will not need to dwell on these

details in the present paper.
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M3

T 2

Figure 1. The spatial manifold Σn for n = 3 is the disjoint union of three tori. Mn is a 3-manifold

such that ∂Mn = Σn.

at level k on a torus. These states can be understood as being defined on n copies of T 2,

namely the spatial manifold Σn

Σn = qni=1T
2, (2.5)

where q denotes disjoint union (see figure 1). A natural way to construct states in a QFT

is by performing the Euclidean path integral of the theory on a 3-manifold Mn whose

boundary is ∂Mn = Σn. In a general field theory the state constructed in this way will

depend on the detailed geometry of Mn, for instance the choice of metric on Mn, but in our

situation only the topology of Mn matters. However, there are many topologically distinct

Euclidean 3-manifolds with the same boundary, and the path integrals on these manifolds

will construct different states on Σn. We will focus on a simple class of such 3-manifolds,

which we will now describe.

We start with a connected, closed 3-manifold (i.e., a connected, compact 3-manifold

without boundary) X. An n-component link in X is an embedding of n (non-intersecting)

circles in X. (Note that 1-component links are conventionally called knots.) We will

sometimes use Rolfsen notation to denote a link L as L = cnm, where c is the number

of crossings, n is the number of components in the link, and m is the chronological rank

at which the link is presented in the Rolfsen table [20] for a given c and n. We will

sometimes merely denote a generic n-component link as Ln, when we do not need to

choose a particular link. We will label the n circles which constitute the link as L1, . . . , Ln,

so Ln = L1 ∪ L2 ∪ · · · ∪ Ln. Now in order to construct the desired 3-manifold Mn, we

pick a link Ln in X and drill out a tubular neighbourhood L̃n of the link in S3. In other

words, we take Mn to be the complement of Ln in X, i.e., Mn = X − L̃n (see figure 2).

This is a standard construction; the 3-manifold Mn we have obtained starting from X and

Ln is called the link complement of Ln in X. Since Ln is an n-component link, its link

complement Mn is a manifold with precisely the desired boundary

∂Mn = qni=1T
2. (2.6)

We can therefore perform the path-integral of Chern-Simons theory on Mn, and obtain a

state on Σn. In fact, every topological 3-manifold Mn which has the disjoint union of n
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Figure 2. The link complement (the shaded region) of a 3-component link (bold lines) inside the

three-sphere. The white region indicates a tubular neighbourhood of the link which has been drilled

out of the 3-sphere.

tori as its boundary, is a link-complement X − Ln, for some closed 3-manifold X and an

n-component link Ln in X. This construction assigns a state |Ln, X〉 to every pair (X,Ln)

— we will sometimes refer to these states as link states. In this paper, we will focus on the

class of states constructed this way, but where we take X to be the 3-sphere S3.

To further understand the state
∣∣Ln, S3

〉
, or simply |Ln〉 for short, we need to know

some details about the Hilbert space of Chern-Simons theory on a torus T 2 [12]. Let us

picture the 2-torus as the boundary of a solid torus inside S3 (see figure 3). We pick two

simple cycles on the torus which generate its fundamental group and label them m and

`, with m being the meridian, i.e., contractible inside the solid torus. The choice of `,

called the longitude, is not unique. But let us make the canonical choice for `, namely the

one which is contractible in the complement of the torus inside S3; we will later return

to this point, which is related to framing. In order to construct a basis for the Hilbert

space H(T 2;G, k) we perform the Chern-Simons path integral on the solid torus with a

Wilson line in the representation Rj placed in the bulk of the solid torus running parallel

to the longitude cycle `, where the index j denotes an integrable representation of the

gauge group G at level k. This gives a state on T 2 which we call |j〉. The conjugate of

this state 〈j| can be thought of in terms of the path integral on the solid torus with a

Wilson line in the conjugate representation R∗j . By letting j run over all the integrable

representations [21] of G, we obtain a basis for the torus Hilbert space. Notably, the Hilbert

space H obtained in this way is finite dimensional. For example if we take G = SU(2)k,

the integrable representations are labelled by their spin j for j = 0, 1
2 , · · · , k2 , and so

dim(H
(
T 2; SU(2), k)

)
= k + 1. Similarly in G = U(1)k, the allowed representations are

labeled by integer-valued charges 0 ≤ q < k, and so dim
(
H(T 2; U(1), k)

)
= k. We also

note that the modular group SL(2,Z) of large diffeomorphisms of the torus, generated by

T : τ → τ + 1, S : τ → −1

τ
(2.7)

acts naturally on H(T 2;G, k). For example in the U(1)k theory, these operators take the

– 5 –
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X

(a) (b)

m

`

j

Figure 3. (a) The meridian and longitude cycles on a torus T 2. (b) The state |j〉 corresponds to

a Wilson line in the representation j placed in the bulk of the solid torus.

following simple form [18] in the basis we introduced above:2

Tq1,q2 = e2πihq1 δq1,q2 , Sq1,q2 =
1√
k
e

2πiq1q2
k (2.8)

where hq = q2/2k. Similarly, for SU(2)k we have

Tj1,j2 = e2πihj1 δj1,j2 , Sj1,j2 =

√
2

k + 2
sin

(
π(2j1 + 1)(2j2 + 1)

k + 2

)
(2.9)

where hj = j(j+1)
k+2 . It is not hard to check that these matrices satisfy the relations S2 = 1

and (ST )3 = 1.

Now let us write the state |Ln〉 ∈ H⊗n obtained by performing the path-integral of

Chern-Simons theory on the link complement of the link Ln in terms of the above basis

vectors:

|Ln〉 =
∑

j1,··· ,jn

CLn(j1, j2, · · · jn)|j1, j2, · · · , jn〉, |j1, j2, · · · , jn〉 ≡ |j1〉⊗|j2〉⊗|jn〉 (2.10)

where CLn(j1, · · · , jn) are complex coefficients, which we can write explicitly as

CLn(j1, j2, · · · jn) = 〈j1, j2, · · · jn|Ln〉 . (2.11)

Operationally, this corresponds to gluing in solid tori along the boundary of the link com-

plement S3−Ln, but with Wilson lines in the representation R∗ji placed in the bulk of the

ith torus. Thus, the coefficients CLn(j1, · · · jn) are precisely the coloured link invariants of

Chern-Simons theory with the representation R∗ji placed along the ith component of the link:

CLn(j1, · · · , jn) =
〈
WR∗j1

(L1) · · ·WR∗jn
(Ln)

〉
S3
, (2.12)

where we recall that Li are the individual circles which constitute the link, namely

Ln = L1 ∪ · · · ∪ Ln. Thus, the link state |Ln〉 encodes all the coloured link invariants

corresponding to the link Ln at level k.

2The T matrices generally also contain an additional overall phase proportional to the central charge;

we have omitted this phase above since it will not play any role in our discussion.
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Figure 4. Three unlinked knots.

We are interested in studying the entanglement structure of these states. To do so,

we will compute the entanglement entropy corresponding to partitioning the n-component

link into an m-component sub-link L1 ∪L2 ∪ · · · ∪Lm and its complement Lm+1 ∪ · · · ∪Ln

SEE; (L1,··· ,Lm|Lm+1,··· ,Ln) = −TrLm+1,··· ,Ln(ρ ln ρ), ρ =
1

〈Ln|Ln〉
TrL1,··· ,Lm |Ln〉〈Ln| ,

(2.13)

where by tracing over Li we mean tracing over the Hilbert space of the torus

boundary corresponding to the circle Li. We will interchangeably use the notation

(L1, · · · , Lm|Lm+1, · · · , Ln) or (m|n−m) to denote such bi-partitions; the former notation

makes explicit which components of the link will be traced over.

This computation can be carried out generally in the case of G = U(1)k; we do this

section 3. In the non-Abelian case (we take G = SU(2)k for simplicity), the general

computation is more challenging, and so we will proceed by considering various examples

of two- and three-component links in section 4. This will help us extract useful lessons

about the topological entanglement structure of these link states.

However, two important facts are immediately obvious:

• Take the link Ln to be n un-linked knots (see figure 4). In this case, it is well-known

that the coloured link-invariant in equation (2.12) factorizes:

Cunlink(j1, · · · , jn)

C0
=

n∏
i=1

CLi(ji)

C0
(2.14)

where C0 = S0
0 is the partition function of Chern-Simons theory on S3. It is then

clear that the state |Ln〉 is a product state

|Ln〉 ∝ |L1〉 ⊗ |L2〉 ⊗ · · · ⊗ |Ln〉 (2.15)

and hence the state |Ln〉 is completely unentangled. This is our first hint that the

quantum entanglement of link states captures aspects of the topology of the corre-

sponding links. Specifically, quantum entanglement of a bipartition of Ln into two

components implies topological linking between the two sub-links. For U(1)k Chern-

Simons theory we will also prove a converse in the next section (in terms of Gauss

linking), but we have not yet arrived at a proof for general non-Abelian theories.

• Above, we ignored the issue of framing [12] of the individual circles comprising the

link Ln. Intuitively, if we replace each of the circles in the link with a ribbon, then

the relative linking number between the two edges of the ribbon, or self-linking,

– 7 –
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is ambiguous. In general, to fix this ambiguity we must pick a framing for each

circle, and consequently the coloured link invariants are really defined for framed

links. However a different choice of framing of, let’s say, the ith circle Li by t units

is equivalent to performing a t-fold Dehn twist on the corresponding torus. This

corresponds to a local unitary transformation on the corresponding link state:

|Ln〉 →
(
1⊗ 1 · · · ⊗ T ti ⊗ 1 · · · ⊗ 1

)
|Ln〉 (2.16)

where Ti is a Dehn-twist on the ith torus. Local unitary transformations of this

type do not affect the entanglement entropies we are interested in. Hence, the

entanglement entropies are framing-independent link invariants.

3 The Abelian case: G = U(1)k

In this section we will compute the entanglement entropy for arbitrary bi-partitions of a

generic n-component link in U(1)k Chern-Simons theory. As warm-up, we will start with

two-component links, and then build up to the general case.

3.1 Two-component links

The main result we will use throughout this section is that if we have an n-component

link Ln with charges q1, q2, . . . , qn placed on the circles L1, L2, . . . , Ln respectively, then

the corresponding coloured link invariant in U(1)k Chern-Simons theory is given by [12]

CLn(q1, q2, . . . , qn) ≡ 〈W−q1(L1) · · ·W−qn(Ln)〉S3 = exp

2πi

k

∑
i<j

qiqj`ij

 (3.1)

where `ij is the Gauss linking number between the circles Li and Lj . When i = j, this is

interpreted as the self-linking or framing of Li. We will pick `ii = 0 by convention, which

is reflected in the above summation. However, as discussed in the previous section, the

entanglement entropies we compute are independent of the choice of `ii. We note from

equation (3.1) that the CLn remains unchanged under shifts by multiples of k: `ij → `ij +

Z k. We will therefore assume that the `ij are all chosen such that 0 ≤ `ij < k, i.e., `ij ∈ Zk.
For a two component link L2, equation (3.1) then implies that the wavefunction is

|L2〉 =
1

k

∑
q1,q2

e
2πiq1q2

k
`12 |q1〉 ⊗ |q2〉 (3.2)

where the sum runs over 0 to k− 1, i.e., Zk, and we have introduced a factor of k−1 above

to normalize the state. If we now wish to compute the entanglement entropy between 1

and 2, the first step is to trace out one of the links:

ρ1 = TrL2 |L2〉〈L2| = 1

k2

∑
q1,q′1,p

|q1〉〈q′1|e2πi
(q1−q

′
1)`12
k

p (3.3)

– 8 –
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The sum over p is easy to perform, and we obtain

1

k

k−1∑
p=0

e2πi
(q1−q

′
1)`12
k

p = ηq1,q′1(k, `12) ≡
{

1 · · · `12(q1 − q′1) = 0 (mod k)

0 · · · `12(q1 − q′1) 6= 0 (mod k)
(3.4)

The matrix ηq1,q′1(k, `12) can be written in the following tensor-product form

η(k, `12) =


1 1 · · · 1

1 1 · · · 1
...

...
...

1 1 · · · 1


(g,g)

⊗


1 0 · · · 0

0 1 · · · 0
...

...
...

0 0 · · · 1

(
k
g
, k
g

)
(3.5)

where g = gcd(k, `12) and the subscripts on the matrices indicate their dimensions. The

eigenvalues of η are therefore λ1 = 0 with degeneracy
(
k − k

gcd(k,`12)

)
, and λ2 = gcd(k, `12)

with degeneracy k
gcd(k,`12) . Computing the entanglement entropy from here, we find

SEE;L1|L2
(L2) = ln

(
k

gcd(k, `12)

)
(3.6)

Thus the entanglement entropy in this case captures information about the Gauss linking

number `12 filtered by the level of the Chern-Simons theory, namely gcd(k, `12). Note from

the above formula that the Hopf link (which has `12 = 1) is maximally entangled — this

is in fact generally true even in the non-Abelian case, as we will see later. Thus, the Hopf

link is analogous to a Bell pair in quantum information theory.

For later use, it is useful to derive the above expression from a slightly different point

of view, using Renyi entropies. The nth Renyi entropy is defined as

Sn(L2) =
1

1− n
ln TrL1ρ

n
1 (3.7)

where n is called the Renyi index and the subscript on the trace indicates that we are

tracing over the first Hilbert space. The entanglement entropy is obtained as the limit

n→ 1. From equation (3.3), we obtain

Sn =
1

1− n
ln

(
1

kn

∑
q1,··· ,qn

ηq1,q2(k, `12)ηq2,q3(k, `12) · · · ηqn,q1(k, `12)

)
(3.8)

where all the sums are over Zk. The summand is non-zero only provided we satisfy the

following conditions

`12(q1 − q2) = 0 (mod k)

`12(q2 − q3) = 0 (mod k)

... (3.9)

`12(qn − q1) = 0 (mod k),

– 9 –



J
H
E
P
0
4
(
2
0
1
7
)
0
6
1

in which case it is equal to one. So the sum in equation (3.8) is essentially the number of

solutions inside Zn
k to the above equations. Suppose we pick an integer 0 ≤ q1 < k. Then

q2 can take on gcd(k, `12) values such that the first of the above conditions is satisfied.

Similarly, q3 can take gcd(k, `12) values such that the second condition is satisfied, and

so on. The last condition of course is redundant once we satisfy the first n − 1 of them.

Finally, summing over q1, we obtain

Sn(L2) =
1

1− n
ln

(
gcd(k, `12)

k

)n−1

= ln

(
k

gcd(k, `12)

)
(3.10)

So we find that the Renyi entropies Sn are in fact independent of n. Thus the n→ 1 limit

is trivial, and is equal to the entanglement entropy SEE; L1|L2
computed previously. We

will find that the above Renyi trick easier to work with in the general case.

3.2 Three-component links

Let us now move on to the case of 3-component states. Again, we take a generic 3-

component link L3 and use the coloured link invariants to write down the corresponding

state

|L3〉 =
1

k3/2

∑
q1,q2,q3

e2πi( q1q2k `12+
q2q3
k
`23+

q3q1
k
`13)|q1〉 ⊗ |q2〉 ⊗ |q3〉 . (3.11)

Let us consider the entanglement entropy for the bi-partition (L1|L2, L3). We trace out

links 2 and 3 to obtain the reduced density matrix over the first factor:

ρ1 = TrL2,L3 |L3〉〈L3| = 1

k

∑
q,q′

|q〉〈q′| ηq,q′(k, `12)ηq,q′(k, `13) (3.12)

where η is the matrix in (3.5). Repeating the arguments in the two-component case, it is

easy to show that the non-zero eigenvalue of the reduced density matrix is λ = gcd(k,`12,`13)
k

with degeneracy k
gcd(k,`12,`13) . Thus, the entanglement entropy is given by

SEE;L1|L2,L3
(L3) = ln

(
k

gcd(k, `12, `13)

)
(3.13)

Let us now compute the Renyi entropies for the (L1|L2, L3) partition. From equa-

tions (3.7) and (3.12), we obtain

Sn(L3) =
1

1− n
ln

(
1

kn

∑
q1,··· ,qn

ηq1,q2(k, `12)ηq1,q2(k, `13) · · · ηqn,q1(k, `12)ηqn,q1(k, `13)

)
(3.14)

Following arguments similar to the two-component case, the sum only receives contributions

from terms which satisfy

`12(q1 − q2) = 0 (mod k), `13(q1 − q2) = 0 (mod k)

`12(q2 − q3) = 0 (mod k), `13(q2 − q3) = 0 (mod k)

... (3.15)

`12(qn − q1) = 0 (mod k), `13(qn − q1) = 0 (mod k)
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where we note that the number of constraints has doubled as compared to the two-

component case. The sum in equation (3.14) is then precisely equal to the number of

integer-valued solutions in Zn
k to the congruences (3.15). To find these solutions, once

again we pick some 0 ≤ q1 < k. Then the number of choices for q2 corresponds to the

number of solutions to the equations

`12 x = 0 (mod k), `13 x = 0 (mod k). (3.16)

which is gcd(k, `12, `13). Similarly, q3 can be picked in gcd(k, `12, `13) ways, and so on.

Finally, summing over q1, we obtain

Sn(L3) = ln

(
k

gcd(k, `12, `13)

)
(3.17)

which agrees with eq. (3.13). Once again, we note that the Renyi entropies are independent

of the Renyi index n.

It is useful to make the above counting procedure more systematic. Let us define

the linking matrix for the (L1|L2, L3) partition as (the general definition is given below,

eq. (3.26))

G =

(
`12

`13

)
(3.18)

We interpret G as a matrix over the field Zk, i.e., as a map G : Zk → Zk × Zk. Then, the

Renyi entropy, eq. (3.17), can be rewritten in terms of the linking matrix as

Sn = ln

(
k

|kerG|

)
(3.19)

where by |kerG| we mean the number of solutions in Zk to the congruences (3.16), including

the zero solution. In the present case, clearly |kerG| = gcd(k, `12, `13).

We can also compute other information theoretic quantities in this setup, for instance

the mutual information between, say, the links L1 and L2

I(L1, L2) = SEE(L1) + SEE(L2)− SEE(L1 ∪ L2) = ln

(
gcd(k, `13, `23)

gcd(k, `12, `13)gcd(k, `12, `23)
k

)
(3.20)

where SEE(L1) ≡ SEE;L1|L2,L3
, SEE(L2) ≡ SEE;L2|L1,L3

, and SEE(L1 ∪L2) ≡ SEE;L1,L2|L3
.

A standard result in quantum information theory is that the mutual information is a

positive semi-definite quantity. This positivity condition together with equation (3.13)

then translates to the identity

gcd(k, `12, `13)gcd(k, `12, `23)

gcd(k, `13, `23)
≤ k (3.21)

which is easily verified.
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3.3 n-component links

Let us now consider an n-component link Ln. We wish to compute the entanglement

entropy for a (m|n − m) bipartition between the m-component sublink consisting of the

circles (L1, L2, · · ·Lm) and the complement sub-link consisting of (Lm+1, · · · , Ln). We may

choose m ≤ n −m without loss of generality. Tracing over the links (Lm+1, · · · , Ln), we

obtain the reduced density matrix:

ρ1,2··· ,m=
1

km

∑
q1··· ,qm

∑
q′1,··· ,q′m

(
n∏

i=m+1

ηq1···qm;q′1···q′m(k, `1,i, `2,i · · · , `m,i)
)
eiφ|q1 · · · qm〉〈q′1, · · · q′m|

(3.22)

where

ηq1,··· ,qm;q′1,···q′m(k, `i1, · · · , `i,m) =
1

k

∑
p

e
2πi
k ((q1−q′1)`1,i+(q2−q′2)`2,i+ ···+(qm−q′m)`m,i)p , (3.23)

and

eiφ = e
2πi
k

∑m
i<j(qiqj−q′iq′j)`ij (3.24)

is an unimportant phase which can be eliminated by a unitary transformation on L1 ∪
L2 · · · ∪ Lm (such unitaries acting only on one side of the bi-partition do not affect the

entanglement entropy). Using precisely the same arguments as before, we can compute the

Renyi entropy and we find

Sn(Ln) = ln

(
km

|kerG|

)
, (3.25)

where G here is the appropriate linking matrix across the (m|n−m)-partition,

G =


`1,m+1 `2,m+1 · · · `m,m+1

`1,m+2 `2,m+2 · · · `m,m+2

...
...

...

`1,n `2,n · · · `m,n

 (3.26)

and we recall that `i,j is the Gauss linking number between Li and Lj , modulo k. As

before, the matrix G is interpreted as a map G : Zmk → Zn−mk , and so |kerG| is defined as

the number of solutions ~x ∈ Zmk (once again, including the zero solution) to the system of

congruences

G · ~x = 0 (mod k), (3.27)

which can equivalently be written in terms of Diophantine equations if we so prefer. Once

again the Renyi entropies are n-independent. So we finally arrive at the entanglement

entropy (i.e., the n → 1 limit of the Renyi entropy) for a generic n-component link bi-

partitioned into an m-component link and its complement:

SEE;m|n−m(Ln) = ln

(
km

|kerG|

)
. (3.28)
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When m = 1, it is easy to show that3

|kerG| = gcd(k, `12, `13 · · · , `1n), (3.29)

and consequently we have a completely explicit formula for the entanglement entropy. For

m > 1, we do not know of such an explicit formula for |kerG|. Nevertheless, as a demon-

stration of the usefulness of equation (3.28) we can compute an interesting information

theoretic quantity called the tri-partite mutual information :

I3(L1, L2, L3) = I(L1, L2) + I(L1, L3)− I(L1, L2 ∪ L3) (3.30)

in, for instance, a four-component simple chain, for which `12 = `23 = `34 = 1 while the

rest of the linking numbers vanish. A direct computation shows that in this case

I3 = −ln k < 0 (3.31)

thus indicating genuine tri-partite entanglement in this state. However, the mutual infor-

mation in these link states does not satisfy monogamy, namely it is possible to construct

explicit examples where I3 > 0. For instance, this is the case if we take `i,j = 1 for all

i 6= j, in which case one finds I3 = ln k. A more complete investigation of multi-partite

entanglement and the entropy cone in this system will be left to future work.

We are now in a position to answer the following question: what type of topology in a

link is detected by the Abelian entanglement entropy? It is clear from the definition (3.26),

that if the Gauss linking matrix G vanishes (i.e., G = 0 (mod k)), then |kerG| = km.

Consequently, the above expression for SEE;m|n−m implies that the entanglement entropy

vanishes. Conversely, if the entropy SEE;m|n−m vanishes, then this implies that |kerG| =
km. In other words, every point in Zmk lies in the kernel of G. By applying this condition to

special points like (1, 0, 0, · · · , 0), (0, 1, 0 · · · , 0) etc., we then learn that all the elements of

G are 0 (mod k). Hence, the linking matrix vanishes, modulo k. Therefore, we have proven

that the quantum entanglement entropy in U(1)k Chern-Simons theory for an (m|n −m)

bi-partition of a generic n-component link vanishes if and only if the corresponding linking

matrix G vanishes (modulo k). In this sense, the entanglement entropy in U(1)k Chern-

Simons theory detects Gauss linking modulo k.

4 Non-Abelian case: G = SU(2)k

In this section, we will compute the multi-boundary entanglement entropies in the case

of a non-Abelian group, SU(2)k. In contrast to the U(1)k case, the calculation of the

entropies cannot be carried out in complete generality. So our strategy will be to work out

the entropies for several interesting cases of two- and three-component links, and will then

discuss general lessons from these examples.

3We can use SEE(A) = SEE(Ac) to obtain |kerGT | = kn−2m|kerG|. For m = 1, this gives a very

simple proof that the number of solutions to the congruence a1x1 + · · · an−1xn−1 = 0 (mod k) is equal to

kn−2 gcd(k, a1, a2, · · · , an−1), a result found in standard number theory texts [22].
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Figure 5. The Hopf-link.

4.1 Two-component states

The simplest non-trivial two-component link is the Hopf link (figure 5), denoted by 22
1 in

Rolfsen notation. It is possible to evaluate the entanglement entropy in the corresponding

state |22
1〉 in several different ways. In fact, the coloured link invariants that define the

wavefunction, C22
1
(j1, j2), are given by the modular S-matrix elements [12]

C22
1
(j1, j2) = Sj1j2 , (4.1)

where recall that S implements the global diffeomorphism τ → − 1
τ on the torus, and for

SU(2)k is explicitly given by

Sj1j2 =

√
2

k + 2
sin

(
(2j1 + 1)(2j2 + 1)π

k + 2

)
(4.2)

The only property of S which is relevant presently is that it is unitary. Using this property,

it is a simple exercise to show that the normalized reduced density matrix after tracing out

the first link is given by

ρ2(22
1) =

1

〈22
1|22

1〉
TrL1 |22

1〉〈22
1| =

1

dim(H(T 2))

∑
j

|j〉〈j| (4.3)

Consequently, one finds the entanglement entropy

SEE(22
1) = ln dim(H(T 2)) = ln (k + 1) (4.4)

which implies that the Hopf link state is maximally entangled. In other words, the Hopf

link is analogous to a Bell pair in quantum information theory. We encountered this fact

in the U(1)k case as well. The same result can also be obtained using the replica trick. The

link complement corresponding to the Hopf link is T 2 × I, where I is an interval. Hence,

replicating the manifold makes a longer interval, and taking the trace turns the interval

into a circle. Thus, the Renyi entropy essentially amounts to computing the log of the

partition function over S1 × T 2; a direct computation then yields the above result.

Having studied the Hopf link, it is natural to ask what happens if we replace the

individual unknots inside the Hopf link with more complicated knots. In other words,

given two knots K1 and K2, what is the link state corresponding to “Hopf-linking” these

two knots together? (see for instance figure 6 which illustrates this link for the case of

K1 being a trefoil and K2 being an unknot). More precisely, we are asking for the link

– 14 –
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1 2

Figure 6. A link between a trefoil knot and an unknot, i.e., the connected sum of the trefoil knot

with the Hopf link.

state corresponding to the connected sum K1 + 22
1 + K2 (see [12] for further details).4 It

is a simple matter (again following [12]) to write down the state corresponding to this

connected sum:

|K1 + 22
1 +K2〉 =

∑
j1,j2

CK1(j1)

S0j1

Sj1j2
CK2(j2)

S0j2

|j1, j2〉 (4.5)

For simplicity, let us pick K2 to be the unknot. The normalized reduced density matrix

over the first component then takes the form

ρ1(K1 + 22
1 +K2) =

∑
j

pj |j〉〈j|, pj =
|CK1

(j)

S0j
|2∑

j′ |
CK1

(j′)

S0j′
|2

(4.6)

and therefore the entanglement entropy in this case is given by

SEE(K1 + 22
1 +K2) = −

∑
j

pj ln pj . (4.7)

Indeed, if we take K1 to be the unknot as well, then we recover the earlier result for the

Hopf link. But in general if K1 is some non-trivial knot, then the entropy of entanglement

is smaller. This demonstrates that the non-Abelian entanglement entropy detects knotting

of the individual components inside a link, something to which the Abelian theory was

insensitive.

To gain further practice, let us study some additional two-component links. We start

with 42
1 (see figure 7), which is similar to the Hopf link, but with two twists (or four

crossings). In fact, we can instead study the generalization of 42
1 to 2N crossings, which

we will here denote by 2N2
1 (although this is perhaps not the standard terminology). We

can explicitly evaluate this state. To do so, we picture two unlinked circles inside a solid

torus and then perform an N -fold Dehn-twist on the torus to link the circles together.

Finally, we perform a modular S transform and glue the result with an empty solid torus

(see figure 7 (b) for a pictorial explanation of how this is done and [12] for the details of

the general procedure of surgery). This gives

|2N2
1 〉 =

∑
j1,j2

∑
m

(
ST NS

)
0m

Sj1mSj2m
S0m

|j1, j2〉 (4.8)

4Such a connected sum is not unique in general, but does not apply in the case we’re studying.
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(a) (b)

T N

Figure 7. (a) The two component link 42
1. This is a special case of the family of links 2N2

1 with

N = 2. (b) One way to evaluate the corresponding link invariant for general N is to perform

surgery along the dashed blue circle. The twisting of the link is accomplished by using a Dehn

twist T N as indicated.

5 10 15 20
k

0.2

0.4

0.6

0.8

SEE

Figure 8. The entanglement entropy of 42
1 as a function of k. The blue line is an interpolating

curve.

where we recall that T acts by a phase in our basis T |m〉 = e2πihm |m〉. The entanglement

entropy is therefore given by

SEE = −
∑
m

pm ln pm, pm =

∣∣∣∣(ST NS)0m
S0m

∣∣∣∣2∑
n

∣∣∣ (ST NS)0n
S0n

∣∣∣2 (4.9)

Since the case N = 1 (i.e., the Hopf link) is maximally entangled, the entanglement entropy

for higher N will generically be smaller (or equal) to the entropy of the Hopf link (see

figure 8).5

Finally, the last two-component link we will study here is 52
1, also called the Whitehead

link (figure 9). The Gauss linking number vanishes in this case, but the link is neverthe-

5This might seem somewhat counter-intuitive; one might naively have expected that the N > 1 links are

even more entangled. However, it is easy to trace this decrease in entanglement entropy to an increase in

the relative entropy between the reduced density matrix for 2N2
1 and 22

1. Since the Hopf link was maximally

entangled, the only way for this relative entropy to increase is for the N > 1 links to be less entangled.
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Figure 9. The Whitehead link.

5 10 15 20
k

0.5

1.0

1.5

SEE

Figure 10. The entanglement entropy for the Whitehead link as a function of k. The blue line is

an interpolating curve.

less topologically non-trivial. The coloured link invariant for the Whitehead link can be

computed using a remarkable formula due to K. Habiro [23–25]:

C52
1
(j1, j2) =

min(j1,j2)∑
i=0

q−
i(i+3)

4 (q1/2 − q−1/2)3i [2j1 + i+ 1]! [2j2 + i+ 1]! [i]!

[2j1 − i]! [2j2 − i]! [2i+ 1]!
(4.10)

where

[x] =
qx/2 − q−x/2
q1/2 − q−1/2

, [x]! = [x][x− 1] · · · [1], q = e
2πi
k+2 . (4.11)

The result for the entanglement entropy is shown in figure 10. The fact that the Whitehead

link has non-trivial entanglement entropy again confirms that the non-Abelian entropy is

sensitive not merely to Gauss linking, but to more intricate forms of topological entangle-

ment.

There is also a second way to compute the coloured link invariant for the Whitehead

link using monodromy properties of conformal blocks of the chiral SU(2)k WZW model.

This method has been explained in detail in [26–28] and will be reviewed in appendix A.
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1
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Figure 11. A three component link which is the connected sum of two Hopf links.

We merely quote the result here:

C52
1
(j1, j2) = [2j1 + 1]2[2j2 + 1]

×
∑

m,n,p

λ−1
p1,−(j1, j2)λp2,+(j1, j2)λ−1

n1,+(j1, j2)λ−1
m1,−(j1, j2)λm2,+(j1, j2)

×a(0,p)

j1 j1j2 j2
j1 j1

 a(n,p)

j1 j2j1 j1
j2 j1

 a(n,m)

j1 j2j1 j1
j2 j1

 a(0,m)

j1 j1j2 j2
j1 j1

 . (4.12)

where the a(n,p)’s are duality transformations acting on 6-point conformal blocks on S2,

and the λ’s are phases which these blocks pick up under the action of braid generators.

In appendix A all the quantities appearing in equation (4.12) are explained in detail.

The relevant point here is that there exists an algorithmic way to compute coloured link

invariants using conformal blocks for the Whitehead link, and indeed more generally for

arbitrary links. We have also computed the entanglement entropy for the Whitehead link

using this second approach for small values of k, and we find precise agreement with the

results obtained from the Habiro formula.

4.2 Three-component states

We now consider a few examples of three-component links and discuss their entanglement

structure. Let us begin by considering the link in figure 11. This link is a connected sum of

two Hopf links. Consequently, we can evaluate the link invariant explicitly following [12],

and we find that the corresponding link state is given by

|22
1 + 22

1〉 =
∑

j1,j2,j3,m

Sj2mNmj1j3 |j1, j2, j3〉 =
∑

j1,j2,j3

Sj1j2Sj3j2
S0j2

|j1, j2, j3〉 (4.13)

where Nijm is the fusion coefficient, namely the dimension of the Hilbert space on S2 with

Wilson lines in the representations i, j,m piercing through, or equivalently the number of

times the representation m appears in the product of the representations i and k.6 We

6Another equivalent way to specify the fusion coefficients is to specify the fusion algebra, which for

SU(2)k is given by:

j1 ⊗ j2 = |j1 − j2|, |j1 − j2|+ 1, · · ·min (j1 + j2, k − j1 − j2) .
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Figure 12. The entanglement entropy SEE;L2|L1,L3
for the connected sum of two Hopf links as a

function of k.

have also used the Verlinde formula [29]

Nikm =
∑
j

SijSkjSmj
S0j

. (4.14)

So we can compute the entanglement entropies for this state explicitly,7 and we find (fig-

ure 12)

SEE;(L2|L1,L3)(2
2
1 + 22

1) = SEE;(L1|L2,L3)(2
2
1 + 22

1) = −
∑
i

pi ln pi, pi =
d−2
i∑
j d
−2
j

(4.15)

where dj = [2j + 1] =
S0j

S00
is the quantum dimension of the representation j. Interestingly,

the entropy is independent of which link we trace out. Furthermore, tracing out any of the

links leaves us with a separable reduced density matrix on the other two links, as can be

checked explicitly. In this sense, the above link state has “GHZ-like” entanglement. These

properties might sound puzzling at first. Indeed, the above discussion makes it clear that

the entanglement entropy (and in fact the entanglement spectrum) in this case contains

fairly coarse information, and is insufficient to distinguish between the topological linking

between for instance the subcomponents 1 and 2 or 1 and 3. Of course, the quantum

state has much more fine-grained information which can be potentially extracted by using

other probes. For instance, here is one simple-minded way of doing this — let us define

the projector

P (Lα) = |0〉〈0|Lα (4.16)

which projects the state on Lα to the spin-0 state |0〉. We can use P (Lα) to further

probe the entanglement structure of the state |22
1 + 22

1〉. Acting on various factors of the

state (4.13) with the projector, we get

P (L1)|22
1 + 22

1〉 =
∑
j1,j2

Sj1j2 |0〉 ⊗ |j1, j2〉 (4.17)

P (L2)|22
1 + 22

1〉 =
∑
j1,j1

Sj10Sj20

S00
|j1〉 ⊗ |0〉 ⊗ |j2〉 (4.18)

7This can be done by changing bases on L1 and L3 to |ĵ〉 =
∑
j′ Sjj′ |j

′〉.
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Note that the latter state is simply a product state. This is easy to understand from the

topological structure of the link — the projector P (L2) essentially erases the second link

(that is, a Wilson loop in the spin-0 state is trivial), due to which the link in figure 11

entirely falls apart into an unlink. So

SEE,L1|L3
(P (L2)|22

1 + 22
1〉) = 0 (4.19)

where we are computing the entanglement entropy of the (pure) state on the links left

untouched by the projector. On the other hand, projecting on L1 erases this subcompo-

nent, but the state on the other two links is still non-trivially entangled, mirroring the

topological linking in figure 11. Indeed, in this case, we find

SEE,L2|L3
(P (L1)|22

1 + 22
1〉) = ln(k + 1) (4.20)

So the above projected entanglement entropies give additional information theoretic

measures to probe topological entanglement of links. However, we should emphasize here

that we have chosen to project in a particular basis which is natural to the problem; the

corresponding entropies are therefore basis-dependent quantities.

A basis independent entropic measure that probes how multicomponent links are knot-

ted is the relative entropy of the state after being reduced on different links. Recall that

for two states ρ and σ, the relative entropy is defined by

S
(
ρ
∣∣∣∣σ) = Tr (ρ ln ρ)− Tr (ρ lnσ) (4.21)

For a three component state ρ, computing S
(
ρL1

∣∣∣∣ρL2

)
gives a basis independent measure

of the distinguishability of ρ reduced on link L1 (i.e. where we trace out L2 and L3)

against ρ reduced on L2 (i.e. where we trace out L1 and L3). For instance, considering

the chain state (connected sum of Hopf links) |22
1 + 22

1〉, the entanglement spectrum of

ρL1(22
1 + 22

1) is the same as ρL2 ; however the bases that diagonalize these matrices are

different. Therefore we expect the relative entropy between these two reduced states to

be nonzero and indeed we find8

S
(
ρL1(22

1 + 22
1)
∣∣∣∣ρL2(22

1 + 22
1)
)

=
∑
i

pi

ln pi −
∑
j

∣∣Sij∣∣2ln pj

 (4.22)

with pj being given by (4.15). While the projected entropy has the interpretation of

erasing a link, it is not clear that the relative entropy between reduced states has a

nice pictorial interpretation. However, we see that it is a useful entropic measure of the

distinguishability of individual components within a given link.

Let us now consider a slightly more complicated three-component link called 63
3, which

is shown in figure 13. This differs from the connected sum state we considered previously

by a Dehn-twist on a torus surrounding the links 1 and 3. So we can write this state

8This calculation, along with other various relative entropies can be found in appendix B.
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Figure 13. The three component link 63
3.

explicitly as well:

|63
3〉 =

∑
j1,j2,j3,m

e2πi(hm−hj1−hj3 )Smj2Nmj1j3 |j1, j2, j3〉 (4.23)

=
∑

j1,j2,j3

∑
m,n

e2πi(hm−hj1−hj3 )Smj2Sj1nSj3nSmn
S0n

|j1, j2, j3〉

where we have used the fact that the Dehn twist acts by a phase in our basis T |m〉 =

e2πihm |m〉.9 We can simplify the above expressions by using the property (ST )3 = 1 (see

section 2), which leads us to

|63
3〉 =

∑
j1,j2,j3

∑
n

e−2πi(hn+hj1+hj2+hj3 )Sj1nSj2nSj3n
S0n

|j1, j2, j3〉. (4.24)

Interestingly, the entanglement entropies corresponding to this state are precisely equal to

the entanglement entropies for the chain of Hopf links 22
1 + 22

1:

SEE;L2|L1,L3
(63

3) = SEE;L1|L2,L3
(63

3) = SEE;L3|L1,L2
(63

3) = −
∑
i

pi ln pi, pi =
d−2
i∑
j d
−2
j

(4.25)

Additionally, tracing out any of the links in this state once again leads to a separable

reduced density matrix on the other two links. This once again implies that this state, like

22
1 + 22

1 has “GHZ-like” entanglement (by which we mean that the reduced density matrix

obtained by tracing out one of the tori is separable). However, we can distinguish it from

the chain of Hopf links state by looking at the projected entropies, namely the entropies

after the action of the projector P . Indeed, it is clear from equation (4.24) that all the

projected entropies for 63
3 are equal and are given by

SEE,L2|L3
(P (L1)|63

3〉) = SEE,L1|L3
(P (L2)|63

3〉) = SEE,L1|L2
(P (L3)|63

3〉) = ln (k+1). (4.26)

Notably, the projected entropies for 63
3 are very different from the projected entropies

for 22
1 + 22

1, and indeed mirror the topological linking structure of the respective links.

9We have also corrected for a change in framing that results from the action of T , although this is not

strictly required for our purposes.
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Figure 15. The entanglement entropy for the Borromean rings as a function of k.

Similarly, a short calculation of the relative entropy between the reduced 63
3 state and the

reduced 22
1 + 22

1 state distinguishes these links. For instance, reducing each link on its

second component (i.e. tracing out L1 and L3), we have

S
(
ρL2(63

3)
∣∣∣∣ρL2(22

1 + 22
1)
)

=
∑
i

pi

ln pi −
∑
j

∣∣Sij∣∣2ln pj

 . (4.27)

Finally, we compute the entanglement entropy for the Borromean rings 63
2 (see fig-

ure 14). In this case, the coloured link invariants can once again be computed by using

Habiro’s formula [23, 24],10 which in this case reads:

C63
2
(j1, j2, j3)=

min(j1,j2,j3)∑
i=0

(−1)i(q1/2 − q−1/2)4i [2j1 + i+ 1]! [2j2 + i+ 1]! [2j3 + i+ 1]! ([i]!)2

[2j1 − i]! [2j2 − i]! [2j3 − i]! ([2i+ 1]!)2

(4.28)

in the notation introduced in equation (4.11). Using this formula, it is possible to com-

pute the entanglement entropies for this link as a function of k, and the result is shown

in figure 15. Once again, we find that the entropy is non-vanishing in this case. The Bor-

romean rings have trivial Gauss linking between any two circles. Further, they have the

10This formula can be checked explicitly (at least for small values of k) using the monodromy of conformal

blocks method which is discussed in appendix A. We find precise agreement in the cases we have checked.
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Figure 16. The entanglement negativity between links L1 and L2 upon tracing out L3 for the

Borromean rings as a function of k.

special property that if we erase any circle from the link, the remaining two circles become

unlinked; such links are called Brunnian links. This latter property can be cast in terms

of the projected entropies as the statement that

SEE,L2|L3
(P (L1)|63

2〉) = SEE,L1|L3
(P (L2)|63

2〉) = SEE,L1|L2
(P (L3)|63

2〉) = 0. (4.29)

Finally, the reduced density matrix for the Borromean rings upon tracing out one of

the links (say L3) is not separable. The easiest way to see this in the present case is to

compute the entanglement negativity [30, 31] (see also [32]), which is defined as follows.

For a given (possibly mixed) density matrix ρ on a bi-partite system (in the present case

on L1 ∪ L2), let us start by defining the partial transpose ρΓ:

〈j1, j2| ρΓ |j̃1, j̃2〉 = 〈j1, j̃2| ρ |j̃1, j2〉. (4.30)

Then, the number of negative eigenvalues of ρΓ is known to be a good measure of quantum

entanglement. A good quantitative way to capture this is the entanglement negativity,

which is defined as11

N =
||ρΓ|| − 1

2
. (4.31)

More importantly for us, a non-zero value of N (i.e., N > 0) necessarily implies that the

reduced density matrix is not separable. The negativity for the reduced density matrix on

L1 ∪L2 for the Borromean rings is shown in figure 16. We find that N > 0 for k > 1, thus

showing that the Borromean rings have a more robust, “W-like” entanglement structure

(by which we mean that the reduced density matrix obtained by tracing out one of the tori

is not separable).

5 Discussion

To conclude, we have studied multi-boundary entanglement in Chern-Simons theory for

states defined on n copies of a torus T 2. We have focussed on the specific class of states

11The trace norm is defined as ||O|| = Tr
(√

O†O
)

.
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prepared by performing the path-integral of Chern-Simons theory on link complements of

n-component links in S3. For U(1)k Chern-Simons theory, we gave a general formula for

the entanglement entropy of a generic bi-partition of the link into two sub-links. This

formula involves the number of solutions of certain congruences (or equivalently Diophan-

tine equations) with coefficients closely related to the Gauss-linking numbers between the

two sub-links, and as such relates simple but interesting concepts from quantum informa-

tion theory, knot theory and number theory. In the non-Abelian SU(2)k case, we studied

the entanglement structure of several two- and three-component links. In particular, we

showed that the Hopf link is maximally entangled and thus analogous to a Bell-pair from

quantum information theory. We found examples of three component links — such as 63
3

— with “GHZ-like” entanglement (namely that they have non-trivial, but not necessarily

maximal12 entanglement entropies under bi-partitions, but they reduce to separable states

upon tracing out one of the links). Finally, we showed that the Borromean rings have a more

robust “W-like” entanglement structure, namely that they have non-trivial (again, not nec-

essarily maximal) entanglement under bi-partitions, and in addition the reduced density

matrix upon tracing out one of the links is not separable. We end with some open questions.

Generally speaking, a main message of this paper is that quantum information theoretic

ideas applied to multi-boundary states in Chern-Simons theory can provide interesting, and

potentially powerful tools in the study of knot theory. In this direction, we studied only

simple quantities such as entanglement entropies, Renyi entropies, etc., which turn out

to be sums over quantities involving the coloured link invariants. Said another way, the

entanglement entropies extract certain coarse-grained framing independent information

from the coloured link invariants. In the U(1)k theory, we showed that these entropies are

powerful enough to detect Gauss linking (mod k), namely that the entanglement entropy

for a bi-partition vanishes if and only if the Gauss linking matrix between the two sub-links

vanishes (mod k). In the non-Abelian case, the corresponding statement remains unclear

— it is clear that quantum entanglement implies topological linking, but the converse

remains to be shown. In other words, does there exist a link where the coloured link

invariants all factorize along a bi-partition, despite non-trivial topological linking between

the corresponding sublinks? This is of course also related to a famous question — do any

coloured link invariants detect the unlink? In this context, there are known examples of

non-trivial links which the Jones polynomial does not distinguish from the unlink [33]. It

will be interesting to compute the entanglement entropies in these examples. Additionally,

it will be of interest to generalize these results to other gauge groups, such as SU(N).

The discussion above mostly focussed on using quantum information theory to study

links. In the opposite direction, we can ask whether knot theory can shed light on unsolved

problems in quantum information theory. It is an old idea that quantum entanglement

might be interpreted in terms of topological entanglement in links (see for instance [34–37]

and references therein). We have argued in this paper that multi-boundary states in Chern-

Simons theory provide the right framework for realizing this idea. It would be interesting to

study whether this connection between quantum entanglement and topological linking can

12Although note that in U(1)k, the 63
3 link additionally also has maximal entanglement under bi-partitions.

– 24 –



J
H
E
P
0
4
(
2
0
1
7
)
0
6
1

be used effectively in better understanding multi-partite entanglement structures. A first

exercise in this direction would be to characterize the entropy cone for multi-boundary

states, perhaps in the simpler set-up of U(1)k Chern Simons theory. It would also be

very useful to study the entanglement structure of four and higher component links in the

non-Abelian case.

Finally, it would be interesting to study multi-boundary entanglement in SL(2,C)

Chern-Simons theory, which is closely related with quantum gravity in three dimensions.

One might expect the multi-boundary entanglement entropy in this context to admit a

geometric description, beyond topology. In fact, it is known that many links (and knots)

admit a geodesically complete hyperbolic metric on their link-complements — such links

are called hyperbolic links. For such links, it is conjectured that the logarithm of the

reduced SU(2) coloured link invariant with each component carrying the N dimensional

representation, evaluated at q = e2πi/N , asymptotes in the N →∞ limit to the volume of

the hyperbolic metric, a statement which is called the volume conjecture [38–40]. Along

similar lines, it would be interesting to explore whether the entropies we have defined

and computed in this paper also admit a geometric description in terms of the hyperbolic

metric on the link complement. Indeed, it would not be unreasonable to hope that the

entropy corresponds to the area of some minimal surface (or a horizon in the Lorentzian

continuation) in the k →∞ limit. Of course, this remark is motivated by the Bekenstein-

Hawking formula for black-hole entropy, and the Ryu-Takayanagi formula for entanglement

entropy in the AdS/CFT correspondence.

Note added. After this work was completed, we were made aware of the recent work

of Salton, Swingle and Walter [41], which has some overlap with our work. These authors

investigate how different states can be prepared on a union of tori in Chern-Simons theory

by considering different 3-manifolds with the same boundary. Their main result is that the

states constructed this way in U(1)k Chern-Simons theory can be interpreted as stabilizer

states; this is consistent with the fact that the Abelian Renyi entropies computed in this

paper are all equal. They also show that any state in SO(3) Chern-Simons theory can be

approximated arbitrarily well through a Euclidean path integral.
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Figure 17. Two different basis for 6-point conformal blocks.

A Link invariants from monodromies of conformal blocks

In this appendix, we review the calculation of coloured link invariants from the monodromy

properties of conformal blocks of the SU(2)k chiral WZW model. We will only review

here the recipe for these computations, following [26–28] (see [42] for requisite background

material); we refer the reader to these papers for further details. Since these techniques are

required in this paper for the two special cases of the Whitehead link and the Borromean

rings, we will present our discussion in the context of these examples, but the techniques

straightforwardly generalize to other links.

A.1 Whitehead link

Our basic ingredients in constructing link invariants will be S2 conformal blocks of chiral

vertex operators in SU(2)k WZW theory. For the case of the Whitehead link (and also

Borromean rings), we need the six-point blocks φp and φ′q shown in figure 17 below. The

two different fusion channels correspond to two different choices of a basis for the Hilbert

space of Chern-Simons theory with six Wilson lines piercing through the 2-sphere. In fact,

both φp and φ′q are orthonormal bases for the space of six-point conformal blocks on S2

(see figure 17), and as such are related by a duality transformation a(p,q):

|φp(j1, j2, · · · , j6)〉 =
∑
q

a(p,q)

j1 j2j3 j4
j5 j6

 |φ′q(j1, j2, · · · , j6)〉 (A.1)

The a(p,q) can also be written in terms of a sequence of four-point duality transforma-

tions:

a(p,q)

j1 j2j3 j4
j5 j5

 =
∑
t

at,p1

(
p0 j3
j4 p2

)
ap0,q1

(
j1 j2
j3 t

)
ap2,q2

(
t j4
j5 j6

)
at,q0

(
j1 q1

q2 j6

)
(A.2)
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Figure 18. A plait representation of the Whitehead link 52
1.

where aj,l are the fusion matrices for four-point block and are given explicitly by:

aj,l

(
j1 j2
j3 j4

)
=(−1)j1+j2−j3−j4−2j

√
[2j+1][2l+1]∆(j1, j2, j)∆(j3, j4, j)∆(j1, j4, l)∆(j2, j3, l)

×
∑
m≥0

(−1)m[m+ 1]!
{

[m− j1 − j2 − j]![m− j3 − j4 − j]!

×[m− j1 − j4 − l]![m− j2 − j3 − l]![j1 + j2 + j3 + j4 −m]!

×[j1 + j3 + j + l −m]![j2 + j4 + j + l −m]!
}−1

(A.3)

where

∆(a, b, c) =

√
[−a+ b+ c]![−b+ c+ a]![−c+ a+ b]!

[a+ b+ c+ 1]!
(A.4)

and we have used the notation

[x] =
qx/2 − q−x/2
q1/2 − q−1/2

, q = e
2πi
k+2 (A.5)

[x]! = [x][x− 1][x− 2] · · · [1], [0]! = 1 (A.6)

Now coming to the Whitehead link, a plait representation of the link is shown in

figure 18. In order to evaluate this link invariant, we imagine the plait representation as

giving a transition amplitude between two states on S2 with six operator insertions. As

was argued in [27], the initial state (where by convention we take “time” to run from top to

bottom) corresponds to the conformal block φ(0,0,0)(j1, j̄1, j2, j̄2, j̄1, j1), or more precisely

|ψi〉 = [2j1 + 1]
√

[2j2 + 1]
∣∣φ(0,0,0)(j1, j̄1, j2, j̄2, j̄1, j1)

〉
(A.7)

while the final state similarly corresponds to the block φ(0,0,0)(j̄1, j1, j̄2, j2, j1, j̄1)

|ψf 〉 = [2j1 + 1]
√

[2j2 + 1]
∣∣φ(0,0,0)(j̄1, j1, j̄2, j2, j1, j̄1)

〉
(A.8)

The operator insertions between the initial and final states implement the braiding of the

various strands of the link. The operator B2m+1 generates a right handed braid between
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strand 2m+ 1 and 2m+ 2, while the operator B2m generates a right-handed braid between

the strand 2m and 2m+ 1. So we can write the Whitehead link invariant as

C52
1
(j1, j2) = 〈ψf |B2B4B

−1
3 B2B4|ψi〉 (A.9)

In order to evaluate this amplitude, we need to use the fact that the blocks

|φ(p0,p1,p2)(j1, j2, · · · , j6)〉 are eigenstates of odd numbered braiding operators

B2m+1|φp(j1, j2, · · · , j6)〉 = λ±1
pm,±(j2m+1, j2m+2)|φp(j1, j2, · · · , j6)〉 (A.10)

where p = (p0, p1, p2), and ± stands for the relative orientation between the two strands

which are bring braided. The other set of blocks φ′q(j1, j2, · · · , j6) on the other hand are

eigenstates of the even braiding operators

B2m|φ′q(j1, j2, · · · , j6)〉 = λ±1
qm,±(j2m+1, j2m+2)|φ′q(j1, j2, · · · , j6)〉 (A.11)

The eigenvalues appearing above are precisely the monodromies of these conformal blocks,

which are given by

λt,±(j1, j2) = (−1)j1+j2−tq±
Cj1

+Cj2
−Ct

2 (A.12)

where Cj = j(j + 1), and the factor (−1)j1+j2−t is a symmetry factor.13 As a quick check

on this formalism, we can compute the coloured link invariant corresponding to the Hopf

link using this method, and we find

Sij
S00

=

Min(i+j,k−i−j)∑
`=|i−j|

[2`+ 1]λ−2
`,+(i, j)

=

Min(i+j,k−i−j)∑
`=|i−j|

(
q`+1/2 − q−`−1/2

q1/2 − q−1/2

)
q−i(i+1)−j(j+1)+`(`+1)

=

(
q−i(i+1)−j(j+1)

q1/2 − q−1/2

)
Min(i+j,k−i−j)∑

`=|i−j|

(
q(`+1)2−1/2 − q`2−1/2

)

=

(
q−i(i+1)−j(j+1)

q1/2 − q−1/2

)(
q(Min(i+j,k−i−j)+1)2−1/2 − q(i−j)2−1/2

)
=

(
q2ij+i+j+1/2 − q−2ij−i−j−1/2

q1/2 − q−1/2

)

=
sin
(
π(2i+1)(2j+1)

k+2

)
sin
(

π
k+2

) (A.13)

13Note that [27] use eigenvalues which differ from ours by a phase factor. This factor is appended in their

case to correct for the change in framing of the link arising from the braiding. But since we are interested

in computing entanglement entropies, which as discussed previously are framing independent, we do not

need to worry about these framing factors.
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Figure 19. A plait representation for 63
2, Borromean rings.

which agrees with known results for the S matrix of the SU(2)k WZW theory. (In the first

line above we have used the formula

a0,l

(
j1 j2
j3 j4

)
= (−1)j1+j3−l

√
[2l + 1]

[2j2 + 1][2j3 + 1]
δj1,j2δj3,j4 . (A.14)

With these facts, we are now in a position to evaluate the Whitehead link invariant

C52
1
(j1, j2) = [2j1 + 1]2[2j2 + 1]

×
∑

m,n,p

λ−1
p1,−(j1, j2)λp2,+(j1, j2)λ−1

n1,+(j1, j2)λ−1
m1,−(j1, j2)λm2,+(j1, j2)

×a(0,p)

j1 j1j2 j2
j1 j1

 a(n,p)

j1 j2j1 j1
j2 j1

 a(n,m)

j1 j2j1 j1
j2 j1

 a(0,m)

j1 j1j2 j2
j1 j1

 (A.15)

Similarly, we can also use the same techniques to evaluate the link invariant corre-

sponding to the Borromean rings (figure 19). In this case, we find

C63
2
(j1, j2, j3) = 〈φ0(j̄1, j1, j̄2, j2, j̄3, j3)|B2B

−1
4 B1B3B

−1
4 B3B

−1
2 B−1

4 |φ0(j2, j̄2, j1, j̄1, j3, j̄3)〉
= [2j1 + 1][2j2 + 1][2j3 + 1]

×
∑

l,m,n,p,q

λl1,−(j1, j2)λl2,−(j1, j3)λ−1
m1,−(j2, j3)λ−1

n2,+(j1, j2)

×λp0,+(j1, j2)λ−1
p1,−(j1, j3)λ−1

q1,−(j1, j2)λq2,−(j2, j3)

×a(0,l)

j2 j2j1 j1
j3 j3

 a(m,l)

j2 j1j2 j3
j1 j3

 a(m,n)

j2 j1j3 j2
j1 j3


×a(p,n)

j2 j1j3 j1
j2 j3

 a(p,q)

j1 j2j1 j3
j2 j3

 a(0,q)

j1 j1j2 j2
j3 j3

 (A.16)
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B Relative entropies of links

As mentioned in the body of the paper, the entanglement spectrum of a given link re-

duced on one or more of its components is a coarse measure of its topological properties.

This is well illustrated particularly by the 22
1 + 22

1 link depicted in figure 11. Despite L1

and L2 playing very different roles in the link, the reduced density matrices ρL1(22
1 + 22

1)

and ρL2(22
1 + 22

1) have identical spectrum. Additionally this spectrum is also found in a

completely different link, 63
3, depicted in figure 12 reduced on one of its components. In

these cases we expect relative entropy to provide a basis independent method to distinguish

reduced density matrices. The relative entropy, S
(
ρ
∣∣∣∣σ) is defined as:

S
(
ρ
∣∣∣∣σ) = Tr (ρ ln ρ)− Tr (ρ lnσ) . (B.1)

In this appendix we outline the two calculations of the relative entropy from the main text.

B.1 221 + 221

Let us begin with the two different ways of reducing the 22
1 + 22

1 state: we can either

trace over L2 and L3 or we can trace over L1 and L3. We are interested in calcu-

lating S
(
ρL1

∣∣∣∣ρL2

)
. Since SEE(ρL1|L2,L3

) is known, what remains is the calculation of

Tr (ρL1 ln ρL2). Tracing over L2, L3 gives the reduced density matrix

ρL1(22
1 + 22

1) = n−1
∑
j

∑
ik

1∣∣S0j

∣∣2SijSkj |i〉〈k|. (B.2)

with normalization n =
∑
j

1∣∣S0j

∣∣2 . Now we look at the reduced state from tracing over

L1, L3:

ρL2(22
1 + 22

1) = n−1
∑
j

1∣∣S0j

∣∣2 |j〉〈j|. (B.3)

These expressions can more simply be written in terms of the orthonormal basis |ĵ〉 =∑
i Sij |i〉. From there, it is a simple matter to compute

Tr (ρL1 ln ρL1) =
∑
i

pi ln pi, Tr (ρL1 ln ρL2) =
∑
i,j

pi|Sij |2 ln pj (B.4)

where we recall pj =
d−2
j∑
i d
−2
i

. The relative entropy between these two states is thus

S
(
ρL1

∣∣∣∣ρL2

)
=
∑
i

pi

ln pi −
∑
j

|Sij |2ln pj

 (B.5)

It is straightforward to check that the relative entropy we obtained above is manifestly

positive.14

14One could also also compute relative entropies of two component states obtained by tracing out one

link. In some situations, this leads to infinite answers.
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B.2 633 vs. 221 + 221

Now we comment on the spectrum of 63
3 and 22

1 + 22
1 reduced on to a single component. In

this case, it is useful to reduce 63
3 on L2 yielding a reduced density matrix

ρL2(63
3) = n−1

∑
j

1∣∣S0j

∣∣2 |j̃〉〈j̃|. (B.6)

with n the same as before, and we have introduced the orthonormal basis |j̃〉 ≡∑
m e
−2πihmSmj |m〉. Now let us compare this to 22

1 + 22
1 reduced on L2 by computing

S
(
ρL2(63

3)
∣∣∣∣ρL2(22

1 + 22
1)
)
. We find

S
(
ρL2(63

3)
∣∣∣∣ρL2(22

1 + 22
1)
)

=
∑
i

pi

ln pi −
∑
j

|Sij |2ln pj

 . (B.7)

B.3 Distinguishability of two component links

For three component links the relative entropy is a useful way of comparing links with

similar entanglement spectrum. For all of the two component links we considered above,

their entanglement spectrum was enough to distinguish different links. A natural question

one might want to consider in this context, however is whether the entanglement spectrum

can characterize how different two links are; for simplicity let us consider how different a

given link is from some fiducial simple link, for example the Hopf link, 22
1. The natural

tool to address this question is the relative entropy of links reduced on one of their com-

ponents. In fact this question is particularly simple to address and the answer is that the

distinguishability of the link is entirely encoded in its entanglement spectrum. To see this

we note that 22
1 is the maximally mixed state:

ρL2|L1
(22

1) =
1

dimHT2

∑
i

|i〉〈i|. (B.8)

Because of this, for any diagonalizable density matrix, ρ̃L2|L1
, on HT2 obtained by reducing

a two component link on its second component,15 we can simultaneously diagonalize ρ̃L2|L1

and ρL2|L1
(22

1). Let the spectrum of ρ̃L2|L1
be {p̃i}i∈span(HT2

). Then it is a simple exercise

to show that

S
(
ρ̃L2|L1

∣∣∣∣ρL2|L1
(22

1)
)

= −S(ρ̃)−
∑
i

p̃i ln

(
1

dimHT2

)
= ln (dimHT2)− S(ρ̃) (B.9)

where we used
∑

i p̃i = 1. Therefore the distinguishability of a two component link from

the Hopf link amounts to only knowing that link’s entanglement spectrum.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

15In fact this argument works for any n component link reduced on n−1 of its components ρ̃L1...Ln−1|Ln .
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