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1 Introduction

The study of superconformal symmetry has given invaluable insights into quantum field

theory, and in particular into the nature of strong-coupling dynamics. The presence of

supersymmetry gives us additional analytical tools and allows for computations that are

otherwise hard to perform. A cursory look at the superconformal literature in four dimen-

sions shows a vast number of works on N = 2 and N = 4 superconformal field theories

(SCFTs), with the intermediate case of N = 3 almost absent. The main reason for this

is that, due to CPT invariance, the Lagrangian formulation of any N = 3 theory becomes

automatically N = 4. By now, however, there is a significant amount of evidence that su-

perconformal theories are not restricted to just Lagrangian examples, and this has inspired

recent papers that revisit the status of N = 3 SCFTs.

Assuming these theories exist, the authors of [1] studied several of their properties.

They found in particular that the a and c anomaly coefficients are always the same, that

pure N = 3 theories (i.e., theories whose symmetry does not enhance to N = 4) have no

marginal deformations and are therefore always isolated, and also, in stark contrast with

the most familiar N = 2 theories, that pure N = 3 SCFTs cannot have a flavor symmetry

that is not an R-symmetry. Moreover, since the only possible free multiplet of an N = 3

SCFT is a vector multiplet, the low energy theory at a generic point on the moduli space

must involve vector multiplets, and the types of short multiplets whose expectations values

can parametrize such branches were analyzed in [1]. When an N = 3 vector multiplet

is decomposed in N = 2, it contains both an N = 2 vector and hyper multiplet, which

implies that the theories possess both N = 2 Higgs and Coulomb branches that are rotated

by N = 3.

Shortly after [1], the authors of [2] presented the first evidence for N = 3 theories by

studying N D3-branes in the presence of an S-fold plane, which is a generalization of the

standard orientifold construction that also includes the S-duality group.1 The classification

of different variants of N = 3 preserving S-folds was done in [4], leading to additional N = 3

SCFTs. In [5] yet another generalization was considered, in which in addition to including

the S-duality group in the orientifold construction, one also considers T-duality. This

background is known as a U-fold, and the study of M5-branes on this background leads to

N = 3 theories associated with the exceptional (2, 0) theories.

The systematic study of rank one N = 2 SCFTs (i.e., with a one complex dimensional

Coulomb branch) through their Coulomb branch geometries [6–9] has recovered the known

1N = 3 theories had been proposed in [3] by considering a truncation of type IIB supergravity on

AdS5 × S5.
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N = 3 SCFTs, but also led to new ones [8, 10]. Some of these theories are obtained

by starting from N = 4 SYM with gauge group U(1) or SU(2) and gauging discrete

symmetries, while others correspond to genuine N = 3 SCFTs which are not obtained by

discrete gauging. Note that, as emphasized in [4, 10], gauging by a discrete symmetry does

not change the local dynamics of the theory on R4, only the spectrum of local and non-local

operators. In particular, the central charges and correlation functions remain the same.

Of the class of theories constructed in [4], labeled by the number N of D3-branes and

by integers k, ` associated to the S-fold, some have enhanced N = 4 supersymmetry, or

arise as discretely gauged versions of N = 4. The non-trivial N = 3 SCFT with the

smallest central charge corresponds to the theory labeled by N = 1 and ` = k = 3 in [4],

with central charge given by 15
12 . This corresponds to a rank one theory with Coulomb

branch parameter of scaling dimension three. Since the Coulomb branch operators of

N = 3 theories must have integer dimensions [1], and since theories with a Coulomb

branch generator of dimension one or two enhance to N = 4, it follows that dimension

three is the smallest a genuine N = 3 theory with a Coulomb branch can have, and that

this theory could indeed correspond to the “minimal” N = 3 SCFT. By increasing the

number of D3-branes, higher rank versions of this minimal theory can be obtained . More

generally, the rank N theories with k = `, are not obtained from others by discrete gauging,

and have an N dimensional Coulomb branch.

Since pure N = 3 SCFTs have no relevant or marginal deformations, they are hard

to study by standard field theoretical approaches. Apart from the aforementioned papers,

recent progress in understanding N = 3 theories includes [11–14]. The classification of all

N = 3 SCFTs is not complete yet, and one can wonder if there are theories not arising from

the S-fold (and generalizations thereof) constructions. On the other hand, one would like to

obtain more information on the spectrum of the currently known theories. In this paper we

take the superconformal bootstrap approach to address these questions, and tackle N = 3

SCFTs by studying the operators that parametrize the Coulomb branch. These operators

sit in half-BPS multiplets of the N = 3 superconformal algebra, and when decomposed in

N = 2 language contain both Higgs and Coulomb branch operators. We will mostly focus

on the simplest case of Coulomb branch operators of dimension three.

The bootstrap approach does not rely on any Lagrangian or perturbative description

of the theory. It depends only on the existence of an associative local operator algebra

and on the symmetries of the theory in question, and is therefore very well suited to the

study of N = 3 SCFTs. Since the original work of [15] there have been many papers that

study SCFTs through the lens of the numerical bootstrap [16–30]. A basic requirement

in any superconformal bootstrap analysis is the computation of the superconformal blocks

relevant for the theory in question, although correlation functions of half-BPS operators

in various dimensions have been studied [31–33], the case of N = 3 has not yet been

considered, and calculating the necessary blocks will be one of the goals of this paper. For

literature on superconformal blocks see [31–40].

Also relevant for our work is the information encoded in the 2d chiral algebras associ-

ated to 4d SCFTs [41–55]. The original analysis of [41] implies that any four-dimensional

N > 2 SCFT contains a closed subsector of local operators isomorphic to a 2d chiral al-
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gebra. For N = 3 theories, part of the extra supercharges, with respect to a pure N = 2

theory, make it to the chiral algebra and therefore its symmetry enhances to N = 2 su-

per Virasoro [11]. The authors of [11] constructed a family of chiral algebras conjectured

to describe the rank one N = 3 theories, generalizing these chiral algebras in order to

accommodate the higher-rank cases will be another subject of this work.

The paper is organized as follows. Section 2 studies the two-dimensional chiral algebras

associated with N = 3 SCFTs, determining the N = 3 superconformal multiplets they

capture, and some of their general properties. We then construct a candidate subalgebra

of the chiral algebras for higher rank ` = k = 3 theories. In section 3 we use harmonic

superspace techniques in order to obtain the superconformal blocks that will allow us to

derive the crossing equations for half-BPS operators of section 4. We focus mostly on a

dimension three operator, but also present the dimension two case as a warm-up. Section 5

presents the results of the numerical bootstrap, both for generic N = 3 SCFTs and also

attempting to zoom in to the simplest known N = 3 theory by inputting data from

the chiral algebra analysis of section 2. We conclude with an overview of the paper and

directions for future research in section 6.

2 N = 3 chiral algebras

Every 4d N > 2 SCFT contains a protected sector that is isomorphic to a 2d chiral

algebra, obtained by passing to the cohomology of a nilpotent supercharge [41]. Because

N = 3 is a special case of N = 2, one can also study chiral algebras associated to N = 3

SCFTs. This program was started for rank one theories in [11], and here we explore possible

modifications such that one can describe higher-rank cases as well. We will put particular

emphasis on theories containing a Coulomb branch operator with scaling dimension three,

since these are the correlators we will study numerically in section 5. We propose a set of

generators that, under certain assumptions, describes a closed subalgebra of theories with

a dimension three Coulomb branch operator, and write down an associative chiral algebra

for them. Associativity fixes all OPE coefficients in terms of a single parameter: the central

charge of the theory.

In order to do this we will need extensive use of the representation theory of the N = 3

superconformal algebra; this was studied in [1, 56–60] and is briefly reviewed in appendix A.

We will also leverage previous knowledge of chiral algebras for N = 2 SCFTs, and so it will

be useful to view N = 3 theories from an N = 2 perspective. Therefore, we will pick an

N = 2 subalgebra ofN = 3, with the SU(3)R×U(1)r R-symmetry of the latter decomposing

in SU(2)RN=2
× U(1)rN=2 × U(1)f . The first two factors make up the R-symmetry of the

N = 2 superconformal algebra and the last corresponds to a global symmetry. Therefore,

from the N = 2 point of view, all N = 3 theories necessarily have a U(1)f flavor symmetry

arising from the extra R-symmetry currents. The additional supercharges and the U(1)f
flavor symmetry imply that the Virasoro symmetry expected in chiral algebras of N = 2

theories algebras will be enhanced to a super Virasoro symmetry in the N = 3 case [11].

Let us start reviewing the essentials of the chiral algebra construction (we refer the

reader to [41] for more details). The elements of the protected sector are given by the

– 3 –
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cohomology of a nilpotent supercharge Q that is a linear combination of a Poincaré and a

conformal supercharge,

Q = Q1
− + S̃2 −̇ . (2.1)

In order to be in the cohomology operators have to lie on a fixed plane R2 ⊂ R4. The

global conformal algebra on the plane sl(2)× s̄l(2) is a subalgebra of the four-dimensional

conformal algebra. While the generators of the sl(2) commute with (2.1), those of s̄l(2) do

not, and an operator in the cohomology at the origin will not remain in the cohomology if

translated by the latter. However, it is possible to introduce twisted translations obtained

by the diagonal subalgebra of the s̄l(2) and a complexification, sl(2)R, of the R-symmetry

algebra su(2)R, such that the supercharge satisfies

[Q, L0] = 0 , [Q,S−1 + Q̃2−̇] = 2L̂0 ,

[Q, L+1] = 0 , [Q,S−2 ] = L̂+1 ,

[Q, L−1] = 0 , [Q, Q̃1 −̇] = L̂−1 ,

(2.2)

where L0 and L±1 denote the generators of sl(2) and L̂0 and L̂±1 those of diag(s̄l(2) ×
sl(2)R). From these relations one can prove that Q-closed operators restricted to the plane

have meromorphic correlators. We call the operators that belong to the cohomology of Q

“Schur” operators. The Schur operators in N = 2 language are local conformal primary

fields which obey the conditions

∆− (j + ̄)− 2RN=2 = 0 , ̄− j − rN=2 = 0 . (2.3)

The cohomology classes of the twisted translations of any such operator O corresponds to

a 2d local meromorphic operator

O(z) = [O(z, z̄)]
Q
. (2.4)

The two important Schur operators that we expect to have in any N = 2 theory with a

flavor symmetry are2

• Ĉ0(0,0): the highest-weight component of the SU(2)RN=2
current (with charges ∆ =

3, j = ̄ = 1
2 , RN=2 = 1, rN=2 = 0) corresponding to the 2d stress tensor T (z).

• B̂1: the highest-weight component J11 of the moment map operator (∆ = 2, j =

̄ = 0, RN=2 = 1 and rN=2 = 0) that is mapped to the affine current J(z) of the

flavor group.

These two Schur operators give rise to a Virasoro and an affine symmetry in the chiral

algebra respectively, with the two-dimensional central charges obtained in terms of their

four-dimensional counterparts by

c2d = −12c4d , k2d = −k4d

2
. (2.5)

2We follow the conventions of [61] for N = 2 superconformal multiplets.
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Note that, since we insist on having unitarity in the four-dimensional theory, the 2d chiral

algebra will be necessarily non-unitary.

The chiral algebra description of a protected subsector is extremely powerful. By

performing the twist of [41] on a four-dimensional correlation function of Schur operators,

we are left with a meromorphic 2d correlator that is completely determined by knowledge

of its poles and residues. The poles can be understood by taking various OPE limits,

thus fixing the correlator in terms of a finite number of parameters corresponding to OPE

coefficients. In the cases we will study in this paper (see for example subsection 4.2.1), the

meromorphic piece can be fixed using crossing symmetry in terms of a single parameter,

which can be identified with the central charge of the theory. Let us emphasize that this

can be done without knowledge of which particular chiral algebra is relevant for the SCFT

at hand.

2.1 Generalities of N = 3 chiral algebras

Let us now study the N = 3 case in more detail. Any local N = 3 SCFT will necessarily

contain a stress tensor multiplet, which in table 8 corresponds to B̂[1,1]. After an N = 2

decomposition of this multiplet (shown in (A.1)) one finds four terms, each contributing

with a single representative to the chiral algebra. These four multiplets are related by

the action of the extra supercharges enhancing N = 2 to N = 3, and four of these

(Q3
+ and Q̃3 +̇ and their conjugates) commute with Q [11]. Therefore, acting on Schur

operators with these supercharges produces new Schur operators, and the representatives

of the four multiplets will be related by these two supercharges. The multiplets and their

representatives are:

• A multiplet containing the U(1)f flavor currents (B̂1), whose moment map M IJ gives

rise to a two-dimensional current J(z) = [M(z, z̄)]
Q

of an U(1)f affine Kac-Moody

(AKM) algebra,

• Two “extra” supercurrents, responsible for the enhancement to N = 3, con-

tribute as operators of holomorphic dimension 3
2 . These are obtained from the mo-

ment map by the action of the supercharges G(z) =
[
Q3

+M(z, z̄)
]
Q

and G̃(z) =[
Q̃3 +̇M(z, z̄)

]
Q

[11].3

• The stress-tensor multiplet (Ĉ0,(0,0)) which gives rise to the stress tensor of the chiral

algebra T (z) = 1
2

[[
Q3

+, Q̃3 +̇

]
M(z, z̄)

]
Q

[11].

The supercharges Q3
+ and Q̃3 +̇ have charges ±1 under the U(1)f flavor symmetry, where

we follow the U(1)f charge normalizations of [11]. Therefore the operators G(z) and G̃(z)

have a J charge of +1 and −1 respectively. This multiplet content is exactly the one

we would expect from the considerations in the beginning of this section, with the extra

supercharges, that commute with Q, producing a global d = 2, N = 2 superconformal

3These arise from N = 2 multiplets D 1
2

(0,0)
and D 1

2
(0,0)

respectively in the notation of [61].
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symmetry.4 Moreover, the operator content we just described corresponds precisely to the

content of an N = 2 stress tensor superfield which we denote by J , enhancing the Virasoro

algebra to an N = 2 super Virasoro algebra [11].

2.1.1 N = 3 superconformal multiplets containing Schur operators

Our next task is to understand which multiplets of the N = 3 superconformal al-

gebra contribute to the chiral algebra, aside from the already discussed case of the

stress-tensor multiplet.

Instead of searching for superconformal multiplets that contain conformal primaries

satisfying (2.3), we will take advantage of the fact that this was already done in [41] for N =

2 multiplets, and simply search for N = 3 multiplets that contain N = 2 Schur multiplets.

To accomplish this, we decompose N = 3 multiplets in N = 2 ones by performing the

decomposition of the corresponding characters. In appendix A we present a few examples

of such decompositions. Going systematically through the multiplets,5 we find the following

list of N = 3 Schur multiplets:

Ĉ[R1,R2],(j,̄)|Schur = u
R2−R1+2(̄−j)
f

[
ĈR1+R2

2 ,(j,̄)
⊕ u−1

f ĈR1+R2
2 ,(j,̄+

1
2 )
⊕ uf ĈR1+R2

2 ,(j+
1
2 ,̄)

⊕ ĈR1+R2
2 ,(j+

1
2 ,̄+

1
2 )

]
, (2.6)

B̂[R1,R2]|Schur = uR2−R1
f

[
B̂R1+R2

2
⊕ u−1

f DR1+R2−1
2 ,(0,0)

⊕ uf DR1+R2−1
2 ,(0,0)

⊕ ĈR1+R2−2
2 ,(0,0)

]
, for R1R2 6= 0 , (2.7)

B̂[R1,0]|Schur = u−R1
f

[
B̂R1

2
⊕ ufDR1−1

2 ,(0,0)

]
, (2.8)

B̂[0,R2]|Schur = uR2
f

[
B̂R2

2
⊕ u−1

f DR2−1
2 ,(0,0)

]
, (2.9)

D[R1,R2],̄|Schur = uR2−R1+2̄+2
f

[
DR1+R2

2 ,(0,̄)
⊕ u−1

f DR1+R2
2 ,(0,̄+

1
2 )
⊕ uf ĈR1+R2−1

2 ,(0,̄)

⊕ ĈR1+R2−1
2 ,(0,̄+

1
2 )

]
for R1 > 0 , (2.10)

D[R1,R2],j |Schur = uR2−R1−2j−2
f

[
DR1+R2

2 ,(j,0)
⊕ u−1

f ĈR1+R2−1
2 ,(j,0)

⊕ ufDR1+R2
2 ,(j+

1
2 ,0)

⊕ ĈR1+R2−1
2 ,(j+

1
2 ,0)

]
for R2 > 0 , (2.11)

4The holomorphic sl(2) that commutes with the supercharge Q, more precisely the Q-cohomology of the

superconformal algebra, is enhanced to a sl(2|1).
5One can quickly see that in table 8 multiplets that obey no N = 3 shortening conditions on the one

of the sides also obey no N = 2 shortening condition on one of the sides, and these are known [41] not to

contain Schur operators. Therefore we must go only through the multiplets that obey shortening conditions

on both sides.
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D[0,R2],̄|Schur = uR2+2̄+2
f

[
DR2

2 ,(0,̄)
⊕ u−1

f DR2
2 ,(0,̄+

1
2 )

]
, (2.12)

D[R1,0],j |Schur = u−R1−2j−2
f

[
DR1

2 ,(j,0)
⊕ ufDR1

2 ,(j+
1
2 ,0)

]
. (2.13)

Let us stress again that we are not showing the full decomposition in N = 2 multiplets, but

only the Schur multiplets. In performing the decompositions we kept the grading of the

N = 2 multiplets with respect to the U(1)f flavor symmetry, denoting the corresponding

fugacity by uf .

Some noteworthy multiplets in this list are the stress-tensor multiplet B̂[1,1], already

discussed in the beginning of this subsection, as well as the half-BPS operators B̂[R1,0]

(and their conjugates B̂[0,R1]) which are connected to the Coulomb branch, as discussed in

section 1. Due to their physical significance we present their full decomposition in N = 2

multiplets in A.1 and A.2. As described in [59], there are no relevant Lorentz invariant

supersymmetric deformations of N = 3 theories, while the only such deformations that

are exactly marginal are contained in the multiplet B̂[2,0] (and conjugate B̂[0,2]). However,

these multiplets also contain additional supersymmetry currents, as can be seen from their

N = 2 decomposition, that allow for the enhancement of N = 3 to N = 4, and thus pure

N = 3 theories are not expected to have exactly marginal operators. Let us also recall that

the multiplets Ĉ[0,0],(j,̄) contain conserved currents of spin larger than two, and therefore

are expected to be absent in interacting theories [62, 63].

Quasi-primaries and Virasoro primaries. Each of the N = 2 multiplets listed above

will contribute to the chiral algebra with exactly one global conformal primary (also called

quasi-primary), with holomorphic dimension as given in table 1 of [41] and with U(1)f
charge f , under the J(z) current, as can be read off from the uf fugacity in the above

decompositions. These multiplets generically will not be Virasoro primaries. Only the so-

called Hall-Littlewood (HL) operators6 (B̂R, DR,(j,0) and DR,(0,̄)) are actually guaranteed

to be Virasoro primaries. The remaining multiplets will appear in the chiral algebras

sometimes as Virasoro primaries, sometimes only as quasi-primaries.

Super Virasoro primaries. Similarly, each N = 3 multiplet gives rise in the chiral

algebra to a global supermultiplet consisting of a global superprimary and its three global

superdescendants obtained by the action of Q3
+ and Q̃3 +̇.7 Generically however, these

multiplets will not be super Virasoro primaries, even if the global superprimary corresponds

to a Virasoro primary. Recall that a super Virasoro primary must, in addition to being a

Virasoro primary, have at most a pole of order one in its OPE with both G(z) and G̃(z),

and have at most a singular term of order one in the OPE with J(z).8 This last condition

corresponds to being an AKM primary.

6Following [41] we refer to operators which are N = 1 chiral and satisfy the Schur condition as Hall-

Littlewood operators.
7Recall that the global superprimary is annihilated only by the G 1

2

, G̃ 1
2

, L1 modes of G(z), G̃(z), T (z),

and global super descendants are obtained by the action of G
− 1

2

and G̃
− 1

2
8These conditions translate into the following modes annihilating the superprimary state: Ln>0,

G
n>+

1
2

, G̃
n>+

1
2

and Jn>0.
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Let us consider the operators which have as a global superprimary a Virasoro primary.

For the case of B̂[R1,R2] multiplets, we see that its two (or one in case R1R2 = 0) level 1
2

descendants are HL operators, and thus Virasoro primaries. The two-dimensional super-

conformal algebra then implies that the global superprimary is not only a Virasoro primary,

but that it is also annihilated by all the modes G
n>+

1
2
, G̃

n>+
1
2
. However, this is not enough

to make it a super Virasoro primary, as it is not guaranteed that these operators are AKM

primaries. An obvious example is the stress tensor multiplet B̂[1,1], where the AKM current

is clearly not an AKM primary. Similar considerations apply to D[R1,R2],̄ multiplets, with

the subtlety that even though one of its level 1
2 descendants is not a HL operator, it is still

a Virasoro primary [11].

In certain cases it is possible to show that the operators in question are actually

super Virasoro primaries, and concrete examples will be given below. For example, if one

considers a B̂[R1,R2] generator that is not the stress tensor multiplet, then the OPE selection

rules for the N = 2 B̂R1+R2
2

multiplet [64] imply it is also an AKM primary [43].

Chiral and anti-chiral operators. Finally we note that the multiplets in (2.8) and (2.9)

give rise, in two dimensions, to anti-chiral and chiral operators: they are killed by Q̃3 +̇ and

Q3
+ respectively. These two-dimensional superfields have holomorphic dimension satisfying

h = R2
2 = −f

2 and h = R1
2 = f

2 respectively.

2.2 [3, 0] chiral algebras

We are now in a position to describe the general features of the chiral algebras associated

to the known N = 3 theories. We will describe the chiral algebra in terms of its generators,

by which we mean operators that cannot be expressed as normal-ordered products and/or

(super)derivatives of other operators. In what follows we assume the chiral algebra to be

finitely generated. Although there is yet no complete characterization of what should be

the generators of the chiral algebra of a given four-dimensional theory, it was shown in [41]

that all generators of the HL chiral ring are generators of the chiral algebra. Moreover, the

stress tensor is always guaranteed to be present and, with the exception of cases where a

null relation identifies it with a composite operator, it must always be a generator. However

this is not necessarily the complete list, and indeed examples with more generators than

just the above have been given in [41, 43].9 The chiral algebras associated to 4d SCFTs

do not always correspond to known examples in the literature, and in such situations one

must construct a new associative two-dimensional chiral algebra. This problem can be

bootstrapped by writing down the most general OPEs for the expected set of generators

and then imposing associativity by solving the Jacobi identities. Chiral algebras are very

rigid structures and in the cases so far considered [11, 43], the Jacobi identities are powerful

enough to completely fix all OPE coefficients, including the central charges.

Rank one chiral algebras. In [11], the authors assumed that the only generators of the

chiral algebras corresponding to the rank one N = 3 SCFTs described in section 1 (with

9One possible way to determine which generators a given chiral algebra should have is through a Schur

index [58, 65–67] analysis, as done in [41, 43].
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k = `, N = 1) were the stress tensor and the generators of its Higgs branch:

B̂[1,1] , B̂[`,0] , B̂[0,`] , ` = 3, 4 . (2.14)

Recall the first multiplet gives rise, in two dimensions, to the stress tensor multiplet, and

the last two to anti-chiral and chiral operators respectively. With these assumptions they

were able to write an associative chiral algebra for the cases ` = 3, 4 only for a single

central charge for the first case and a finite set of values for the second. This set was

further restricted to the correct value expected for the known N = 3 theories

c4d = a4d =
2`− 1

4
, (2.15)

by imposing the expected Higgs branch chiral ring relation

B̂[`,0]B̂[0,`] ∼
(
B̂[1,1]

)`
, (2.16)

which appears as a null state in the chiral algebra. Note that above, by abuse of notation,

we denoted the Higgs branch chiral ring operator by the superconformal multiplet it belongs

to. Associativity then fixes all other OPE coefficients of the chiral algebra. The authors

of [11] were also able to construct an associative chiral algebra for ` = 5 and ` = 6 satisfying

the Higgs branch relation if the central charge is given by (2.15). However, as they point

out, ` = 5 does not correspond to an allowed value for an N = 3 SCFTs, as five is not

an allowed scaling dimension for the Coulomb branch of a rank one theory, following from

Kodaria’s classification of elliptic surfaces (see, e.g., [6, 11]). The case ` = 6 is in principle

allowed, however no such N = 3 theory was obtained in the S-fold constructions of [4].10

Higher rank theories. We now attempt to generalize the chiral algebras of [11] to the

higher-rank case (with k = `, N > 1). In particular, we focus on the theories whose

lowest dimensional generator corresponds to a B̂[3,0] and its conjugate, since these are the

ones relevant for the following sections. To compute OPEs and Jacobi identities we will

make extensive use of the Mathematica package [68]. Following its conventions, we use the

two-dimensional N = 2 holomorphic superspace with bosonic coordinate z and fermionic

coordinates θ and θ̄, and define the superderivatives as

D = ∂θ −
1

2
θ̄∂z , D̄ = ∂θ̄ − 1

2θ∂z . (2.17)

We will denote the two-dimensional generators arising from the half-BPS Higgs branch

generators B̂[0,3] (B̂[3,0]) by W (W̄).11 Furthermore, we denote the two-dimensional super-

field arising from the stress tensor (B̂[1,1]) by J . The OPE of J with itself is fixed by

superconformal symmetry,

J (Z1)J (Z2) ∼ c2d/3 + θ12θ̄12J
Z2

12

+
−θ12DJ + θ̄12D̄J + θ12θ̄12∂J

Z12
, (2.18)

10We emphasize that the existence of a two-dimensional chiral algebra does not imply that there exists

a four-dimensional theory that gives rise to it. In fact it is still not clear what are the sufficient conditions

for a chiral algebra to correspond to a physical four-dimensional theory.
11Note that in [68] what is called chiral primary is what we call anti-chiral primary, e.g., W̄ which obeys

DW̄ = 0.
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where we defined

Zij = z1 − z2 +
1

2

(
θ1θ̄2 − θ2θ̄1

)
, θ12 = θ1 − θ2 , θ̄12 = θ̄1 − θ̄2 . (2.19)

The OPEs of J with W and W̄, given in (B.1), are fixed by demanding that these two

operators be super Virasoro primaries. As discussed in the previous subsection, W and W̄
could fail to be super Virasoro primaries only if their global superprimary (arising from

an N = 2 B̂3/2) failed to be an AKM primary. However, since we are assuming the B̂3/2

multiplet to be a generator, and since the AKM current comes from a B̂1 N = 2 multiplet,

it is clear from the selection rules of N = 2 B̂R operators [64] that these must be AKM

primaries.

The self OPEs of the chiral (anti-chiral) W (W̄) superfields are regular, which is

consistent with the N = 3 OPE selection rules shown in 3.22. For WW̄ the most general

OPE in terms of all of the existing generators is [11]

W(Z1)W̄(Z2) ∼
2∑

h=0

1

Z3−h
12

(
3− h

2

θ12θ̄12

Z12
+ 1 + θ12D

)
λOhOh , (2.20)

where the sum runs over all uncharged operators, including composites and (su-

per)derivatives.

The authors of [11] showed that, considering just these three fields as generators, one

finds an associative chiral algebra only if c2d = −15, which indeed corresponds to the

correct value for the simplest known non-trivial N = 3 SCFT (k = ` = 3 and N = 1 in

the notation of [4]). However, there are higher rank versions of this theory (k = ` = 3 and

N > 1), that contain these half-BPS operators plus higher-dimensional ones. The list of

half-BPS operators is [4]

B̂[0,R] , B̂[R,0] , with R = 3, 6, . . . , 3N , (2.21)

giving rise in two dimensions to additional chiral and antichiral operators with charges

f = ±6, . . . ± 6N , and holomorphic dimension h = |f |/2. One can quickly see that the

extra generators never appear in the OPEs of W, W̄,J , as the only OPE not fixed by

symmetry is the WW̄, and U(1)f charge conservation forbids any of the B̂[R,0] with R > 6

to appear. If the generators of the chiral algebras of higher rank theories corresponded

only to the half-BPS operators plus the stress tensor, then we would reach a contradiction:

W, W̄,J would form a closed subalgebra of the full chiral algebra, but the central charge

would be frozen at c2d = −15, which is not the correct value for rank greater than one.

To resolve this contradiction we must allow for more generators in the higher-rank

case, and at least one of these must be exchanged in the WW̄ OPE. The only freedom in

this OPE is to add an uncharged dimension two generator. From the OPE selection rules

shown in 3.21 one can see that this operator must correspond to a B̂[2,2]. There is another

possibility, namely a Ĉ[0,0],0 multiplet, but in four dimensions it contains conserved currents

of spin greater than two, which should be absent [62, 63] in interacting theories such as the

ones we are interested in. The minimal resolution is to add the generator corresponding

to B̂[2,2]. We then assume that the generators of the chiral algebra associated with the

` = k = 3 theories with N > 1 are
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• The stress tensor J ,

• (Anti-)chiral operators arising from the generators of the Coulomb branch operators

B̂[0,R] (B̂[R,0]) with R = 3, 6, . . . , 3N ,

• A generator corresponding to B̂[2,2] which we denote by U .

As before we denote by W and W̄ the generators arising from B̂[0,3] and its conjugate.12

Even though examples are known where the number of generators not arising from gener-

ators of the HL ring grows with the number of HL generators [43], the addition of a single

operator U is the minimal modification that unfreezes the value of the central charge.

We can now proceed to write down the most general OPEs, it is easy to check that in

the ones involving

J , W , W̄ , and U , (2.22)

the operators in (2.21) with R > 6 cannot be exchanged. Therefore, if our assumption

above is correct, the generators in (2.22) form a closed subalgebra.

In what follows we write down the most general ansatz for the OPEs of these operators

which, as explained above, are all super Virasoro primaries with the exception of J . The

regularity of the self OPEs of W and W̄ follows simply from OPE selection rules, while the

OPE between W and W̄ is given by (2.20), allowing for the exchange of U as well. The

OPEs involving U are quite long and therefore we collect them in appendix B. Imposing

Jacobi identities we were able to fix all the OPE coefficients in terms of a single coefficient:

the central charge. In our construction we did not need to impose null states for closure of

the algebra.

2.3 Fixing OPE coefficients

In the next sections we will study numerically the complete four-point function of two B̂[3,0]

and two B̂[0,3] operators, thanks to the chiral algebra we can compute the OPE coefficients

of all operators appearing in the right hand side of theWW̄ OPE. However, we still need to

identify the four-dimensional superconformal multiplet that each two-dimensional operator

corresponds to. Let us start by examining the low dimensional operators appearing in this

OPE: we can write all possible operators with a given dimension that can be made out

of the generators by normal ordered products and (super) derivatives. Furthermore, they

must be uncharged, since the product WW̄ is. All in all we find the following list:

Dimension Operators

0 Identity

1 J
2 U , JJ , DD̄J , J ′

3 WW̄, JDD̄J , J ′′, J ′J , JJJ , DD̄J ′, DJ D̄J , DD̄U , JU , U ′

. . . . . .

12The fact that we do not allow for any other operator of dimension one (or smaller) prevents the

symmetry of the chiral algebra from enhancing to the small N = 4 superconformal algebra one gets from 4d

N = 4 theories, thereby excluding N = 4 solutions from our analysis. And by not allowing for additional

dimension 3/2 generators we also exclude discretely gauged versions of N = 4.
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From these operators we are only interested in the combinations that are global superpri-

mary fields, as the contributions of descendants will be fixed from them.13 Note also that,

if we are interested in the four point function of 〈WW̄WW̄〉, we only see, for the exchange

of an operator of a given dimension, a sum of the contributions of all global primaries, and

we cannot distinguish between individual fields.

At dimension h = 1 there is only one operator — the superprimary of the stress-tensor

multiplet — and its OPE coefficient squared can be computed to be (after normalizing

the identity operator to appear with coefficient one in the four-point function decomposi-

tion, and normalizing the J two-point function to match the normalization for the blocks

(g2d N=2, see (3.26)) that we use in the following sections)

∣∣λWW̄J ∣∣2 = − 27

c2d
. (2.23)

This does not depend on the particular chiral algebra at hand, as the OPE coefficient with

which the the current J is exchanged, is totally fixed in terms of their charge f and the

central charge. As we will show in 4.2.1, the two-dimensional correlation function of the two

W and two W̄, is fixed in terms of one parameter which we take to be the OPE coefficient

of J , and thus related to c2d. This implies that, for the exchange of operators of dimension

larger than one, any sum of OPE coefficients corresponds to a universal function of c2d.

At dimension h = 2 we find two global superprimaries, one corresponding to U itself,

and the other containing JJ . From the four-dimensional OPE selection rules, shown

in (3.21), it follows that both superprimaries must correspond to B̂[2,2] supermultiplets in

four dimensions, as the only other option is Ĉ[0,0],0 which should be absent in interacting

theories. This means that, even from the point of view of the four-dimensional correlation

function, these two operators are indistinguishable. Thus, all we can fix is the sum of two

OPE coefficients squared:

∣∣λWW̄U ∣∣2 +
∣∣λWW̄(JJ )

∣∣2 = − 18

c2d
, (2.24)

where we used the same normalizations as before, and fixed an orthonormal basis for the

operators. This number is again independent of the particular details of the chiral algebra:

it only requires the existence of W, W̄ and J .

At dimension h = 3, we find four global superprimaries made out of the fields listed

above, three of which are Virasoro primaries. In this case, however, these three different

operators must belong to two different types of four-dimensional multiplets (once again we

are excluding the multiplet containing higher-spin currents). Namely, they must correspond

to B̂[3,3] and Ĉ[1,1],0, and distinguishing them from the point of view of the chiral algebra

is hard. The two-dimensional operators arising from B̂[3,3] are guaranteed to be Virasoro

primaries, while those of Ĉ[1,1],0 could be or not. Assuming that all Virasoro primaries

come exclusively from B̂[3,3] we can compute the OPE coefficient with which this multiplet

13Note that this is only true because W and W̄ are chiral and anti-chiral, and therefore their three-point

function with an arbitrary superfield has a unique structure, being determined by a single number.
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is exchanged by summing the squared OPE coefficients of all Virasoro primaries

3∑
i=1

∣∣λJJViri, h=3

∣∣2 =
2(c2d(5c2d + 127) + 945)

5c2d(2c2d + 13)
. (2.25)

We can take the large c4d = − c2d
12 limit, where the solution should correspond to generalized

free field theory. In this case we can find from the four-point function given in appendix C.2

that the OPE coefficient above should go to 1, and indeed this is the case. We could also

have assumed that different subsets of the three Virasoro primaries correspond to B̂[3,3].

Not counting the possibility used in (2.25), there is one possibility which does not have the

correct behavior as c4d →∞, and two that have:

2∑
i=1

∣∣λJJViri, h=3

∣∣2 =
351378− 10c2d(c2d(c2d(c2d + 22)− 260)− 8430)

(c2d − 1)c2d(2c2d + 13)(12− 5c2d)
, (2.26)

3∑
i=2

∣∣λJJViri, h=3

∣∣2 =
2(c2d + 15)(c2d(c2d(5c2d + 37) + 39) + 4482)

5(c2d − 1)c2d(c2d + 6)(2c2d − 3)
. (2.27)

We can now also compute for each of the above cases the OPE coefficient of the Ĉ[1,1],0

multiplet, and we find that only (2.25) and (2.27) are compatible with 4d unitarity (the

precise relation between 2d and 4d OPE coefficients is given by (4.20)).

If we now go to higher dimension, the list of operators keeps on growing, and their

four-dimensional interpretation is always ambiguous. A dimension h global superprimary

can either be a Ĉ[2,2],h−4 or a Ĉ[1,1],h−3 four-dimensional multiplet, and in this case there

does not seem to be an easy way to resolve the ambiguity.14

Rank one case. Let us now comment on what happens for the case of the rank one

theory, where c2d = −15 and the extra generator U is absent. In this case we find a single

(non-null) Virasoro primary at dimension three.15 This implies that either there is no B̂[3,3]

multiplet and that the OPE coefficient is zero, or, which seems like a more natural option,

that the Virasoro primary corresponds to this multiplet, with OPE coefficient∣∣λJJVirh=3

∣∣2 =
22

85
. (2.28)

The above corresponds to setting c2d = −15 in both (2.25) and (2.26), as expected since for

this value the extra generator is not needed and decouples. The possibility that there is no

B̂[3,3] multiplet in the rank one theory and thus that the OPE coefficient is zero corresponds

to the c2d = −15 case of (2.27). If this last possibility were true, then we would have that

the operatorWW̄ ∼ J 3 is not in the Higgs branch, since Higgs branch operators correspond

to B̂R multiplets in N = 2 language. Hence, there would be a relation setting J 3 = 0 in

the Higgs branch, which does not seem plausible. In any case, we will allow for (2.27) for

14One possibility would be to find two sets of OPEs such that in each set, one of the above multiplets is

forbidden to appear by selection rules.
15There is another Virasoro primary, which is a composite operator that is null for this central charge.

This null corresponds precisely to the Higgs branch relation of the form WW̄ ∼ JJ 3 described in [11].
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G(+,0) G(0,+) G(0,0) G(−,0) G(0,−)

g ◦ (X+, V ) (X++bV , V ) (X+, V + b̄) (AX+, V )D−1 (X+, V +c̄X+) (X+, V )h̄

g ◦ (X−, V ) (X−, V + b) (X−−V b̄, V ) A(X−D
−1, V ) h(X−, V ) (X−, V −X−c)

Table 1. We used the definitions h := (13 + V c̄)−1 and h̄ := (13 + cV )−1. The transformations

corresponding to G(+,+), G(−,−) are generated by the ones above. For convenience we give the

explicit form of special superconformal transformations G(−,−): (X+, V ) 7→ (X+, V )(1 + CX+)−1

and (X−, V ) 7→ (1 +X−C)−1(X−, V ).

generic values of the central charge. It might be possible to select among the two options

((2.25) and (2.27)) by making use of the considerations in [69] about recovering the Higgs

branch out of the chiral algebra, but we leave this for future work.

3 Superblocks

In this section we will use harmonic superspace techniques in order to study correlation

functions of half-BPS operators. We will follow closely [40, 70], where a similar approach

was used to study correlation functions in several superconformal setups.

3.1 Superspace

We introduce the superspace M as a coset M ' SL(4|3)
/
G≤0. Here, the factor G≤0

corresponds to lower triangular block matrices with respect to the decomposition given

in (3.1) below. We take E(p) ∈ G>0 as coset representative explicitly given by

E(p) := exp

0(2|1) V X

0 0 V

0 0 0(2|1)

 =

1(2|1) V X+

0 1 V

0 0 1(2|1)

 , (3.1)

where

X =

(
xαα̇ λα

πα̇ y

)
, V =

(
θα

v

)
, V =

(
θ̄α̇ v̄

)
. (3.2)

In the above, α ∈ {1, 2}, α̇ ∈ {1, 2} are the familiar Lorentz indices and the coordinates

{λα, πα̇, θα, θ̄α̇} are fermionic, while the y, v, v̄ are bosonic R-symmetry coordinates. The

action of SL(4|3) on this superspace follows from the coset construction and is summarized

in table 1. Notice that SL(4|3) acts invariantly within the superspaces M+, M− with

coordinates {X+, V }, {X−, V } respectively, where we have defined X± = X ± 1
2V V . The

basic covariant objects extracted from the invariant product E(p2)−1E(p1) are

X1̄2 := X+,1 −X−,2 − V2V 1 , V12 := V1 − V2 , V 12 := V 1 − V 2 . (3.3)

We also define X21̄ := −X1̄2.
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Superfields for superconformal multiplets. The supermultiplets B̂[R1,R2] correspond

to “scalar” superfields on M . Among them, as discussed in the previous section, the ones

with R1R2 = 0 are special in the sense that they satisfy certain chirality conditions. We call

chiral (anti-chiral) a superfield that depends only on the coordinates {X−, V } ({X+, V }).16

Within this terminology, the operators B̂[0,R] are chiral while the B̂[R,0] are antichiral. More

general supermultiplets can be described as superfields on M with SL(2|1)×SL(2|1) indices

which extend the familiar Lorentz indices. We will not need to develop the dictionary

between N = 3 superconformal representations and SL(2|1) × SL(2|1) × GL(1) × GL(1)

induced representations in this work and thus leave it for the future.

Remark 1. The subspace MN=2 corresponding to setting V = V = 0 is acted upon by

the N = 2 superconformal group SL(4|2). The corresponding superspace is well known,

see e.g. [38]. The superfields corresponding to the N = 3 supermultiplets B̂[R1,R2] reduce to

the N = 2 supermultiplet B̂ 1
2

(R1+R2) when restricted to the superspace MN=2. The other

operators in the decomposition of B̂[R1,R2] in N = 2 supermultiplets, see (A.1), (A.2),

roughly corresponds to the expansion of the superfield in V and V . There is also an N = 1

subspace MN=1 , which is not a subspace of MN=2, defined by setting λα, πα̇, v, v̄ to zero.

An SL(4|1)× SL(2) subgroup of SL(4|3) acts on MN=1. This observation will be useful in

the derivation of the superconformal blocks in section 3.4.

Examples of two- and three-point functions. We denote superfields and supermulti-

plets in the same way. Let us list some relevant examples of two- and three-point functions

of B̂-operators of increasing complexity:

〈B̂[R1,R2](1)B̂[R3,R4](2)〉 = δR1,R4δR2,R3(2̄1)R1 (1̄2)R2 , (3.4)

〈B̂[0,R](1)B̂[R,0](2)B̂[S,S](3)〉 = (2̄1)R−S ((2̄3)(3̄1))S , (3.5)

〈B̂[0,R](1)B̂[0,R](2)B̂[R1,R2](3)〉 = δR1,2R δR2,0 ((3̄1)(2̄1))R , (3.6)

〈B̂[R,R](1)B̂[R,R](2)B̂[R,R](3)〉 = ((2̄1)(3̄2)(1̄3))R PR(C) , (3.7)

where we have defined

(1̄2) :=
1

sdet(X1̄2)
, C :=

(3̄1)(1̄2)(2̄3)

(2̄1)(3̄2)(1̄3)
. (3.8)

In (3.5) superspace analyticity implies that S ≤ R and that the correlation function van-

ishes otherwise. Similarly, in (3.7), C is a superconformal invariant and superspace analytic-

ity implies that PR(C) is a polynomial of degree R in C. Since the three operators are iden-

tical, one further imposes Bose symmetry which translates to PR(x) = xRPR(x−1). Equa-

tion (3.7) specialized to the case R = 1 corresponds to the three-point function of the stress-

tensor supermultiplet B̂[1,1] and the argument above implies that P1(x) = const× (1 + x).

This provides a quick proof of the fact that for N = 3 superconformal theories one has the

relation a = c as first derived in [1].

16This is not the standard terminology for chiral superfields in N -extended superspace. We hope this

will not cause any confusion to the reader.
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Let us consider the three-point functions relevant for the non-chiral OPE B̂[R,0]×B̂[0,R].

A simple superspace analysis reveals that the three-point function of a chiral and an anti-

chiral operator with a generic operator takes the form

〈B̂[0,R](X−,1, V1)B̂[R,0](X+,2, V 2)O(X3, V3, V 3)〉 = (2̄1)RρO
(
X3̄1X

−1
2̄1
X2̄3

)
. (3.9)

The quantity ρO is determined uniquely up to a multiplicative constant by the requirement

that (3.9) is superconformally covariant. It is not hard to verify that one can set the

coordinates V1, V 2, V3, V 3 to zero by an SL(4|3) transformation which is not part of the

N = 2 superconformal group SL(4|2) (with the embedding specified in the remark 1 above).

This means that (3.9) is zero if its N = 2 reduction (i.e., the result obtained after setting

Vi = V i = 0) is zero, as confirmed by the selection rules result (3.21) that we derive later

in section 3.3.

Turning to the three-point functions relevant for the chiral OPE B̂[R,0] × B̂[R,0], it is

not hard to convince oneself that they take the form

〈B̂[0,R](X−,1, V1)B̂[0,R](X−,2, V2)Õ(X3, V3, V 3)〉 = ((3̄1)(3̄2))R ρ̃Õ
(
X̂, V̂

)
, (3.10)

where

X̂ =
(
X−1

23̄
−X−1

13̄

)−1
, V̂ = X−1

23̄
V23 −X−1

13̄
V13 , (3.11)

and ρ̃Õ is fixed by requiring superconformal covariance of (3.10). It is important to remark

that, as opposed to (3.9), in this case one cannot set the coordinates V1, V2, V3, V 3 to zero

using superconformal transformations. However, they can be set to the values

{(X−,1, V1), (X−,2, V2), (X−,3, V3, V 3)} 7→ {(∞, 0), X̂(1, V̂ ), (0, 0, 0)} . (3.12)

The combinations X̂ and V̂ carry non trivial superconformal weights only with respect to

the third point corresponding to the operator Õ.

3.2 Superconformal Ward identities

We will now derive, along the same lines as [32, 40, 70], the superconformal Ward identities

for the four-point correlation function 〈B̂[0,R]B̂[R,0]B̂[0,R]B̂[R,0]〉. Let us first introduce super

cross-ratios for this four point function. The eigenvalues of the graded matrix

Z := X12̄X
−1
32̄
X34̄X

−1
14̄
, (3.13)

are invariant and will be denoted by x1, x2, y. It is easy to convince oneself that these are

the only invariants by noticing that all fermionic coordinates in this four-point function

can be set to zero by a superconformal transformation. It follows that

〈B̂[0,R](1)B̂[R,0](2̄)B̂[0,R](3)B̂[R,0](4̄)〉 = (12̄)R (34̄)RGR(x1, x2, y) , (3.14)

where GR(x1, x2, y) = GR(x2, x1, y). The form of GR(x1, x2, y) is strongly restricted by the

requirement of superspace analyticity. Firstly, after setting all fermionic variables to zero

Z|ferm=0 =

(
x12 x

−1
32 x34 x

−1
14 0

0 y12̄y34̄
y32̄y14̄

)
, yı̄j := yi − yj − vj v̄i , (3.15)
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polynomiality in the R-symmetry variables implies that GR(x1, x2, y) is a polynomial of

degree R in y−1. Secondly, one has to make sure that the fermionic coordinates can be

turned on without introducing extra singularities in the R-symmetry variables. By looking

at the expansion of the eigenvalues of (3.13) in fermions, one concludes that the absence

of spurious singularities is equivalent to the conditions

(∂x1 + ∂y)GR(x1, x2, y)
∣∣
x1=y

= 0 , (∂x2 + ∂y)GR(x1, x2, y)
∣∣
x2=y

= 0 . (3.16)

These equations imply in particular that GR(x, x2, x) = fR(x2) and GR(x1, x, x) = fR(x1).

This is a consequence of the protected subsector discussed in section 2, where setting x1 = x

(or x2 = x) follows from the twisted translations (2.2), as originally discussed in [41]. The

chiral algebra further tells us that fR(x1) is a meromorphic function of x1, corresponding

to a two-dimensional correlation function of the twisted-translated Schur operators, with

each B̂[0,R] (B̂[R,0]) multiplet giving rise to a two-dimensional N = 2 chiral (anti-chiral)

operator, as discussed in 2.1.1.

The general solution of the Ward identities can be parametrized as

GR(x1, x2, y) =
(x−1

1 − y−1)fR(x1)− (x−1
2 − y−1)fR(x2)

x−1
1 − x

−1
2

+
(
x−1

1 − y
−1
) (
x−1

2 − y
−1
)
HR(x1, x2, y) , (3.17)

where HR(x1, x2, y) is a polynomial of degree R − 2 in y−1. In particular, it is zero for

the case R = 1 corresponding to a free theory. For the following analysis it is useful to

introduce the variables z, z̄, w as

x1 =
z

z − 1
, x2 =

z̄

z̄ − 1
, y =

w

w − 1
. (3.18)

This change of variable is an involution in the sense that z = x1
x1−1 and so on. They are

related to the more familiar cross-ratios as

u =
x2

12x
2
34

x2
13x

2
24

= zz̄|ferm=0 , v =
x2

14x
2
23

x2
13x

2
24

= (1− z)(1− z̄)|ferm=0 . (3.19)

Notice that the WI (3.16) take the same form in the new variables and that moreover

(z−1 − w−1)(z̄−1 − w−1) = (x−1
1 − y

−1)(x−1
2 − y

−1) , (3.20a)

(x−1
1 − y−1)f(x1)− (x−1

2 − y−1)f(x2)

x−1
1 − x

−1
2

=
(z−1 − w−1)f(x1)− (z̄−1 − w−1)f(x2)

z−1 − z̄−1
,

(3.20b)

for any function f(x).

3.3 Selection rules

In this subsection we analyze the possible multiplets allowed by superconformal symmetry

in the non-chiral and chiral OPEs. This is a crucial ingredient for the crossing equations

and are usually called the OPE selection rules.
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Non-chiral channel. The OPE in the non-chiral channel B̂[R,0]×B̂[0,R] can be obtained

by using the superconformal Ward identities just derived, together with the fact that the

three-point function 〈B̂[R,0]B̂[0,R]O〉, where O is a generic operator, is non-zero only if the

three-point function of the corresponding superprimary states is non-zero by conformal and

R-symmetry. The latter condition can be derived by recalling that the fermionic coordinates

in this three-point function can be set to zero by a superconformal transformation. A simple

analysis shows that

B̂[R,0] × B̂[0,R] = I +
R∑
a=1

B̂[a,a] +
∞∑
`=0

[
R−1∑
a=0

Ĉ[a,a],` +
R−2∑
a=0

A∆
[a,a],r=0,`

]
. (3.21)

Notice that these relations are remarkably similar to the B̂R/2 × B̂R/2 OPE in the N = 2

case, see [64]. The three upper bounds on the finite summations R,R − 1, R − 2 could be

derived by imposing that the three-point function 〈B̂[R,0]B̂[0,R]O〉 is free of superspace sin-

gularities. Equivalently, it can be derived by requiring that the associated superconformal

block takes the form (3.17). We followed the latter strategy as it seemed more economical.

Chiral channel. The chiral channel selection rules are obtained by requiring that a given

multiplet can only contribute if it contains an operator annihilated by all the supercharges

that annihilate the highest weight of B̂[R,0], and if said operator transforms in one of

the representations appearing in the tensor product of the R-symmetry representations

[R, 0]× [R, 0], and with the appropriate spin to appear in the OPE of the external scalars.

We have performed this calculation for R = 2, 3 and based on it we propose that the

expression for general R is

B̂[R,0] × B̂[R,0] = B̂[2R,0] +
R∑
a=2

B[2(R−a),a],r=4R,0 +

+

∞∑
`=0

[
Ĉ[2R−2,0],( `+1

2
, `
2

) +

R∑
a=2

(
C r=4R−1

[2(R−a),a−1],( `+1
2
, `
2

)+A∆,r=4R−2

[2(R−a),a−2],( `
2
, `
2

)

)]
.

(3.22)

We have checked the above in several cases for R > 3 and superspace arguments suggest it

is indeed the correct selection rule. Note that in (3.22) the B-type multiplets have r = 4R,

the C-type multiplets r = 4R − 1, and the A-type multiplets r = 4R − 2. Moreover, if

we are considering identical B̂[R,0], then Bose symmetry further constraints the spin of the

operators appearing on the right-hand-side according to their SU(3)R representation.

3.4 Superconformal blocks

We will now derive the superconformal blocks relevant for the expansion of the four-point

function (3.14). The superconformal Ward identities alone turn out not to be sufficient

to uniquely determine all the superblocks. We resolve the leftover ambiguity by requiring

that they are linear combinations of SL(4|1)× SU(2) (N = 1) superblocks. There are two

types of blocks corresponding to the two channels: non-chiral (3.21) and chiral (3.22).
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The two kinds of blocks are closely connected to N = 2 superconformal blocks relevant for

the four-point function of B̂-type operators and are collected in tables 2 and 3. When the

kinematics is restricted to (z, z̄, w) = (z, w,w), only superconformal blocks corresponding to

the exchange of Schur operators, defined in section 2.1.1, are non-vanishing. Moreover, they

reduce to 2d (global) superblocks for the N = 2 superconformal algebra sl(2|1) ' osp(2|2)

in the appropriate channel.

3.4.1 Superconformal blocks for the non-chiral channel.

On general grounds, the N = 3 superconformal blocks contributing to the four-point func-

tion (3.14) in the non-chiral channel can be written as an expansion in terms of conformal

times SU(3) R-symmetry blocks:

Gχ(z, z̄, w) =
∑
α∈Sχ

cα(χ) g∆α,`α(z, z̄)h[Rα,Rα](w) . (3.23)

The explicit form of the conformal blocks g∆,` is given in appendix C. The SU(3) R-

symmetry blocks take the form

h[a,a](w) =

(
2a+ 1

a+ 1

)−1

2F1(−a, a+ 2, 1, y−1) , y =
w

w − 1
. (3.24)

The normalization in (3.24) is chosen so that h[a,a](w) = w−a+. . . for w → 0. The set Sχ is

determined by considering the decomposition of the N = 3 representation being exchanged

into representations of the bosonic subalgebra (this can be done using superconformal

characters). The normalization can be fixed by taking for instance cα(χ) = 1 for the label

α corresponding to the minimum value of ∆α in the supermultiplet.

Consider the superblocks corresponding to the non-chiral OPE channel of (3.21). Con-

cerning the superblocks for the B̂[a,a] exchange, it turns out that they are uniquely fixed

by imposing the superconformal WI on (3.23). The superblocks corresponding to the ex-

change of a Ĉ[a,a],` on the other hand are not uniquely fixed by the this procedure. The

remaining ambiguity can be resolved by requiring that they reduce to osp(2|2) (this is the

global part of the chiral half of the d = 2,N = 2 super Virasoro algebra) superblocks

when restricted to (z, z̄, w) = (z, w,w). Recall that this restriction reduces the correlator

to that of 2d N = 2 chiral and anti-chiral operators, and thus the exchange of an operator

in the non-chiral channel is captured by the osp(2|2) superblocks of [35]. Specifically, this

amounts to requiring

fĈ[a,a],`
(z) = GĈ[a,a],`

(z, w,w) = (−1)`+1g2d N=2
a+`+2 ( z

z−1) , (3.25)

where the osp(2|2) superblock is [35]

g2d N=2
h (x) = xh 2F1(h, h, 2h+ 1, x) , (3.26)

and f(z) corresponds to the parametrization (3.17).17 The superblocks for the exchange of

long operators A∆
[a,a],r=0,` are not uniquely determined by the two conditions given above.

17To each superblock Gχ corresponds a function fχ and a function Hχ by using the parametrization (3.17).
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χ fχ Hχ

identity 1 0

B̂[a,a] g2d N=2
a (−1)a

∑a−2
k=0 GN=1

a+k+2,a−k−2 h[k,k]

Ĉ[a,a],` (−1)`+1 g2d N=2
a+`+2 (−1)a+1

∑a−1
k=0 GN=1

a+`+k+4,a+`−k h[k,k]

A∆
[a,a],` 0 (−1)aGN=1

∆+2,` h[a,a]

Table 2. Superconformal blocks contributing to (3.21) in the parametrization (3.17). These ex-

pressions are consistent with the decompositions of superblocks at unitarity bounds, see (3.31).

We recall that the explicit expressions for the blocks entering the table are given in (3.24), (3.26),

and (3.27). Notice that for the stress-tensor supermultiplets B̂[1,1], the function HB̂[1,1]
is zero.

The leftover ambiguity can be resolved by studying the Casimir equations. However, we

will take a shortcut and use the knowledge of N = 1 superblocks. The relevant superblocks,

which were derived in [16, 35], are given by

GN=1
∆,` (z, z̄) = (zz̄)−

1
2 g∆12=∆34=1

∆+1,` (z, z̄) . (3.27)

It follows from the remark 1, that the N = 3 superblocks can be expanded in N = 1 times

SU(2) “flavor symmetry” blocks as

GN=3
A∆

[a,a],r=0,`
(z, z̄, w) = d̃

(0,0)
∆,` (w)GN=1

∆,` (z, z̄) + d̃
(1,1)
∆,` (w)GN=1

∆+1,`+1(z, z̄)

+ · · ·+ d̃
(4,0)
∆,` (w)GN=1

∆+4,`(z, z̄) . (3.28)

On the right hand side, the sum runs over the terms

(∆, `) , (∆+1, `±1) , (∆+2, `±2) , (∆+2, `) , (∆+3, `±1) , (∆+4, `) . (3.29)

Imposing that the form (3.23), subject to the WI, can be expanded as in (3.28), fixes the

leftover ambiguity in the N = 3 superblocks and the coefficient functions d̃
(a,b)
∆,` (w) up to

an overall normalization. The solution can then be rewritten in the compact form

GN=3
A∆

[a,a],r=0,`
(z, z̄, w) = (−1)a(z−1 − w−1)(z̄−1 − w−1)GN=1

∆+2,`(z, z̄)h[a,a](w) . (3.30)

The simplicity of this expression will be justified in remark 2 below. This concludes the

derivation of superconformal blocks relevant for the non-chiral channel, the results are

summarized in table 2.

Before turning to the discussion of the superblocks relevant for the chiral channel, we

perform a consistency check on the blocks just derived. As can be seen in table 2, short

blocks can be obtained from the long ones (3.30) at the unitarity bounds by using

GA∆=`+2+2a
[a,a],r=0,`

= GĈ[a,a],`
+ GĈ[a+1,a+1],`−1

, (3.31)

where we identify Ĉ[a,a],−1 ≡ B̂[a+1,a+1]. This is consistent with the multiplet decomposition

at the unitarity bound: A∆=`+2+2a
[a,a],r=0,` → Ĉ[a,a],`⊕Ĉ[a+1,a+1],`−1⊕ “extra”, where “extra” does

not contribute to the block.
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3.4.2 Superconformal blocks for the chiral channel.

We denote the superconformal blocks contributing to this channel as G̃χ(z, z̄, w), where

χ labels the representations being exchanged from the list (3.22). As in the case of the

non-chiral channel, we start with an expansion of the superblocks in conformal times SU(3)

blocks and impose the superconformal Ward identities, (3.16). Specifically we take

G̃χ(z, z̄, w) =
∑
α∈ S̃χ

c̃α(χ) g∆α,`α(z, z̄) h̃[2(R−nα),nα](w) . (3.32)

It appears, perhaps not too surprisingly, that the SU(3) R-symmetry blocks h̃[2m,n](w) in

this channel coincide with SU(2) blocks, where here and in the following we take m =

2(R− n). They take the form18

h̃[2m,n](w) = hSU(2)
m (w) = (−1)m

(
2m

m

)−1

2F1(−m,m+ 1, 1, w−1) , (3.33)

where the normalization is chosen so that h̃[2m,n](w) ∼ wm for w ∼ 0, and we omit the

label n since it is related to m. The set S̃χ is determined by looking at the content of

the representation χ using characters. Using this information, all the coefficients c̃α(χ) are

then fixed by the requirement that (3.32) satisfies the superconformal WI (3.16).

With a little inspection on the solutions, one recognizes that the superblocks in this

channel are the N = 2 superconformal blocks that contribute to the four-point function of

B̂N=2 supermultiplets [31–33]. The identification is given by

G̃N=3
χ (z, z̄, w) = GN=2

p(χ) (z, z̄, w) , (3.34)

where p maps the N = 3 representations being exchanged in the chiral channel, see (3.22),

to an N = 2 representations as follows

p



B̂[2R,0]

Ĉ[2(R−1),0],( `+1
2
, `
2

)

Br=4R
[2(R−a),a],0

Cr=4R−1

[2(R−a),a−1],( `+1
2
, `
2

)

A∆,r=4R−2

[2(R−a),a−2],( `
2
, `
2

)


=



B̂R

ĈR−1,`+1

A2R
R−a,0

A2R+`+1
R−a,`+1

A∆+1
R−a,`


. (3.35)

The equality (3.34) is not accidental, we will comment on its origin in the remark below.

The resulting superblocks in the parametrization (3.17) are given in table 3. Once

again note that the meromorphic function f̃(z) has a decomposition in 2d blocks, in this

case sl(2) blocks

g2d
h (z) = zh 2F1(h, h, 2h, z) . (3.36)

These are the blocks relevant for the decomposition of the chiral algebra correlators in the

chiral channel, since each 2d N = 2 multiplet contributes with a single sl(2) primary to

the OPE of two 2d N = 2 chiral operators.

18One can recognize the appearance of Legendre polynomials as (−1)m2F1(−m,m+1, 1, w−1) = Pm( 2
w
−1).
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χ f̃χ H̃χ

B̂[2R,0] g2d
R

∑R−2
k=0 gR+k+2,R−k−2 h

SU(2)
k

Ĉ[2R−2,0],( `+1
2
, `
2

) g2d
R+`+2

∑R−2
k=0 gR+`+k+4,R+`−k h

SU(2)
k

Br=4R
[2(R−a),a],0 0 g2R+2,0 h

SU(2)
R−a

Cr=4R−1

[2(R−a),a−1],( `+1
2
, `
2

) 0 g2R+`+3,`+1 h
SU(2)
R−a

A∆,r=4R−2

[2(R−a),a−2],( `
2
, `
2

) 0 g∆+3,` h
SU(2)
R−a

Table 3. Superconformal blocks contributing to (3.22) in the parametrization (3.17), with f and

H replaced by f̃ and H̃ to indicate they correspond to the chiral channel blocks. These expressions

are consistent with the decompositions of superblocks at unitarity bounds, see (3.37). We recall that

the explicit expression of the sl(2) and R-symmetry blocks is given in (3.36) and (3.33) respectively.

The unitarity bound relevant for the chiral channel is

A∆,r=4R−2

[2(R−a),a−2],( `
2
, `
2

)

∆=`+2R−1
−−−−−→ Cr=4R−2

[2(R−a),a−2],( `
2
, `
2

) ⊕ C
r=4R−1

[2(R−a),a−1],( `
2
, `−1

2
) , (3.37)

where Cr=4R−1
[2(R−a),a−1],(0,− 1

2
) = Br=4R−1

[2(R−a),a],0. Only the underlined term contributes to the

superblocks G̃, as can be seen in table 3.

Remark 2. In [38], the authors derived superconformal blocks for scalar four-point func-

tions on a super Grassmannian space Gr(m|n, 2m|2n). It is an interesting problem to

generalize the analysis of [38] to the more general case of Gr(m|n,M |N). The example

we just studied corresponds to Gr(2|1, 4|3). The example of chiral superfields (in the tra-

ditional sense) for N -extended supersymmetry corresponds to the super Grassmannian

Gr(2|0, 4|N ) and the corresponding superblocks were given in [35]. The simplicity of the

results (3.30) and (3.34) and the one presented in [35] suggests a simple unified picture.

4 Crossing equations

Equipped with the superconformal blocks relevant for the four-point function of half-BPS

operators we are finally ready to write the crossing equations. Most of this section treats

the case of arbitrary external dimension R, and in the final section we focus on the cases

of a dimension two and three operator. Crossing symmetry can be written in terms of

the functions fR(x) and HR(x1, x2, y) used to parametrize the solution of the Ward iden-

tities (3.17). As expected, the chiral algebra correlator fR(x) satisfies a crossing equation

on its own, that we solve analytically. This amounts to input about the exchange of Schur

operators, that we feed into the full set of crossing equations for HR(x1, x2, y). These give

rise to a system of (three) six equations of the two bosonic cross-ratios, for (R = 2) R = 3,

which are the subject of the numerical analysis of section 5.
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First equation. Consider the four-point function (3.14), where we take pairwise identical

operators. Imposing that it is invariant upon the exchange of points 1 ↔ 3 implies the

crossing equation

GR(x1, x2, y) =

(
x1x2

y

)R
GR(x−1

1 , x−1
2 , y−1) . (4.1)

This is due to the fact that the matrix Z, given in (3.13), transforms to its inverse, up

to a similarity transform, if points 1 and 3 are exchanged. In terms of the solution of the

WI (3.17), equation (4.1) implies that the single variable function fR(x) satisfies a crossing

equation on its own:

fR(x) = xR fR(x−1) . (4.2)

Note that the above is a specialization of (4.1) to (x1, x2, y) = (x, y, y), and thus cor-

responds to the crossing equation for the two-dimensional correlator of a dimension R
2

operator. The function fR(x) is easily argued to be a polynomial of degree R in x as we

shall show in section 4.2.1. Imposing (4.2), together with the normalization fR(0) = 1,

implies this function is fixed in terms of R
2 (respectively R−1

2 ) independent parameters for

R even (respectively odd).

The remaining constraints from crossing symmetry (4.1) translate into the following

equation

(x1x2)R+1

yR−2
HR(x−1

1 , x−1
2 , y−1)−HR(x1, x2, y) =

y2−R

x−1
1 − x

−1
2

(x2AR(x2, y) fR(x1)−x1 ↔ x2) ,

(4.3)

where we have made use of (4.2), and defined

AR(x, y) :=
xR−1 − yR−1

x − y
, (4.4)

which is a polynomial in its arguments. Recall that HR(x1, x2, y) is a polynomial of degree

R − 2 in y−1 and thus, with the exception of R = 2, (4.3) encodes a system of crossing

equations.

Second equation. In the channel where one takes the OPE of the two chiral operators

it is convenient to relabel the points in (3.14) to obtain

〈B̂[R,0](1)B̂[R,0](2)B̂[0,R](3̄)B̂[0,R](4̄)〉 =

[
(13̄) (24̄)

(
w̃

z̃ ˜̄z

)]R
G̃R(z̃, ˜̄z, w̃)

= (23̄)R (14̄)RGR(ẑ1, ẑ2, ŷ) ,

(4.5)

where we have defined

Ẑ := X23̄X
−1
13̄
X14̄X

−1
24̄
∼ diag(ẑ1, ẑ2, ŷ) , (4.6)

and (z̃, ˜̄z, w̃) := (1 − ẑ1, 1 − ẑ2, 1 − ŷ1). If the superspace coordinates are V = V = 0,

the cross-ratios above are related to the ones entering (3.14) as (z̃, ˜̄z, w̃) = (z, z̄, w) and

(ẑ1, ẑ2, ŷ) = ((1−x1)−1, (1−x2)−1, (1−y)−1). The first equality in (4.5) is to be understood
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as defining the function G̃R.19 The second one is a rewriting of (3.14), relating the chiral

channel to the non-chiral channel. The function G̃R satisfies the same superconformal

Ward identities as GR. We thus parametrize it as in (3.17), with the functions fR and

HR replaced by f̃R and H̃R, and the variables x1, x2, y replaced by z̃, ˜̄z, w̃. An immediate

consequence of (4.5) is the relation

G̃R(z, z̄, w) =

(
( z

1−z )( z̄
1−z̄ )

( w
1−w )

)R
GR(1− z, 1− z̄, 1− w) . (4.7)

Note that z̃, ˜̄z, w̃ are the usual cross-ratios for the correlator (4.5), and so we rename

them as (z̃, ˜̄z, w̃) → (z, z̄, w). The relation (4.7) implies a relation for the single variable

function f̃R:

f̃R(z) =

(
z

1− z

)R
fR(1− z) , (4.8)

which again follows from the fact that the single variable functions are capturing a two-

dimensional correlator. For the H̃ function we get from (4.7) that

(−1)R
(x1x2)R+1

yR−2
HR(1− z, 1− z̄, 1− w)− H̃R(z, z̄, w) =

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1
,

(4.9)

where AR(x, y) was defined in (4.4) and we remind that in (3.18) we set (x1, x2, y) =

( z
z−1 ,

z̄
z̄−1 ,

w
w−1). As in the first crossing equation (4.3), the dependence on w disappears

from (4.9) for R = 2.

Third equation. Since we consider the case of identical B̂[R,0] operators, Bose symmetry

under the exchange 1↔ 2 in (4.5) requires

G̃R(z, z̄, w) = (−1)RG̃R

(
z

z − 1
,

z̄

z̄ − 1
,

w

w − 1

)
. (4.10)

Plugging in the solution of the WI and using (3.20), the above equation translates into

f̃R(z) = (−1)Rf̃R

(
z

z − 1

)
, H̃R(z, z̄, w) = (−1)RH̃R

(
z

z − 1
,

z̄

z̄ − 1
,

w

w − 1

)
, (4.11)

with the first equation again following from Bose symmetry in the chiral algebra.

4.1 From the chiral algebra to numerics

In the following subsections we turn the crossing equations (4.3), (4.9), (4.11) into a system

ready for the numerical analysis, by fixing all the chiral algebra data. To do so we proceed

as follows:

• The first step, undertaken in subsection 4.2.1, is to analytically solve the chiral algebra

crossing equations for fR(x) and f̃R(x).

19The strange prefactor is the natural supersymmetric completion of (x2
12x

2
34)−R.
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• Decomposing these functions in the blocks of tables 2 and 3 allows us to fix an infinite

number of Schur operator OPE coefficients. We recall these operators are the ones

in the OPEs (3.21) and (3.22) that contribute to the chiral algebra, see (2.6) and

the following.

• From the block decomposition of HR, H̃R, also given in tables 2 and 3, we see that they

receive contributions from some of the multiplets contributing to fR(x) and f̃R(x).

• Therefore we split the expansion into a sum over the exchange of Schur operators

B̂[a,a] , Ĉ[a,a],` , B̂[2R,0] , Ĉ
[2R−2,0](

`+1
2 ,

`
2 )
, (4.12)

and a sum of the remaining operators.20

• The final step is to sum the contribution of Schur operators to the HR and H̃R

functions, denoted as HR,short and H̃R,short in the following. (We sometimes omit the

index R and write just Hshort and H̃short.) We deal with these functions in section 4.2

and our final results are given in (4.24) and (4.29).

In general, knowledge of the function fR(x) alone is not sufficient to determine HR,short

unambiguously, in contrast with the chiral channel function H̃R,short, which is fixed in terms

of f̃R(x). This is because different N = 3 supermultiplets give the same contribution, in

the sense of 2d blocks, to the functions fR(x) and f̃R(x). As we will see in section 4.2,

assuming the absence of supermultiplets containing conserved currents of spin greater than

two, the function H̃R,short and the component of HR,short in the R-symmetry singlet channel

can be extracted unambiguously from the knowledge of fR(x).

Summary of the result. Following the procedure that we just outlined one arrives at

the following system of crossing equations:

∑
χ∈ B̂[R,0]×B̂[0,R]|A

|λχ|2


Fχ

+Fb
−,χ

−Fb
+,χ

 +
∑′

χ∈ B̂[R,0]×B̂[R,0]|A,C,B

|λ̃χ|2


0

F̃−,χ

F̃+,χ

 =


F (0)

short

F (−)
short

F (+)
short

 . (4.13)

We now have to make several remarks in order to explain our notation.

a) We have defined the functions

Fχ =
[(1−z)(1−z̄)]R+1

(1− w)R−2
Hχ(z, z̄, w)

− (−1)R
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
, (4.14)

Fb
±,χ =

[(1−z)(1−z̄)]R+1

(1− w)R−2
Hχ

(
z

z − 1
,

z̄

z̄ − 1
,

w

w − 1

)
±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
, (4.15)

20This split does not coincide in general with the separation between long and short operators, as can be

seen in the chiral channel.
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F̃±,χ =
[(1−z)(1−z̄)]R+1

(1− w)R−2
H̃χ(z, z̄, w)

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
. (4.16)

The explicit form of the functions Hχ, H̃χ is given in tables 2 and 3 for each represen-

tation χ. Note that the above functions still have a dependence on the R-symmetry

cross-ratio, and thus each equation in (4.13) will give several equations, once this

dependence is expanded out.

b) The functions F (0,±)
short receive contributions from two sources. The first one comes

from the right hand side of (4.3), (4.9) and contains the function fR explicitly. The

second one corresponds to the contribution of Schur operators to the left hand side

of (4.3), (4.9). Specifically, we have

F (0,±)
short = F (0,±)

short [f ]−F (0,±)
short [Hshort, H̃short] , (4.17)

with the explicit form of F (0,±)
short [f ] and F (0,±)

short [Hshort, H̃short] given in appendix D.1.

c) The precise range of summation in (4.13) is specified by the selection rules (3.21)

and (3.22), where we only take the operators that are not of Schur type, i.e., A in

the non-chiral channel and A,B, C in the chiral one. The prime in the second sum∑′ indicates that the parity of the spin label ` of the exchanged operator is fixed in

terms of its R-symmetry representation. Specifically, only even spins appear for irreps

in the sym([R, 0] ⊗ [R, 0]), while for irreps in antisym([R, 0] ⊗ [R, 0]) only odd spins

appear. This follows from (4.11) and the braiding relations (C.3) of individual blocks.

d) The second and third equations in (4.13) are obtained respectively from the anti-

symmetrization and symmetrization of the superconformal block expansion of (4.9)

with respect to the exchange (z, z̄, w)↔ (1− z, 1− z̄, 1−w). An important remark,

relevant for the numerical implementation, is that the arguments of four dimensional

superconformal and R-symmetry blocks entering (4.15), namely ( z
z−1 ,

z̄
z̄−1 ,

w
w−1) and

their inverses, can be traded for (z, z̄, w) and (1− z, 1− z̄, 1− w) using the braiding

properties of the conformal blocks (C.3). This fact justifies the use of the suffix b to

denote “braided” in (4.15).

e) Finally, as customary, the identification |λχ|2 =
∑
O|χ(O)=χ |λO|2 is understood. By

χ(O) we mean the representation χ in which the operator O transforms.

4.2 Fixing the chiral algebra contributions

We have defined above the functions HR,short and H̃R,short as the contribution from the

exchange of Schur operators to the HR and H̃R functions, entering (4.3) and (4.9). We

will now discuss to which extent these contributions can be extracted from the knowledge

of fR(x), or more generally, from the knowledge of the chiral algebra.
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4.2.1 Determination of the function fR(x)

The cohomological reduction of the correlator (3.14), which in superspace corresponds to

a specialization of the superspace coordinates in (3.2) to X = diag(z, y, y), V = (θ, 0, 0)T

and V = (θ̄, 0, 0), gives the holomorphic correlator

〈W(z−,1, θ1)W̄(z+,2, θ̄2)W(z−,3, θ3)W̄(z+,4, θ̄4)〉 =
fR(x)

(z12̄z34̄)R
, x =

z12̄z34̄

z32̄z14̄

, (4.18)

where z± = z ± 1
2θθ̄ and z12̄ = z1,− − z2,+ + θ1θ̄2. For the following discussion we set the

fermionic coordinates θ = θ̄ = 0. We can view the correlator above as a meromorphic

function of z1, whose poles correspond to singular terms in the OPE of W(1) with the

remaining operators. The chiral OPE is non-singular, so there is no pole when z1 ∼ z3

(corresponding to x ∼ 1). The singularity for z1 ∼ z2 (corresponding to x ∼ 0), on the

other hand, is already taken care of by the prefactor in the right hand side of (4.18).

Finally, for z1 ∼ z4 (corresponding to x ∼ ∞) we have fR(x) ∼ xR. There is no other

singularity and so fR(x) is a polynomial of degree R in x, that we normalize as fR(0) = 1,

subject to the crossing relation (4.2). It is thus fixed in terms of
⌊
R
2

⌋
constants. If follows

from the exchange of the two-dimensional stress tensor that the small x expansion of the

correlator takes the form fR(x) = 1 + R2

4c4d
x + . . . , where c4d ≡ c is the central charge

of the four-dimensional theory, thus fixing one of the
⌊
R
2

⌋
constants.21 For R = 1 the

crossing relation (4.2) implies that f1(x) = 1 + x, forcing the central charge to take the

value c4d = 1
4 , which corresponds to N = 4 SYM with gauge group U(1).

Non-chiral channel. Consider the expansion of the function fR(x) in holomorphic N =

2 (global osp(2|2)) blocks as

fR(x) = 1 +
∞∑
h=1

b
(R)
h g2d N=2

h (x) . (4.19)

Using the result given in table 2, and the selection rules (3.21), it is clear that in general

one cannot reconstruct the four-dimensional OPE coefficients corresponding to Schur oper-

ators (4.12) from the knowledge of the expansion (4.19). This is best illustrated by looking

at the following examples

R = 1 : b
(1)
1 = |λB̂1 |2 , b

(1)
h>1 = (−1)h+1|λĈ0,h−2|2 ,

R = 2 : b
(2)
1 = |λB̂1 |2 , b

(2)
2 = |λB̂2 |2 , b

(2)
h>2 = (−1)h|λĈ1,h−3|2 , (4.20)

R = 3 : b
(3)
1 = |λB̂1 |2 , b

(3)
2 = |λB̂2 |2 , b

(3)
3 = |λB̂3 |2 − |λĈ1,0|2 ,

b
(3)
h>3 = (−1)h(|λĈ1,h−3|2 − |λĈ2,h−4|2) ,

and so on. Above we used the compact notation λB̂a ≡ λ
(R)

B̂[a,a]
and λĈa,` ≡ λ

(R)

Ĉ[a,a],`
. Of course,

λ’s from different rows (i.e., for external operators with different values of R) in (4.20) are

21If the subscript is omitted, it is understood that c is the four-dimensional central charge.

– 27 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
2

not the same, even though this is not captured by the notation. The general pattern is

quite simple and one finds

b
(R)
1≤h≤R = |λB̂h |2 −

h−2∑
a=1

(−1)h−a |λĈa,h−a−2|2 , b
(R)
h>R = −

R−1∑
a=1

(−1)h−a |λĈa,h−a−2|2 . (4.21)

Note that compared to the results that can be obtained from table 2 and the selection

rules (3.21), we omitted by hand the supermultiplets Ĉ[0,0],` for external fields with R ≥ 2,

because they are the supermultiplets that contain higher spin conserved currents. They

are included only in the free field case R = 1. For R ≥ 2, while allowed by the selection

rules (3.21), we want to demand that they are absent in order to focus on interacting

theories. We remark further that the OPE coefficient

b
(R)
1 = |λ(R)

B̂[1,1]
|2 =

R2

4c4d
, (4.22)

corresponding to the exchange of the stress-tensor supermultiplet B̂[1,1] can be extracted

unambiguously.

It follows from the above considerations that also |λB̂2 |2 can be extracted without

ambiguity. However, in general, the four-dimensional OPE coefficients cannot be extracted

uniquely from the expansion (4.19). As discussed in section 2.3 and section 5.3.2 using

the knowledge of the chiral algebra and some extra assumptions one can find, in the case

R = 3, only two allowed values for λ
(3)

B̂[3,3]
and λ

(3)

Ĉ[1,1],0
.

Let us now investigate the structure of HR,short. By definition, we have

HR,short :=
R∑
a=2

|λB̂[a,a]
|2HB̂[a,a]

+
R−1∑
a=1

∞∑
`=0

|λĈ[a,a],`
|2HĈ[a,a],`

, (4.23)

which we can express in terms of the blocks h[a,a](w) and GN=1
∆,` (z, z̄) given

in (3.24), (3.27) as

HR,short(x1, x2, y) =
∞∑
h=2

(−1)h b
(R)
h GN=1

h+2,h−2(z, z̄)

−



−h[0,0](w)
∑∞

n=0 |λ
(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 2

h[1,1](w)
∑∞

n=0 |λ
(R)

Ĉ[2,2],n−1
|2 GN=1

n+6,n(z, z̄)

−h[0,0](w)
∑∞

n=0 |λ
(R)

Ĉ[0,0],n
|2GN=1

n+4,n , R = 3

∑R−2
t=0 h[t,t](w)C

(R)
t (z, z̄) , general R

.

(4.24)

In (4.23) the first summation starts from h = 2, since HB̂[1,1]
= 0. In writing this equation

we allowed for higher-spin currents to have a non-vanishing OPE coefficient, such that it

becomes clear how they would contribute to the crossing equations. Looking at table 2
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we see that if higher-spin currents are present they contribute exactly the same way as

the R-symmetry singlet long multiplet at the unitarity bound ∆ = ` + 2. After setting

them zero |λ(R)

Ĉ[0,0],n
|2 = 0, only the part of HR,short in the R-symmetry singlet channel is

completely fixed in terms of the function fR(x). The explicit expression for the function

C
(R)
t (z, z̄) is easily worked out, but will not be relevant here. We finally remark that the

summation of the first term in (4.24) can be done explicitly for any R. See appendix D.2

for details.

Example: for R = 2, we find

f2(x) = 1 + c−1x+ x2 = 1 +
∞∑
h=1

b
(2)
h g2d N=2

h (x) , (4.25)

where from (4.20) we take, |λB̂[1,1]
|2 = b

(2)
1 = c−1, |λB̂[2,2]

|2 = b
(2)
2 = 1− 1

3c and

|λĈ[1,1],`
|2 = (−1)`+1b

(2)
`+3 =

(`+ 2)(4)`+1

22`+2
(

5
2

)
`+1

− Γ(`+ 4)

22`+5
(

1
2

)
`+3

c−1 . (4.26)

Note that if higher-spin currents are present the above identification of OPE coefficients

with bh cannot be made for h > 1.

Chiral channel. Now we expand the function f̃R, related to fR by (4.8), in N = 2

holomorphic blocks, which in this channel coincide with ordinary sl(2) blocks, see (3.36).

Specifically

f̃R(z) =

∞∑
h=R

h+R even

b̃
(R)
h g2d

h (z) , (4.27)

where we note that the sum starts from h = R, which is due to the fact that the relevant

OPE is non-singular. Moreover, the index h has the same parity as R as follows from

the braiding relations of individual blocks (C.5) together with (4.11). By looking at the

selection rules given in (3.22), and after a quick look at table 3, one concludes that

b̃
(R)
R =

∣∣λ̃B̂[2R,0]

∣∣2 , b̃
(R)
R+1 = 0 , b̃

(R)
`+R+2 =

∣∣λ̃Ĉ[2R−2,0],((`+1)/2,`/2)

∣∣2 , (4.28)

where ` ≥ 0. Note that in this channel we can reconstruct the four-dimensional OPE coeffi-

cients of Schur operator completely in terms of the OPE coefficients of the cohomologically

reduced problem. We can thus uniquely determine the contribution of these operators

to H̃R:

H̃R,short = b̃
(R)
R H̃B̂[2R,0]

+

∞∑
n=0

b̃
(R)
R+2n+2 H̃Ĉ

[2(R−1),0],(n+ 1
2 ,n)

. (4.29)

The summation of this expression is straightforward and similar to the one done in ap-

pendix D.2. The final result is given by

H̃R,short(z, z̄, w) =
f̃R(z̄) γR(z, w)− (z ↔ z̄)

z−1 − z̄−1
, (4.30)
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Multiplet χ fχ(x) Hχ(z, z̄)

Identity g2d N=2
0 (x) = 1 0

B̂[1,1] g2d N=2
1 (x) 0

Ĉ[0,0],` (−1)`+1g2d N=2
`+2 (x) 0

B̂[2,2] g2d N=2
2 (x) GN=1

4,0 = (zz̄)−
1
2 g1,1

5,0(z, z̄)

Ĉ[1,1],` (−1)`+1g2d N=2
`+3 (x) GN=1

`+5,`+1 = (zz̄)−
1
2 g1,1

`+6,`+1(z, z̄)

A∆>`+2
[0,0],` 0 GN=1

∆+2,` = (zz̄)−
1
2 g1,1

∆+3,`(z, z̄)

Table 4. Contributions of the various N = 3 multiplets appearing in the non-chiral OPE (3.21),

for R = 2, to the functions fχ(x1) and Hχ(z, z̄). The multiplets Ĉ[0,0],` contain conserved currents of

spin larger than two, and must be set to zero for an interacting theory [62, 63]. We recall that B̂[1,1]

is the stress-tensor multiplet. When the long multiplet A∆>`+2
[0,0],` hits the unitarity bound ∆ = `+ 2

it decomposes in a Ĉ[0,0],` and a Ĉ[1,1],`−1, where Ĉ[1,1],−1 = B̂[2,2]. Note that while long multiplets

arbitrarily close to the unitarity bound mimic higher-spin conserved currents, they do not mimic

the stress tensor.

where we have defined the kinematic factor

γR(z, w) =

R−2∑
a=0

k2a+2(z)hSU(2)
a (w) , (4.31)

with kβ(z) and h
SU(2)
a (w) given in (C.2) and (3.33) respectively.

We have now obtained explicit expressions for HR,short and H̃R,short, and can com-

pute the functions F (0,±)
short entering the crossing equations (4.13). See appendix D.1 for

more details.

4.3 Explicit form of the bootstrap equations for R = 2, 3

We will now show the explicit form of (4.13) in the cases R = 2, 3. In order to do so, it is

convenient to define the combinations of conformal blocks (compare to (4.14), (4.15), (4.16))

F±,∆,` := [(1− z)(1− z̄)]R+1 (zz̄)−
1
2 g1,1

∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] ,

Fb±,∆,` := (−1)` [(1− z)(1− z̄)]R+2 (zz̄)−
1
2 g−1,1

∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] ,

F̃±,∆,` := [(1− z)(1− z̄)]R+1 g0,0
∆+3,`(z, z̄)± [(z, z̄)↔ (1− z, 1− z̄)] .

(4.32)

As before, we suppressed the index R from the notation, its value should be clear from the

context.
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Multiplet χ f̃χ(z) H̃χ(z, z̄)

B̂[4,0] g2d
2 (z) g4,0(z, z̄)

Ĉ
[2,0],(

`+1
2 ,

`
2 )

g2d
4+`(z) g`+6,`+2(z, z̄)

B̄[0,2],r=8,(0,0) 0 g6,0(z, z̄)

C̄
[0,1],r=7,(

`+1
2 ,

`
2 )

0 g`+7,`+1(z, z̄)

A∆>3+`
[0,0],r=6,` 0 g∆+2,`(z, z̄)

Table 5. Contributions of the various N = 3 multiplets appearing in the chiral OPE (3.22), for

R = 2, to the functions f̃χ(z) and H̃χ(z, z̄). Note that at the unitarity bound (see (3.37)) of the

long multiplet we find two types (for ` = 0 and ` 6= 0) of short multiplets which do not contribute

to the chiral algebra, namely B̄[0,2],r=8,(0,0) and C̄
[0,1],r=7,(

`+1
2 ,

`
2 )

. When considering identical B̂[2,0]

operators Bose symmetry requires ` to be even for A∆>3+`
[0,0],r=6,` and odd for C̄

[0,1],r=7,(
`+1

2 ,
`
2 )

.

The case R = 2. The bootstrap equations (4.13) in this case are independent of the

R-symmetry variables w. Using the R = 2 specializations of the tables 2 and 3, namely

table 4 and 5, we obtain

∑
∆>`+2

|λ∆,`|2

 F−,∆,`
+Fb−,∆,`
−Fb+,∆,`

+
∑

∆>`+3
` even

|λ̃∆,`|2

 0

F̃−,∆,`
F̃+,∆,`

 =

F
(0)
short

F
(−)
short

F
(+)
short

 . (4.33)

Here λ∆,` and λ̃∆,` denote the OPE coefficients of the longs multiplets with dimension ∆

and spin ` appearing in the non-chiral and chiral channels respectively, and F
(0,±)
short := F (0,±)

short ,

see appendix D.1 .

The case R = 3. For R = 3 we unpack the superconformal blocks given in tables tables 2

and 3 in tables 6 and 7. To write down the crossing equations (4.13) in components we

need to fix a basis in the space of R-symmetry polynomials. There is a natural choice

which follows by noticing that

(1− w)FA∆,r=0
[0,0],`

= +
1

2
(1− y−1)F+,∆,` +

1

2
(1 + y−1)F−,∆,` ,

(1− w)FA∆,r=0
[1,1],`

= −2

3
(1− y−1)F+,∆,` +

1

3
(1 + y−1)F−,∆,` ,

Fb
±,A∆,r=0

[0,0],`

= +
1

2

(
1

1− w
+

1

w

)
Fb±,∆,` +

1

2

(
1

1− w
− 1

w

)
Fb∓,∆,` ,

Fb
±,A∆,r=0

[1,1],`

= +
5

6

(
1

1− w
+

1

w

)
Fb±,∆,` −

1

6

(
1

1− w
− 1

w

)
Fb∓,∆,` ,
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F̃±,A∆,r=10
[0,1],`

= +
1

2

(
1

1− w
+

1

w

)
F̃±,∆,` +

1

2

(
1

1− w
− 1

w

)
F̃∓,∆,` ,

F̃±,A∆,r=10
[2,0],`

= +
3

4

(
1

1− w
+

1

w

)
F̃±,∆,` −

1

4

(
1

1− w
− 1

w

)
F̃∓,∆,` . (4.34)

The equations for B and C in the chiral channel follow from the last two entries in (4.34)

at the unitarity bound, as can be seen from table 7. Let us go back to the bootstrap equa-

tions (4.13) specialized to the case R = 3. Using the relations (4.34), the equations (4.13)

are easily recognized to be equivalent to

∑
∆>`+2

|λ0,∆,`|2



+1
2 F−,∆,`

+1
2 F+,∆,`

+1
2 F

b
−,∆,`

+1
2 F

b
+,∆,`

−1
2 F

b
+,∆,`

−1
2 F

b
−,∆,`


+
∑

∆>`+4

|λ1,∆,`|2



+1
3 F−,∆,`
−2

3 F+,∆,`

+5
6 F

b
−,∆,`

−1
6 F

b
+,∆,`

−5
6 F

b
+,∆,`

+1
6 F

b
−,∆,`



+
∑

∆>`+5
` even

|λ̃0,∆,`|2



0

0

+1
2 F̃−,∆,`

+1
2 F̃+,∆,`

+1
2 F̃+,∆,`

+1
2 F̃−,∆,`


+
∑

∆>`+5
` odd

|λ̃1,∆,`|2



0

0

+3
4 F̃−,∆,`
−1

4 F̃+,∆,`

+3
4 F̃+,∆,`

−1
4 F̃−,∆,`


= ~Fshort .

(4.35)

More explicitly, we extract the coefficients of (1 − w)−1(1± y−1) of the first line of (4.13)

and the coefficients of
(

1
1−w ±

1
w

)
of the second and third line of (4.13). The expression

for ~Fshort follows from the expansion of F (0,±)
short given in appendix D.1 in this basis. In

the above equation λa,∆,` and λ̃a,∆,` denote the OPE coefficients of the longs multiplets

A∆
[a,a],` and A∆,r=10

[2(1−a),a],` respectively. As a consistency check, we verified that the bootstrap

equations above are satisfied with positive coefficients for the cases of free U(1) N = 4

SYM (considered a special N = 3 theory) and for the generalized free theory discussed in

appendix C.2.

5 Numerical results

We are finally ready to apply the numerical bootstrap machinery to our crossing equations.

Our goal is to chart out the allowed parameter space of N = 3 theories, but also to

“zoom in” to particular solutions of the crossing equations that correspond to individual

N = 3 SCFTs.

After a short review of numerical methods we start by considering the multiplet con-

taining a Coulomb branch operator of dimension two, which we recall also contains extra

supercharges. This is a warm-up example that will allow us to check the consistency of

our setup. In the remainder of the section we then focus on a Coulomb branch operator of

dimension three for various values of the central charge. In general it is hard to exclude so-

lutions that have enhanced N = 4 symmetry, and also to impose that the Coulomb branch
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Multiplet χ fχ(x) Hχ(z, z̄, w)

Identity g2d N=2
0 (z) = 1 0

B̂[1,1] g2d N=2
1 (z) 0

B̂[2,2] g2d N=2
2 (z) GN=1

4,0 (z, z̄)

B̂[3,3] g2d N=2
3 (z) −GN=1

5,1 (z, z̄)− GN=1
4,0 (z, z̄)h[1,1](w)

Ĉ[0,0],` (−1)`+1g2d N=2
`+2 (z) 0

Ĉ[1,1],` (−1)`+1g2d N=2
`+3 (z) GN=1

`+5,`+1(z, z̄)

Ĉ[2,2],` (−1)`+1g2d N=2
`+4 (z)

−GN=1
`+6,`+2(z, z̄)−

GN=1
`+7,`+1(z, z̄)h[1,1](w)

A∆>`+2
[0,0],` 0 GN=1

∆+2,`(z, z̄)

A∆>`+4
[1,1],` 0 −GN=1

∆+2,`(z, z̄)h[1,1](w)

Table 6. Contributions of the various N = 3 multiplets appearing in the non-chiral OPE (3.21),

for R = 3, to the functions fχ(x) and Hχ(z, z̄, w). Note that we can make the identification

Ĉ[k,k],`=−1 = B̂[k+1,k+1], and in the text we take the latter to be a special case of the former.

operator is a generator.22 In order to avoid N = 4 solutions, at the end of this section we

input knowledge of the specific chiral algebra [11] that is conjectured to correspond to the

simplest known N = 3 SCFT .

5.1 Numerical methods

The crossing equations written in (4.13) are too complicated to study exactly, beyond

focusing on special limits, or protected subsectors, as done in section 2. Therefore we

proceed to analyze these equations using the numerical techniques pioneered in [15] (see

e.g. [71, 72] for reviews).

Very schematically, we have a system of crossing equations (three (4.33) and six (4.34)

for the B̂[2,0] and B̂[3,0] respectively) of the form∑
Oi

|λOi |2~VOi(z, z̄) = ~Vfixed(z, z̄) , (5.1)

where ~Vfixed(z, z̄) collects the part of ~Fshort that is completely fixed from the chiral algebra,

with the remainder of ~Fshort moved to the left-hand side. We use the SDPB solver of [73],

and rule out assumptions on the spectrum {Oi} of local operators and their OPE coefficients

22One could imagine setting up a mixed correlator system where the multiplets containing the extra

supercharges, or the candidate generators for which our operator could be a composite are exchanged.
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Multiplet χ f̃χ(z) H̃χ(z, z̄, w)

B̂[6,0] g2d
3 (z) g5,1(z, z̄) + g6,0(z, z̄)h

SU(2)
1 (w)

Ĉ
[4,0],(

`+1
2 ,

`
2 )

g2d
`+5(z)

g`+7,`+3(z, z̄) +

g8+`,2+`(z, z̄)h
SU(2)
1 (w)

Br=12
[2,2],0 0 g8,0(z, z̄)h

SU(2)
1 (w)

Br=12
[0,3],0 0 g8,0(z, z̄)

Cr=11

[2,1],(
`+1

2 ,
`
2 ) 0 g`+9,`+1(z, z̄)h

SU(2)
1 (w)

Cr=11

[0,2],(
`+1

2 ,
`
2 ) 0 g`+9,`+1(z, z̄)

A∆>`+5,r=10
[2,0],` 0 g∆+3,`(z, z̄)h

SU(2)
1 (w)

A∆>`+5,r=10
[0,1],` 0 g∆+3,`(z, z̄)

Table 7. Contributions of the various N = 3 multiplets appearing in the chiral OPE (3.22), for

R = 3, to the functions f̃χ(z) and H̃χ(z, z̄, w). Since we are interested in the correlation functions

of identical operators, Bose symmetry under the exchange of the two identical operators forbids

the multiplet Br=12

[0,3],0 from appearing and restricts the ` to be even for Ar=10
[2,0],`, C

r=11

[0,2],(
`+1

2 ,
`
2 )

and

Ĉ
[4,0],(

`+1
2 ,

`
2 )

, and odd for Ar=10
[0,1],` and Cr=11

[2,1],(
`+1

2 ,
`
2 )

.

|λOi |2 (CFT data), by considering linear functionals

~Φ =

n+m6Λ∑
n,m=0

~Φm,n∂
m
z ∂

n
z̄ |z=z̄= 1

2
, (5.2)

acting on the crossing equations. In the crossing equation (4.33) and (4.34) we will be

taking derivatives ∂mz ∂
n
z̄ of F±,F

b
±, F̃± and from their symmetry properties under z → 1−z,

z̄ → 1− z̄ we see that only even (odd) derivatives of F+,F
b
+, F̃+ (Fb−,F

b
−, F̃−) survive.23

The numerical bounds will be obtained for different values of the cutoff Λ, which effec-

tively means we are considering a truncation of the Taylor series expansion of the crossing

equations around z = z̄ = 1
2 . We rule out assumptions on the CFT data by proving that

they are inconsistent with the truncated system of crossing equations at order Λ . There-

fore, for each cutoff we find valid bounds, that will improve as we send Λ →∞. We refer

the reader to the by now extensive literature on these numerical techniques, e.g. [17, 73],

for all the other technical details and approximations needed for the numerical bootstrap.

23As usual, the equations are antisymmetric in z ↔ z̄ and so we only need derivatives with m < n.
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5.2 The case R = 2

As a warm-up, let us consider external operators B̂[2,0], B̂[0,2], which contain the extra

supercharges allowing for an enhancement to N = 4. For this case we will only bound the

minimal allowed central charge c. We recall that the OPE selection rules in this case are

given by

B̂[2,0] × B̂[0,2] = I + B̂[1,1] + B̂[2,2] +

∞∑
`=0

[
Ĉ[0,0],` + Ĉ[1,1],` +A∆

[0,0],r=0,`

]
, (5.3)

B̂[2,0] × B̂[2,0] = B̂[4,0] + B[0,2],r=8,0 +

∞∑
`=0

[
Ĉ[2,0],( `+1

2
, `
2

) + C r=7
[0,1],( `+1

2
, `
2

) +A∆,r=6

[0,0],( `
2
, `
2

)

]
, (5.4)

with each multiplet contributing with a superblock as given in tables 4 and 5, with a

positive OPE coefficient squared, and the crossing equations are given in (4.33). To obtain

central charge bounds, we allow for all operators consistent with unitarity that have not

been fixed by the chiral algebra. In the chiral channel this amounts to allowing all long

operators consistent with unitarity, together with the short multiplets which sit at the

long unitarity bound (which are not Schur operators). In the non-chiral channel the OPE

coefficient of B̂[1,1] is fixed unambiguously from the chiral algebra in terms of the central

charge. For the remaining Schur operators the chiral algebra is not constraining enough

and we are left with some ambiguities. As shown in equation (4.24) we can fix universally

the OPE coefficients of Ĉ[1,1],` and B̂[2,2] in terms of those of the Ĉ[0,0],` multiplets. These

last multiplets contain higher-spin currents and should be absent thereby resolving the

ambiguity. Nevertheless, as is also clear from (4.24) and table 4, the contribution of the

Ĉ[0,0],` multiplets is identical to that of long multiplets at the unitarity bound, and thus, by

allowing for long multiplets to have a dimension arbitrarily close to the unitarity bound,

we allow for these currents to appear with arbitrary coefficient. Therefore, we do not

truly exclude free theories in the bootstrap, and we should expect to recover the solution

corresponding to U(1) N = 4 SYM theory.

The numerical lower c bound is shown in figure 1 as a function of Λ−1, where Λ is

the cutoff on the number of derivatives taken of the crossing equation, as defined in (5.2).

The solid yellow and blue lines correspond to various linear fits to subsets of points, and

attempt to give a rough estimate of the Λ =∞ bound. It seems plausible that the bound is

converging to c = 3
12 which corresponds to the central charge of U(1) N = 4 SYM. Recall

that for this value of the central charge the coefficient b
(2)
2 = 1 − 1

3c in (4.25) is negative,

which means that it cannot be interpreted as arising only from a B̂[2,2] multiplet, and that

the conserved current multiplet Ĉ[0,0],0 has to be present. But this is exactly what our

crossing equations are allowing for, as when we solve for the OPE coefficient of B̂[2,2] in

terms of b2 and let the OPE coefficient of Ĉ[0,0],0 be arbitrary we find it contributes just

as a long at the unitarity bound. Naturally, if one wanted to obtain dimension bounds

on the long operators for c = 3
12 we would have to allow for the multiplet Ĉ[0,0],0 to be

present by adding their explicit contribution, but if no gap is imposed, then allowing for

long multiplets of arbitrary dimension automatically allows for these currents.
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Figure 1. Numerically minimum allowed central charge for the B̂[2,0], B̂[0,2] four-point function

as a function of the inverse of the number of derivatives Λ. The dashed horizontal line marks the

central charge of the U(1) N = 4 SYM theory. The middle orange line shows a linear fit to all the

data points, while the top and bottom blue lines show fits to different subsets of the points.

5.3 The case R = 3

We now turn our attention to the correlation function of B̂[3,0], B̂[0,3] multiplets, whose

crossing equations are given in equation (4.35). We recall that in the chiral channel the

OPE coefficients of all of the Schur multiplets Ĉ
[4,0],(

`+1
2 ,

`
2 )

and B̂[6,0] were fixed universally

from the chiral algebra correlation function. Therefore, the undetermined CFT data in

this channel amounts to

• Scaling dimensions and OPE coefficients of long multiplets A∆>`+5
[2,0],10,` and A∆>`+5

[0,1],10,`,

• OPE coefficients of short multiplets Br=12
[2,2],0, Cr=11

[2,1],(
`+1

2 ,
`
2 )

and Cr=11

[0,2],(
`+1

2 ,
`
2 )

,

where the last multiplets contribute the same way as the longs at the unitarity bound as

seen in (3.37) and table 7.

In the non-chiral channel, various Schur multiplets were indistinguishable at the level

of the chiral algebra, as manifest in table 6. Using the chiral algebra correlator we solved

for the OPE coefficients of Ĉ[1,1],` and B̂[2,2] in terms of the remaining ones in (4.24), such

that we were left with the following unfixed CFT data

• Scaling dimensions and OPE coefficients of long multiplets A∆>`+2
[0,0],` and A∆>`+4

[1,1],` ,

• OPE coefficients of the Schur multiplets Ĉ[2,2],`, B̂[3,3], and Ĉ[0,0],`.

The Schur multiplets in the last line end up contributing to the crossing equations in the

same way as the long multiplets in the line above at the unitarity bound (see (4.24) and

table 6), following from the long decomposition at the unitarity bound (3.31). This implies

that, unless we impose a gap in the spectrum of the corresponding long multiplets, we

can never truly fix the OPE coefficients of these Schur operators. As usual, the multiplets

Ĉ[0,0],` should be set to zero for interacting theories. However this is not enough to resolve

all the ambiguities, and we must resort to numerics in order to study the OPE coefficient of
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Figure 2. Minimum allowed central charge from the correlation function of B̂[3,0] and its conjugate,

as a function of the inverse of the number of derivatives Λ. The dashed horizontal line marks the

central charge of the U(1) N = 4 SYM theory. The two blue lines show linear fits to different

subsets of points, in order to give very rough idea of where the bound is converging to with Λ →∞.

the remaining operators. In the last part of this section we will see how these ambiguities

turn out to be useful to exclude N = 4 solutions to the crossing equations by inputting

the OPE coefficient of B̂[3,3] computed from the chiral algebra of an N = 3 SCFT.

5.3.1 Central charge bounds

Let us start by placing a lower bound on c, allowing again for the presence of all operators

consistent with unitarity. We recall once again that long multiplets A∆
[0,0],` of arbitrary

dimension allow for conserved currents of spin larger than two, and thus not excluding free

theories from the analysis. Naturally then, the U(1) N = 4 SYM theory is also a solution

to the crossing equations we study. Therefore, the strongest bound one could possibly hope

to find corresponds to the central charge of U(1) N = 4 SYM. This value is smaller than

the smallest central charge of all known, nontrivial, N = 3 theories, which is c = 15
12 .24

In figure 2 we show the minimal allowed central charge as a function of Λ−1, the inverse

of the number of derivatives. Extrapolation for infinitely many derivatives this time does

not seem to converge to the value of the U(1) N = 4, which is c = 1
4 = 0.25.25 Since

the value of the minimal allowed central charge is smaller than that of the free N = 4

theory one might suspect the solution to this set of crossing equations that saturates the

central charge bound does not correspond to a physical SCFT, and could imagine a mixed

correlator system, e.g., adding the stress tensor multiplet, would improve on this.

5.3.2 Bounding OPE coefficients

Apart from the central charge, there are other OPE coefficients of physical interest, which

were not fixed analytically and can be bounded numerically. Let us emphasize that the

24By nontrivial we mean it cannot be obtained by N = 4 SYM by a discrete gauging which does not

change the correlation functions.
25Similar results were also observed in the case of chiral correlators in N = 2 theories [20, 74].
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N = 3 stress-tensor multiplet B̂[1,1] cannot recombine to form a long multiplet, unlike the

N = 2 stress-tensor multiplet. This has the important consequence that, when we add the

stress tensor multiplet with a particular coefficient, we are truly fixing the central charge to

a particular value. In comparison, in N = 2 theories this was only accomplished when one

imposed a gap in a particular channel, preventing those long multiplets to hit the unitarity

bound and mimic the stress tensor. Therefore, we will bound the OPE coefficients as

a function of the central charge for the range 1
4 6 c 6 ∞. The lower end of the interval

corresponds to the central charge of U(1) N = 4 SYM, although interacting theories should

have higher central charges. In particular there is an analytic lower bound for interacting

N > 2 SCFTs of c > 11
30 ≈ 0.37 [47]. Furthermore it can be shown, by considering the

N = 3 stress tensor four-point function in the chiral algebra, that any interacting N > 3

SCFT must obey c > 13
24 ≈ 0.54 [75]. These two bounds will be depicted as vertical dashed

lines in all the numerical results. In the limit c → ∞ the stress tensor decouples and we

expect that the numerical bounds converge to the values of generalized free field theory

(see appendix C.2).

The Schur operator B̂[3,3]

A particularly interesting operator to consider is the B̂[3,3] appearing in the non-chiral

channel. Despite being captured by the two-dimensional chiral algebra, is not possible to

fix its OPE coefficient universally from the chiral algebra four-point function, due to the

ambiguities described in 4.2. Making assumptions about what particular chiral algebra cor-

responds to a given 4d theory, one can try to resolve this ambiguity, as done in section 2.3,

which gave two seemingly consistent possibilities. However, we will first take an agnostic

viewpoint, and ask what numerical constraints crossing symmetry and unitarity place on

the squared OPE coefficient of this operator (|λB̂[3,3]
|2). These are shown in figure 3 as a

function of the inverse of the central charge.

Since this operator is protected, we can compare the value of the bound to the well

known N = 4 solutions. We extracted the OPE coefficient of this multiplet from the four-

point function of half-BPS operators in the [0, 3, 0] representation of SU(4)R given in [38],

after projecting the N = 4 multiplets to the particular N = 3 multiplet we are considering.

It turns out to have a constant value of one, irrespective of the central charge of the theory.

We depicted this as a red line in figure 3 and, to give an idea of where the physical N = 4

theories sit, we also added red dots in the positions corresponding to the central charge of

N = 4 SYM with gauge group SU(n) (c = n2−1
4 ) for n ∈ {3, 4, . . .}.

The value expected from the block decomposition of both the U(1) N = 4 SYM (c = 1
4)

and the generalized free field theory (c = ∞, given in appendix C.2) is also one, and is

marked by red dots as well. A rough extrapolation of our results for infinite central charge

and for c = 1
4 suggests the numerical bounds could converge to the values expected for

these theories.

Finally, we compare the numerical bounds with the results that can be extracted from a

particular chiral algebra. Let us first consider the chiral algebra of [11] that is conjectured

to correspond to the simplest known N = 3 SCFT with c = 15
12 (in their notation this

corresponds to ` = 3, where of course this ` has no relation to the spin). As discussed in
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Figure 3. Upper bound on the OPE coefficient squared of B̂[3,3] versus the inverse central charge

1/c. The shaded region is excluded and the number of derivatives is increased from 10 to 24 in

steps of two. The two green curves show the possible value of the OPE coefficient computed by the

chiral algebra in section 2.3, while the green dot shows the expected value for the N = 3 theory

of 1/c = 0.8, extracted from the chiral algebra of [11]. The red line and dots corresponds to the

solution of N = 4 SYM theories. The two dashed lines correspond to the minimum central charges

for an interacting N = 2 [47] and N = 3 SCFTs [75] (c−1 = 30
11 ≈ 2.73 and c−1 = 24

13 ≈ 1.84

respectively).

section 2.3 we can construct candidate operators, in the chiral algebra, to correspond to a

B̂[3,3]. In this case there is only one candidate, and if one assumes it to be in fact a B̂[3,3]

we find ∣∣λB̂[3,3]

∣∣2 =
22

85
, (5.5)

which is shown as a green dot in figure 3.26 Note that this value lies well inside the

numerical bounds, and in particular it is also smaller than the continuation to arbitrary

c of the value corresponding to SU(N) N = 4 SYM. Since the N = 4 SYM correlation

function of [38] which we decomposed in blocks is a solution of the crossing equations for

any value of c, the best numerical bound one can hope to obtain is
∣∣λB̂[3,3]

∣∣2 ≤ 1. In fact,

our numerical results appear consistent with the upper bound converging to one for c = 15
12 .

Therefore, to be able to reach the known nontrivial N = 3 SCFT with c = 15
12 we must go

inside these bounds, and fix the OPE coefficient of B̂[3,3] to a value that is incompatible

with the N = 4 solution to the crossing equation; we will do this at the end of this section.

We now turn to the chiral algebra constructed in 2.2, with the goal of understanding

the higher rank versions of the aforementioned theory. Recall that we assumed the chiral

algebra of the higher rank theories to be generated solely by the Higgs branch generators,

the stress tensor, and an additional dimension three operator. Under this assumption,

we were able to construct a closed subalgebra of all of these chiral algebras, which is

26The other possibility, that the B̂[3,3] multiplet is absent in the chiral algebra, does not appear plausible

from a Higgs branch perspective.
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associative for generic values of c. In that setting we can attempt to compute |λB̂[3,3]
|2, and

there were two options consistent with the large central charge behavior of the generalized

free field theory and unitarity, given in (2.25) and (2.27), which are plotted as green curves

in figure 3. Equation (2.27) is the one that does not go through the expected value for

c = 15
12 , but that we kept for arbitrary values of c. If our assumptions are correct, then

we see that the value of |λB̂[3,3]
|2 lies well inside the numerical bounds, and is weaker than

that of N = 4 SYM. This is not necessarily a downside, as one of our goals must be to

determine ways to exclude the N = 4 solutions to our crossing equations, and this provides

such a way. By imposing the value of the OPE coefficient corresponding to (2.25) or (2.27)

we are sure to exclude N = 4 from our analysis. We will come back to this point at the

end of this section.

Note that both (2.25) and (2.27) diverge at c = 13
24 , which corresponds to the analytic

central charge bound obtained in [75], following from the fact that the norm of one of

the candidate B̂[3,3] operators is going to zero. We note that the chiral algebra in 2.2 was

constructed with a generic central charge in mind and care was not given to possible null

states arising at specific values of c. It is not clear that the solution we have is consistent

for c = 13
24 , as null states are expected to decouple.

It is also worth noting the interesting interplay between analytical and numerical re-

sults. The analytical OPE coefficient is only consistent with the (current) numerical bounds

for 1/c . 1.33 − 1.36 depending on which curve one takes. This provides a lower bound

c & 0.74− 0.75 on the central charge of any N = 3 SCFT with a dimension three Coulomb

branch operator (B̂[3,0]) of which the chiral algebra presented in 2.2 is a closed subalgebra,

improving over the analytical bound c > 13
24 ≈ 0.54 of [75]. On the other hand, this bound

is lower than the one obtained using the sum-rule of [76, 77] for a rank one theory with

a generator of dimension three, namely c > 15
12 . Although there are known cases where

this sum rule does not hold (see [4, 10]), they correspond to theories obtained by gauging

discrete symmetries, so this bound could be valid for theories which are not of this type.27

The multiplets B̄[2,2] and C̄
[0,2],(

1
2
,0)

. Next we turn our attention to the short multi-

plets in the chiral OPE that sit at the unitarity bound of the long multiplets, and are not

captured by the chiral algebra. As representatives, we show the upper bounds on the OPE

coefficients squared of the multiplets B̄[2,2] and C̄
[0,2],(

1
2 ,0)

in figure 4. Again we focus on

the region of central charges larger than that of U(1) N = 4 SYM.

We show in figure 4 the value of these OPE coefficients in the case of the generalized

free field theory, and of the U(1) N = 4 SYM as the two red dots at c−1 = 0 and c−1 = 4

respectively. The convergence of our numerical results is rather slow and one cannot

conclude if they will converge for these central charges to the known solutions, although

they are not incompatible with this possibility. The green lines in the plots mark the

central charge of the “minimal” N = 3 SCFT (c = 15
12) with the green dot providing a valid

upper bound for the OPE coefficients of this theory.

27See [10] for a proposed correction of this formula to hold also in the case of discretely gauged theories.
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Figure 4. Upper bound on the OPE coefficient squared of B̄[2,2] (|λ̃B̄[2,2]
|2, depicted on the left)

and of C̄
[0,2],(

1
2 ,0)

(|λ̃C̄
[0,2],(

1
2 ,0)

|2, shown on the right) versus the inverse central charge 1/c. The first

vertical dashed line marks c = 13
24 and the second c = 11

30 (the minimal central charges for N = 3 and

N = 2 interacting theories respectively [47, 75]). The number of derivatives Λ is increased from 10

to 24 in steps of two. The red dots mark the value of this OPE coefficient for generalized free field

theory and U(1) N = 4 SYM, while the green line marks the central charge c = 15
12 of the simplest

known N = 3 SCFT, with the green dot providing an upper bound for the OPE coefficients of

this theory.

Finally, to better understand what is failing in the crossing symmetry equations if one

tries to go below the minimal numerically allowed central charge (cmin in figure 2), it is

instructive to look at the OPE coefficient bounds near those central charges. One finds

(not shown), that while the bounds on the squared OPE coefficients of both B̂[3,3] and

B̄[2,2] have a very sharp drop near cmin, the upper bound on the squared C̄
[0,2],(

1
2 ,0)

OPE

coefficient has as smooth drop and becomes negative right after cmin, which is inconsistent

with unitarity. This suggests it is this last multiplet that is responsible for the lower

bound on the central charge, and that the solution at cmin would have the other two short

operators present. Note that both B̄[2,2] and C̄
[0,2],(

1
2 ,0)

have zero OPE coefficient for the

U(1) N = 4 SYM theory.

5.3.3 Dimension bounds

Next we turn to the dimensions of the lowest lying scalar long operators in the various

channels. In doing so we must worry about the short multiplets whose OPE coefficients

we bootstrapped in the previous subsection, as they all sit at the unitarity bound of the

different long multiplets we study (see the tables 6 and 7). By allowing for long multiplets

with arbitrary dimension, these short multiplets can appear with any coefficient. Even if

we were to explicitly add by hand the short multiplets with a given OPE coefficient, the

long multiplet at the bound would mimic those shorts, and in practice we would only be

imposing the OPE coefficient of the short multiplets to be greater or equal to a given value.

However, once we impose a gap in the spectrum of the long operator, then we can truly fix

the OPE coefficient of the corresponding short multiplet.

In the non-chiral channel, we focus on the dimension of the first scalar long of each type

A∆>2
[0,0],0 and A∆>4

[1,1],0 , (5.6)
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Figure 5. Upper bound on the dimensions of long multiplets A∆>2
[0,0],0 (left) and A∆>4

[1,1],0 (right)

for different values of the inverse of the central charge c. The maximum number of derivatives is

Λ = 24, and the weaker bounds correspond to decreasing the number of derivatives by two. The red

dots mark the dimension of the first long operators for generalized free field theory and U(1) N = 4

SYM, while the green line marks the central charge c = 15
12 of the simplest known N = 3 SCFT,

with the green dot providing an upper bound for this theory. The two dashed lines correspond to

the minimum central charges for an interacting N = 2 [47] and N = 3 SCFTs [75].

while in the chiral channel we focus on the first scalar long multiplet28

A∆>5
[2,0],10,0 . (5.7)

Non-chiral channel. The upper bounds on the dimensions ∆[0,0] and ∆[1,1], of the first

long multiplets A∆>2
[0,0],0 and A∆>4

[1,1],0 respectively, as functions of the inverse central charge

are depicted in figure 5. Once again red dots mark the dimension of the lowest dimensional

operator in the generalized free field theory and the U(1) N = 4 SYM solutions. In both

cases the green vertical line ending on a dot marks the central charge of the simplest

known nontrivial N = 3 SCFT, and provides an upper bound for the dimension of these

two operators in this theory. We will improve on the latter bound at the end of this section.

At the unitarity bound, the long multiplet of type A∆>2
[0,0],0 mimics a higher spin con-

served current multiplet (Ĉ[0,0]`=0), expected to be absent in an interacting theory, and

therefore when obtaining the bound on the left side of 5 we do not allow for such a mul-

tiplet to be present. This explains why the upper bound is presumably converging to the

unitarity bound ∆ = 2 for c−1 = 4, since such currents should be present in the U(1)

N = 4 solution, as indicated by the red dot. For larger central charges the upper bound

is far away from unitarity, and thus theories saturating the upper bound do not contain

the Ĉ[0,0]`=0 multiplet, although they could have the higher spin versions of this multiplet

which also contain higher-spin conserved currents.

On the other hand, the multiplet that sits at the unitarity bound of A∆>4
[1,1],0 is the B̂[3,3]

discussed in the previous subsection, and in obtaining the bounds for ∆[1,1] we allowed the

short multiplet to be present with arbitrary OPE coefficient. We can obtain a stronger

bound for specificN = 3 SCFTs by fixing the short OPE coefficient according to section 2.3,

as we shall do later in figure 7 for the case of c = 15
12 ⇒ c−1 = 0.8.

28Table 7 contains also long multiplets A∆>5+`
[0,1],10,` but for those the spin ` must be odd by Bose symmetry.
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Figure 6. Upper bound on the dimensions of the long multiplet A∆>5
[2,0],10,0, allowing for (left) and

disallowing for (right) the short multiplet B̄[2,2]. The strongest bound corresponds to 24 derivatives,

and they are reduced in steps of two. The red dots mark the dimension of the first long operators for

generalized free field theory and U(1) N = 4 SYM, in the right plot the red dot of generalized free

field theory is at the unitarity bound, meaning that the short multiplet is present in this solution.

The green line marks the central charge c = 15
12 of the simplest known N = 3 SCFT, with the green

dot providing an upper bound for this theory. The two dashed lines correspond to the minimum

central charges for an interacting N = 2 [47] and N = 3 SCFTs [75].

Chiral channel. Turing to the scalar long operator appearing in the chiral OPE, we

obtain an upper bound for the first A∆>5
[2,0],10,0 multiplet. In imposing a gap in this channel

we must decide on whether the short multiplet B̄[2,2] is present or not. Recall that, unlike

the shorts at the unitarity bound of long operators appearing in the non-chiral channel,

this short is not captured by the chiral algebra and thus we have no reason to expect it

to be present or absent. Therefore, we show a bound on the dimension ∆[2,0] of this long

multiplet both allowing for (left plot in 6) and disallowing for (right plot in 6) the presence

of B̄[2,2]. Once again the red dots depict the value of these dimensions expected for the

U(1) N = 4 SYM and generalized free field theories. We observe that for c → ∞, the

right hand side of figure 6 comes close to the unitarity bound ∆ = 5. In fact, a simple

extrapolation seems to suggest that for Λ → ∞ the bound will converge to around 5.

This is consistent with the fact that this multiplet is present in the generalized free theory

solution (see appendix C.2), i.e. the bounds force the long multiplet to “become short”

for c → ∞. (Said multiplet is absent in the U(1) N = 4 SYM solution.) For values of c

around the value relevant for the “minimal” N = 3 SCFT, marked as green lines in the

plots, there seems to be a solution of the crossing equations with this multiplet absent.

Carving out solutions inside the bounds. As the final point of this section we come

back to the issue of distinguishing N = 4 solutions to the crossing equations from pure

N = 3 ones. One possibility is to extract the spectrum of the extremal solution [78]

saturating each of the above bounds and check if it is consistent or inconsistent with

N = 4 supersymmetry. However, we would like to do better, and to be able to exclude the

N = 4 solution altogether. Our explorations in the first part of this section provide such

a way, namely by fixing the OPE coefficient of B̂[3,3] to the value expected to correspond

to the N = 3 theories of interest (see section 2.3). This value is smaller than the one of
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Figure 7. Upper bound on the dimension of the long A∆>4
[1,1],0 as a function of the OPE coefficient

squared of B̂[3,3] for c−1 = 0.8. For each cutoff Λ the bounds end abruptly at the value corresponding

to the maximum value |λB̂[3,3]
|2 can have, as read off from figure 3 at c−1 = 0.8. The green line

marks the expected value for the OPE coefficient for the c−1 = 0.8 N = 3 SCFT (5.5) with the

green dot providing an upper bound for this OPE coefficient, while the red line marks the value

for N = 4 SYM. The strongest bound corresponds to 24 derivatives, and they are reduced in steps

of two.

SU(N) N = 4 SYM and in its derivation in the chiral algebra we did not allow for the

currents enhancing the supersymmetry to N = 4. As usual, because a long multiplet at

the unitarity bound (A∆=4
[1,1],0) mimics the contribution of this short multiplet to the crossing

equations, we cannot really fix its OPE coefficient unless we impose a gap.

This is what is done when bounding the lowest dimensional A∆>4
[1,1],0, and so we repeat

the analysis leading to the right side of figure 5, but now fixing the OPE coefficient of

B̂[3,3]. The result is shown in figure 7, where we plot the upper bound on the dimension

as a function of the OPE coefficient for fixed c = 15
12 . The red line marks the value of

the OPE coefficient for the N = 4 solution with this particular value of c. While the

green line marks the value of the OPE coefficient expected for the N = 3 SCFT we are

interested in (5.5), and provides an upper bound for the dimension ∆[1,1] in this theory,

which improves significantly on the one obtained from figure 4. This shows that, at least

in figure 4, the theory saturating the bound does not correspond to the N = 3 SCFT we

were after, and thus, to zoom in to this specific theory we must carve further inside the

bounds as done here. This however does not guarantee the theory now sits at the bound.29

Similarly, we can repeat this analysis for the central charges of the higher rank theories

and we find that, at fixed |λB̂[3,3]
|2, if the central charge is (increased) decreased the bound

29We seem to observe a small bump for |λB̂[3,3] |
2 ≈ 0.33, and preliminary functional analysis suggest this

is correlated to the fact that to the left of the bump a conserved current Ĉ[0,0]`=0 is allowed, and to the right

disallowed. This does not necessarily imply that the conserved currents are present for the c = 15
12

extremal

solution, but could mean that to get closer to an interacting N = 3 SCFT we should simultaneously impose

a gap in the A∆>2
[0,0],0 long channel.
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seems to get (stronger) weaker (not shown). Due to the dependence of (2.25) and (2.27)

on c the upper bound on ∆[1,1] does not change significantly.

6 Conclusions

In this paper we have initiated the N = 3 superconformal bootstrap program with two goals

in mind. First, to constrain the space of four-dimensional N = 3 SCFTs, and second, to

focus on specific examples of N = 3 theories with the hope of obtaining information about

their spectrum. In order to zoom in on the known N = 3 SCFTs we relied on a combination

of numerical bootstrap results and analytical results from two-dimensional chiral algebras,

with particular emphasis on the “minimal” N = 3 SCFT, and its higher-rank versions. We

approached these theories from the point of view of the Coulomb branch, focusing mostly

on a half-BPS operator of dimension three, which is the only Coulomb branch generator

of the “minimal” N = 3 SCFT, and which is also present in its higher-rank versions.

A basic requirement for any bootstrap study is the conformal block expansion of the

four-point function. In section 3 we showed that for N = 3 half-BPS operators there are no

nilpotent invariants, allowing us to concentrate on superconformal primaries without any

loss of information. Demanding the absence of singularities when turning on the fermionic

coordinates places strong restrictions on the form of the four-point function, giving rise to

the Ward identities. In the case at hand, these identities were not enough to completely

fix the superblock (unlike the cases of N = 2 and N = 4 half-BPS superblocks [32, 33]).

For superblocks associated to short multiplets, we used information coming from the 2d

chiral algebra, while for long blocks we leveraged knowledge of N = 1 blocks. In the end,

we packaged our solution in an elegant way in terms of a single N = 1 conformal block

with shifted arguments.

The existence of a protected subsector captured by the 2d chiral algebra allowed us

to solve the crossing equations exactly within the subsector. Which in turn fixed the

OPE coefficients of certain short operators universally, i.e., without needing to specify a

particular four-dimensional theory. However, some operators appear indistinguishable at

the level of the chiral algebra, leading to ambiguities in fixing the corresponding OPE

coefficients. Some of these ambiguities can be resolved by knowledge of the specific chiral

algebra associated to the N = 3 theory in question, but this is not always the case.

An important question is the defining characteristics of the chiral algebra associated

to N = 3 SCFTs. To that end, we determined which N = 3 superconformal multiplets

are captured by the 2d chiral algebra, and some of their general properties, which could

allow distinguishing between the aforementioned operators. Taking advantage of the chiral

algebra conjectured to correspond to the “minimal” SCFT [11], we were able to compute

the OPE coefficient |λB̂[3,3]
|2. Moreover, we proposed, under certain assumptions, a closed

subsector for the higher-rank versions of this theory, and used it to compute |λB̂[3,3]
|2 in

this case.

To go beyond the protected subsector, or even to distinguish between operators ap-

pearing identically in the chiral algebra, one needs numerical bootstrap techniques. These

provided constraints on the spectrum of unprotected long operators, and on the OPE co-

– 45 –



J
H
E
P
0
4
(
2
0
1
7
)
0
3
2

efficients of various short operators. For the particular OPE coefficient |λB̂[3,3]
|2 that we

were able to fix from the chiral algebra, we compared the general numerical results valid

for any N = 3 SCFT, with the ones of the specific theories captured by the chiral algebra

that we constructed. This comparison provided a numerical lower bound on the central

charge for theories captured by our chiral algebra.

A natural limitation of any N = 3 bootstrap program, as it was also for the N = 2

bootstrap, is that theories with more supersymmetry will generically be solutions of the

crossing equations we consider. In order to restrict to pure N = 3 SCFTs, one would have

to exclude the presence of superconformal multiplets containing the currents allowing for

this enhancement. However, the multiplets that are physically relevant for the study of

these theories (for example the ones considered in [20, 47, 74] in the N = 2 case) usually

do not allow for the multiplets containing the extra supercurrents to be exchanged in

their OPEs, and therefore we cannot set them to zero. To overcome this limitation we

input into the numerical bootstrap information arising from the chiral algebras of pure

N = 3 SCFTs, namely, the OPE coefficient |λB̂[3,3]
|2. This allowed us explore inside

the numerical bounds, and zoom in on the N = 3 solutions with this particular value

of the OPE coefficient. By fixing the central charge to that of the “minimal” N = 3

theory, and fixing the OPE coefficient accordingly, it is plausible that this theory sits at

the bound of figure 7, although currently there is no evidence this has to be the case,

and we would have to provide more information (such as adding stress tensors as external

operators). Nevertheless, the ambiguity in fixing OPE coefficients turned out to be crucial

in excluding the N = 4 solution to the crossing equations. For the higher rank versions,

one would have to also consider the four-point functions of the additional Coulomb branch

operator, which is a natural next step in the N = 3 bootstrap, along with the study of

stress tensor four-point functions.
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A Unitary representations of the N = 3 superconformal algebra

We summarize the unitary representations of the four-dimensional N = 3 superconformal

algebra, which fall in the classification of [56–58] and which were recently discussed with
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Name Name in [59] Superconformal primary Conditions

A∆
[R1,R2],r,(j,̄) LL̄ (j, ̄)∆

[R1,R2],r

∆ > 2 + 2j + 2
3
(2R1 +R2)− r

6

∆ > 2 + 2̄+ 2
3
(R1 + 2R2) + r

6

B[R1,R2],r,̄ B1L̄ (0, ̄)
2
3

(2R1+R2)− r
6

[R1,R2],r −6̄+ 2(R1 −R2)− 6 > r

B̄[R1,R2],r,j LB̄1 (j, 0)
2
3

(R1+2R2)+ r
6

[R1,R2],r 6j + 2(R1 −R2) + 6 < r

B̂[R1,R2] B1B̄1 (0, 0)R1+R2

[R1,R2],2(R1−R2)

C[R1,R2],r,(j,̄) A1L̄ (j, ̄)
2+2j+ 2

3
(2R1+R2)− r

6

[R1,R2],r 6(j − ̄) + 2(R1 −R2) > r

C[R1,R2],r,(j,̄) LĀ1 (j, ̄)
2+2̄+ 2

3
(R1+2R2)+ r

6

[R1,R2],r 6(j − ̄) + 2(R1 −R2) < r

Ĉ[R1,R2],(j,̄) A1Ā1 (j, ̄)2+j+̄+R1+R2

[R1,R2],6(j−̄)+2(R1−R2)

D[R1,R2],̄ B1Ā1 (0, ̄)1+̄+R1+R2

[R1,R2],2(R1−R2)−6−6̄

D[R1,R2],j A1B̄1 (j, 0)1+j+R1+R2

[R1,R2],2(R1−R2)+6+6j

Table 8. We list here the unitary representations of N = 3 with the name that we give them in

the present work accompanied by the one that they have in [59], which was based on the type of

shortening condition that they obey. The third column shows the charges of the superconformal

primary in the representation, while the fourth one lists the conditions that the charges have to

obey. The A2, respectively Ā2 shortening cases are obtained by putting j = 0, respectively ̄ = 0.

This changes the null states drastically, but not our labels.

emphasis on N = 3 theories in [1, 59, 60]. We list the possible representations in table 8.

The first column lists the name we give to the representation, inspired by the conventions

of [61], while the second one uses the notation of [59]. The third column list the quantum

numbers of the superconformal primary, denoted by (j, ̄)∆
[R1,R2],r, where (j, ̄) ∈ N0

2 ×
N0
2 are

the double of the left/right spins,30 ∆ ∈ R is the conformal dimension, (R1, R2) ∈ N0×N0

are the Dynkin labels of SU(3)R and r ∈ R is the U(1)r R-charge. We follow the N = 3

R-charge conventions of [59], while for the N = 2 R-charges we follow the conventions of

Dolan and Osborn [61]. Lastly, we make two remarks:

• When dealing with symmetric-traceless representations, we shall label the spins by

j = ̄ = `
2 , and by an abuse of notation we will replace the two spin labels (j, ̄) by `

in these cases. For example, we have A∆
[R1,R2],r,` ≡ A

∆

[R1,R2],r,(
`
2 ,
`
2 )

.

• If the r label is zero, we will often omit it. Furthermore, in order to keep some

equations compact, we will freely write it up or down, e.g. A∆
[R1,R2],r,` ≡ A

∆,r
[R1,R2],`.

A.1 Decomposition in N = 2 multiplets

Since N = 3 representations are probably less familiar to most readers than N = 2

representations, we give a few examples of how N = 3 multiplets decompose in N = 2

30An irreducible representation of label (j, ̄) has dimension (2j + 1)(2̄+ 1).
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multiplets. In doing so we pick an N = 2 subalgebra of the N = 3, and therefore the

SU(3)R × U(1)r R-symmetry of the latter decomposes in SU(2)RN=2
× U(1)rN=2 × U(1)f ,

where the first two factors are the R-symmetry of the N = 2 superconformal algebra, and

the last corresponds, from the N = 2 point of view, to a global symmetry. Therefore when

viewed as N = 2 theories, all N = 3 theories have a U(1)f flavor symmetry, and we will

keep this flavor grading when decomposing N = 3 representations in N = 2. We follow

the conventions of [11] for the definition of the flavor charges. We note that we follow the

naming conventions of Dolan and Osborn [61] for the representations of N = 2, which are

summarized for instance in appendix A of [20]. While the interpretation of most of these

multiplets might be obscure, the following have a natural physical interpretation31

• Ĉ0,(0,0) is the stress tensor multiplet of an N = 2 SCFT, containing in addition to the

stress tensor, the SU(2)RN=2
and U(1)rN=2 currents,

• BR are closely related to the Higgs branch of the theory, in particular the B̂1 multiplet

contains conserved currents of spin one, associated to flavor currents of the theory,

• Er,(0,0) are N = 2 chiral operators, and are related to the Coulomb branch of the

theory,

• D 1
2
,(0,0) (and conjugate) which are additional supercurrent multiplets,

• Ĉ0,(j>0,̄>0) contain conserved currents of spin greater than two, which signal free

theories [62, 63].

In addition, the multiplets dubbed “Schur” operators in [41], that is, the ones captured

by the two-dimensional chiral algebra reviewed in section 2, also play an important role.

These are B̂R, DR(0,̄), DR(j,0) and ĈR(j,̄), giving rise to two-dimensional sl(2) primaries of

scaling dimension R, R + ̄ + 1, R + j + 1 and R + j + ̄ + 2 respectively. The N = 3

multiplets that contain such operators are listed in equations (2.6)–(2.13), together with

their decomposition in N = 2, but where we omitted all N = 2 multiplets not containing

Schur operators. Below we present a few examples of the complete N = 2 decomposition.

These decompositions are obtained by computing the characters of the N = 3 multiplets

of table 8, following the method described in appendix C of [79], and re-writing it in terms

of characters of N = 2 representations, which can be obtained from the tables of [61].

The stress-tensor multiplet decomposes in the expected way, containing only Schur

multiplets

B̂[1,1] = B̂1 ⊕ u−1
f D1

2 ,(0,0)
⊕ ufD 1

2 ,(0,0)
⊕ Ĉ0,(0,0) . (A.1)

Also of particular importance are the half-BPS multiplets, related to the Coulomb branch

of N = 3 theories. Their full decomposition is given by

B̂[R1,0] = u−R1
f B̂R1

2

⊕u−R1+1
f DR1−1

2
,(0,0)

⊕

(
R1−2⊕
a=1

u−R1+a+1
f BR1−a−1

2
,−a−1,(0,0)

)
⊕E−R1,(0,0) ,

(A.2)

31For a more detailed description see, e.g., section 2 of [20].
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and similarly for the conjugate multiplet. An interesting question to ask is, apart from

the above B̂[R1,0] and conjugate, which N = 3 multiplets contain N = 2 Coulomb branch

operators. An obvious place to look would be to consider N = 3 chiral operators, which

decompose as

B[0,0],r,0 =
2⊕

a=0

u
a− r3
f E− 1

2(a+ r
3),( 1

2
a(2−a),0) , (A.3)

and their conjugates. Note that the above decomposition contains “exotic” N = 2 Er,(j,0)

operators with spin j > 0, which do not seem to occur in known N = 2 SCFTs (see [80] for a

discussion). Similarly in [1] the question of which N = 3 operators could contain operators

whose vevs parametrized the Coulomb branch was addressed. The authors of [1] argue

that the only type of such multiplets are B̂[R1,0] and conjugates, since the B[0,0],r,0 multiplet

would not be consistent with the three different N = 2 subalgebras N = 3 contains.

We finish this appendix with the example of the decomposition of a generic long N = 3

multiplet. Considering a multiplet whose highest weight transforms in the symmetric trace-

less representation for simplicity, A∆
[R1,R2],r,`, there appears to be a simple prescription for

the decomposition into N = 2 multiplets, which we have checked in a variety of cases.

Namely, we first decompose the SU(3)R×U(1)r representation ([R1, R2], r) of the supercon-

formal primary of the N = 3 multiplet in representations of SU(2)RN=2
×U(1)rN=2×U(1)f .

Let {(R′, r′, F )} be the list of representations appearing in that decomposition. To each

such representation we associate an N = 2 multiplet A∆
R′,r′,`, graded by the corresponding

U(1)f charge (uf )F . Finally, in the decomposition of the N = 3 multiplet, each of these

N = 2 multiplets will be accompanied by the following list of long multiplets:

(uf )F
(
A∆+1

R′,r′−1,( `
2
, `
2

)
u2
f + u−2

f A
∆+1

R′,r′+1,( `
2
, `
2

)
+ u−1

f A
∆+ 1

2

R′,r′+ 1
2
,( `

2
, `+1

2
)

+ u−1
f A

∆+ 1
2

R′,r′+ 1
2
,( `

2
, `−1

2
)

+ u−1
f A

∆+ 3
2

R′,r′+ 1
2
,( `+1

2
, `
2

)
+ u−1

f A
∆+ 3

2

R′,r′+ 1
2
,( `−1

2
, `
2

)
+A∆+ 3

2

R′,r′− 1
2
,( `

2
, `+1

2
)
uf +A∆+ 3

2

R′,r′− 1
2
,( `

2
, `−1

2
)
uf

+A∆+ 1
2

R′,r′− 1
2
,( `+1

2
, `
2

)
uf +A∆+ 1

2

R′,r′− 1
2
,( `−1

2
, `
2

)
uf +A∆+2

R′,r′,( `
2
, `
2

)
+A∆+1

R′,r′,( `+1
2
, `+1

2
)

+A∆+1

R′,r′,( `+1
2
, `−1

2
)

+A∆+1

R′,r′,( `−1
2
, `+1

2
)

+A∆+1

R′,r′,( `−1
2
, `−1

2
)

)
.

(A.4)

B OPEs of the chiral algebra

In this appendix we collect the OPEs corresponding to the chiral algebra constructed in

section 2.2, with generators given by (2.22). Here we show all the OPE coefficients already

fixed to the values dictated by the Jacobi identities. These computations were performed

using the Mathematica package SOPEN2defs of [68] and we follow their conventions. In

what follows we take a product of operators O1O2 · · · On−1On to mean the normal ordered

product (O1(O2(· · · (On−1On)))).

Since all generators, with the exception of the stress-tensor multiplet, are super Vira-

soro primaries, the OPE of a generator O of dimension ∆O and U(1)f charge fO with the
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stress-tensor current J is fixed to be

J (Z1)O(Z2) ∼ ∆Oθ12θ̄12O
Z2

12

+
−fOO − θ12DO + θ̄12D̄O + θ12θ̄12∂O

Z12
. (B.1)

The stress-tensor multiplet has the standard self-OPE given in (2.18), while the OPEs

W(Z1)W(Z2) and W̄(Z1)W̄(Z2) are regular. The W(Z1)W̄(Z2) OPE is given in a general

form in (2.20) where the sum is taken to run over all uncharged generators, composites

and/or (super)derivatives thereof. The coefficients λOh in (2.20) are completely fixed by

the Jacobi identities to

λ1 = −c2d

9
, λJ = 1 , λJJ = − 4

c2d − 1
, λDD̄J =

c2d − 9

6(c2d − 1)
, λJ ′ =

1

2
,

λU = − 4(5c2d + 27)

β(c2d − 9)(c2d − 1)
,

(B.2)

where β is related to the norm of U . The remaining non-trivial OPEs were found to be

U(Z2) ∼ − β(c2d − 9)(c2d + 15)θ12θ̄12W
2(5c2d + 27)Z3

12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12JW − 2(c2d − 9)θ12DW − (c2d − 27)θ12θ̄12W ′ − 6(c2d − 9)W
Z2

12

+
β

12(5c2d + 27)

6(c2d + 63)θ12JDW + 54(c2d − 1)θ12WDJ − (c2d − 9)(c2d + 39)θ12DW ′

Z12

+
β(c2d + 15)

6(5c2d + 27)

18JW − (c2d − 27)W ′

Z12
, (B.3)

and

W̄(Z1)U(Z2) ∼ β(c2d − 9)(c2d + 15)

2(5c2d + 27)

θ12θ̄12W̄
Z3

12

+
β(c2d + 15)

12(5c2d + 27)

18θ12θ̄12J W̄ − 2(c2d − 9)θ̄12D̄W̄ + (c2d − 27)θ12θ̄12W̄ ′ − 6(c2d − 9)W̄
Z2

12

− β

12(5c2d + 27)

6(c2d + 63)θ̄12J D̄W̄ + 54(c2d − 1)θ̄12W̄D̄J (c2d − 9)(c2d + 39)θ̄12D̄W̄ ′

Z12

− β(c2d + 15)

6(5c2d + 27)

18J W̄ + (c2d − 27)W̄ ′

Z12
, (B.4)

with the most complicated one being

U(Z1)U(Z2) ∼− (c2d − 9)2(c2d − 1)(c2d + 15)β2

72(5c2d + 27)2

c2d + 6J θ12θ̄12

Z4
12

+
β2(c2d − 9)2(c2d − 1)(c2d + 15)

12(5c2d + 27)2

−θ̄12D̄J + θ12DJ − θ12θ̄12J ′

Z3
12

+
1

Z2
12

(
β2DD̄J ′θ12θ̄12(c2d − 9)3

8(5c2d + 27)2
+
c2d(c2d + 15)β2DD̄J (c2d − 9)2

36(5c2d + 27)2

+
(c2d + 15)β2JJ (c2d − 9)2

12(5c2d + 27)2
+

(c2d + 15)(2c2d − 3)β2DJ ′θ12(c2d − 9)2

36(5c2d + 27)2

+
(c2d + 15)β2JDJ θ12(c2d − 9)2

12(5c2d + 27)2
+

(c2d + 15)β2J D̄J θ̄12(c2d − 9)2

12(5c2d + 27)2
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+
(c2d − 21)β2JDD̄J θ12θ̄12(c2d − 9)2

6(5c2d + 27)2
− β2DJ D̄J θ12θ̄12(c2d − 9)2

8(5c2d + 27)

− (c2d + 15)(2c2d − 3)β2D̄J ′θ̄12(c2d − 9)2

36(5c2d + 27)2
+

(c2d + 63)β2JJJ θ12θ̄12(c2d − 9)

2(5c2d + 27)2

− 27(c2d − 1)β2JJ ′θ12θ̄12(c2d − 9)

2(5c2d + 27)2
− 27(c2d − 1)2β2WW̄θ12θ̄12(c2d − 9)

8(5c2d + 27)2

−
(
c3

2d − 11c2
2d − 105c2d + 243

)
β2θ12θ̄12J ′′(c2d − 9)

24(5c2d + 27)2
− 1

6
(c2d + 3)Uβ

− 1

12
(c2d + 3)βDUθ12 +

(
c2

2d − 8c2d + 135
)
βDD̄Uθ12θ̄12

8(5c2d + 27)
− (7c2d − 135)βJUθ12θ̄12

2(5c2d + 27)

− 27(c2d − 1)βθ12θ̄12U ′

4(5c2d + 27)
− 1

12
(c2d + 3)βD̄U θ̄12

)
+

1

Z12

(
β2J ′DD̄J θ12θ̄12(c2d − 9)3

6(5c2d + 27)2
+
c2d(c2d + 15)β2DD̄J ′(c2d − 9)2

72(5c2d + 27)2

+
(c2d + 15)β2JJ ′(c2d − 9)2

12(5c2d + 27)2
+

(c2d − 33)β2JDJ ′θ12(c2d − 9)2

24(5c2d + 27)2

+
(c2d − 33)β2J D̄J ′θ̄12(c2d − 9)2

24(5c2d + 27)2
+

3(c2d − 1)β2D̄JDD̄J θ̄12(c2d − 9)2

16(5c2d + 27)2

+
(c2d − 33)β2JDD̄J ′θ12θ̄12(c2d − 9)2

12(5c2d + 27)2
+
β2D̄J ′DJ θ12θ̄12(c2d − 9)2

12(5c2d + 27)

+
(c2d − 1)(2c2d + 15)β2θ12 (DJ ′)′ (c2d − 9)2

96(5c2d + 27)2
− β2DJ ′D̄J θ12θ̄12(c2d − 9)2

12(5c2d + 27)

− 3(c2d − 1)β2DJDD̄J θ12(c2d − 9)2

16(5c2d + 27)2
− (c2d − 1)(2c2d + 15)β2θ̄12

(
D̄J ′

)′
(c2d − 9)2

96(5c2d + 27)2

+
9(c2d − 1)2β2W̄DWθ12(c2d − 9)

8(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′DJ θ12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJ D̄J θ̄12(c2d − 9)

2(5c2d + 27)2
+

(c2d − 81)(c2d − 1)β2J ′D̄J θ̄12(c2d − 9)

16(5c2d + 27)2

+
(c2d + 63)β2JJJ ′θ12θ̄12(c2d − 9)

(5c2d + 27)2
− 4βUJ ′θ12θ̄12(c2d − 9)

5c2d + 27

− (c2d + 63)β2JJDJ θ12(c2d − 9)

2(5c2d + 27)2
− 9(c2d − 1)2β2WW̄ ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2

− 9(c2d − 1)2β2W̄W ′θ12θ̄12(c2d − 9)

4(5c2d + 27)2
− 9(c2d − 1)2β2WD̄W̄ θ̄12(c2d − 9)

8(5c2d + 27)2

− (c2d + 3)
(
c2

2d − 41c2d + 72
)
β2θ12θ̄12J (3)(c2d − 9)

72(5c2d + 27)2
+

9(c2d − 1)βUDJ θ12

2(5c2d + 27)

+
(c2d + 63)βJ D̄U θ̄12

2(5c2d + 27)
+

(
c2

2d − 3c2d + 162
)
βDD̄U ′θ12θ̄12

12(5c2d + 27)
− (c2d−1)(c2d + 27)βD̄U ′θ̄12

4(5c2d + 27)

− 1

2
βDJ D̄Uθ12θ̄12 +

1

2
βDUD̄J θ12θ̄12 −

1

12
(c2d + 3)βU ′ − 1

4
βθ12θ̄12U ′′

− (c2d + 63)βJDUθ12

2(5c2d + 27)
− 9(c2d − 1)βUD̄J θ̄12

2(5c2d + 27)
− 3(c2d − 33)βJU ′θ12θ̄12

2(5c2d + 27)

− (c2d − 1)(c2d + 27)βDU ′θ12

4(5c2d + 27)

)
. (B.5)
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C Conformal blocks and generalized free field theory

C.1 Conformal block conventions

We adopt the following conventions for the four-dimensional bosonic conformal blocks,

g∆12,∆34

∆,` (z, z̄) =
zz̄

z − z̄

(
k∆12,∆34

∆+` (z) k∆12,∆34

∆−`−2 (z̄)− (z ↔ z̄)
)
, (C.1)

ka,bβ (x) = x
β
2 2F1

(
β − a

2
,
β + b

2
, β, x

)
. (C.2)

We also set kβ(x) := k0,0
β (x) and g∆,`(z, z̄) := g0,0

∆,`(z, z̄).

Braiding

Here we collect useful identities between the blocks needed for the crossing symmetry

discussion in section 4, namely their transformation under braiding, i.e., the exchange of

points one and two. The 4d bosonic blocks transform as

((1− z)(1− z̄))−
∆34

2 g−∆12,∆34

∆,`

(
z

z − 1
,

z̄

z̄ − 1

)
= (−1)`g∆12,∆34

∆,` (z, z̄) , (C.3)

and the SU(2) R-symmetry ones as

hSU(2)
m (w) = (−1)m hSU(2)

m

(
w

w − 1

)
. (C.4)

In particular (C.3) implies that g∆,`

(
z
z−1 ,

z̄
z̄−1

)
= (−1)`g∆,`(z, z̄). Finally, the 2d bosonic

blocks (3.36) satisfy

g2d
h (z) = (−1)h g2d

h

(
z

z − 1

)
. (C.5)

C.2 Generalized free theory example

In this appendix we present a solution to the Ward identities (3.16) and to the crossing

equations of section 4. It corresponds to the solution of generalized free theory, for which

the four-point function factorizes as a product of two-point functions. It reads

Ggft
R (x1, x2, y) = 1 +

(
x1x2

y

)R
, (C.6)

from which we can obtain, by setting x2 = y, the chiral algebra correlator fgft
R (x) = 1+xR.

Using the parametrization of the WI solution (3.17), we extract

Hgft
R (x1, x2, y) =

x1x2

[
xR1 x

R
2 y

2−R(x1 − x2)− yxR1 x2(x1 − y) + yx1x
R
2 (x2 − y)

]
(x1 − x2)(x1 − y)(x2 − y)

. (C.7)

In particular, we have for small R the expressions

Hgft
2 (x1, x2, y) = (x1x2)2 ,

Hgft
3 (x1, x2, y) = (x1x2)2(x1 + x2) +

(x1x2)3

y

= (x1x2)2

[(
x1 + x2 +

1

3
x1x2

)
− x1x2 h[1,1](w)

]
,

(C.8)
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with h[1,1](w) given in (3.24). The block expansion of the two-dimensional correlator fgft
R (x)

(i.e., in the non-chiral channel) is explicitly given by

fgft
R (x) = 1 +

∞∑
h=R

bgft
R,h g

2d N=2
h (x) , bgft

R,h = (−1)h+14R−h
(2R)h−R(1− h)R−1

Γ(R)(R+ 1
2)h−R

. (C.9)

Note (and compare with the discussion around (4.20)) that in the generalized free theory

example we have b
(R)
h<R = 0. In particular, there is no stress tensor being exchanged.

Similarly, we can decompose the two-dimensional correlator in the chiral channel to find

f̃gft
R (z) =

∞∑
h=R

h+R even

b̃gft
R,h g

2d
h (z) , b̃gft

R,h = −
21+2R−2hΓ

(
h+R

2

)
(1− h)R−1

(
2R−1

2

)
h−R

2

Γ(R)2
(

2R−1
4

)
h−R

2

(
2R+1

4

)
h−R

2

.

(C.10)

D Short contributions to crossing

Here collect some bulky equations used in the crossing equations (4.13) and summarize the

computation used in section 4.2 for the function HR,short.

D.1 Explicit expressions for F (0,±)
short

Here we collect the expressions for F (0,±)
short that we need in the crossing equations (4.13).

Using the definition (4.4) for the function AR, we write

F (0)
short[f ] = − [(1− z)(1− z̄)]R+1

(1− w)R−2

y2−R

x−1
1 − x

−1
2

(x2AR(x2, y) fR(x1)− x1 ↔ x2) ,

F (0)
short[Hshort, H̃short] =

[(1− z)(1− z̄)]R+1

(1− w)R−2
HR,short(z, z̄, w)

− (−1)R
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]
,

(D.1)

for F (0)
short and

F (±)
short[f ] = −

{
[(z − 1)(z̄ − 1)]R+1

(w − 1)R−2

xR−1
1 AR(x1, y) f̃R(z̄)− (z ↔ z̄)

z−1 − z̄−1

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}
,

F (±)
short[Hshort, H̃short] = (−1)R

{
[(1− z)(1− z̄)]R+1

(1− w)R−2
H̃R,short(z, z̄, w)

±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}
∓
{

[(1− z)(1− z̄)]R+1

(1− w)R−2
HR,short

(
z

z − 1
,

z̄

z̄ − 1
,

w

w − 1

)
±
[
(z, z̄, w)↔ (1− z, 1− z̄, 1− w)

]}
,

(D.2)

for F (±)
short.
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D.2 Summation for Hshort

Given the function fR(x) in the parametrization (3.17) of a four point function (3.14),

one can associate a contribution to the function H, called Hshort[f ], corresponding to the

exchange of the short operators which survive the cohomological truncation. The goal of

this appendix is to explicitly perform the summations in the first term in (4.24). This can

be done for two reasons:

1. The coefficients b
(R)
h in the expansion (4.19) can be easily determined in terms of a

finite number of parameters. This follows from the fact that fR(x) is a polynomial

of degree R that satisfy the crossing property fR(x) = xRfR(x−1).

2. Each block entering the first sum in (4.24) has the form

Gd=4,N=1
h+4,h =

th(z)s(z̄)− th(z̄)s(z)

z − z̄
, s(t) = −2(t+ log(1− t)) , (D.3)

where th(z) = th+3
2F1(h+ 2, h+ 3, 2h+ 5, t).

Each monomial term in fR(x), except for x0 = 1, can be expanded in superblocks as

xn =
∞∑
h=n

b̂n,h g
2d N=2
h

(
x

x− 1

)
, b̂n,h = −4n−hh

(2n)h−n(1− h)n−1

Γ(n+ 1)(n+ 1
2)h−n

. (D.4)

It follows that the part of HR,short in the R-symmetry singlet channel, compare to the first

term in (4.24), is

Hsinglet
R,short[x

n] :=
∞∑
h=n

b̂n,h Gd=4,N=1
h+4,h (z, z̄) =

zn+1s(z̄)− z̄n+1s(z)

z − z̄
, n ≥ 0 , (D.5)

and Hsinglet
R,short[1] = 0. Above Hsinglet

R,short is considered as a linear map acting on polynomials in

the variable x. Such maps are characterized by their actions on monomials given in (D.5).

In the cases relevant for R = 2, 3 (recall that HR=1 = 0), the only solution of the crossing

symmetry condition fR(x) = xRfR(x−1) are

f2(x) = 1 + c−1x+ x2 , f3(x) = (1 + x)(1 + γ(c)x+ x2)

= 1 + (1 + γ(c))x+ (1 + γ(c))x2 + x3 ,
(D.6)

with 1 + γ(c) = 9
4c4d

and c = c4d . It follows from (D.5) that

Hsinglet
R,short(z, z̄) =

t̂(R)(x1)ŝ(x2)− t̂(R)(x2)ŝ(x1)

x1 − x2
,

t̂(R)(x) = x(fR(x)− 1) , ŝ

(
z

z − 1

)
=

s(z)

1− z
,

(D.7)

with a now familiar identification (x1, x2) = ( z
z−1 ,

z̄
z̄−1).
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