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1 Introduction

As first pointed out by Bern, Carrasco and Johansson (BCJ) [1], the kinematic numerators

in tree level Yang-Mills (YM) amplitudes can satisfy a secret algebra that enjoys the same

Jacobi identity as Lie algebras. Once such numerators are found, a double copy of them

directly gives the tree level Einstein gravity amplitudes [2]. More recently, Cachazo, He and

Yuan (CHY) proposed a new formalism for tree level amplitudes of a variety of theories [3–

7]. As a general feature of the CHY formalism, the kinematic and polarization information

of a given theory are usually packed into a reduced Pfaffian, while the color or flavor

ordering is captured by a Parke-Taylor factor (see section 3 for details). The CHY formalism
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makes manifest the double copy relations between gauge and gravity theories. It also points

out a way to obtain directly the BCJ numerators [5] (also in [8] from a different perspective):

expand the reduced Pfaffian by the Kleiss-Kuijf (KK) basis [9] and the coefficients are just

what we want.1 However, it is hard to find a well-controlled way to write down the

final result of the expansion for arbitrary number of particles. The construction of BCJ

numerators has been studied from the kinematic algebra [11] and the reduction of CHY

integrals [12, 13].

In this work, we are going to derive the BCJ numerators from a systematic expansion

of the reduced Pfaffians. There are in principle two ways to disentangle the Pfaffian of a

2n× 2n antisymmetric matrix X = (xij): using the formal definition

Pf (X) =
1

2nn!

∑

σσσ∈S2n

sign(σσσ)
n∏

i=1

xσ(2i−1)σ(2i) , (1.1)

or the Laplace expansion

Pf (X) =
2n∑

j=1,j 6=i

(−1)i+j+1+θ(i−j)xijPf (X
ij
ij ) , θ(i− j) is a step function, (1.2)

where Xij
ij means that we have deleted the i-th and j-th row and column from X. Lam

and Yao have used the formal definition (1.1) to fully expand the reduced Pfaffian by the

basis corresponding to the cycles in the permutation group [14].

On the other hand, the Laplace expansion of Pfaffian enables us to attack the problem

from the recursive aspect. The general pattern we have obtained is the following. For the

amplitudes with n particles belonging to the adjoint of the gauge (or flavor) Lie algebra,

the Laplace expansion will lead to a linear combination of the amplitudes with s bi-adjoint

scalars and n− s original adjoint particles (with all possible s). The expansion coefficients

contain the information of kinematics and polarization of the adjoint particles. The reason

is that the original adjoint amplitude can be represented by the product of a reduced Pfaf-

fian and a Parke-Taylor factor. The Laplace expansion recursively pulls out several entries

from the Pfaffian, reducing the matrix size. Next, we strip off the kinematic and polariza-

tion from those entries that get pulled out, viewing them as coefficients, and group the rest

into another Parke-Taylor factor. Now we have a combination of amplitudes represented

by a product of two Parke-Taylor factors and a smaller Pfaffian. Essentially, they are the

amplitudes of some bi-adjoint scalars interacting with the adjoint particles. If we further

carry out this recursion to each of the amplitudes in the resultant linear combination, at

the end we will get a linear combination of pure bi-adjoint amplitudes, whose coefficients

are just the BCJ numerators we want. The advantage of this approach is that by using

this step-by-step recursion, we can easily summarize a set of rules for constructing the final

BCJ numerators directly. Such rules would be obscured without the help of the recursive

relation. In particular, these rules are difficult to extract in Lam and Yao’s expansion [14].

1To be specific, what we get are the BCJ numerators in Del Duca-Dixon-Maltoni (DDM) form [10], see

section 2.
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By using the Laplace expansion, Feng and one of the current authors [15] have success-

fully expand the single trace Einstein-Yang-Mills (EYM) amplitudes in terms of the KK

basis pure YM amplitudes (or equivalently, YM-scalar amplitudes in terms of bi-adjoint

scalar ones). The coefficients can be very nicely evaluated from a set of graphic rules based

on spanning trees. Then in [16], a very simple linear relation between YM amplitudes and

YM-scalar amplitudes is derived, which enables us to write down a similar set of graphic

rules to directly evaluate the BCJ numerators for YM. This construction will give polyno-

mial form BCJ numerators in the DDM form, which will be studied in detail in section 4.

Interestingly, each numerator contains exactly (n−1)! terms for n particles, corresponding

to a special set of n-point spanning trees.

Then we show in section 5 that the same technique also applies to NLSM. Actually,

the same set of graphic rules for the BCJ numerators of NLSM can be obtained through a

dimensional reduction from those YM rules [17].2 Following these rules, we always get less

than (n− 2)!− (n− 3)! nonzero numerators for n-point NLSM. Each numerator contains a

sum over a subset of the corresponding YM spanning trees. The essential graph theoretical

properties of these trees are also discussed.

The structure of this paper is as follows. Section 2 reviews the color-kinematic duality

and double copy construction. We then discuss the CHY integrands involved in this work

in section 3. Then in section 4 and 5, we discuss the recursive expansion of the reduced

Pfaffians, and the graphic rules for constructing BCJ numerators for YM and NLSM re-

spectively. Some useful details in our calculation are put in appendix A and B. Finally,

the full explicit results of 5-point YM numerators are shown in appendix C, and 6-point

NLSM numerators in appendix D.

2 Color-kinematic duality and double copy construction

Tree level total YM scattering amplitudes An can be formally expressed as

An =
∑

i∈cubic

cini

Di
, (2.1)

where the sum is over all cubic trees with n external legs, which can be identified as the usual

Feynman diagrams.3 In this equation, 1/Di is the product of propagators associated with

each diagram, while ci and ni are respectively the color factor and kinematic numerator.

From Feynman rules, one can tell that ci is a chain of structure constants fabc, determined

by the gauge group, while ni is composed of the scalar products of external momenta and

polarization vectors. The numerator ni is not unique, in the sense that a generalized gauge

transformation ni → ni +∆i is allowed if:

∑

i∈cubic

ci∆i

Di
= 0 , (2.2)

2We note that this scheme is a little different from the original one proposed in [7].
3Feynman diagrams in general contain quartic vertices, but we can blow them up into two cubic vertices

by multiplying and dividing appropriate propagators.
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which holds by using only the color Jacobi identity of ci. We note that ∆i may result from

a usual gauge transformation by replacing ǫ by k in ni, or a very nontrivial field redefinition

at the Lagrangian level.

Bern, Carrasco and Johansson showed in [1] that the above mentioned generalized

gauge freedom allows us to write down a set of numerators (BCJ numerators) that satisfy

the same Jacobi identity as the color factors, without changing the total amplitude An:

ni = −nj ⇐⇒ ci = −cj , ni + nj + nk = 0 ⇐⇒ ci + cj + ck = 0 , (2.3)

namely, there exists a color-kinematic duality. The existence of such numerators are guar-

anteed by the BCJ relation of the color ordered amplitudes. Moreover, once these BCJ

numerators are found, we can simply replace the color factors by them and obtain the

Einstein gravity amplitudes [2]:

Mn =
∑

i∈cubic

niñi

Di
. (2.4)

In this expression, we only require one of the numerators, say ni, to satisfy the duality,

while ñi can be any set of valid YM numerators. More generally, once we have two gauge

theories (with matter interactions or supersymmetry extension) that both can satisfy the

color-kinematic duality, double copy constructions will always lead to gravity scattering

amplitudes [7, 18–23].

The construction of BCJ numerators starts from the following observation. Eq. (2.3)

indicates that there are linear relations among the numerators in the space of cubic graphs,

due to the Jacobi identity. For the color factor ci, Del Duca, Dixon and Maltoni (DDM) [10]

showed that the independent basis under the Jacobi identity is the set of half-ladder dia-

grams, with leg 1 and n fixed. The total amplitude in this basis has the expansion

An =
∑

σσσ∈S{2...n−1}

fa1aσ(2)b1f b1aσ(3)b2 . . . f bn−3aσ(n−1anAn(1,σσσ, n) , (2.5)

where An is the color ordered YM amplitude, and bi’s are dummy indices got summed over

implicitly. Since deriving this result only involves the Jacobi identity, we can perform the

same manipulation to eq. (2.4) and write Mn under the DDM form:

Mn =
∑

βββ∈S{2...n−2}

n(1,βββ, n)An(1,βββ, n) . (2.6)

In other words, once we successfully expand the gravity amplitude in terms of the color

ordered YM amplitudes in the KK basis [9], the expansion coefficients are just the BCJ

numerators n(1,βββ, n) associated to half-ladder diagrams (we will call them DDM form BCJ

numerators in the following). Then we can work out all the BCJ numerators associated to

generic cubic diagrams by repeatedly using of Jacobi identity.

The above story all applies to NLSM, in which ci is associated with a global flavor

algebra. The double copy (2.6) of NLSM leads to the special Galileon theory, as first

indicated by the CHY formalism [7]. The NLSM is expected to be simpler than YM since
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it is a scalar field theory with only a global flavor symmetry. Moreover, recent work by

Arkani-Hamed, Rodina and Trnka [24] showed that the soft limit behavior constrains the

NLSM tree level amplitude in the same way as how the gauge invariance constrains the

YM tree level amplitude. This helps one to understand why YM and NLSM shares some

similar properties, for example, the color (flavor) kinematic duality and BCJ relations.

As the main subject of this work, we propose a systematic method for the direct

evaluation of the DDM form BCJ numerators for both YM and NLSM, derived from the

CHY formalism [3–7]. Before that, we need to introduce the CHY representation for YM,

gravity and EYM in the next section.

3 CHY integrands and their relations

In this section, we discuss the CHY integrands for n-point tree level YM and gravity

amplitudes, as well as the single trace EYM amplitudes [3–7]. We would like to demonstrate

that we can express them in terms of each other, and these relations lead to a very natural

way to write down the BCJ numerator for YM in the DDM form.

3.1 Definitions

The central object in these CHY integrands is the 2n× 2n matrix Ψ, defined as:

Ψ =

(
A −CT

C B

)
. (3.1)

The three n× n matrices A, B and C contained in Ψ have the following forms:

Aab =





ka · kb
σab

a 6= b

0 a = b
Bab =





ǫa · ǫb
σab

a 6= b

0 a = b
Cab =





ǫa · kb
σab

a 6= b

−
∑

c 6=a

ǫa · kc
σac

a = b
, (3.2)

where 1 6 a, b, c 6 n. It is easy to show that Ψ is antisymmetric and has co-rank two in its

first n rows and columns. We can thus delete two rows and columns from them and define

the reduced Pfaffian of Ψ as:

Pf ′(Ψ) =
(−1)i+j

σij
Pf (Ψij

ij) 1 6 i < j 6 n+m. (3.3)

The matrix Ψij
ij is reduced from Ψ by deleting the i-th and j-th row and column. It can

be proved that the value of Pf ′(Ψ) does not depend on which two rows and columns are

deleted [3]. For EYM, there is another matrix involved:

ΨH =

(
AH −(CH)

T

CH BH

)
, (3.4)

where H = {h1h2 . . . hm} represents the set of gravitons. The matrix AH, BH and CH are

submatrices of A, B and C whose row and column indices take value only in H. Generic

CHY integrands have the form:

ICHY = ILIR , (3.5)
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Theory Integrand IL IR

Yang-Mills IYM PT (12 . . . n) Pf ′(Ψ)

Einstein gravity IGR Pf ′(Ψ) Pf ′(Ψ)

Einstein-Yang-Mills (single trace) IEYM PT (g1g2 . . . gs)Pf (ΨH) Pf ′(Ψ)

Nonlinear sigma model INLSM PT (12 . . . n) [Pf ′(A)]
2

Special Galileaon IGalileon [Pf ′(A)]
2

[Pf ′(A)]
2

NLSM+ φ3 INLSM+φ3 PT (12 . . . n) PT (1,ααα, n) [Pf (Aααα)]
2

Table 1. CHY integrands to be used in this paper. The notations will be explained when appear

in the main text.

and those integrands to be used in this work are shown in table 1. To get the amplitude,

we need to integrate it over a measure dΩCHY that imposes the scattering equation:

∑

j 6=i

ki · kj
σi − σj

= 0 . (3.6)

In principle, we need Ψ for theories involving polarization vectors; A for adjoint scalar

theories; and the Parke-Taylor factor:

PT (12 . . . n) =
1

σ12σ23 . . . σn1
σij ≡ σi − σj . (3.7)

for color (flavor) orderings.

A remarkable feature of the CHY formalism is that it makes the double copy construc-

tion very manifest, and provides a way to directly evaluate those BCJ numerators. As

the first set of double copies, we consider the YM and Einstein gravity. Their tree level

integrands are given by:

IYM(12 . . . n) = PT (12 . . . n) Pf ′(Ψ) IGR(12 . . . n) = Pf ′(Ψ)× Pf ′(Ψ) (3.8)

As already proposed in [5], the CHY formalism leads to a very natural construction of the

DDM form BCJ numerators: just fully expand the first Pf ′(Ψ) and settle all the σi’s into

Parke-Taylor factors:

Pf ′(Ψ)× Pf ′(Ψ) =
∑

βββ∈Sn−2

nYM (1,βββ, n) PT (1,βββ, n) Pf ′(Ψ) . (3.9)

The main subject of this note is to provide a set of very straightforward graphic rules to read

out these numerators directly, based on two previous papers [15, 16].4 Interestingly, the

single trace EYM integrands appear as intermediate steps in this construction. Suppose we

have m gravitons and s = n−m gluons among these n particles, then the EYM integrand

is given by:

IEYM(g1g2 . . . gs |h1 . . . hm) = PT (g1g2 . . . gs) Pf (ΨH) Pf
′(Ψ) (3.10)

4A recursive algorithm using another method is given in [13].
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with H ≡ {h1h2 . . . hm}. After integrating over the CHY measure dΩCHY, we obtain the

corresponding amplitudes:

AGR
n (12 . . . n) =

∫
dΩCHYIGR(12 . . . n)

AEYM
s,m (g1 . . . gs |h1 . . . hm) = (−1)

(n+1)(n+2)
2

+
m(m+1)

2

∫
dΩCHYIEYM(g1 . . . gs |h1 . . . hm)

AYM
n (12 . . . n) = (−1)

(n+1)(n+2)
2

∫
dΩCHYIYM(12 . . . n) . (3.11)

In the above equations, the phase factors are meticulously chosen such that the resultant

BCJ numerator has the simplest overall sign convention. The explicit construction of nYM

will be presented in section 4, while the expansion of Pf ′(Ψ) will be given in the next

subsection.

The second set of double copy construction appears between n-point flavor ordered

NLSM and the special Galileon integrand:

INLSM = PT (12 . . .)
[
Pf ′(A)

]2
, IGalileon =

[
Pf ′(A)

]4
. (3.12)

Again, a well-controlled expansion of [Pf ′(A)]2 can lead to

[
Pf ′(A)

]4
=

∑

βββ∈S{2...n−2}

nNLSM (1,βββ, n) PT (1,βββ, n)
[
Pf ′(A)

]2
. (3.13)

In the intermediate steps of such expansion, one will encounter the NLSM + φ3 inte-

grands [25]:

INLSM+φ3 = PT (12 . . . n) PT (1,ααα, n) [Pf (Aααα)]
2 , (3.14)

where ααα is an ordered subset of {2 . . . n− 1}, and ααα is the complement of ααα in {2 . . . n− 1}.

Physically, {1,ααα, n} is the set of bi-adjoint scalars and ααα is the set of adjoint scalars. On the

other hand, the same construction can be directly obtained from a dimensional reduction

of the YM case. Both methods will be discussed in section 5

3.2 Expansion of reduced Pfaffian

If we choose i = 1 and j = n in eq. (3.3) for the deleted rows and columns, we can show

that Pf ′(Ψ) has the following expansion:

Pf ′(Ψ)∼=(−1)
(n+1)(n+2)

2

∑

split

∑

ααα∈SA

W (1,ααα, n)(−1)
m(m+1)

2 (−1)m PT (1,ααα, n) Pf (ΨH) . (3.15)

By using ∼=, we emphasize that this identity only holds when momentum conservation,

transversality and scattering equation are all imposed. Now we describe the symbols used

in eq. (3.15):

• The position of particle 1 and n are fixed, which defines the KK basis.

•
∑

split sums over all possible ways of splitting the set {2 . . . n − 1} into two subsets

A and H (both of them can be empty). We use m = |H| to stand for the graviton

number and |A|+ 2 = s+ 2 for the gluon number, such that s+m = n− 2.

– 7 –
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•
∑

ααα∈SA
sums over all possible gluon orderings.

• The symbol W stands for a chain

W (1,ααα, n) = ǫ1 · Fα(1) · Fα(2) . . . Fα(s) · ǫn , (3.16)

where (Fi)
µν = (ki)

µ(ǫi)
ν − (ki)

ν(ǫi)
µ is the field strength tensor.

We can multiply both sides of eq. (3.15) by another Pf ′(Ψ) and then perform the CHY

integration as in eq. (3.11). What we get is the amplitude relation:

AGR
n (12 . . . n) =

∑

split

∑

ααα∈SA

W (1,ααα, n)(−1)|H|AEYM
s+2,m(1,ααα, n |H) . (3.17)

This expansion was first derived in [16] by using Lam and Yao’s cycle expansion [14]. In

appendix A, we provide another proof using the Laplace expansion.

Eq. (3.17) is an important intermediate step for deriving the BCJ numerator. The

next job is thus to expand the EYM amplitudes in terms of pure YM ones. In particular,

we have

AEYM
s+2,m(1,ααα, n |H) =

∑

σσσ∈SH

∑

γγγ∈ααα σσσ

Cρρρ (σσσ)A
YM
n (1, γγγ, n) , (3.18)

where ααα σσσ is the shuffle product of the set ααα and σσσ. The coefficients Cρρρ(σσσ), depending on

a reference graviton order ρρρ, can then be evaluated from a set of graphic rules. Together

with the origin of ρρρ, these rules are described in details in [15]. We note that the coefficients

Cρρρ(σσσ) do not enjoy the explicit graviton permutation invariance. Of course, this symmetry

can be restored by using certain combinations of BCJ relations.

Based on this result, we can easily give a set of graphic rules to directly construct the

DDM form BCJ numerators for YM, which is the subject of the next section.

4 Graphic rules for BCJ numerators: YM

As shown in [16], if we combine eq. (3.17) with (3.18), we get

AGR
n (12 . . . n) =

∑

split

∑

ααα∈SA

∑

σσσ∈SH

∑

γγγ∈ααα σσσ

(−1)|H|W (1,ααα, n)Cρρρ(σσσ)A
YM
n (1, γγγ, n)

=
∑

βββ∈S{2...n−2}

nYM(1,βββ, n)AYM
n (1,βββ, n) . (4.1)

Namely, by rearranging the sum in the first line, we can read out the desired DDM form BCJ

numerator for tree level YM. Now given an order βββ ∈ Sn−2, we summarize the rearrange-

ment into the following rules, based on spanning trees, for a direct evaluation of n(1,βββ, n):

Step 1: constructing the trees that contribute to the order βββ. We first construct

all the n-point increasing trees5 with respect to the order

1 ≺ β(1) ≺ β(2) ≺ . . . ≺ β(n− 1) ≺ n .

5In an increasing tree, if we have two vertices a and b located on a path originating at the root, then b

cannot be closer to the root than a if a ≺ b.
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There are in all (n− 1)! such trees. All these trees are rooted on particle 1, and contain n

as a leaf.

Eq. (4.1) implies that βββ comes from a shuffle product ααα σσσ, and our next job is to

identify “gluons” and “gravitons” in each tree, since they are treated differently according

to eq. (4.1): gluons contribute a chainW (1,ααα, n) while gravitons give the coefficients Cρρρ(σσσ).

Step 2: separation of gluons and gravitons. We draw a path that originates at the

root 1 and ends at the leaf n. If this path contains s particles besides 1 and n, we denote

it as G = {1, α(1), α(2) . . . α(s), n}. Then we identify those in G as gluons and the rest

H = {h1, h2 . . . hm} as gravitons. Now the previously constructed spanning trees can be

viewed as a set of planted graviton forests on the gluon roots {1, α(1), α(2) . . . α(s)}.

Step 3: evaluation of graphs. Now we present the algorithm to evaluate each graph

constructed in the previous two steps:

• For the gluon chain G = {1, α(1) . . . α(s), n}, we assign a factor:

W (1,ααα, n) = ǫ1 · Fα(1) · Fα(2) · . . . · Fα(s) · ǫn . (4.2)

Namely, we replace gluon 1 and n by the polarization ǫ1 and ǫn, and for the rest

gluons in G, we replace them by the field strength tensor F .

• We choose a reference order ρρρ for the graviton set H,6 and then locate the position

of ρ(1) in the graph, from which we draw a path towards the gluon roots. Suppose

this path ends at α(i), we can represent it by

P [1] = {φ(1), φ(2) . . . φ(ℓ), V1} , (4.3)

with φ(1) = ρ(1) and V1 = α(i).

• Next, we delete P [1] from ρρρ and construct the second path in the remaining vertices

by the same way. We locate ρ̃(1) in

ρ̃ρρ ≡ ρρρ\{φ(1), φ(2) . . . φ(ℓ)}

and draw a path towards the gluon roots. Now this path can either ends on a gluon

or on a previous traversed graviton. We call this endpoint V2 for both cases. Then

we can represent this path by

P [2] = {φ̃(1), φ̃(2) . . . φ̃(t), V2} , (4.4)

with φ̃(1) = ρ̃(1). Repeat this process until we use up all the gravitons in ρρρ.

• Finally, we assign each graviton path a factor. For the first vertex in each path, we

replace it by the corresponding polarization ǫ; for the vertices in the middle of a path,

we replace it by the corresponding field strength F ; for the end point, we replace it

6We note that we have to use the same ρρρ for a given set H, even if this H appears in the evaluation of

two different n(1,βββ, n).
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by the corresponding momentum k, be it a gluon or graviton. For example, the first

two paths P [1] and P [2] lead to

P [1] : ǫφ(1) · Fφ(2) · . . . · Fφ(ℓ) · kV1

P [2] : ǫ
φ̃(1)

· F
φ̃(2)

· . . . · F
φ̃(t)

· kV2 , (4.5)

where V1 = α(i) is a gluon, but V2 can be either a gluon or a graviton in

{φ(1) . . . φ(ℓ)}. As the last step, we multiply all these factors together with a phase

(−1)|H|. Then nYM(1,βββ, n) is just the sum of these trees.

In the next two subsections, we explicitly evaluate some four-point and five-point BCJ

numerators in the DDM basis, as examples.

4.1 Four-point numerators

For n = 4, we only need to calculate βββ = {23} and βββ = {32}. Then according to Step 1

and Step 2, both of them are contributed by six trees. These trees are shown in figure 1,

with gluon chains highlighted in red. Below each tree, we give the evaluation of each tree

according to Step 3. For H = {23}, we use with the reference order ρρρ = {32}. Now

summing over the trees, we get our results:

nYM(1, {23}, 4) = (ǫ1 · ǫ4) [(ǫ3 · F2 · k1) + (ǫ3 · k1)(ǫ2 · k1)] + (ǫ1 · F2 · F3 · ǫ4)

− (ǫ1 · F2 · ǫ4) [ǫ3 · (k1 + k2)]− (ǫ1 · F3 · ǫ4)(ǫ2 · k1) , (4.6)

nYM(1, {32}, 4) = (ǫ1 · ǫ4) [(ǫ3 · k1)(ǫ2 · k3) + (ǫ3 · k1)(ǫ2 · k1)] + (ǫ1 · F3 · F2 · ǫ4)

− (ǫ1 · F3 · ǫ4) [ǫ2 · (k1 + k3)]− (ǫ1 · F2 · ǫ4)(ǫ3 · k1) . (4.7)

Up to a total sign caused by different conventions, the above numerators agree with those

given in [16]. The four-point gravity amplitude in this representation:

AGR
4 (1234) = nYM(1, {23}, 4)AYM

4 (1234) + nYM(1, {32}, 4)AYM
4 (1324) (4.8)

does not have the manifest permutation invariance in particle 2 and 3. To be specific, the

breaking appears in the first term of eq. (4.6) and (4.7). However, the invariance can be

easily restored by the BCJ relation:

(k1 · k2)A
YM
4 (1234) = (k1 · k3)A

YM
4 (1324) . (4.9)

4.2 Five-point numerators

For n = 5, we need to evaluate six numerators, corresponding to βββ ∈ S{234}. Among them,

we only give the explicit calculation of βββ = {234}. We list all the spanning trees that

contribute to this order in figure 2, with gluon chains highlighted in red. After evaluating

all these graphs in figure 2, we obtain the result:7

row1 = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1) (4.10)

7For each H, we always choose the reference order ρρρ as the descending order of the elements in H.
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−(ǫ1 · F3 · ǫ4)(ǫ2 · k1)

2

1

3 4

−(ǫ1 · F3 · ǫ4)(ǫ2 · k3)

Figure 1. The spanning trees corresponding to nYM(1, {23}, 4) and nYM(1, {32}, 4). The evaluation

is performed under the reference order ρρρ = {32}.

row2 = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · F2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · F2 · k1)

− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k2) (4.11)

row3 = −(ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k1)− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · F3 · k1) (4.12)

row4 = −(ǫ1 · ǫ5)(ǫ4 · F3 · F2 · k1) + (ǫ1 · F2 · F3 · F4 · ǫ5)

− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k3) + (ǫ1 · F2 · ǫ5)(ǫ4 · F3 · k2) (4.13)

row5 = −(ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k1)− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · F2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k1) (4.14)

row6 = −(ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k2)− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k2)

− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k2) + (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k2) . (4.15)

The numerator n(1, {234}, 5) is thus the sum of these graphs:

nYM(1, {234}, 5) = row1+ row2+ row3+ row4+ row5+ row6 . (4.16)

All the other numerators can be evaluated similarly, and we put their expressions in ap-

pendix C.

5 Graphic rules for BCJ numerators: NLSM

In this section, we give a set of graphic rules for a direct evaluation of DDM form BCJ

numerators for NLSM. It has been proposed first in [7] that the CHY integrand for NLSM
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Figure 2. The spanning trees corresponding to n(1, {234}, 5) for YM. All gluon vertices are

highlighted in red.

can be obtained through a dimensional reduction from a higher dimensional YM. In this

work, we follow another dimensional reduction scheme given in [17], which enable us to

derive immediately the graphic rules to construct DDM form BCJ numerator for NLSM

from those for YM.

5.1 Dimensional reduction

We start with a YM integrand in (d + d + d)-dimensions and construct the matrix Ψ out

of the following momenta and polarizations:

Ka = (ka; 0; 0) Ea =

{
(0; 0; ǫa) a = 1 and n

(0; ǫa; 0) a = 2 . . . n− 1
, (5.1)
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where both ka and ǫa are in d-dimensions. We can then construct the matrices A, B, C

according to eq. (3.2), and the matrix Ψ(d+d+d) as:

Ψ(d+d+d) =

(
A −CT

C B

)
. (5.2)

Obviously, we have C = 0 and A = A.8 Consequently, the reduced Pfaffian of Ψ(d+d+d)

factorizes into:

Pf ′
[
Ψ(d+d+d)

]
= Pf ′(A)Pf (B) =

(−1)nǫ1 · ǫn
σ1n

Pf ′(A) Pf (B1,n
1,n) . (5.3)

Next, we make the replacement ǫa → ka in the above equation, which leads to:

Pf ′
[
Ψ(d+d+d)

]∣∣∣
ǫa→ka

= −(k1 · kn)
[
Pf ′(A)

]2
. (5.4)

This dimensional reduction implies that if we perform the following replacement

ǫa · kb → 0

ǫa · ǫb →

{
ka · kb {a, b} ⊂ {2 . . . n− 1} or {a, b} = {1, n}

0 a ∈ {1, n} and b ∈ {2 . . . n− 1} , or vice versa
(5.5)

directly in eq. (3.15), the expansion of d-dimensional YM integrand Pf ′(Ψ), we get the

expansion of the d-dimensional NLSM integrand [Pf ′(A)]2 in the KK basis.

5.2 Recursive expansion

As an alternative approach, we can derive the expansion of [Pf ′(A)]2 from a recursive

relation. Such a recursion can be proved by the Laplace expansion of Pf ′(A). The object

central to this calculation is

PT (1,ααα, n) [Pf (Aααα)]
2 . (5.6)

This object is just the IR for NLSM+ φ3, the soft extension of NLSM [25]. The definition

of the symbols involved can be found in eq. (3.14). For the simplest case, there are only

two adjoint scalars, namely, ααα = {qp}. Then we have

PT (1,ααα, n)
[
Pf (A{qp})

]2
= PT(1,ααα, n)

(
kq · kp
σqp

)2

(5.7)

∼= −PT (1,ααα, n)

(
k1 · kq
σ1q

+
∑

i

kαi · kq
σαiq

+
kn · kq
σnq

)
kq · kp
σpq

∼=−

(
kp ·kq
σpq

)∑
(kq ·Yq) PT (1,ααα {q}, n)+

(kp ·kq)
2

σnqσpq
PT (1,ααα, n) ,

where Yq, which implicitly depends on the orderings contained in the shuffle productααα {q},

is the sum of the momenta of bi-adjoint scalars ahead of the adjoint scalar q in each ordering.

To obtain the last equity, we have used the momentum conservation and the identity:

PT (1,ααα, n)

σαiq
= PT(1 . . . αi, q, αi+1 . . . n) +

PT (1,ααα, n)

σαi+1q
. (5.8)

8We reserve A, B and C to denote those matrices appearing in d-dimensional integrands.
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Now by moving the last term in eq. (5.7) to the left hand side of the equation, we can solve

that:

PT (1,ααα, n)
[
Pf (A{qp})

]2∼=PT(1,ααα, n)

(
kq ·kp
σqp

)2
∼=(kp ·kq)

∑
(kq ·Yq) PT (1,ααα {q}, n) .

(5.9)

To deal with generic cases, we first define the following recursive relation:

Uµ [1,ααα {smsm+1 . . . si}, n | {sm−1 . . . s1}] (5.10)

=
∑

(Ysm)
µ
[
Pf (A{sm−1...s1})

]2
PT (1,ααα {sm . . . si}, n)

+
m−1∑

ℓ,t=1
ℓ6=t

(ksℓ)
µ (ksℓ · kst) kst · U

[
1,ααα {stslsm . . . si}, n | {sm−1 . . . /sℓ . . . /st . . . s1}

]
.

This recursion finally lands on U [. . . |∅] or U [. . . |{s1}], which are defined as:

Uµ [1,ααα {s1 . . . si}, n |∅] =
∑

(Ys1)
µPT (1,ααα {s1 . . . si}, n)

Uµ [1,ααα {s2 . . . si}, n | {s1}] = 0 (5.11)

The second condition guarantees that when the right list of Uµ has an odd number of

elements, we have Uµ = 0 identically. Finally, we can express the recursive expansion of

generic NLSM+ φ3 integrand:

PT (1,ααα, n)
[
Pf (A{s1s2...sm})

]2∼=
m−1∑

t=1

(ksm ·kst) kst ·U
[
1,ααα {stsm}, n | {sm−1 . . . /st . . . s1}

]
.

(5.12)

The proof is straightforward using the various identites shown in [15]. Finally, the pure

NLSM corresponds to ααα = ∅ in the above equation, such that we have

[
Pf ′(A)

]2 ∼= −PT (1n)
[
Pf (A1,n

1,n)
]2

∼= −
n−2∑

t=2

(kn−1 · kt) kt · U
[
1,∅ {t, n− 1}, n | {n− 2 . . . /t . . . 2}

]
, (5.13)

which enables us to expand the NLSM integrand in terms of the NLSM + φ3 and pure

bi-adjoint φ3 integrands.

5.3 Graphic rules

The above dimensional reduction scheme shown in section 5.1 implies that once we make

the replacement (5.5) to the rules given in section 4, we immediately get the set of rules

for the direct evaluation of the DDM form BCJ numerators for NLSM:

[
Pf ′(A)

]2
=

∑

βββ∈S{2...n−1}

nNLSM (1,βββ, n) PT (1,βββ, n) . (5.14)
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We note that the same set of rules can also be derived from the recursion given in section 5.2.

We can still follow Step 1 and Step 2 in section 4, reaching the separation of “gluons”

and “gravtions”. Then in the evaluation of the “gluon chain” we have

ǫ1 · Fα(1) · Fα(2) · . . . · Fα(s) · ǫn
(5.5)
−−−→

{
k1 · kn ααα = ∅

0 otherwise
. (5.15)

Therefore, for NLSM, when constructing spanning trees, we only need to consider those

with n directly attached to the root 1. On the other hand, the factor k1 · kn is exactly the

coefficient in front of [Pf ′(A)]2 according to (5.4), so that for an evaluation of [Pf ′(A)]2, we

only need to evaluate the spanning trees of {1 . . . n− 1} rooted on 1. Next, for a “graviton

chain”, we have:

ǫφ(1) · Fφ(2) · . . . · Fφ(ℓ) · kV1

for YM. Then under the replacement (5.5), only the term:

(ǫφ(1) · ǫφ(2))(kφ2 · kφ(3)) . . . (ǫφ(ℓ−1) · ǫφ(ℓ))(kφ(ℓ) · kV1)

remains nonzero. Such terms only appear when ℓ is even, namely, the path contains an

even number of edges. Therefore, we have:

ǫφ(1) · Fφ(2) · . . . · Fφ(ℓ) · kV1

(5.5)
−−−→ (−1)

ℓ
2 (kφ(1) · kφ(2))(kφ(2) · kφ(3)) . . . (kφ(ℓ) · kV1) (5.16)

when ℓ is even, and zero when ℓ is odd. Consequently, we only need to take into account

those spanning trees whose graviton chains all contain an even number of edges.

Now we summarize the graphic rules for constructing the DDM form BCJ numerator

nNLSM(1,βββ, n) for NLSM as the following:

Step 1: constructing the trees that contribute to the order βββ. We first construct

all the (n− 1)-point increasing trees with respect to the order:

1 ≺ β(1) ≺ β(2) ≺ . . . ≺ β(n− 2) .

There are in all (n− 2)! such trees, all of which have 1 as the root.

Step 2: evaluation of graphs. We choose a reference order ρρρ for the particles {2 . . . n−

1}, and then locate the position of ρ(1) in the graph, from which we draw a path towards

the root 1. We represent it as

P [1] = {φ(1), φ(2) . . . φ(ℓ), V1} , (5.17)

with φ(1) = ρ(1) and V1 = 1. Now we have the following situations:

• If this path contains an odd number of edges (i.e., ℓ is odd), then this entire tree does

not contribute.
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• If this path contains an even number of edges, we. delete P [1] from ρρρ. Then we

construct another path in the same way from the remaining points. Namely, we

locate ρ̃(1) in

ρ̃ρρ = ρρρ\{φ(1) . . . φ(ℓ)} ,

and draw a path towards the root 1. Now this path, represented by

P [2] = {φ̃(1), φ̃(2) . . . φ̃(t), V2} ,

may end either at the root: V2 = 1, or another previously traversed point V2 = φ(i).

• Whenever we meet such a path P [i] with an odd number of edges, the entire tree

does not contribute and we simply delete it.

Now we can assign factors to the remaining trees, in which all P [i] contains an even number

of edges. For a given tree, we replace the end points of each path by k, and the internal

vertices by kµkν . For example, we have:

P [1] : (kφ(1) · kφ(2))(kφ(2) · kφ(3)) . . . (kφ(ℓ−1) · kφ(ℓ))(kφ(ℓ) · kV1)

P [2] : (k
φ̃(1)

· k
φ̃(2)

)(k
φ̃(2)

· k
φ̃(3)

) . . . (k
φ̃(t−1)

· k
φ̃(t)

)(k
φ̃(t)

· kV2) , (5.18)

where V1 = 1, and V2 can be either the root 1, or one of the φ(i)’s.9 Finally, nNLSM(1,βββ, n)

is obtained by summing up all these contributing trees.

5.4 Examples

According our rules, we immediately see that when n is odd, all these numerators vanish

and so does the amplitude. The reason is that according to our rules, those trees that

contribute to the numerators must have all P [i] with even edges. On the other hand, a

spanning tree with n− 1 vertex must have exactly n− 2 edges. Therefore:
∑

i

|P[i]| = n− 2 = even , (5.19)

such that n must be even in order to possibly have nonzero numerators.

Four point NLSM. For n = 4, we need to calculate n(1, {23}, 4) and n(1, {32}, 4).

The spanning trees that possibly contribute are those in the first row of figure 1, with the

red edge (14) deleted. Among these four graphs, only one of them is nonzero under the

reference order ρρρ = {32}:

1

2 3

= (k3 · k2)(k2 · k1) . (5.20)

Therefore, when n = 4, we have:

nNLSM(1, {23}, 4) = (k3 · k2)(k2 · k1) , nNLSM(1, {32}, n) = 0 . (5.21)
9Notice that in our rules, we do not include the factor (−1)ℓ/2 as in eq. (5.16). The reason is that for

each of the surviving trees, such factors all multiply to an overall phase (−1)
n−2

2 , where n − 2 is exactly

the number of edges in an (n− 1)-point tree. For the same reason, we neglect the phase (−1)|H| appearing

in the YM rules, since it becomes another overall phase (−1)n−2 in the NLSM case.
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Figure 3. The 5-point spanning trees that contribute to nNLSM(1, {2345}, 6).

Six point NLSM. For n = 6, we need to calculate n(1,βββ, 6) for βββ ∈ S{2345}. There are

in all 24 of them. As an example, the spanning trees that contribute to βββ = {2345} under

the reference order ρρρ = {5432} are shown in figure 3. Now following the rules given above,

we have:

nNLSM(1, {2345}, 6) = (k5 · k4)(k4 · k1)(k3 · k2)(k2 · k1) + (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k1)

+ (k5 · k4)(k4 · k3)(k3 · k2)(k2 · k1) + (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k2)

+ (k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1) . (5.22)

All the other numerators can be evaluated in this way, and the results are shown in ap-

pendix D.

Number of nonzero numerators. It is interesting to note that following our rules, the

number of nonzero numerators is at most (n− 2)!− (n− 3)!. One may naively think that

there are in all (n − 2)! nonzero numerators corresponding to all (n − 2)! permutations βββ

of the set {2 . . . n − 1}. Actually, given a reference order ρρρ = {ρ(1), ρ(2) . . . ρ(n − 2)}, all

the numerators with ρ(n− 2) coming first vanishes:

nNLSM(1, ρ(n− 2), β̃ββ, n) = 0 , β̃ββ ∈ S{2...n−2}\ρ(n−2) , (5.23)

The reason is that all the increasing trees with respect to βββ = {ρ(n − 2), β̃ββ} must have

ρ(n− 2) connected directly to the root 1. Then according to our rules, there must exist an

odd path P[1] = {ρ(n − 2), 1} contained in all these trees, such that no increasing tree of

βββ = {ρ(n−2), β̃ββ} contributes. This is reflected in our 6-point example given in appendix D,

namely, all nNLSM(1, 5,βββ(234), 6) = 0. On the other hand, there are still other vanishing

numerators. For n = 6, we have in all 13 nonzero numerators, comparing to 4! = 24

under naive expectation. Figuring out the exact number calls for a detailed study on the

combinatorics of spanning trees, which is deferred to a future work.
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5.5 The equivalence to other constructions

In [26] and [27], two different constructions are proposed from the off-shell extension of

BCJ relation in NLSM and Abelian Z-theory respectively:

Du and Fu [26]: nDF(1,βββ, n) =
∑

ρρρ

S[βββ|ρρρ], (5.24)

Carrasco, Mafra and Schlotterer [27]: nCMS(1,βββ, n) = (−1)
n
2 S[βββ|βββ] , (5.25)

where S is the momentum kernel for the KLT relation [28–33]. The convention for S

follows the paper [27]. In the DF construction, ρ presents a certain subset of permutations

(see [26]). Noticing that only amplitudes with even number external particles in NLSM are

nonzero, so that the n/2 in the CMS construction must be an integer. Both constructions

manifest (n − 2)! permutation symmetry. In contrary, the numerators presented in this

work has the following features:

• They are polynomials of Mandelstam variables.

• The total number of nonzero numerators are less than (n− 2)!− (n− 3)!.

• The permutation invariance is not manifest.

Therefore, our construction in section 5.3 essentially descends from (5.24) and (5.25) by

using a few BCJ relations in such a way that no poles are introduced. However, the price

is that the manifest permutation invariance is lost.

Next, we consider the 4-point case as an example for how to relate these (n− 2)! sym-

metric constructions to the numerators in this paper. The explicit numerators from (5.24)

and (5.25) are

nDF(1, 2, 3, 4) = S[23|32] = s21s31 , nDF(1, 3, 2, 4) = S[32|23] = s31s21 , (5.26)

nCMS(1, 2, 3, 4) = S[23|23] = s21(s32 + s31) , nCMS(1, 3, 2, 4) = S[32|32] = s31(s23 + s21) .

(5.27)

Using eq. (5.26), we write down the full amplitude as

ANLSM(1, 2, 3, 4) = s21s31A
φ3
(1, 2, 3, 4) + s31s21A

φ3
(1, 3, 2, 4)

= s21s31A
φ3
(1, 2, 3, 4)− (s31 + s32)s21A

φ3
(1, 2, 3, 4)

= −s32s21A
φ3
(1, 2, 3, 4) , (5.28)

where Aφ3
denotes the bi-adjoint φ3 amplitudes, and we have used the BCJ relation to

obtain the last line. Up to a sign, which may caused by convention, and a few factors of

2s coming from sab = 2ka · kb, the above expression is identical to the 4-point construc-

tion (5.21) in the this paper. The full amplitude from the second construction (5.27) gives

ANLSM(1, 2, 3, 4) = s21(s32 + s31)A
φ3
(1, 2, 3, 4) + s31(s23 + s21)A

φ3
(1, 3, 2, 4)

= s21(s32 + s31)A
φ3
(1, 2, 3, 4)− s31s21A

φ3
(1, 3, 2, 4)

= s32s21A
φ3
(1, 2, 3, 4) . (5.29)
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Again, we arrive at the construction in this paper.10

In order to understand more on the CHY formalism for NLSM, it is worthy to work

out the full connection to the existing constructions derived from different ways. We leave

this discussion to a future work.

6 Conclusion and discussion

In this work, we have shown that the DDM form BCJ numerators for both YM and NLSM

can be evaluated directly by a set of graphic rules, derived from the expansion of the reduced

Pfaffians in the CHY integrands. These numerators are explicit polynomial functions of

the scalar products involving k’s and ǫ’s for YM, Mandelstam variables for NLSM.

• For YM, there are in all (n−2)! such numerators nYM(1,βββ, n), each of which contains

a sum of (n − 1)! terms, corresponding to the increasing trees with respect to the

order 1 ≺ β(1) ≺ . . . ≺ β(n − 2) ≺ n. The evaluation of these trees depends

on a reference order ρρρ, which makes the permutation invariance not manifest but

significantly simplifies our results.

• For NLSM, there are at most (n−2)!−(n−3)! such numerators nNLSM(1,βββ, n). Given

a reference order ρρρ = {ρ(1), ρ(2) . . . ρ(n − 2)}, we have shown that all the (n − 3)!

numerators nNLSM(1, ρ(n−2), β̃ββ, n) = 0. Each surviving numerator is contributed by

the increasing trees of the order 1 ≺ β(1) ≺ . . . ≺ β(n− 2) that satisfy the following

criteria: all the paths P[i] constructed according to the rules given in section 5.3 have

even length.

Finally, we have given a few explicit examples to illustrate our construction and discuss

the connection with other existing constructions.

There are a number of future directions as suggested by our work. First of all, one

can further investigate how the numerators constructed by our rules may give insight to

manifest the kinematic algebra at the dynamical level, namely, in a Lagrangian. This goal

has been achieved in NLSM by a field redefinition [22], while similar approach has only

been applied to the self-dual sector [34] for YM.

Second, it is interesting to explore how to restore the manifest permutation invariance

for YM, EYM and NLSM. One very straightforward approach is to average over the numer-

ators obtained by all the (n− 2)! reference orders. The symmetrized version is more com-

plicated and unwieldy. On the other hand, one can also prove the permutation invariance

by repeatedly using of BCJ relations. Remarkably, the involved BCJ relations may not be

in their usual forms: polarization vectors can get entangled with momenta [23]. Physically,

it may indicate an interplay with the constraints imposed by gauge invariance [24].

Third, one can ask what is the underlying string theory that leads to the numerators

we have constructed. For example, the form (5.25) can be derived from an abelian Z-

theory [27]. Our result for NLSM has less nonzero numerators while still retains the

10Due to the double copy relation, we can replace simultaneously ANLSM and Aφ3

in (5.28) and (5.29)

by the special Galileon amplitude AGalileon and the flavor ordered NLSM amplitude ANLSM.
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polynomial form in terms of Mandelstam variables. At the amplitude level, one may achieve

this by employing a few BCJ relations, while it is still curious to explore the implication in

string theory. For YM numerators, one can compare our result with some previous explicit

constructions, for example, [35, 36], and further explore the connection.

Last but not least, since our numerators are systematically derived from the spanning

trees, one may ask what is the relation between our spanning trees and the more familiar

Feynman diagrams. Actually, a deeper question to ask is instead of merely a technical tool,

whether we can give some physical meaning to these spanning trees based on which we can

reformulate the field theory. To gain more insight along this direction, further study in the

loop level numerators will be very helpful.
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A Laplace expansion of reduced Pfaffian

We start with deleting the 1-st and n-th row and column in Ψ such that eq. (3.3) becomes:

Pf ′(Ψ) ∼=
(−1)n

σn1
Pf (Ψ1,n

1,n) . (A.1)

As we will see later, this choice leads to an expansion in terms of the KK basis with the

position of particle 1 and n fixed. We emphasize that Pf ′(Ψ) being independent of deleted

rows and columns only holds after we impose the momentum conservation, transversality

and scattering equation.

Next, we give the recursive relation for Pf ′(Ψ) that finally leads to eq. (3.15). Suppose

the set A and H = {h1 . . . hm} form a split of {2 . . . n− 1}:

A ∪ H = {2 . . . n− 1} ,

and ααα is a permutation of A (namely, ααα = {α(1), α(2) . . . α(s)} ∈ SA), we can define the

following quantity:

Θ (1,ααα, n |{h1 . . . hm}) = Pf




AH −(vvvααα)
T −(CH)

T −(cccn)
T

vvvααα 0 uuuααα wααα

CH −(uuuααα)
T BH −(bbbn)

T

cccn −wααα bbbn 0


 . (A.2)

In this expression, AH, BH and CH come from the EYM integrand (3.4) with graviton set

H, and the vector cccn and bbbn come from the last row of the matrix C and B given in (3.2):

(cccn)i =
ǫn · ki
σni

(bbbn)i =
ǫn · ǫi
σni

(i ∈ H) . (A.3)
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More importantly, the vector vvvααα and uuuααα have the form:

(vvvααα)i =
[
ǫ1 · Fα(1) . . . Fα(s) · ki

]
PT (1,ααα, i)

σi1
σn1

(uuuααα)i =
[
ǫ1 · Fα(1) . . . Fα(s) · ǫi

]
PT (1,ααα, i)

σi1
σn1

, (A.4)

with i ∈ H. Finally, the entry wααα has the form:

wααα =
[
ǫ1 · Fα(1) . . . Fα(s) · ǫn

]
PT (1,ααα, n) . (A.5)

Once we expand Θ along the row of vvv and uuu, we can derive a recursive relation:

Θ (1,ααα, n | {h1 . . . hm}) = (−1)m
[
ǫ1 · Fα(1) . . . Fα(s) · ǫn

]
PT (1,ααα, n) Pf (ΨH)

+ (−1)m
m∑

i=1

Θ
(
1,ααα, hi, n | {h1 . . . /hi . . . hm}

)
, (A.6)

with H = {h1 . . . hm}.This recursion starts when A is empty:

(−1)n

σn1
Pf (Ψ1,n

1,n) = (−1)nΘ(1, n | {2, 3 . . . n− 2}) , (A.7)

and ends when H is empty:

Θ (1,ααα, n |∅) =
[
ǫ1 · Fα(2) . . . Fα(n−2) · ǫn

]
PT (1,ααα, n) ααα ∈ S{2...n−2} . (A.8)

We remark here that this recursive expansion holds at the off-shell level, namely, it is an

algebraic identity with no requirement on k, ǫ and σi. In contrary, eq. (A.1) has physical

sense only if we impose the on-shell conditions. Now it is straightforward to check that

eq. (A.7) leads to our proclaimed result eq. (3.15).

B Deriving the YM graphic rules from the EYM expansion

In [15], a set of graphic rules are proposed to evaluate the coefficients Cρρρ(σσσ) in the expansion

of EYM amplitudes in terms of YM ones. Using the notations in the current paper, we

can write the expansion as:

AEYM
s+2,m(1,ααα, n |H) =

∑

σσσ∈SH

∑

γγγ∈ααα σσσ

Cρρρ(σσσ)A
YM
n (1, γγγ, n) , (B.1)

where {1,ααα, n} is a set of s + 2 color ordered gluons and H = {h1, h2 . . . hm} is the set of

gravitons. We first repeat briefly the graphic rules here:

• We treat all the gluons as a single vertex g and draw the increasing trees with respect

to the order:

g ≺ hσ(1) ≺ . . . ≺ hσ(|H|) .

We denote the set of increasing tress as IT (σσσ).
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• The evaluation of each tree is almost the same as Step 3 in section 4, except that

when a path originates from the root g, we close that chain by Yhi(γγγ) at the graviton,

say hi, that is connected to the root. For each γγγ ∈ ααα σσσ, Yhi(γγγ) is the sum of the

gluon momenta coming ahead of hi.

Consequently, if the expression associated with a tree i ∈ IT (σσσ) is T (i,γγγ), we can rewrite

eq. (B.1) as:

AEYM
s+2,m(1,ααα, n |H) =

∑

σσσ∈SH

∑

γγγ∈ααα σσσ

∑

i∈IT (σσσ)

T (i,γγγ)AYM
n (1, γγγ, n) . (B.2)

We emphasize that the structure of T (i,γγγ) only depends on σσσ, while γγγ only determines

the values of Y ’s. Now according to eq. (4.1), we need to fully expand the sum over

permutations and shuffles in the above equation, in order to extract the contribution to a

certain βββ ∈ S{2...n−1}. As a result, we will eliminate the Y ’s in favor of the manifest gluon

momenta. This can be achieved by the following arrangement.

Suppose we have a tree T (i,γγγ) whose root g is connected to r gravitons, we can rewrite

this T as:

1 α(1) α(2)
· · ·

α(s) n

g

h1

B1

hr

Br

· · · · · ·

= T (i,γγγ) =
r∏

s=1

[Bs · Yhs(γγγ)] . (B.3)

In this way, we have singled out the γγγ dependence in the trees. Now we can expand Y for

each γγγ. For simplicity, we only consider two branches. Starting with the branch B2, the

factor (B2 · kα(j)) will appear for all orderings in

{
α(1) . . . α(j), {h2B2} {α(j + 1) . . . α(s)}

}
.

Adding in B1, then we have (B1 · kα(j))(B2 · kα(i)) for all orderings in

{
α(1) . . . α(i), {h1B1}

{
α(i+ 1) . . . α(j), {h2B2} {α(j + 1) . . . α(s)}

}}
. (B.4)

Thus we assign (B1 · kα(i))(B2 · kα(j)) to the tree structure

h1

B1

h2

B2

1 α(1)
· · ·

α(i)
· · ·

α(j)
· · ·

α(s) n

= (B1 · kα(i))(B2 · kα(j)) . (B.5)
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If we start with a spanning tree without specifying gluons and gravitons, then the gluons

can be simply identified as those on the path from the leaf n to the root 1. Thus for

all γγγ in eq. (B.4), the tree (B.5) is an increasing tree. On the other hand, the tree (B.5)

contributes to all γγγ in (B.4). The generalization to more branches are very straightforward:

there are just more levels of shuffles. Actually, such a tree T will contribute to all those βββ

that T ∈ IT (βββ). The algorithm to work out these βββ’s are given in [15].

To wrap up, this calculation derives the rules in Step 1 and Step 2 of section 4 on

how the increasing tree structure and the separation of gluons from gravitons emerge. It

also shows how to close a graviton tree when it lands on a specific gluon, as stated in Step

3 of section 4.

C Explicit five-point DDM form BCJ numerators for YM

In section 4.2, we have calculated nYM(1, {234}, 5). In this appendix, we list all the rest of

the numerators:

nYM(1, {243}, 5) = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k1) + (ǫ1 · F3 · ǫ5)(ǫ4 · F2 · k1)

− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k1)− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k1)

+ (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)

− (ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k4) + (ǫ1 · F2 · F4 · F3 · ǫ5)

− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k4) + (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k4)

− (ǫ1 · ǫ5)(ǫ3 · F2 · k1)(ǫ4 · k1)− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k1)

+ (ǫ1 · F4 · ǫ5)(ǫ3 · F2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ3 · k2)(ǫ4 · k1)

− (ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k2)− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k2)

− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k2) + (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k2) (C.1)

nYM(1, {324}, 5) = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k3) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k3)

− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k1) + (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k3)

− (ǫ1 · ǫ5)(ǫ4 · F2 · k1)(ǫ3 · k1)− (ǫ1 · F2 · F4 · ǫ5)(ǫ3 · k1)

+ (ǫ1 · F2 · ǫ5)(ǫ4 · k2)(ǫ3 · k1) + (ǫ1 · F3 · ǫ5)(ǫ4 · F2 · k1)

− (ǫ1 · ǫ5)(ǫ4 · F2 · F3 · k1) + (ǫ1 · F3 · F2 · F4 · ǫ5)

− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k2) + (ǫ1 · F3 · ǫ5)(ǫ4 · F2 · k3)

− (ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k1)− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k1)

+ (ǫ1 · F2 · ǫ5)(ǫ4 · F3 · k1) + (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k1)
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− (ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k3)− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k3)

− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k3) + (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k3) (C.2)

nYM(1, {342}, 5) = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · F3 · k1)

− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k1) + (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k4)− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k1)

+ (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k4) + (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k4)

− (ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k4) + (ǫ1 · F3 · F4 · F2 · ǫ5)

− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k4) + (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k4)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k3)− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k1)

+ (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k3) + (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k3)

− (ǫ1 · ǫ5)(ǫ4 · F3 · k1)(ǫ2 · k3)− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k3)

− (ǫ1 · F3 · F4 · ǫ5)(ǫ2 · k3) + (ǫ1 · F3 · ǫ5)(ǫ4 · k3)(ǫ2 · k3) (C.3)

nYM(1, {423}, 5) = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k4) + (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k4)

− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k4)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · F2 · k1)− (ǫ1 · F2 · F3 · ǫ5)(ǫ4 · k1)

+ (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k2) + (ǫ1 · F4 · ǫ5)(ǫ3 · F2 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · F2 · k4) + (ǫ1 · F4 · F2 · F3 · ǫ5)

− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k2) + (ǫ1 · F4 · ǫ5)(ǫ3 · F2 · k4)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k1)− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k1)

+ (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k4) + (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k4)− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k4)

− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k4) + (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k4) (C.4)

nYM(1, {432}, 5) = −(ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k1) + (ǫ1 · F2 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)

− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k1) + (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k1)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k3)− (ǫ1 · F3 · F2 · ǫ5)(ǫ4 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k3) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k3)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k3) + (ǫ1 · F4 · F3 · F2 · ǫ5)

− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k3) + (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k3)
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− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k1)(ǫ2 · k4)− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k1)

+ (ǫ1 · F3 · ǫ5)(ǫ4 · k1)(ǫ2 · k4) + (ǫ1 · F4 · ǫ5)(ǫ3 · k1)(ǫ2 · k4)

− (ǫ1 · ǫ5)(ǫ4 · k1)(ǫ3 · k4)(ǫ2 · k4)− (ǫ1 · F4 · F2 · ǫ5)(ǫ3 · k4)

− (ǫ1 · F4 · F3 · ǫ5)(ǫ2 · k4) + (ǫ1 · F4 · ǫ5)(ǫ3 · k4)(ǫ2 · k4) . (C.5)

D Explicit six-point DDM form BCJ numerators for NLSM

In section 5.4, we calculated n(1, {2345}, 6) for NLSM. Now we list all the rest 23 DDM

form numerators evaluated with the reference order ρρρ = {5432}, which are calculated in

the same way:

nNLSM(1, {2354}, 6)=(k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1) + (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k1)

+ (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k2) (D.1)

nNLSM(1, {2435}, 6)=(k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1) + (k5 · k3)(k3 · k4)(k4 · k2)(k2 · k1)

+ (k5 · k4)(k4 · k1)(k3 · k2)(k2 · k1) (D.2)

nNLSM(1, {2453}, 6)=(k5 · k4)(k4 · k1)(k3 · k2)(k2 · k1) (D.3)

nNLSM(1, {2534}, 6)=(k5 · k2)(k2 · k1)(k4 · k3)(k3 · k1) + (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k5)

+ (k5 · k2)(k2 · k1)(k4 · k3)(k3 · k2) (D.4)

nNLSM(1, {2543}, 6)=0 (D.5)

nNLSM(1, {3245}, 6)=(k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1) + (k5 · k4)(k4 · k2)(k2 · k3)(k3 · k1)

+(k5 ·k3)(k3 ·k1)(k4 ·k2)(k2 ·k3)+(k5 ·k2)(k2 ·k1)(k4 ·k3)(k3 ·k1) (D.6)

nNLSM(1, {3254}, 6)=(k5 · k2)(k2 · k1)(k4 · k3)(k3 · k1) + (k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1)

+ (k5 · k3)(k3 · k1)(k4 · k2)(k2 · k3) (D.7)

nNLSM(1, {3425}, 6)=(k5 ·k2)(k2 ·k1)(k4 ·k3)(k3 ·k1)+(k5 ·k2)(k2 ·k4)(k4 ·k3)(k3 ·k1) (D.8)

nNLSM(1, {3452}, 6)=0 (D.9)

nNLSM(1, {3524}, 6)=(k5 · k3)(k3 · k1)(k4 · k2)(k2 · k1) + (k5 · k3)(k3 · k1)(k4 · k2)(k2 · k5)

+ (k5 · k3)(k3 · k1)(k4 · k2)(k2 · k3) (D.10)

nNLSM(1, {3542}, 6)=0 (D.11)

nNLSM(1, {4235}, 6)=(k5 · k4)(k4 · k1)(k3 · k2)(k2 · k1) + (k5 · k3)(k3 · k2)(k2 · k4)(k4 · k1)

+ (k5 · k4)(k4 · k1)(k3 · k2)(k2 · k4) (D.12)

nNLSM(1, {4253}, 6)=(k5 ·k4)(k4 ·k1)(k3 ·k2)(k2 ·k1)+(k5 ·k4)(k4 ·k1)(k3 ·k2)(k2 ·k4) (D.13)

nNLSM(1, {4325}, 6)=(k5 · k2)(k2 · k3)(k3 · k4)(k4 · k1) (D.14)

nNLSM(1, {4352}, 6)=0 (D.15)

nNLSM(1, {4523}, 6)=(k5 · k4)(k4 · k1)(k3 · k2)(k2 · k1) + (k5 · k4)(k4 · k1)(k3 · k2)(k2 · k5)

+ (k5 · k4)(k4 · k1)(k3 · k2)(k2 · k4) (D.16)

nNLSM(1, {4532}, 6)=0 (D.17)

nNLSM(1, {5234}, 6)=nNLSM(1, {5243}, 6) = nNLSM(1, {5324}, 6) = 0 (D.18)

nNLSM(1, {5342}, 6)=nNLSM(1, {5423}, 6) = nNLSM(1, {5432}, 6) = 0 (D.19)
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