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1 Introduction

Leptoquarks (LQs) are SU(3) coloured particles which also have non-zero lepton as well as

baryon numbers. These arise in grand unified theories like SO(10), SU(5) or Pati-Salam

SU(4) and are expected to have masses in the GUT scale in order to not cause rapid proton

decay. Models with low scale leptoquarks have been considered [1–4] which do not lead to

rapid proton decays. The leptoquark model [4] is based on the GLQ = SU(4)C ⊗ SU(2)L⊗
U(1)R quark-lepton unification group which breaks to the standard model at some low scale

∼ TeV. The SM quarks and leptons in this model can be unified in the same multiplet

(QL, `L) ∼ (4, 2, 0), (uR, νR) ∼ (4, 1,−1/2) and (dR, eR) ∼ (4, 1, 1/2). The scalars of this

model give rise to this symmetry breaking and also to provide Yukawa couplings to generate

fermion masses. They do not couple to the type of fermion-bilinears [5](QL ·`L, QL ·QL etc.)

which give rise to proton decay. In addition to these scalar leptoquarks there are vector

leptoquarks from the gauge bosons of the GQL gauge group but these are constrained to

be heavy (MX > 103 TeV) to evade bounds from rare meson decays [6, 7].

Leptoquark can be produced, singly or doubly, at colliders (hadron, e+e− or e±p) and

signals (like the ``jj from the decay of a leptoquark pair) and other important properties

and constraints can be studied [8–19]. A search for pair-production of first and second gen-

eration scalar LQs has been performed with 19.6 fb−1 of data by CMS [20, 21]. According

to this the first generation scalar LQs with masses less than 1005 (845) GeV are excluded

for β = 1(0.5), where β represents the branching fraction of an LQ to a charged lepton

and a quark. For second generation scalar LQs the exclusion limits are 1070 (785) GeV

for β = 1(0.5). Similarly, scalar LQs of third generation with masses below 740 GeV are

excluded at 95% C.L. assuming a 100% branching fraction for the LQ decay to a tau lepton

and a bottom quark [22]. A recent 2.6σ excess in a ``jj /ET events, reported by CMS [23],

has been explained by various models of LQ in the mass range 550-650 GeV [24, 25].

It has been pointed out [26] that a natural arena for the production of leptoquarks is

the neutrino-nucleon interactions at IceCube [27]. Recently the leptoquark interaction of

the form S†(`L.QL + uCτC) of a scalar leptoquark with the third generation leptons and

first generation quarks has been proposed as an explanation of the 2 year IceCube data [28].
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A very recent account of a minimal leptoquark scenario in the light of CMS and IceCube

observations are presented in [29]. Restriction to the third generation leptons explains the

paucity of muon tracks at neutrino energies 0.1–2 PeV and the cross section is enhanced

by the resonant production of ∼ 600 GeV leptoquarks at neutrino energies ∼ PeV.

In this paper we discuss the production and decay of the scalar leptoquarks of the low

scale quark-lepton unification model based on SU(4)C ⊗ SU(2)L ⊗ U(1)R [4] at IceCube.

The leptoquarks in this model decay into hadronic showers (plus neutrinos). The analysis

of the 988 days data gives a neutrino flavor ratio of 1:1:1 consistent with all 37 events

being from standard neutrino CC and NC events [30]. Thus to put an upper bound on

the parameters of the leptoquark model we make the conservative assumption that no

event among the 35 with less than PeV energies are of leptoquark origin. The resonant

production of leptoquarks with masses in the 500–1000 GeV, however, can give significant

number of hadronic shower events at IceCube at PeV range.

2 Quark-lepton unification model

We have used the low-scale quark-lepton unification model described in [4] which predicts

the existence of both vector and scalar leptoquarks. This leptoquark model is based on the

GQL = SU(4)c⊗SU(2)L⊗U(1)R quark-lepton unification group which spontaneously breaks

to the standard model GSM = SU(3)⊗ SU(2)L⊗U(1)Y at some low scale. The SM quarks

and leptons can be unified in the same multiplet (QL, `L) ∼ (4, 2, 0), (uR, νR) ∼ (4, 1,−1/2)

and (dR, eR) ∼ (4, 1,−1/2). We concentrate on the scalar LQs of this theory, namely,

Φ3 ∼
(
3, 2,−1/6

)
SM

and Φ4 ∼ (3, 2, 7/6)SM which are present in the scalar Φ of the theory.

The masses of the components of Φ3 and Φ4 are determined by the parameters of the scalar

potential. The relevant part of the potential is given by [4],

V = m2
ΦTr

[
Φ†Φ

]
+ λ̃2H

†HTr
[
Φ†Φ

]
+ λ̃3χ

†χTr
[
Φ†Φ

]
+ λ̃5H

†Tr
[
Φ†Φ

]
H

λ̃6χ
†ΦΦ†χ+ λ̃9Tr

[
Φ†Φ

]2
+ λ̃10

(
Tr
[
Φ†Φ

])2
, (2.1)

where under GLQ, Φ ∼ (15, 2, 1/2), H ∼ (1, 2, 1/2) and χ ∼ (4, 1, 1/2). Also,

Φ =

(
Φ8 Φ4

Φ3 0

)
+ T4H2, (2.2)

where T4 is the SU(4)C generator and H2 is another Higgs doublet. Moreover the vacuum

expectation values (vev) of the scalar fields are given by 〈χ0〉 = vχ/
√

2, 〈H0〉 = v1/
√

2 and

〈H0
2 〉 = v2/

√
2. With these vevs the mass terms for the fields Φ3,4,8 can be written as,(

m2
Φ +

1

2

((
λ̃2 + λ̃5

)
v2

1 + λ̃3v
2
χ

))(
Φ†3Φ3 + Φ†4Φ4 + Φ†8Φ8

)
+

1

2
λ̃6v

2
χΦ†3Φ3, (2.3)

From the mass terms it is evident that Φ8 and Φ4 are degenerate in mass but Φ3 mass

can be different from the former two, owing to the λ̃6 term. In this context it is worth

mentioning that the LHC searches at
√
s = 8 TeV with 19.7 fb−1 of integrated luminosity,
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Leptoquark
Electromagnetic Charge

(Q)
Neutrino coupling

Φ3
+2/3 λ2ν̄u

−1/3 λ2ν̄d

Φ4
+5/3 –

+2/3 λ2ν̄u

Table 1. Leptoquarks with appropriate electromagnetic charges and couplings.

through a dijet resonance above 1.2 TeV have excluded the mass range of [1.3–2.5] TeV of

the color-octet mass [31]; also according to a more recent search the bound on this mass

exists down to 500 GeV [32]. Thus the octet Φ8 and the leptoquark Φ4 can be well within

this bound but the leptoquark Φ3 can be of smaller mass by taking small negative λ̃6.

In this work we take them to be the free parameters which we constrain from the

IceCube data. The relevant interactions of the leptoquarks are,

LLQ = λ2QLΦ3ν
C + λ2`LΦ4u

C + λ4QLΦ†4e
C + λ4`LΦ†3d

C + h.c. (2.4)

The symmetries of LQs Φ3 and Φ4 do not allow interaction terms with type of fermion

bilinears (QL · `L, QL ·QL) that lead to proton decay via these LQ exchanges at tree level

at dimension four. However, there exists dimension five operators that may lead to proton

decay. But these dimension five operators can be avoided by the imposition of appropriate

discrete symmetries [5]. The constraints on these types of LQs coming from charged lepton

sector, e.g., via the processes µ → eγ, conversion of µ to e and electric dipole moment of

the electron, have been discussed in [5].

The coupling λ4 < 0.01 and this constraint comes from the kaon decay K0
L → e∓µ±

to be in agreement with fermion masses [7]. The coupling λ2 is not constrained and we

put bounds on this coupling from IceCube events. Constraints on leptoquark models from

other rare decays has been considered in [33, 34].

In table 1 we present the electric charges of the components of the LQs and their

couplings with the neutrinos. Note that the state of Φ4 with electric charge (+5/3) will

have no coupling with neutrinos. All the processes relevant for the production of LQ from

neutrino-nucleon interaction and its subsequent decay to the τ and hadronic showers are

(here the superscripts in Φ3,4 represents the corresponding electric charges.),

ν̄u→ Φ
2/3
3 → ν̄u, ν̄d→ Φ

−1/3
3 → ν̄d, ν̄u→ Φ

2/3
4 → ν̄u . (2.5)

these processes are proportional to the coupling λ2 on which the constraints are mild.

On the other hand the model (2.4) allows the following processes which could have

contributed to the IceCube signal,

ν̄u→ Φ
2/3
3 → `+d, ν̄d→ Φ

−1/3
3 → `−u, ν̄u→ Φ

2/3
4 → `+d (2.6)

but these processes are proportional to the coupling λ4 which is already constrained to be

λ4 < 0.01 from kaon decay K0
L → e∓µ± [7]. We study LQ production and decay processes

– 3 –
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Figure 1. The distribution of neutrino-nucleon cross section for various cases. The values of the

coupling λ2 that have been used are shown in each plot.

where only the λ2 coupling arises. Due to the smallness of λ4 the LQ decays to `± + j,

which is the signal in [28], is not significant in this model. We considered λ2 to be 0.5 and

1.0 and we keep λ4 to a fixed value 0.005 in our subsequent study.

The neutrino-nucleon cross section for the production and subsequent decay of LQ of

mass MΦ, in the narrow width approximation, is given by [35, 36],

σLQ(ν̄N → ν̄X) =
π

2M2
Φ

λ2
2 BR(Φ→ ν̄q)xqN

(
x;µ2

)
, (2.7)

where qN (x;µ2) is the parton distribution function (PDF) of the parton q in the nucleuon

(with mass mN ) and x = MΦ
2/(2mNEν) is the parton fractional momentum. The renor-

malization scale µ is set at MΦ. We have used the nuclear PDFs, CTEQ6l1 [37] at LO to

get the qN (x;µ2).

In figure 1 we show the distribution of neutrino-nucleon cross section, dσ
dEν

(ν̄N → ν̄X).

The upper panel (figures 1a and 1b) shows the case where only the leptoquark Φ
−1/3
3 is

involved. In the lower panel (figures 1c and 1d) we show the distribution where either Φ
2/3
3

or Φ
2/3
4 comes in the intermediate state.
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3 Constraints from IceCube events

The three-year (2010–2012) data set, with a livetime of 988 days, reveals 37 neutrino events

in the energy range 0.3–2 PeV. Among these, 9 are track events and 28 are cascade events,

with the flavor ratio 1 : 1 : 1 [30] expected from pion/muon decay neutrinos oscillating

over cosmological distances [38, 39]. The astrophysical neutrino flux (averaged over zenith

angle) follows a power law [27],

Φ(Eν) = 4.74× 10−7

(
Eν

1GeV

)−2.3

GeVcm−2s−1sr−1. (3.1)

The highly energetic incoming neutrinos can produce leptoquarks after the collision

with quarks in the nucleons at IceCube. The subsequent decay of the leptoquarks will be

registered as events at IceCube. The expected number of events at IceCube is given by,

NLQ = 4πnTT

∫
dEν [σLQ(Eν).Br]Φ(Eν), (3.2)

where nT is the effective number of target nucleons in IceCube and is ∼ 6.0× 1038 as the

effective volume is roughly 1 km3; the time of exposure T = 988 days. σLQ(Eν) has been

defined in eq. (2.7); the Br represents the branching ratio of the leptoquark Φ decaying to

a neutrino and a quark.

The event rate distributions, dN
dEν

, are shown in figure 2. It is worth-mentioning that

the rapidly falling nature of these distributions are dictated by the spectrum of neutrino

flux Φ(Eν).

To test the allowed parameter space of the λ2 coupling and LQ mass for extra LQ events

in the IceCube observations we do a χ-square fit with (λ2,MΦ
−1/3
3

) as free parameters.1

We define,

χ2(λ2,MΦ
−1/3
3

) =
∑

energy bins

(Nexp −(NSM +NLQ))2

∆2
, (3.3)

where the error ∆ is the experimental error [27] in the measured events in each energy bin

and the uncertainty in the model prediction added in quadrature. The events expected from

the standard model CC and NC interactions from atmospheric neutrinos plus the extra-

terrestrial neutrinos with flux spectrum (3.1) have been computed in [27]. We add to the SM

events the events expected from LQ processes and minimize the χ2 summing over energy

bins from Eν = 100 GeV–10 PeV. The minimum χ2 is achieved for λ2 = 0 which means that

LQ events spoil the overall fit from SM events. When the LQ mass is M
Φ

−1/3
3

< 500 GeV

then it gives an excess contribution over observations in the Eν < 1 PeV energy bins where

the fit from standard model CC and NC events from atmospheric neutrinos and extra-

terrestrial neutrinos with spectrum (3.1) fits observed IceCube events well. When the LQ

mass is M
Φ

−1/3
3

> 650 GeV (and the corresponding λ2 > 1, in order to maintain the cross

section) there are excess events in the Eν ∼ 6 PeV Glashow-resonance region where there is

already a problem in that, even the SM prediction is not observed. In figure 3 we show the

1Similar studies can be made for Φ
2/3
3,4 also.
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Figure 2. The event rate distribution dN/dEν for various cases. The coupling λ2 is shown in

each plot.
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Figure 3. Event rate distribution for leptoquark with λ2 = 1 and M
Φ

−1/3
3

= 500 GeV (left)

650 GeV (right).

contribution of LQ with mass M
Φ

−1/3
3

= 500 GeV and M
Φ

−1/3
3

= 650 GeV respectively to

the IceCube events. We see that in the mass range M
Φ

−1/3
3

= 500–650 GeV with coupling

λ2 = 1 there is an improvement in the fit for the events in the 1–2 PeV bins compared to

the standard model.

– 6 –



J
H
E
P
0
4
(
2
0
1
6
)
1
8
7

0 .5 1 .0 1 .5 2 .0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Λ2

M
F
H-

1
�3
L

Figure 4. The (λ2,MΦ
−1/3
3

) parameter space where the region below the curve is disallowed at

95% CL. The χ2
min = 3.66 for λ2 = 0 which means that when all the energy bins are considered in

the χ2 the SM gives the best fit to the observed data.

As the total number spectrum of events has a worse χ2 fit with the inclusion of lepto-

quark events, we can rule out some parameter space of LQ models from IceCube events.

In figure 4 we show the (λ2,MΦ
−1/3
3

) parameter space where the region below the curve is

disallowed at 95% CL.

4 Summary and conclusion

Leptoquarks in the mass range 500–1000 TeV can be produced in significant numbers by

the PeV neutrinos at IceCube. Assuming that the 37 events seen in the IceCube data can

be explained by νe, νµ, ντ CC and NC events we put bounds on the masses and couplings

of scalar leptoquarks of the low scale quark-lepton unification model based on the gauge

group SU(4)C ⊗ SU(2)L ⊗ U(1)R [4]. Of the possible signals in this model the ν̄q → ν̄q

process which will give rise to a hadronic shower that can be observed at IceCube. The

ν̄q → lq process allowed in the model which would produce lepton and hadronic showers

is constrained to be small from collider bounds on the corresponding coupling. We put

bounds on the scalar leptoquark masses which connect the first generation quarks with

the third generation leptons to be above the 500-1000 GeV if the coupling λ2 is in the

0.1-1 range. Observations with longer exposures over target volumes can produce hadronic

showers by resonant leptoquark decay which may be observed over the background.

In the context of colliders, we would like to add that in this model the eejj or eνjj

signal, studied in [19, 25, 29], will take place only via coupling λ4 (see eq. (2.4)), but

this coupling is restricted by rare meson decay processes, which constrain λ4 < 0.01 [7].

For these values of λ4 the leptoquark events at IceCube are negligible compared to those

generated by λ2 coupling. This model does not explain the eejj or eνjj signals at LHC and

is only constrained by IceCube data. Also due to the very nature of the couplings, in this

model, one can have ννjj type of signal but that will be difficult to examine at colliders.
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