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Abstract: We have recently established a new method for measuring the mass of unstable

particles produced at hadron colliders based on the analysis of the energy distribution of

a massless product from their two-body decays. The central ingredient of our proposal is

the remarkable result that, for an unpolarized decaying particle, the location of the peak in

the energy distribution of the observed decay product is identical to the (fixed) value of the

energy that this particle would have in the rest-frame of the decaying particle, which, in

turn, is a simple function of the involved masses. In addition, we utilized the property that

this energy distribution is symmetric around the location of peak when energy is plotted

on a logarithmic scale. The general strategy was demonstrated in several specific cases,

including both beyond the standard model particles, as well as for the top quark. In the

present work, we generalize this method to the case of a massive decay product from a

two-body decay; this procedure is far from trivial because (in general) both the above-

mentioned properties are no longer valid. Nonetheless, we propose a suitably modified

parametrization of the energy distribution that was used successfully for the massless case,

which can deal with the massive case as well. We test this parametrization on concrete

examples of energy spectra of Z bosons from the decay of a heavier supersymmetric partner

of top quark (stop) into a Z boson and a lighter stop. After establishing the accuracy of this

parametrization, we study a realistic application for the same process, but now including

dominant backgrounds and using foreseeable statistics at LHC14, in order to determine

the performance of this method for an actual mass measurement. The upshot of our

present and previous work is that, in spite of energy being a Lorentz-variant quantity, its

distribution emerges as a powerful tool for mass measurement at hadron colliders.
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1 Introduction

Extensions of the Standard Model (SM) at the TeV scale are very well-motivated for several

reasons, including solving the Planck-weak hierarchy problem and the attractiveness of

weakly-interacting massive particle (WIMP) as Dark Matter (DM) of the Universe. In this

respect, it is expected that new physics signatures will be discovered at the second phase

of the Large Hadron Collider (LHC) and at future colliders. Once we establish a signal

for new particles, it is of course crucial to carry ouy measurements in order to identify the

underlying dynamics governing the new particles. Of various properties, we particularly

focus on determining the mass of such new, heavy, (un)stable particles using the observed

energy/momentum of its decay products at hadron colliders.

Some desirable features of a mass measurement methods are worth spelling out, as we

do in the following.

• In view of the little a priori knowledge of the dynamics of the new particles (at least to

begin with), methods for mass measurement of a new particles should ideally be based

simply on the kinematics of its decay and not rely heavily on assuming particular

dynamics of the states to be measured, i.e., it is advantageous if the strategies are

independent of details of the production mechanism (e.g., matrix elements, proton

PDFs or the actual partons initiating the production).
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Of course, many such kinematics-based techniques have long been proposed, starting with

the simplest case where the decay products are all visible and the complete and unambigu-

ous reconstruction of the decaying particle four-momentum is possible on an event-by-event

basis. In this case, the resonant peak in the invariant mass of the decay products — which

is described by the standard Breit-Wigner (BW) shape — can provide a robust measure-

ment of its mass, e.g., the case of the Higgs boson (→ γγ) or Z boson (→ l+l−) in the past

or for a Z ′ boson in the future.

However, in other cases, even if the decay is fully visible, the mother particle is often

produced in pairs so that full reconstruction faces a combinatorial ambiguity in associating

the right set of decay products to each mother, and thus it might not be possible to

determine the mother mass on an event-by-event basis.1 In other words, even in the narrow

decay width approximation, we might still get a “broad” distribution of invariant mass,

that too possibly with a shifted peak, due to the inclusion of “wrong” combinations of the

invariant mass. Of course, one can resolve this ambiguity statistically with a prediction

of the resulting “modified” BW shape, but this prescription typically requires knowledge

on the underlying physics (e.g., production mechanism), which invalidates the strategy to

measure new physics masses without prior knowledge of their dynamics.

In addition to the fully visible case, there are cases of a semi -invisible decay of a heavy

particle,2 in which the decay produces both visible particles and invisible ones. Clearly,

even with single production of the mother and a single invisible particle in decay chain, it

is not possible in such a case to reconstruct the resonance mass on an event-by-event basis

at hadron colliders. The reason is that, although the transverse momentum of the invisible

particle is known via the “missing” transverse momentum (henceforth called MET), its

longitudinal component and mass are a priori unknown.3 Actual measurements can be

even more challenging since often such particles are pair-produced so that the missing

transverse momentum is shared between (at least) two invisible particles; furthermore, one

might face combinatorics even for the visible part in the case where each parent particle

decay consists of 2 or more particles.

Nevertheless, even for this last case of pair-production of semi-invisibly decaying parti-

cles, several methods for mass measurement have been developed, such as i) using kinematic

endpoints of visible particle invariant mass distributions [1–17], which works only for two or

more visible particles in the decay chain (thus necessarily facing combinatorics due to the

pair-production), ii) the MT2 variable4 and its generalizations and variants [18–48], which

often use MET, iii) polynomial methods [49–53], which often assume a specific event topol-

ogy and impose an adequate number of on-shell constraints, or iv) the razor and related

variables [54, 55], which often need some assumptions about boosts of the mother parti-

cles. See also references [56–60, 62–66] for other kinematic methods for mass measurement,

1A classic example is the pair-produced top quarks in the SM.
2In particular, this class of decay processes are motivated by the framework of WIMP DM, i.e., we might

be producing DM at colliders in decays of heavier particles from that sector.
3A classical example in the SM is the singly-produced W decaying leptonically.
4In turn, this is inspired by transverse mass MT [61] which was used earlier for measuring the mass of

singly produced W boson.
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which do not typically require the measurement of MET, and refs. [68, 69] for a general

review of mass measurement methods.

Although developed with mass measurement of new particles in mind, these methods

can of course be “tested” via mass measurement of SM particles, for example, the top quark.

In fact, this has already been done for top quark mass measurement using the kinematic

endpoints of invariant mass and MT2 variables [69]. These applications are particularly

worth noticing as they have been used also to provide a model-independent measurement

of the top quark mass, to be compared with previous methods determining the top quark

mass more precisely but with many more assumptions on the knowledge of SM matrix

elements in production and decay of top quarks at hadron colliders. In this sense the

merit of being based on kinematics has already granted these ideas a certain recognition.

Furthermore, the same “transverse” methods can be used as discriminators in the search

for such semi-invisibly decaying new particles, i.e., even before mass measurement: for a

review of such search strategies, including others such as αT variable [70], see, for example,

ref. [67]).

In order to frame the work that will be carried out in this paper, it is worth discussing

potential limitations of the above-listed methods, despite their model-independent nature

and even a successful application to real experimental data. As mentioned before, combina-

torial ambiguity is often challenging in constructing the relevant observables. Additionally,

the distributions are sometimes characterized by a long tail so that it may be very diffi-

cult to identify the true location of kinematic endpoints. Finally, the variables involving

MET are typically affected by detector effects: the point being that even if the decay of

interest does not result in quarks/gluons, jets are ubiquitous at hadron colliders and their

measurement becomes a part of accurately determining MET.

From this series of considerations, it is clear that there is no single best method for mass

measurement. Thus, in order to compensate for possible shortcoming of these methods,

new observables for mass measurement are needed and should be devised keeping in mind

the following points. For example, the new methods can be useful if they have different,

possible little, sensitivity to systematics affecting previous methods, e.g., by avoiding the

use of MET, be less sensitive to combinatorics or assumptions about boosts, or work even

for a single visible particle in the relevant decay chain. With the above goal in mind, over

the past few years, an exciting idea has emerged:

• The mass of a decaying particle can be measured at hadron colliders using the en-

ergy spectrum of a (till the present work) massless daughter from the decay, with

essentially no a priori knowledge of the dynamics governing the measured particle.

We emphasize that this idea sets a new paradigm in the sense that opens the way to use en-

ergy, which is a frame-dependent quantity, to obtain robust model-independent information

on masses, which are instead frame-invariant.

In more detail, we consider the two-body decay of a heavy particle (mother) into

one massless, visible particle (daughter) along with another particle. The specification of

the latter decay product is irrelevant to the subsequent argument except that its mass

parameter enters the relevant formulae. We further assume that the mother particle is
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produced without any preference for its state of polarization and with a generic boost

distribution, which are typical conditions at hadron colliders. Under these circumstances,

we have made a remarkable observation [71]:

• The location of the peak in the energy distribution of the massless daughter is exactly

at the value of energy of the daughter in the rest frame of the mother.5

Moreover, this rest-frame energy value is simply given by a function of the masses of the

mother particle and the other decay product, enabling us to determine the associated

combination of mass parameters from the measurement of the energy-peak. Certainly, if

the mass of the other decay product is obtained from another independent measurement,

the mass of the mother particle is straightforwardly determined, and vice versa.

A few comments on this “energy-peak” result and the associated technique for mass

measurement are in order. First of all, the energy-peak is invariant under variations in

the boost distribution of the mother, which, in turn, depends on details of the production

mechanism including matrix element, collider energy, parton distributions, the possibility

of initial state radiation, and so on. This fact is striking, because, as one would naturally

guess, the overall distribution changes upon variation of these physical quantities, given

that energy itself is not Lorentz-invariant. Despite the change of shape of the distribution,

under the simple and generic assumptions listed above, it is a rigorous and robust result that

the peak position does not change. Hence, modulo the assumption of unpolarized mother

particles, this energy-peak method for measuring masses is indeed kinematics-based, i.e.,

without involving the details of underlying models. Moreover, the method does neither

involve any combinatorics, as it is not necessary to associate each particle to their parent

particle, nor use MET, as the only quantity used is the energy of visible particles. Thus

the energy-peak method is clearly complementary to the existing methods.

In addition to the robust statement on the location of the peak, one can also show that

the energy distribution for the massless daughter is symmetric with respect to the peak

with the energy being plotted on logarithmic scale. Predicated upon these, and a couple of

other properties that can be proven from first principles, a fitting function was developed

in [71] as a model for the actual theory curve. The underlying goal was to aid the extraction

of the peak position from the relevant data, given that the peak tends to be rather broad.

The fitting function contains only two fit parameters responsible for the peak position

and the width of the energy distribution, hence the analysis of energy spectra becomes

similar in spirit to a Breit-Wigner shape analysis for the invariant mass distribution of

a resonance.6 It is worth emphasizing that one could of course obtain the true energy

distribution as a (numerical) “function” of the relevant mass parameters, convolving model-

dependent information, and thus use it to determine those masses. However, it would

obviously be considered as a fully dynamics-based approach which is contrary to our basic

philosophy here.

Remarkably, the above fitting function was actually shown to be able to reproduce

sufficiently well the theory prediction for energy spectra for numerous cases with mass-

5See also refs. [72–74] for related recent work and ref. [75] for an earlier discussion on this property in

the context of cosmic-ray physics.
6Of course, the latter is truly derived from 1st principles, while the former is only “inspired” that way.
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less daughters, for example: i) the bottom quark energy from the decay of top quarks

in the SM produced at the LHC7 [71]; and ii) new physics examples as the spectrum

of both bottom quarks in gluino cascade decay at LHC14 [76]. This function has also

been studied and found to work for bottom quark energy spectra arising from the decay

of fermionic quarks with mass ∼ 1 TeV and scalar top quarks decaying in chargino and

bottom quarks in the MSSM [77]. Building on the accuracy in reproducing the theory

predictions that has been demonstrated using this fitting function, the location of the

energy-peak extracted by this fit has been applied for measuring masses: e.g., of the top

quark at LHC7 [71] and gluino and sbottom at LHC14 [76]. In particular, as part of the

application for measuring gluino mass (at least for some choice of spectra), one could also

determine the mass of the invisible neutralino [76], remarkably without measuring MET

at all. Furthermore it has been found that this fitting function can describe accurately

b-jet energy spectra from top quark production at the LHC including effects from next-to-

leading order corrections to production and decay mechanism [78]. An adapted version of

the energy-peak idea was used in ref. [82] for determining the Kaluza-Klein graviton mass

arising from a warped extra dimensional framework. Above analyses were of course using

simulated data.

In fact, the CMS collaboration has recently published a measurement of the top quark

mass that follows our proposal [79], resulting in a measurement of top quark mass: 172.29±
1.17(statistical)±2.66(systematic) GeV, which is consistent with the current world average

(using other methods). In particular we note that the statistical error is already at the GeV

level using the full 8 TeV data set, which should allow for a statistical error well below the

GeV and well below the dominant systematic uncertainties once the full Run 2 luminosity

will be available. Concerning the systematic uncertainties, we remark that the dominant

uncertainty at Run 1 has been the one associated to reweighing of events as a function of

top quark transverse momentum, followed by the jet energy scale uncertainty. In turn, the

former systematics can be attributed to the uncertainty in the modeling of pT distribution

of top quarks, thus it might be ameliorated by the results of the NLO calculation mentioned

earlier [78] and future ones (i.e., including even higher-order contributions): the point here

being that this NLO precision was missing in the CMS analysis. Therefore, for the next

iteration, i.e., at Run2, only the jet energy scale uncertainty is foreseen to stay, making the

total expected systematic uncertainty drop to the ∼ 1 GeV level. Overall, the results of

this analysis of the 8 TeV LHC dataset [79], together with the NLO improvements, indicate

very promising prospects for the extraction of the top quark mass with ∼ 1 GeV accuracy

once more data from the 13 TeV run will be available.

For the sake of completeness, we would also like to mention other (i.e., beyond mass

measurement) applications of the energy peak method. For example, ref. [80] used energy-

peaks for distinguishing Z2 DM stabilization symmetry from Z3 in conjunction with the

MT2 variable. Its potential use for distinguishing bottom quarks from SM top quark

decay from those from decays of its supersymmetric partner (stop) was mentioned briefly

in ref. [81].7 Finally, the energy-peak observation was applied to interpret the Galactic

Center GeV gamma-ray excess in ref. [83].

7See discussion around eqs. (45), (46) of arXiv version.
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All the above witnesses how the idea of energy-peak has become a developed and artic-

ulated research program extending to various sub-disciplines of particle physics. Inspired

by the general fruition of the above program,

• in this paper we study the generalization of the energy-peak method to the case of a

massive daughter particle.8

As in previous applications, we focus on the two-body decay of an unpolarized mother,

produced with a generic boost distribution. The motivation for such a step is clear: it is not

only that many daughters of a two-body decay are massive, but also that the phase-space of

a three-body decay (say, into two massless daughters) can be sliced into several “effective”

two-body ones, i.e., consisting of a massive (single) body made of these two daughters

with a fixed invariant mass and the third daughter. Such an idea allows an extension of

the energy-peak method to the case of multi-body decays, hence makes the extension to

massive daughters from two-body decay highly desirable and motivated. Results specific

to three-body decay, based on the finding of this work, are presented in a related paper of

ours [84]. As a disclaimer, we would like to mention that (as is explained below) for the

case of a massive daughter, the energy-peak method will be less robust (i.e., more empirical

than theory-based) than for massless case, but still we will show that it is quite useful.

First of all, the symmetry property of the energy distribution on logarithmic scale can

be shown to be violated “as soon as” the daughter has non-zero mass. Of course, this

violation may be negligible if the daughter is very light, for example, bottom quark from

top quark decay, as was studied in [71], but it would not be so if one studied W boson

energy spectra in the same context. In addition, one finds that the energy-peak shifts from

its rest-frame value, provided that the mother particle can be produced with sufficiently

large boost at the collider under study. Of course, the significance of these effects depends

on the boost distribution of the mother particle, hence on the details of its production

environment. Therefore, at least to some extent,

• for a massive daughter energy spectrum, the shift in the peak position and the asym-

metry of the energy distribution on logarithmic scale become model-dependent, al-

though they are very often small.

Thus, a priori, it seems rather difficult to repeat the success of the massless case here. For-

tunately, the successful implementation of the fitting template for the massless case suggests

a path to treat the massive daughter case, which arises from the following observation.

• The general form of the energy distribution for massless and massive daughters (i.e.,

as an integral over distribution of boosts of the parent particle) look “similar”. Hence

by exploiting suitable matching conditions in limiting cases we can leverage the suc-

cess of the fitting function for the massless case and suggest a suitably modified model

for massive daughter energy spectra that can accommodate all the relevant features

of the spectrum.

8As will be clear later on, “massless” really stands for (very) large boost of the daughter in the rest-frame

of the mother, whereas massive implies smaller boost.
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As with the massless case, we must validate the fitting function, as this function is

largely motivated by prime principles, but not entirely. In fact, for the massive case, it is

all the more crucial to do so, since (as mentioned above) the theory behind energy-peak is

on a less firm ground than for massless case. Therefore, we thoroughly test the new fitting

function on the theoretical energy distribution of Z boson coming from decay of the heavier

supersymmetric top quark partner to the lighter one. In particular, varying the mass gap

between the two supersymmetric top quarks provides us the flexibility (as desired for a

systematic evaluation of the fitting function) in terms of the amount of “massiveness” of

the Z boson (i.e., its boost in the rest frame of the mother particle). Having developed

confidence in the new fitting function, we then apply the massive energy-peak method for

measuring masses in the same process including background, cuts, and realistic statistics

at the LHC14.

Here is the outline for the rest of this paper. We begin with a discussion of the above

derivation of the massive fitting function in section 2. The detailed testing is performed in

section 3. In section 4, we discuss the application for measuring masses of the supersym-

metric top quark partners. Section 5 is reserved for our conclusions and outlook.

2 Developing a template for massive decay products

We first revisit (in section 2.1) the derivation of the fitting function that we proposed for

massless visible particles in ref. [71]. Utilizing a similar formalism, in section 2.2, we can

find out the general structure of the energy spectrum of a massive particle from a two-body

decay and motivate a new fitting function that can deal with the massive case.

To begin with, we outline some notation and basic formulae which are valid for both

cases. The process under consideration is a two-body decay:

M → d+D , (2.1)

where M denotes “mother” particle, i.e., a heavier particle decaying into a lighter and

visible daughter d together with another daughter D. We focus on the energy spectrum

of particle d, whereas only mass information of particle D is relevant to the subsequent

discussion.

With this simple set-up, it is well-known that the energy and momentum of the visible

daughter particle d in the rest frame of the mother particle are expressed in terms of the

three masses mM , mD, and md as:

E∗d =
m2
M −m2

D +m2
d

2mM
, (2.2)

p∗d =
λ1/2(m2

M ,m
2
D,m

2
d)

2mM
, (2.3)

where the usual kinematic triangular function is defined as λ(x, y, z) = x2 +y2 +z2−2(xy+

yz + zx). Here the “starred” quantities denote what would be measured in the rest frame

of particle M , while others are understood to be in the laboratory frame. We henceforth

call E∗d and p∗d “rest-frame” energy and momentum of particle d, respectively.
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In general, the laboratory frame is not the rest frame of the mother particle, therefore,

the observed energy of the visible daughter d in the laboratory frame is given by a Lorentz

transformation:

Ed = E∗d

(
γM +

p∗d
E∗d

√
γ2
M − 1 cos θ∗d

)
, (2.4)

where γM describes the boost of particle M in the laboratory frame and θ∗M is the emission

angle of particle d in the rest frame of the mother particle, which is measured from the

boost direction, ~βM . Throughout this paper, we assume that the mother particles are

either scalar or produced in an unpolarized manner so that cos θ∗d has a flat distribution.

2.1 The energy spectrum of a massless decay product

We now briefly review the case where the visible daughter d is massless. Since p∗d = E∗d ,

the Lorentz transformation in eq. (2.4) can be further simplified to

Ed = E∗d

(
γM +

√
γ2
M − 1 cos θ∗d

)
. (2.5)

2.1.1 Properties

Obviously, the distribution in Ed for any fixed (but arbitrary) boost factor γM is rectangular

due to the fact that cos θ∗d is a flat variable spanning the range

xd ≡
Ed
E∗d
∈
[(
γM −

√
γ2
M − 1

)
,

(
γM +

√
γ2
M − 1

)]
. (2.6)

One can easily find that the above range covers xd = 1 (or equivalently Ed = E∗d) for

any boost factor γM and it is the only value of xd to enjoy such a property [71]. To get

the overall energy distribution, one should “stack up” all resulting rectangles, certainly

developing a unique peak at xd = 1. One interesting feature is that E∗d appears as the

geometric mean of the two endpoints for each rectangle, which implies it becomes the

“midpoint” when the energy spectrum is plotted on a logarithmic scale. In other words,

the entire energy spectrum is symmetric with respect to Ed = E∗d in logarithmic scale.

One can understand the above heuristic argument more formally by the following

integral representation:

f(xd) ≡
1

ΓM

dΓM
dxd

=

∫ ∞
xd+x−1

d
2

dγM
g(γM )

2
√
γ2
M − 1

, (2.7)

where g(γM ) denotes the boost distribution of the mother particle, which encodes all model-

dependent information such as the matrix element of production, parton distribution func-

tions, and so on. The upper end in the integral range defines the maximum γM contributing

to xd of interest. Strictly speaking, it is determined by the center of mass energy of the col-

lider under consideration. However, its specific value is irrelevant for the case of a massless

visible particle, and thus we simply understand the “infinity” as an arbitrary sufficiently

large value. On the other hand, the lower end can be derived from the solution for γM to

the equation, xd = γM ±
√
γ2
M − 1, for a given xd, where the positive (negative) signature

– 8 –
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is relevant to the region of xd ≥ 1 (xd < 1). In order to understand the shape of the energy

spectrum we take the first derivative of eq. (2.7), that is,

f ′(xd) =
sgn(1− xd)

2xd
g

(
xd + x−1

d

2

)
, (2.8)

where sgn(x) is the usual sign function. To see if f(xd) is maximized at xd = 1, one should

first check whether or not this first derivative vanishes at xd = 1. It can be proven that

this point is indeed a maximum both for g(1) = 0 and g(1) 6= 0 under a well justified

assumption of non-vanishing g(γM ) for any finite non-zero value of γM . More details on

the proof can be consulted in ref. [71].

We remark that in principle, the integral in eq. (2.7) cannot be performed analytically

due to the existence of a model-dependent piece g(γM ). Nevertheless, we can still exploit

some functional properties that the generic f(xd) should satisfy. We simply enumerate

them below without any detailed verification, for which we refer to our work ref. [71]. The

function f :

• is a function with an argument of xd + 1
xd

, i.e., it is even under the operation of

xd ↔ 1
xd

,

• has a (unique) maximum at xd = 1,

• vanishes as xd approaches 0 or ∞,

• tends to a δ-function in some limiting situation.

Here the last property can be interpreted as a boundary condition reflecting the fact that

f should return the fixed value as in eq. (2.2) with md = 0 if g(γM ) is non-zero valued only

at γM = 1.

2.1.2 The massless ansatz

The challenge in having a closed form of f(xd) motivates us to come up with a model-

independent ansatz to approximate the true energy distribution. Predicated upon the

above-listed properties, the following “simple” function was originally proposed in ref. [71]:

f(xd) = K−1
1 (w) exp

[
−w

2

(
xd +

1

xd

)]
, (2.9)

where the normalization factor K1(w) is a modified Bessel function of the second kind

of order 1, and w is a parameter describing the width of the peak. All model-dependent

information is encapsulated in the “width” parameter w, which in general is an indicator of

the typical boost of the mother particle; a larger (smaller) value corresponds to a narrower

(wider) peak and so fits the case of the mother particle which is typically less (highly)

boosted. It is straightforward to see if this ansatz (henceforth called massless fitting tem-

plate) respects all four properties enumerated before (see ref. [71] for more details). This

function has been tested in the context of i) bottom quark energy spectrum from the decay

of SM top quark at LHC-7 TeV [71] and b-jets (including higher order QCD corrections) at

LHC-14 TeV [78]; ii) a gluino cascade decay [76]; iii) the mass determination of KK gravi-

ton [82], and iv) a DM interpretation for the Galactic Center GeV gamma-ray excess [83].
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For all these cases, the massless fitting template was shown to very successfully reproduce

the spectrum, and in particular the peak region.

2.2 The energy spectrum of a massive decay product

Having reviewed the energy spectrum of a massless daughter from a two-body decay, we

now move to the case of a massive daughter.

2.2.1 Properties

We restart from the discussion around eq. (2.6), which is reported here for convenience.

The above considerations tell us that for any fixed boost factor γM the laboratory frame

energy distribution is given by a rectangular distribution spanning the range

xd ∈
[(
γM −

p∗d
E∗d

√
γ2
M − 1

)
,

(
γM +

p∗d
E∗d

√
γ2
M − 1

)]
. (2.10)

We observe a couple of crucial differences with respect to the case of massless visible

particles. First of all, not every single rectangle contains E∗d , because when the boost

factor for a mother particle is equal to the “critical” boost value given by

γcr
M = 2(γ∗d)2 − 1, (2.11)

where γ∗d denotes the boost factor of particle d in the rest frame of particle M (that is

γ∗d = E∗d/md), then the lower endpoint of xd becomes exactly 1, and therefore, for any

γM greater than γcr
M , the rectangle does not cover xd = 1. A trivial example is the case

in which p∗d is zero and xd = 1 is populated only when γM = 1, with all the other boost

values populating the region xd > 1. From these considerations we see that for a massive

daughter, as p∗d 6= E∗d , a priori we cannot conclude that the peak of the energy distribution

arises at xd = 1 (that is at Ed = E∗d). We will provide more elaborated analysis on this

point shortly. The other difference worth noticing is that for any md 6= 0 and any non-zero

boost of the mother particle (i.e., γM > 1), E∗d is no longer the geometric mean of the

upper and the lower endpoints of each rectangle, that is:

xmax
d · xmin

d = 1 +

(
md

E∗d

)2 (
γ2
M − 1

)
6= 1 for γM > 1 and md 6= 0. (2.12)

This relation implies that, unlike for massless daughter particles, the full energy spectrum,

that results from simply stacking up those rectangles, is not symmetric in logarithmic scale.

Coming back to the first comment, we remark that γcr
M may not be accessible at a

given collider, so that xd = 1 may still be the peak of the distribution. To take this

possibility into account we define γkin as the kinematic limit of γM given by center-of-mass

energy
√
s of the given collider. For example, γkin =

√
s/(2mM ) for pair-produced mother

particles. Obviously, if γkin exceeds the critical boost given in (2.11), the proof for the

invariance property of the energy-peak in the massless case does not hold any longer and

we have to deal with the possibility that the peak of the energy distribution appears at a
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value different from E∗, although in practice in some cases the peak may be (very) close to

E∗, for instance because of a small probability to produce the mother particle with boost

exceeding the critical value. We stress again that, if the kinematic limit of γM is smaller

than the critical boost, the invariant nature of the location of the peak stays intact, and still

the peak has its own physical implication as in the massless case. However, the symmetry

property is always violated even in the case where the peak position is preserved.

More formally, one can write the integral representation of the energy spectrum in

terms of the boost distribution of the mother particle, g(γM ), with explicit dependence

on γkin:

f(xd) ≡
1

ΓM

dΓM
dxd

=

∫ γ+M (xd)

γ−M (xd)
dγM

θ(γkin − γM )g(γM )

2
√
γ2
M − 1

=

∫ ∞
γ−M (xd)

dγM
θ(γkin − γM )g(γM )

2
√
γ2
M − 1

−
∫ ∞
γ+M (xd)

dγM
θ(γkin − γM )g(γM )

2
√
γ2
M − 1

, (2.13)

where θ(x) is the usual Heaviside step function. Here γ−M (xd) and γ+
M (xd) denote the

minimal and the maximal boost values to contribute to the laboratory frame energy value

Ed = xdE
∗
d of interest. They can be readily evaluated as the solutions of

xd = γM −
p∗d
E∗d

√
γ2
M − 1, (2.14)

and we find the two solutions as

γ±M (xd) = xdγ
∗
d

2 ±
√
γ∗d

2 − 1
√
x2
dγ
∗
d

2 − 1. (2.15)

The massless limit of these expressions is given by the limit γ∗d →∞ and reads

γ+
M (xd)→∞ and γ−M (xd)→

1

2
·
(
xd +

1

xd

)
, (2.16)

as necessary to reproduce the massless result of (2.7).

We emphasize that the addition of θ(γkin − γM ) enables us to easily keep track of the

consequence of γcr
M being larger or smaller than θ(γkin − γM ) on the shape of the energy

distribution. It is straightforward to derive f ′(xd) from eq. (2.13):

f ′(xd) =
γ∗d

2
√
x2
dγ
∗
d

2 − 1

[
θ(γkin − γ+

M )g(γ+
M ) + sgn(1− xd)θ(γkin − γ−M )g(γ−M )

]
(2.17)

where we dropped explicit xd dependence of γ±M to avoid notational clutter. Based on

these formulae we carefully investigate the functional behavior of the energy spectrum in

the different regions as follows.
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Figure 1. γ+M (red solid curve) and γ−M (blue dashed curve) as a function of xd for γ∗d = 2. Shown

are two exemplary lines (green solid lines), one for γkin > γcrM and the other for γkin < γcrM .

(I) The region xd < 1. In this region the sign function in eq. (2.17) becomes +1, hence

f ′(xd < 1) =
γ∗d

2
√
x2
dγ
∗
d

2 − 1

[
θ(γkin − γ+

M )g(γ+
M ) + θ(γkin − γ−M )g(γ−M )

]
. (2.18)

For the subsequent discussion we provide figure 1 showing the functional behavior of γ+
M

(red solid curve) and γ−M (blue dashed curve) in xd and their relations with γkin and γcr
M

(green solid lines). It is clear that if γkin ≥ γcr
M , then γ±M is smaller than γkin for any xd ≤ 1.

Thus both step functions are non-vanishing, resulting in

f ′(xd < 1) =
γ∗d

2
√
x2
dγ
∗
d

2 − 1

[
g(γ+

M ) + g(γ−M )
]
> 0, for γkin ≥ γcr

M , (2.19)

unless both g(γ+
M ) and g(γ−M ) simultaneously vanish by accident. This implies that f(xd)

is a monotonically increasing function below xd = 1.

On the contrary, in the case of γkin < γcr
M , the situation is slightly more complicated.

If γ∗d < γkin < γcr
M , it turns out that f(xd < 1) develops a kink at xkink, where xkink

solves γ+
M (xkink) = γkin. The reason is that f(xd) is increasing below xkink with a slope

proportional to g(γ+
M ) + g(γ−M ), and it is still increasing beyond xkink but with reduced

slope proportional to g(γ−M ) because the first step function simply vanishes. On the other

hand, if γkin < γ∗d , both step functions vanish, hence f(xd) is flat until the point where

γ−M (x) = γkin, and beyond the point it increases with slope proportional to g(γ−M ). Overall,

we conclude that for any generic value of γkin (either larger or smaller than γcr
M ), f(xd) is

an increasing function (possibly with a kink or a plateau region) and no peak can exist

below xd = 1.

– 12 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
1

(II) The region xd ∼ 1. In order to investigate the structure of the f(xd) in the vicinity

of xd = 1, we first evaluate f ′(xd) as xd → 1:

f ′(xd → 1) =


γ∗d

2
√
γ∗d

2−1
[θ(γkin − γcr

M )g(γcr
M ) + g(1)] , xd → 1−

γ∗d
2
√
γ∗d

2−1
[θ(γkin − γcr

M )g(γcr
M )− g(1)] , xd → 1+

(2.20)

where we have used the two limiting behaviors of γ+
M (xd → 1)→ γcr

M and γ−M (xd → 1)→ 1

and the fact that γkin > 1. If γkin > γcr
M , f ′(x) is further reduced to

f ′(xd → 1) =


γ∗d

2
√
γ∗d

2−1
[g(γcr

M ) + g(1)] , xd → 1−

γ∗d
2
√
γ∗d

2−1
[g(γcr

M )− g(1)] , xd → 1+
, (2.21)

from which one can consider three possibilities enumerated below.

(i) g(1) 6= 0 and g(γcr
M ) > g(1): f is an increasing function near and beyond xd = 1 with

a kink at xd = 1. The relevant slope is proportional to g(γcr
M ) + g(1) below xd = 1,

while it is proportional to g(γcr
M ) − g(1) above xd = 1. Given the fact that f(xd)

eventually vanishes as xd → ∞, a turnover in the slope should arise at xd > 1, i.e.,

the energy-peak is shifted to be greater than the associated rest-frame energy value.

(ii) g(1) 6= 0 and g(γcr
M ) < g(1): in this case, f is peaked at xd = 1 because the sign

of f ′(xd) is flipped at xd = 1. However, the relevant energy distribution is expected

not to be smooth at the peak position, as is evident from the fact that f ′(xd) is

discontinuous at xd = 1.

(iii) g(1) = 0: f(xd) is a smoothly increasing function at xd = 1 and again, the energy-

peak should be shifted to xd > 1 since f(xd →∞)→ 0.

On the other hand, if γkin < γcr
M , we have f ′(xd) as

f ′(xd → 1) =


γ∗d

2
√
γ∗d

2−1
g(1), xd → 1−

− γ∗d
2
√
γ∗d

2−1
g(1), xd → 1+

, (2.22)

and clearly we see that there exists a peak at xd = 1. The peak appears smooth for g(1) = 0

while it appears as a cusp for g(1) 6= 0.

(III) The region xd > 1. As the sign function becomes −1, f ′(xd > 1) is given by

f ′(xd > 1) =
γ∗d

2
√
x2
dγ
∗
d

2 − 1

[
θ(γkin − γ+

M )g(γ+
M )− θ(γkin − γ−M )g(γ−M )

]
. (2.23)

As clear from figure 1, if γkin > γcr
M , the horizontal line of γ = γkin intersects with γ+

M at

xl and with γ−M at xh. In 1 < xd < xl, f
′(xd) is proportional to g(γ+

M ) − g(γ−M ) due to

γ±M < γkin. Hence, it is conceivable that there is a point where f ′(xd) = 0, that is, there is

a peak in this interval. However, since the function g(γ) is highly model-dependent, it is
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rather challenging to make a robust connection between the (shifted) peak position and the

underlying physics parameters. For the case of xl < xd < xh, we have f ′(xd) proportional

to −g(γ−M ) < 0, implying that it is decreasing. Finally, in xd > xh, f ′(xd) vanishes because

the relevant region is kinematically not allowed. On the other hand, if γkin < γcr
M , we see

from figure 1 that γ+
M is greater than γkin for any xd > 1, resulting in

f ′(xd) = −
γ∗d

2
√
x2
dγ
∗
d

2 − 1
θ(γkin − γ−M )g(γ−M ). (2.24)

Denoting x0 as the point where γkin intersects with γ−M (xd), we see that f(xd) is simply

a monotonically decreasing function in the range of 1 < xd < x0, and becomes vanishing

beyond x0 again because the relevant region is not kinematically accessible.

In summary, for γkin > γcr
M . f(xd) increases below xd = 1 and, typically, there is

no peak at xd = 1. More specifically, it increases at xd = 1 (possibly with a kink at

xd = 1), develops a peak (i.e., shifted) appearing at some point within 1 < xd < xl, and

then decreases monotonically until being flattened out to zero. For γkin < γcr
M , the energy

distribution f(xd) increases below xd = 1 (possibly with kink), develops a peak at xd = 1,

and then decreases monotonically.

2.2.2 The massive ansatz

In order to gain an intuition and bootstrap the construction of a suitable fitting function

for massive decay products, we first notice that each term in the second line of eq. (2.13)

resembles that in eq. (2.7) for the case of massless case. In particular the first term becomes

identical to eq. (2.7) when the massless limit eq. (2.16) is taken. As we already found that

in this limit the integral form of the spectrum is well modeled by a function that in such

limit is just exp (w/2(x+ 1/x)), we can infer that, whatever the integrand and the function

g are, the integral can be well approximated by an exponential. Therefore the proposed

fitting template for massive daughter particles is given by

fM (xd) ≡ N
(
exp

[
−w γ−M(xd)

]
− exp

[
−w γ+

M(xd)
])

(2.25)

where N is the overall normalization constant. We immediately see that this modified

ansatz reproduces the massless fitting function in (2.9) in the massless limit γ∗d → ∞.

Additionally, for md 6= 0, it becomes a δ-function-like distribution as we take w → ∞.

This is simply the boundary condition that, for a certain parameter choice, the ansatz

becomes a single-valued distribution, as to accommodate the case where mother particles

are produced at rest in the laboratory frame. Finally, since γ±M does not respect the

symmetry under xd ↔ 1
xd

, it is obvious that the massive ansatz does not satisfy this

symmetry property, as it needs to be, given the discussion in the previous sections.

We remark that, unless w →∞, the peak position of the proposed template is, strictly

speaking, always greater than E∗d . This seems an unwanted feature of the proposed fitting

template, as the original integral representation in eq. (2.13) may be peaked at E∗d in the

case in which the collider does have enough energy to boost the mother particle to the

critical boost of eq. (2.11). This functional feature can be easily seen from eq. (2.25) by
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taking its derivative and noticing that f ′M (xd) = 0 cannot have a solution at xd = 1. To

estimate the size of this effect, we solve the equation f ′M (1 + ε) = 0 for a small expansion

parameter ε up to the leading order, and find that for γ∗d
2 � 1 (i.e., the massless limit

where the peak is invariant)

ε ∼ 2γ∗d
2e−2wγ∗d

2

. (2.26)

From the above expression we observe that, as ε is always positive, the peak is always shifted

toward larger energies, and coincides with xd = 1 only in the limit w →∞. Furthermore we

observe that the expected amount of shift is exponentially small. Therefore, for a fairly large

γ∗d , we expect that the massive template can accommodate the energy distribution with

the peak being at xd = 1 although there exists a slight mismatch between the actual peak

and the peak of the ansatz. In the following it will be clear that in practical applications

this shift is never reason of worry and in practice the proposed massive template can

model massive daughter energy spectrum, covering both the case where the peak appears

at xd = 1 and the case where the peak arises at xd > 1.

For the case in which the peak appears at xd > 1 it is worth remarking that the peak of

the spectrum, not appearing at E = E∗d , is no longer univocally linked to the masses that

we set out to measure. The link in this case is provided by the fitting function we propose,

in which E∗d is a fitting parameter which may or may not coincide with the peak position.

In this sense our present generalization of the energy peak method to massive daughters

is closer to a shape analysis than the analogue for massless particles. For this reason a

careful test of the accuracy of the proposed fitting function is needed and will be discussed

in the following. Specifically, in the next section we thoroughly test the accuracy of the

massive fitting template in modelling an actual energy spectrum theory prediction from

the decay process of the heavier supersymmetric partner of top quark. We also discuss the

advantages of using the massive fitting template by comparing its accuracy with that of

the massless template used to fit the same spectra. To highlight the difference between the

results obtained with the fitting function proposed in this paper and the one for massless

decay products we have introduced in previous work, we extensively examine the accuracy

of the massive template as a function of the “massiveness” of the visible particles, ending

up determining the range of applicability of this function.

3 Accuracy of the template for massive particles energy spectra

In order to test the accuracy of the proposed fitting function we study energy spectra of Z

bosons from the production and decay process of a supersymmetric top quark partner:

pp→ t̃2
¯̃t2, followed by t̃2 → t̃1 + Z (3.1)

where t̃1(2) denotes the lighter (heavier) top squark. For this study we fix the mass of t̃2
to be 1 TeV, while varying the mass of t̃1 from 400 GeV to 900 GeV we can vary the boost

of the Z boson in the rest frame of the t̃2, hence vary the importance of the Z mass in

the kinematics.
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Figure 2. Upper left (right) panel: the results for the fit of signal events of (mt̃2
, mt̃1

) =

(1000, 800) GeV, using both massive (red solid curve) and massless (blue dashed curve) templates.

The fitting uses energies between 100 and 300 GeV (1200 GeV). Lower panel: the best-fit E∗
Z with

1σ error estimate and the associated reduced χ2 from the massive and the massless templates.

Numerical theory predictions for the Z boson energy spectrum are obtained, at the

leading order in perturbation theory, using MadGraph5 aMC@NLO [87] with the parton dis-

tribution functions NNPDF23 [88]. For this calculation we also obtain a total cross-section

σ(pp→ t̃2
¯̃t2) = 27.1 fb at the 14 TeV LHC. For each mass spectrum we obtain the theory

prediction from 200K unweighted events, which suffice to obtain a prediction with negligi-

ble statistical uncertainties for realistic LHC luminosity. As a matter of fact we perform

our study normalizing the spectra at integrated luminosity 300 fb−1.

In order to evaluate the accuracy of our model eq. (2.25), we perform a least-χ2 fit to

the theory prediction obtained from MadGraph5 aMC@NLO. To compare the performance of

the two models we also perform a fit using the massless fitting function eq. (2.9).

Actual results for mt̃1
= 800 GeV are shown in figure 2. In this case, since the center

of mass energy is 14 TeV, the kinematic limit for the boost factor of a 1 TeV t̃2 is 7 (γkin
t̃2

=

14 TeV/(2mt̃2
)). The Z boson energy in the t̃2 rest frame is E∗Z = 184.2 GeV, thus

γ∗Z = 2.02 and γcr
Z = 7.16, which is outside the kinematic reach of the 14 TeV LHC. This

implies that for this particular case the peak of the spectrum is guaranteed to be at E∗Z ,

but as soon as mt̃1
> 800 GeV, the collider kinematic limit will exceeds the critical boost,

resulting in a shift of the peak position.

In figure 2 we see two different fits to the theory prediction (black dots). The upper left

(right) panel shows the results for the fit of signal events with the massive (red solid curve)

and the massless (blue dashed curve) templates using data over a small (large) range of

energy between 100 GeV and 300 GeV (1200 GeV). The table in the lower panel shows the

best-fit E∗Z with 1σ error estimate and the associated reduced χ2 from the massive and the

massless templates over the larger energy range. These values are obtained from standard

χ2 variations procedure, however, they do not have any particular statistical meaning, as
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Fitting range (GeV) Massive Template (GeV) Massless Template (GeV)

Range 1: [100, 1200] 185.2+14.5
−14.7 [0.43] 193.8+14.9

−16.2 [1.12]

Range 2: [100, 800] 185.5+11.4
−11.4 [0.51] 194.3+11.7

−12.4 [1.49]

Range 3: [100, 500] 186.2+8.3
−8.2 [0.23] 195.2+8.2

−8.4 [1.17]

Range 4: [100, 300] 185.2+7.4
−6.4 [0.056] 191.1+6.7

−6.0 [0.34]

Table 1. Fit results using the massive and massless templates in four different fitting ranges. All

numbers are in GeV. The reported numbers in the second and the third columns are the extracted

E∗
Z values with the associated 1σ error estimate. The numbers in the square parentheses are the

reduced χ2 values.

the data point we used in the fit is a theory prediction (with negligible statistical error).

We present these values only as a measure to quantify the accuracy of the fitting template,

which is the most accurate as the χ2 gets smaller. In this sense we are looking at the

obtained χ2 as a (loosely defined) “norm” in the space of functions, that helps us quantify

how far from the theory curve are the best models from the family of functions eq. (2.9)

and eq. (2.25). Of course the choice of this “norm” is inspired by how our function would

be used in an actual measurement, and in particular for the fact that the peak region,

which is most important to our method, will drive the χ2 minimization. Based on the

reduced χ2 we conclude that the massive template provides a better description than the

massless one. Results for these two and other intermediate choices of energy range in the

fit are summarized in table 1. The same trends hold even with different fitting ranges as

for all four fitting ranges, the massive template yields better χ2. Looking at table 1 we

also observe that the massless fitting function tends to overestimate the actual value of

the peak, while the massive fitting function only very mildly does so, consistently with the

estimates of eq. (2.26).

To demonstrate the general validity of our fitting function to model massive particles

energy spectra, we carry out a similar analysis for different values of the mass of t̃1, which

gives a sample of how large an effect the Z boson mass can give when the momentum

released in the decay changes. The accuracy of the fitting functions is shown by the

reduced χ2 values (left panel) and the fractional difference between the theory E∗Z and the

extracted E∗Z (right panel) is given in figure 3. The results from the massive template are

reported by solid lines while those from the massless template are reported by dashed lines.

Four different fitting ranges are distinguished by four different colors, and also labelled by

index numbers 1 through 4 as in table 1. In order to manifest the (relative) “massiveness”

of the Z boson, we plot both quantities as function to the boost β∗ of the Z boson in the

rest frame of the heavier supersymmetric top.

As discussed before, for β∗ > 0.87 (i.e., mt̃1
. 800 GeV), the critical boost factor γcr

Z

is not exceeded by the kinematic limit for the boost factor of the mother particle, so that

we expect that the actual distribution has a peak exactly at E∗Z . On the other hand, the

massive nature of the visible particle breaks the symmetry property under the xd ↔ 1/xd
operation for any choice of mass spectra. Such a breakdown becomes negligible as the Z

boson effectively becomes massless. We also observed that our massive template always has
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Figure 3. The left panel shows reduced χ2 values for both massive (solid lines) and massless

(dashed lines) templates with four different fitting ranges. The right panel shows fractional differ-

ence between the theory value and the extracted value of E∗
Z . Smaller (bigger) labelling numbers

correspond to wider (narrower) fitting ranges. To make the “massiveness” of the Z gauge bo-

son more manifest, all the lines are plotted according to the boost parameter β∗ of Z in the rest

frame of t̃2.

a peak at xd > 1 for any mass spectra, but we estimated such a mismatch to be negligible

in eq. (2.26). Based on this series of considerations, we anticipate that for β∗ > 0.87 both

massive and massless templates will reproduce the relevant energy spectrum well enough.

In fact, our results in figure 3 supports our expectation. Nevertheless, based on χ2 values,

we observe that the results from the massive template are systematically better than those

from the massless template, as expected, because the former accommodates the broken

symmetry property while the latter does not. Therefore, we conclude that, for the mass

spectra not causing the peak shift, the two templates produce comparable results, although

the massive template provides a better description of the theory numerical prediction.

On the contrary, once the massiveness of the Z boson becomes more manifest, that

is for low β∗ < 0.87, several characteristic features start being noticeable. First of all,

the χ2 for the massless template increases rapidly, hence the results become less and less

reliable, up to a point in which the massless template would be untenable as a model

to the theory prediction. On the contrary the massive template keeps having a low χ2,

indicating a closer description of the the theory prediction. This is especially true for fits

performed in a region closer to the peak, where we think most of the information on the

masses is encoded. Clearly, the fact that the massive template embraces the two functional

features of the general form of the spectrum eq. (2.13), i.e., the shifted peak and the broken

symmetry property, enables a significantly better modelling of the theory prediction.

Despite this successful description of the theory prediction achieved by the massive

fitting function, it is worth noting that even such “prime principles savvy” model of the

massive daughter energy spectrum, inaccuracies emerge once the massiveness of Z gauge

boson becomes more manifest. For example, in figure 3 we see that for β∗ ' 0.5, that

corresponds to mt̃1
' 900 GeV, the fractional difference between the theory value and the

value of E∗ identified by the fit becomes larger and it also becomes sensitive to the choice

of the fitting range. We remark, however, that this phenomenon is somehow expected. In

– 18 –



J
H
E
P
0
4
(
2
0
1
6
)
1
5
1

fact, in the extreme case β∗ = 0 we can see from eq. (2.13) that the energy spectrum f(x)

is just proportional to the boost distribution of the mother particle: f(x) ∝ g(x). In this

situation, since the mother particle boost distribution g(x) is completely unaware of the

mass of the particles in which the mother particle can decay into, we are certain that the

energy spectrum contain virtually no information on the mass of the daughter. For this

reason we expect a loss of correlation between the peak of the daughter energy spectrum

and the mass of the daughter, hence inaccuracies are expected as β∗ get smaller.

4 Application

In this section we apply the main idea elaborated thus far for the mass measurement of

new physics particles under a more realistic environment including backgrounds and cuts

to isolate the signal. For this purpose the same SUSY example as in the previous section is

taken. We emphasize that our application to a SUSY example is purely for demonstrating

the use of the massive fitting template to measure masses from energy spectra; in fact the

main strategy is not restricted to the case of SUSY, as it is straightforwardly applicable to

other new physics models. Furthermore, potential future exclusion by the LHC experiments

of the mass spectra under consideration does not alter our results on the usefulness of the

techniques to extract the mass of new physics particles using the energy spectrum of massive

visible particles.

In the following subsections we first define the signal collider signature (4.1). Then,

we identify the relevant SM background processes (4.2) and devise some cuts to suppress

them, while keeping a usable signal rate for our mass measurement. The fitting procedure

is described in section 4.3, with the final results being presented in section 4.4.

4.1 Signal collider signature

We take the same SUSY process employed in section 3, i.e., the pair-produced heavier

supersymmetric top quarks, t̃2. We assume the heavy stops to decay into a lighter super-

symmetric top quark, t̃1, and a Z boson, then t̃1 in turn is assumed to decay into a top

quark and the lightest neutralino:

t̃2 → Zt̃1 → Ztχ0
1 . (4.1)

Since the top quark and Z gauge boson themselves have several decay modes, several

different final states are available in combination with two decay sides. We focus on the

situation where the two top quarks decay semi-leptonically, and one of Z gauge bosons

decays leptonically while the other does invisibly. Therefore, the final partonic reaction we

study is

pp→ bb̄jj`+1 `
−
1 `
±
2 + ν1ν̄1ν2χ̃

0
1χ̃

0
1, (4.2)

where ` = e, µ and the particles in the second piece collectively emerge as missing transverse

momentum. We denote as `1 the leptons originating from a Z decay while `2 is from

the leptonic top quark, and similarly we label the neutrinos. In principle our strategy

could be applied to other possibilities for the Z boson and top quark decay: for example,
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ZZ → `+`−jj along with a semi-leptonic top quark pair. Obviously, this channel would

enjoy a larger signal cross section than the signal channel defined in (4.2). However, it

comes with a smaller �pT due to fewer invisible particles, so that it may be hard to impose

a sizable �pT cut to suppress relevant SM backgrounds. Moreover, large jet multiplicity

would render QCD background processes more important. Therefore for this study we

stay away from such choice and we study the final state eq. (4.2), which appears a good

balance between maximizing the rate, that is not huge, but still observable at the LHC14,

and minimizing backgrounds.

The signal cross section for our signal eq. (4.2), denoted by σsig, is given by the pro-

duction cross section of a stop pair times branching fractions in the sequential decays:

σsig = σ(pp→ t̃2
¯̃t2)
[
Br(t̃2 → t̃1Z)

]2 [
Br(t̃1 → χ̃0

1t)
]2

Br(tt̄→ bb̄jj`ν)Br(ZZ → ``νν̄).

(4.3)

The last two branching fractions are fixed by the SM, whereas the first two branching

fractions are model-dependent. Since our goal is to demonstrate the performance of the

massive template in a realistic application, we do not discuss the value of these branching

fractions in specific models, and we simply pick the following reference values: Br(t̃2 →
t̃1Z) = 60% and Br(t̃1 → χ̃0

1t) = 100%.

To demonstrate the several aspects of performing a mass measurement with energy

spectra we choose two study points (SP) mass spectra given by:

SP1 : mt̃2
= 600 GeV, mt̃1

= 300 GeV, mχ̃0
1

= 115 GeV, (4.4)

SP2 : mt̃2
= 800 GeV, mt̃1

= 600 GeV, mχ̃0
1

= 300 GeV.

For the first spectrum mt̃1
is quite close to mχ̃0

1
, and indeed mt̃1

& mχ̃0
1

+ mt, which

makes such choice of spectrum not excluded [85, 86].9 This spectrum features a sizable mass

hierarchy between mt̃2
and mt̃1

so that we expect that the “massiveness” of the Z gauge

boson will be less manifest. For the second spectrum the mass of both supersymmetric top

quarks is sufficiently large that this mass scale has not been probed yet at the LHC and

so in this case as well there is presently no bound on this spectrum. Unlike for the first

example spectrum, the small mass gap between the two supersymmetric top quarks is such

as that the Z bosons mass is important for its energy spectrum.

For these mass spectra the theory prediction for the t̃2 rest-frame energy of the Z

boson, denoted by E∗th, is:

E∗th =

{
231.9 GeV for SP1

180.2 GeV for SP2
. (4.5)

The leading order cross-section at the LHC14 for the production of a pair of squarks t̃2
computed by MadGraph5 aMC@NLO [87] using parton distribution functions NNPDF23 [88] is:

σ(pp→ t̃2
¯̃t2) =

{
125.7 fb for SP1

20.5 fb for SP2
. (4.6)

9We stress that the idea of using energy spectra of massive particles to measure new particle masses

remains valid beyond the status of the concrete example we study in this section, which, merely serves the

purpose of showing the peculiarities of the analysis, the current exclusion limit.
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The signal cross sections for the final state defined in eq. (4.2) are tabulated in table 2,

together with the rates after the selection that we will elaborate in the following.

4.2 Backgrounds and event selection

Because of our choice of a signature with several charged leptons, we anticipate a relatively

low amount of background. Nevertheless we need to evaluate the sources of background

and devise a strategy to suppress them. We identify two groups of SM backgrounds. The

first group comprises

pp→ bb̄jjV1V2

in which bb̄jj are stemming from QCD and the vectors are radiated. Since three leptons

are needed in the final state, the case with V1 = V2 = W is very unlikely to appear as a

background. For the same reason the process pp → bb̄jjZZ, both Z bosons should decay

leptonically to make a background to our signal, which would be the case only if one of the

leptons is somehow missed by the detector. For pp → bb̄jjW±Z, it is sufficient for both

W± and Z to decay leptonically to become a background with very high efficiency. To

suppress this background (and others) in the following eq. (4.12) we make a requirement

for a semi-leptonic top pair. To suppress the backgrounds we also require a large �pT , which

is expected to reject both bb̄jjW±Z and bb̄jjZZ, as in these processes only one neutrino

or missed lepton is the source of �pT . The second group of backgrounds is

pp→ tt̄V1V2

with V being Z or W gauge bosons. Obviously, V1 = V2 = Z (i.e., pp→ tt̄ZZ) is identified

as an irreducible background, and it turns out that it plays a role of the major background

to the signal process. The other two possibilities are pp→ tt̄W±Z in which both Z and W±

decay leptonically and pp → tt̄W+W− in which both W gauge bosons decay leptonically.

This last process can be suppressed by requiring opposite-signed same flavor leptons whose

invariant mass falls into the Z mass window

|m`` − 91 GeV| < 5 GeV . (4.7)

In the cases in which two di-lepton invariant masses are available, and both satisfy the

above Z mass window simultaneously, we take the combination for which m`` is closer to

the nominal value of the Z mass, and regard the remaining lepton as a decay product of

the leptonic top quark. Finally we have the process pp → tt̄W±Z which is likely to be a

background when a charged lepton from the W boson is lost.

As several processes listed above can lead to background if some lepton is not identified,

we need to specify a definition for the leptons that we consider as properly identified. In

the following we consider as not identified leptons those that does not pass the acceptance

due to low pT or large η or both. We also reject leptons that are too close to partons, as

they will likely be inside the jet of hadrons resulting for the parton and so will not pass

isolation cuts. To take this type of effects into consideration, we define as a “missed” any

object having any of the following attributes:

pT,j < 30 GeV or |ηj | > 5 for jets, (4.8)

pT,` < 10 GeV or |η`| > 2.5 for leptons. (4.9)
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To estimate the backgrounds coming from non-isolated objects we employ the following

criteria for considering two object as a single detector-level object. We merge together two

partons j1j2 and consider them as a single jet, or b-jets if any of the two partons is a b

quark, when

∆Rj1j2 < 0.4, ; (4.10)

we merge together a lepton and a parton and consider them a single jet, or b-jets if the

parton is a b quark, when

∆Rj` < 0.3 . (4.11)

One should note that another complication arises in this estimate, considering the fact

that the lepton from the leptonic top quark can be missed as well.10 This possibility is

limited by applying some requirements on the presence of semi-leptonic tt̄ pair made of

final state particles other than those forming a Z gauge boson. To partition the final states

into a top and an anti-top we seek two jets with invariant mass in the W mass window,

and that, further paired with a b-jet, give an invariant mass close to the top quark mass.

We also require that the remaining b quark and lepton have an invariant mass, denoted

by mb`, below a cut-off value mmax
b` . All in all, our semi-leptonic tt̄ identification criteria are:

|mjj − 80 GeV| < 16 GeV, |mbjj − 173 GeV| < 35 GeV, (4.12)

for the hadronic partition, and

mb` ≤ mmax
b` = 153.5 GeV, (4.13)

for the leptonic partition. Events where at least one partition of the jet leads to satisfy

these requirements are accepted in our analysis.

A typical feature of background processes, in which undetected momentum is carried

only by neutrinos, is small �pT . Also in the case of backgrounds where a lepton is missed,

e.g., due to its small pT , �pT is not large precisely because the lost object has necessarily

low transverse momentum.11 Therefore, in order to suppress the background we require a

hard �pT cut:

�pT > 100 GeV. (4.14)

As the name suggests, the energy peak mass measurement method is based on the

data from the peak region of the spectrum. Therefore, the cuts to isolate the signal from

the background should be imposed keeping in mind that one has to avoid distortions of

the spectrum. As we did in previous works as well [76, 84] we avoid pushing too hard

the requirements on hard single objects in the final state and we rather prefer to cut the

10Of course, the leptons from the Z boson can be missed, too. However, in such a case, events are very

unlikely to meet the requirement of the Z mass window in (4.7). So, we consider it negligible.
11Events in which W± decays into the τ±, which in turn decays into soft jet(s) and a neutrino might have a

somewhat large missing transverse momentum. However, this type of background can be made subdominant

with the aid of the set of cuts listed above and other requirements as in ref. [82]. For simplicity we do not

include these backgrounds in the following.
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SP1 SP2 tt̄ZZ tt̄W±Z tt̄W+W−

No cuts 0.351 0.0573 0.0135 0.0108 0.101

Basic cuts 0.103 0.0175 0.00352 0.00106 0.0187

Z mass cut 0.0905 0.0152 0.00306 0.000719 0.00134

Semi-leptonic tt̄ 0.0876 0.0147 0.00296 0.000434 0.000997

�pT > 100 GeV 0.0700 0.0128 0.00191 0.000245 0.000535

Table 2. Cross sections, in fb, for signal and background processes under the selection of eqs. (4.7)–

(4.16). The b-tagging efficiency is not taken into account here and is expected to be roughly the

same on signal and background.

background by requirements on the global hardness of the event. According to this spirit

we impose rather mild requirements on single objects used in our analysis:

pT,j > 30 GeV, |ηj | < 5, ∆Rj1,j2 > 0.4 for any jets including b-jets, (4.15)

pT,` > 10 GeV, |η`| < 2.5, ∆R`1,`2 > 0.1, ∆Rj` > 0.3 for leptons, (4.16)

in every single event that we use for our data analysis. Furthermore we remark that our

signal tends to have multiple hard particles that are collectively giving a large recoil to

the system of invisible particles. Therefore, we expect only a mild bias in the energy

distribution by the �pT requirement, and find that the �pT cut in (4.14) achieves a rather

strong reduction of backgrounds with the signal energy spectrum least distorted.

With the set of cuts, acceptance and isolation criteria, that we have defined in eqs. (4.7)

through (4.16), we compute the cross sections for various SM backgrounds and for the

signal process. The resulting cut-flow for the expected cross sections for the two study

points and various backgrounds is shown in table 2.12 We clearly observe that tt̄ZZ is

the major background and is largely sub-dominant with respect to expected signal rates

of both our study points. Therefore in the following, for sake of simplicity, we proceed

to a simplified analysis in which we take into account only tt̄ZZ. In principle, other

background sources should be included, but they would results only in minor modifications

on our analysis, without any major change in the mass measurement strategy that we are

demonstrating here.

4.3 Fitting strategy and mass extraction

Our strategy to measure the t̃2 rest-frame energy of the Z boson consists in fitting the data

with the massive fitting template in eq. (2.25). In both study points, the fit is performed to

data that takes into account both signal and the major background, tt̄ZZ. The background

energy spectrum is modelled by the function

fBG(E) = NBG exp(−b · Ep), (4.17)

12In these results we do not take into account explicitly of b-tagging efficiency, which is expected to affect

similarly signal and background processes.
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where b and p are fit parameters describing the shape of the function, and NBG is the

normalization parameter related to the total number of events described by the function

at fixed b and p. This background template has been tested with pure background energy

spectra obtained after imposing the selection criteria in eqs. (4.7)–(4.16), and we find that

the background data is well-reproduced by eq. (4.17).

If experimental data can be used, this type of background model can be tested on

the data itself, so to prove that it is a good model to describe the background in the

relevant region of phase space. As a matter of fact, similar types of background models

have been often employed in fits of background to data [89, 90] and a best fit model for

the signal region can be inferred using data-driven techniques. In our study we do not

attempt an estimate of the accuracy with which data driven methods can help to predict

the background in the signal region, as this is a rather delicate task, which is best carried

out by the experimental collaborations. To demonstrate our technique we identify a best-fit

model for the background obtained by shape analysis of Monte Carlo simulation and we

then proceed to subtract this expected background shape from the pseudo-experiment data

that we use in the following. We denote the quantities fixed by background simulation by

a “bar” on each symbol, so that the fixed background function to be used in our analysis

is denoted by

f̄BG(E) = N̄BG exp(−b̄ · Ep̄). (4.18)

We emphasize that our determination of the background fit parameters from the Monte

Carlo simulation is merely for estimating the effect of background consideration on the

extraction of the rest-frame energy value for the signal. In more realistic situations, the

background shapes and normalization should be ideally determined from the real data. We

stress that the best strategy to deal with background should be evaluated in each case of

application, whereas the basic idea of employing our phenomenological parametrization of

the spectrum remain unchanged. Therefore the demonstration we give in the following with

a fixed background should serve well the purpose of illustration of the core of our proposal.

For the signal component of the data we use the massive fitting function introduced

and motivated above:

fSIG(E) = NSIG

(
exp[−w · γ−(E)]− exp[−w · γ+(E)]

)
, (4.19)

where NSIG is a normalization parameter and γ±(E) is nothing but eq. (2.15) re-expressed

in terms of E:

γ+(E) ≡ γ∗2

(√
1− 1

γ∗2

√
E2

E∗2
− 1

γ∗2
+

E

E∗

)
,

γ−(E) ≡ γ∗2
E

E∗

(
1−

√
1− 1

γ∗2

√
1− E∗2

γ∗2E2

)
. (4.20)

We denote the measured energy spectrum by fD(E), to which we subtract the expected

background f̄BG(E), so that we minimize the χ2 between our signal massive fitting function

and the subtracted data

fSIG(E) −→ fD(E)− f̄BG(E) . (4.21)
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The precise fitting range is not crucial to the result, however we find that best results are

obtained on ranges that are about the full width at half maximum of the energy distribution.

For the second study point, due to its low rate, it is hard to apply this background

subtraction scheme. Therefore, instead of binning the data, we perform an unbinned likeli-

hood fit to extract the underlying model parameters of fSIG(E). Denoting the probability

distribution functions for the signal and the background as f̃SIG and f̃BG, respectively, we

define the relevant likelihood as:

L(E|E∗, w) ≡ rf̃SIG(E|E∗, w) + (1− r)f̃BG(E|b̄, p̄), (4.22)

where r is the signal fraction in the data. In this case as well, despite the low number

of events, we have used the expected b̄ and p̄ for the background expectation. While this

is not fully rigorous, the small number of expected background events suppresses possible

effects from the mismodelling due to our fixed background shape. In this low rate context

we search for the maximum likelihood varying E∗, w, and r so to obtain a measurement

of the Z boson energy in the t̃2 rest-frame.

4.4 Simulation study and results

To quantify the mass measurement performance that can be attained analyzing energy

spectra as we propose, we carry out 100 pseudo-experiments, each equivalent to L = 3ab−1

at the 14 TeV LHC. For this purpose, we prepare 100 event samples for both the signal and

background process, each corresponding to data from an integrated luminosity of 3 ab−1,

and select the events according to the cuts outlined in sections 4.1 and 4.2. We take into

account b-tagging applying an efficiency equal to 70% over all the selected phase-space. On

each of the 100 event samples we apply the procedure described in the following to obtain

a measurement of the Z boson energy in the rest-frame of the t̃2.

For each pseudo-experiment we obtain the Z energy spectrum after imposing the selec-

tion criteria listed in eqs. (4.7)–(4.16). The Z boson energy for each event is reconstructed

by summing the energies of the two opposite-signed same flavor leptons whose invariant

mass falls closest tot he Z mass in the mass window defined in eq. (4.7). On each obtained

energy spectrum we fit the massive fitting template according to the strategy explained in

section 4.3. The result of this fit is a measurement of the rest-frame energy of Z boson

accompanied by its uncertainty from the variation of the χ2. Our final result will be the ave-

rage of the 100 best-fit values and the average of the fit errors over the pseudo experiments.

The left panel of figure 4 demonstrates our fit result for a representative pseudo-

experiment of SP1. For all data points (denoted by black dots), the background is sub-

tracted according to eq. (4.21). Then a χ2 fit has been performed with respect to the data

points between 150 and 500 GeV, which yield the best-fit given by the red curve. For this

particular pseudo-experiment the best-fit E∗Z is 236+22
−35 GeV. Considering the correspond-

ing theory value, which is 232 GeV from eq. (4.5), we find good agreement. Furthermore, for

this pseudo-experiment the reduced χ2 is 0.74, which suggests that our template describes

the data well enough.
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Figure 4. Left panel: result of the fit on the energy spectrum obtained in a pseudo experiment for

the masses of SP1. Data points used in the fit are shown as black dots, and the best-fit is represented

by a red curve. For all data points, the background is subtracted according to eq. (4.21). The

standard χ2 fit is performed with the data between 150 and 500 GeV and shows good agreement

between the data an the fit, as also corroborated by the root-mean-square deviation δRMS = 2.

Right panel: a one-dimensional histogram in the extracted E∗
Z of 100 pseudo-experiments for SP1.

The theory E∗
Z value is indicated by a black dashed line. The red curve represents the corresponding

fit to the distribution of pseudo-experiments with a Gaussian for checking the normality and bias

for the relevant fit procedure.

The average central value and average fit-error on 100 pseudo-experiments give the

expected measurement with statistic uncertainty:

〈E∗Z〉 = 237+25
−35 GeV, (4.23)

with and average reduced χ2 equal to 0.84, which shows good agreement between measured

value and true value and also supports the use of the massive template function as a good

parametrization of data.

The right panel of figure 4 displays the distribution of the values of E∗Z obtained in

the 100 pseudo-experiments that we performed. In order to check the normality and bias

from our fit procedure, we fit the histogram with a Gaussian, and report the result as a

red curve in the same figure. The central value and the variance from the Gaussian fit are

comparable with the average of the measurements of E∗Z and its error estimate in eq. (4.23),

hence we conclude that no significant bias in E∗Z determination is introduced by the our

fit procedure.

So far we have discussed the measurement of a feature of the energy spectrum, E∗Z ,

which per se is a physical quantity interesting on its own. This feature is connected, and can

in principle coincide, with the peak of the spectrum, but in general is defined as a function of

masses involved in the decay, which we have used to parametrize the energy spectrum. The

relation of E∗Z with the masses mt̃2
, mt̃1

, and mZ , does not allow to use just E∗Z to know any

single mass. In order to do that another independent measurement of a different function

of the masses is needed, so that mt̃2
or mt̃1

(or both) can be determined. We remark
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that this is a generic feature of the energy peak method, which is always sensitive to mass

differences, rather than to an absolute mass scale. Case by case one should identify the

most suitable strategy to supplement the information provided by the energy peak method.

In this paper we do not offer a specific strategy to obtain this extra piece of information.

However, solely for illustration purposes, we assume that a measurement of the mass of t̃1
has been performed elsewhere13 and we plug it in the relation between E∗Z with the masses

to study how the error on E∗Z propagates to the masses. The expressions for mt̃2
and its

propagated error is:

mt̃2
= E∗Z +

√(
E∗Z
)2

+m2
t̃1
−m2

Z , (4.24)

δmt̃2
=

1 +
E∗Z√(

E∗Z
)2

+m2
t̃1
−m2

Z

 δE∗Z , (4.25)

where, to highlight the relation between the error on E∗Z from the fit and the extracted

mass, we have neglected possible uncertainties on mt̃1
. Assuming mt̃1

= 300 GeV we obtain

the average measurement of mt̃2
:

〈mt̃2
〉 = 608+41

−57 GeV, (4.26)

which is in quite a good agreement with the true value for mt̃2
in SP1, 600 GeV from

eq. (4.4).

As discussed above, for SP2 we are presented with the issue of having a small number

of signal events. Therefore we employ an unbinned likelihood fit, which allows to deal

with such issue and carry out a mass measurement even with such small statistics. Since

the background energy spectrum can be reasonably described by the background model in

eq. (4.17) for EZ > 120 GeV, we take into consideration signal and background events only

if the energy of the Z boson is greater than 120 GeV.

The average measurement of E∗Z from the 100 pseudo-experiments for SP2 is:

〈E∗Z〉 = 192+29
−32 GeV. (4.27)

We see that the extracted E∗Z is in a good agreement with the corresponding theory,

180.2 GeV from eq. (4.5). Figure 5 exhibits the distribution of E∗Z over 100 pseudo-

experiments that we performed. To check the normality and bias of our energy spectrum

fit procedure, we fit the distribution of E∗Z with a Gaussian, the resulting best-fit is de-

noted by a red curve. As for SP1, for SP2 as well we observe that the central value and

the variance from the Gaussian fit are comparable with the average measurement of E∗Z
and its error estimate in eq. (4.27), hence no significant bias in E∗Z is introduced by our

energy spectrum fit procedure. The mass of t̃2 can be determined also in this case by

assuming a value for mt̃1
. As we did for SP1, we pick m1̃ = 300 GeV and we find the

average mass measurement:

〈mt̃2
〉 = 815+38

−42 GeV, (4.28)

which is in reasonable agreement with the true value, 800 GeV from eq. (4.4).

13In principle, studying energy spectra from the decay t̃1 → tχ is possible to determine at least part of

the necessary information. This would require to study the energy spectrum of the top quark, a task that

we leave for future work.
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Figure 5. A one-dimensional histogram in the extracted E∗
Z of 100 pseudo-experiments for SP2.

The theoretic E∗
Z value is indicated by a black dashed line. The red curve represents the corre-

sponding fit to the distribution of pseudo-experiments with a Gaussian for checking the normality

and bias for the relevant fit procedure.

5 Conclusions

Needless to say, measurement of masses of heavy particles is a routine part of the experi-

mental program in high-energy physics. As is well-known, the measurement might not be

straightforward, especially when new physics particles are under study (where the underly-

ing dynamics might be initially unknown). For this reason, especially in view of the great

variety of signatures that might originate from new physics, high-energy experimentalists

(and phenomenologists alike) have developed a plethora of techniques for this purpose, so

as to be ready to tackle the measurement regardless of the channel in which we will discover

new physics at the LHC/future colliders. These mass measurement methods are often tai-

lored for specific processes, which implies that, in spite of tremendous efforts, there is no

method that can work in all cases. Following this observation, it is clear that it is always

useful to come up with new methods for measuring heavy particle masses, especially if they

are complementary to the existing ones, for example, being subject to different systematic

uncertainties; in this manner, combinations of various methods (old and new) can reduce

the error on the mass measurement and more thoroughly test the gained understanding of

new physics.

Anticipating in this way that the LHC/future colliders will discover new physics (after

which the focus will shift to its mass measurement), a test of such methods can be carried

out on existing data, for instance attempting the mass measurement of heavy particles

of the SM itself, such as the top quark or the Higgs boson. In some cases, the new

methods, although originally formulated for new physics measurements, might be “serious”

alternatives to existing techniques even for SM particles, being useful for improving the

associated precision or as a cross-check of the previous measurements (see, for example,

the need for such methods for the case of the top quark discussed in ref. [91, 92] and the

recent application of the kinematic end-point methods to this measurement [69].)
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In particular, mass measurement methods based primarily on the kinematics of decay

and production of new states are especially attractive, because they are minimally sensitive

to details of the dynamics of the production mechanisms of the heavy particle. Therefore,

such “(production) model-independent” methods have been the the focus of this paper.

Traditionally, such a goal has been attained using the (Lorentz-)invariant mass of the decay

products, which is calculated as the Minkowski norm of the sum of all 4-momenta from the

several prongs of the decay. If viable, this approach is clearly an excellent way to go for mass

measurement. However we stress that for the invariant mass to work straightforwardly we

need to observe all decay products, only then we will have direct access to the mass of

the parent particle. On the contrary, if only a subset of decay products is available, e.g.,

because some of the decay products are invisible, the invariant mass can at best provide

usable information on the difference of mass of parent and invisible states. The presence

of invisible states is clearly a challenge to application of such a method and we need to

develop strategies to work around these limitations.

In order to deal with such cases, “transverse” mass (i.e., not fully invariant) variables

were invented, but they have to resort to using missing transverse momentum arising from

the invisible particle(s). Hence, such variables usually bring in sensitivity to the entire

event, i.e., they require global information, as opposed to the ideal case in which one would

measure a particle mass concentrating on just its decay. Such a feature is clearly not desired

since it renders methods based on this quantity sensitive to factors that are not fully under

control (e.g., not well understood sources of missing transverse momentum).

On top of these drawbacks of established methods for mass measurement (based either

on invariant or transverse mass) they are often afflicted by combinatoric issues because

several candidates for the resonance reconstruction may exist in the event and only one

will be the correct one. Such combinatoric issues are ubiquitous in all cases in which the

parent particle is pair-produced and undergoes the same decay on both sides of the event.

Overall, these considerations provide huge motivation to develop alternative mass mea-

surement techniques to address the above issues. Focusing on a two-body decay into one

visible and one (in general massive) invisible particle, if we insist on use of only the visible

particle (so that we have a chance to not end up using global information on the event),

then we only have at our disposal the energy and three-momentum of the single visible par-

ticle. Such quantities, being not Lorentz-invariant, were not expected to robustly provide

information about any mass, hence have not really been considered thus far in high energy

collider experiments. Of course, if we assume the production and decay matrix elements,

then we can compute energy distributions as a function of mass of parent and then, fitting

this prediction to the data, extract the parent mass. This assumption, however, is what we

would like to avoid; the purpose of this work has been precisely to propose an alternative

way to mass measurement which does not rely on such knowledge.

Remarkably, we showed in ref. [71] (see also [72, 75] for related work) that nonetheless

certain features in the above energy distributions contain information on Lorentz-invariant

quantities. Namely, if one assumes that the heavy parent particle is produced unpolarized

and the visible decay product is massless, then one can show that the location of the

peak of the energy distribution in the laboratory frame is precisely at the (fixed) value of
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the energy of the visible particle in the rest-frame of parent particle, irrespective of the

distribution of the boost of the parent particle. Of course, the overall shape of the energy

distribution is dependent on the boost distribution of the parent, but the crucial point is

that the location of peak is invariant. In turn, the location of this peak (i.e., rest-frame

value of energy) is a simple, well-known, function of masses, thus allowing us to determine

(in general a combination of) masses by measuring this peak. Clearly, this method is larger

free of combinatoric ambiguities.

In this paper, we have generalized the above two-body result on the energy-peak of

a massless decay product to the case of a massive child particle. Obviously, the resulting

modification of the value of the energy of the child particle in the rest-frame of the parent

is trivial; so the real question is: where is location of the peak in the laboratory frame in

this case? We showed that the location of the peak is (in general) shifted compared to the

value in the rest-frame, which means that, not only the δ-function is smeared in passing

from the parent rest-frame to the laboratory, but also the peak does not stay put (cf.,

massless child particle case).

To deal with this feature of energy spectra of massive particles, we introduced a more

general measurement strategy that builds on the one devised for the case of massless child

particles (for which, once again, the peak coincides with the rest-frame energy). Namely,

we had developed a parametrization of the energy spectrum of the massless child particle

in terms of the location of the peak and its width. This function was largely, but not fully,

constructed from first principles properties of the energy spectrum. In fact, the specific

functional form within a larger class of functions, was fixed empirically and validated on

the theoretical numerical prediction for the energy distribution of several relevant examples

such as the top quark pair production and decay at the LHC [71] and for other BSM

processes, e.g., gluino decays in SUSY [76].14

Based on the above success of the massless case, we assumed here that the fitting

function for massless child particle is indeed accurate. We then showed that a suitable

generalization of that function can be obtained to cover the case of a massive child particle.

Clearly, this application to massive child particle case relies on the original parametrization

for massless particles being the “truth”, hence it relies on one extra assumption compared

to the massless case. For this reason it is incumbent on us to test our parametrization of the

massive child energy spectrum even more thoroughly than was done for the massless case.

In this paper we have carried out such validation studying the (numerical) theory prediction

for energy spectra in a SUSY process, namely, the decay of heavier stop to lighter stop and

Z boson, the latter being a visible (resonant pair of leptons), massive child particle. In this

theoretical study, we paid particular attention to the mass difference between the two stop

mass eigenstates, which was varied as an handle to control the importance of the Z boson

mass in the stop quark rest frame. As expected, we found that for larger mass gap, i.e., Z

boson being more boosted and its mass less relevant, the massless fitting function still works

reasonably well, but its performance degrades as we make mass gap smaller, whereas the

14The CMS collaboration recently applied the energy-peak method for measuring the top quark mass [79],

using a related functional form, obtaining a result consistent with other measurements and with a reaso-

nable precision.
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massive template provides a much more accurate parametrization of the energy spectrum

over a large range of stop rest frame Z boson boost. Having gained confidence in the

theoretical validity of the massive template for the energy spectrum, we then considered

its phenomenological applications. To this end we studied a mass measurement based on

3000 fb−1 at LHC14 for the same SUSY process, including SM backgrounds and selection

cuts to isolate the signal. Our study has shown that the rest frame energy of the Z boson

can be reconstructed from its laboratory frame energy spectrum performing a χ2 fit of the

data with the model function that we proposed. Performing pseudo-experiments we have

checked for two representative spectra that a precision around 10% can be achieved on the

rest-frame energy measurement even for cases that yield limited number of signal events,

e.g., for the spectrum featuring mt̃2
= 800 GeV that, after selections, yields just O(10)

events per ab−1 of luminosity.

As future directions to pursue, we would like to mention the fairly straightforward

application to other two-body decays with massive child particle (whether in the SM or

beyond), for example, t → bW , but this time using energy of W boson (cf., that of b in

the original application of massless energy-peak). Furthermore, armed with the massive

template developed in this work, we can contemplate the extension of the energy-peak

method beyond two-body decays by slicing the many-body phase space into effective two-

body ones; in fact results for a three-body decay into two visible particles and one invisible

are presented in ref. [84]. We remark that the “effective one-body” (formed out of two

visible particles, with a fixed invariant mass) that is necessary to deal with in such a phase-

space slicing is in general massive,15 hence we must use the massive energy-peak method

developed in this work; in such application, the fitting function would be applied to the

sum of energies of the two visible particles.

To conclude, having covered the cases of massless and massive child particles, we can

envisage several more diverse applications of our novel idea of exploiting energy spectra for

mass measurements and beyond. The crucial step was overcoming the naive expectation

of little utility of this method which was based on the superficial disadvantage of energy

being a Lorentz-variant. We believe that energy spectra analysis can then become a part

of the standard tool-kit to study particle physics at colliders.
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Ŝmin and reconstructing with semi-invisible

production at hadron colliders, JHEP 03 (2015) 142 [arXiv:1412.6624] [INSPIRE].

[67] B. Gripaios, Tools for extracting new physics in events with missing transverse momentum,

Int. J. Mod. Phys. A 26 (2011) 4881 [arXiv:1110.4502] [INSPIRE].

[68] A.J. Barr and C.G. Lester, A Review of the Mass Measurement Techniques proposed for the

Large Hadron Collider, J. Phys. G 37 (2010) 123001 [arXiv:1004.2732] [INSPIRE].

[69] CMS collaboration, Measurement of masses in the tt̄ system by kinematic endpoints in pp

collisions at
√
s = 7 TeV, Eur. Phys. J. C 73 (2013) 2494 [arXiv:1304.5783] [INSPIRE].

[70] L. Randall and D. Tucker-Smith, Dijet Searches for Supersymmetry at the LHC, Phys. Rev.

Lett. 101 (2008) 221803 [arXiv:0806.1049] [INSPIRE].

[71] K. Agashe, R. Franceschini and D. Kim, Simple “invariance” of two-body decay kinematics,

Phys. Rev. D 88 (2013) 057701 [arXiv:1209.0772] [INSPIRE].

[72] S. Kawabata, Y. Shimizu, Y. Sumino and H. Yokoya, Boost-Invariant Leptonic Observables

and Reconstruction of Parent Particle Mass, Phys. Lett. B 710 (2012) 658

[arXiv:1107.4460] [INSPIRE].

– 35 –

http://arxiv.org/abs/1006.2727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2727
http://dx.doi.org/10.1103/PhysRevD.89.055020
http://arxiv.org/abs/1310.4827
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4827
http://dx.doi.org/10.1088/1126-6708/2009/03/085
http://dx.doi.org/10.1088/1126-6708/2009/03/085
http://arxiv.org/abs/0812.1042
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1042
http://dx.doi.org/10.1016/j.physletb.2010.09.010
http://arxiv.org/abs/0906.5009
http://inspirehep.net/search?p=find+EPRINT+arXiv:0906.5009
http://dx.doi.org/10.1103/PhysRevLett.104.081601
http://dx.doi.org/10.1103/PhysRevLett.104.081601
http://arxiv.org/abs/0910.1149
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.1149
http://dx.doi.org/10.1007/JHEP06(2011)041
http://arxiv.org/abs/1006.0653
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0653
http://dx.doi.org/10.1007/JHEP09(2011)140
http://arxiv.org/abs/1103.3438
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.3438
http://dx.doi.org/10.1103/PhysRevLett.50.1738
http://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,50,1738%22
http://dx.doi.org/10.1007/JHEP02(2012)051
http://arxiv.org/abs/1109.1018
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.1018
http://dx.doi.org/10.1103/PhysRevD.87.035003
http://arxiv.org/abs/1206.5633
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5633
http://dx.doi.org/10.1103/PhysRevD.87.035004
http://arxiv.org/abs/1206.5641
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5641
http://dx.doi.org/10.1103/PhysRevD.89.015021
http://arxiv.org/abs/1308.6560
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.6560
http://dx.doi.org/10.1007/JHEP03(2015)142
http://arxiv.org/abs/1412.6624
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6624
http://dx.doi.org/10.1142/S0217751X11054826
http://arxiv.org/abs/1110.4502
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.4502
http://dx.doi.org/10.1088/0954-3899/37/12/123001
http://arxiv.org/abs/1004.2732
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2732
http://dx.doi.org/10.1140/epjc/s10052-013-2494-7
http://arxiv.org/abs/1304.5783
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5783
http://dx.doi.org/10.1103/PhysRevLett.101.221803
http://dx.doi.org/10.1103/PhysRevLett.101.221803
http://arxiv.org/abs/0806.1049
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1049
http://dx.doi.org/10.1103/PhysRevD.88.057701
http://arxiv.org/abs/1209.0772
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0772
http://dx.doi.org/10.1016/j.physletb.2012.03.050
http://arxiv.org/abs/1107.4460
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4460


J
H
E
P
0
4
(
2
0
1
6
)
1
5
1

[73] S. Kawabata, Y. Shimizu, Y. Sumino and H. Yokoya, Measurement of physical parameters

with a weight function method and its application to the Higgs boson mass reconstruction,

JHEP 08 (2013) 129 [arXiv:1305.6150] [INSPIRE].

[74] S. Kawabata, Y. Shimizu, Y. Sumino and H. Yokoya, Weight function method for precise

determination of top quark mass at Large Hadron Collider, Phys. Lett. B 741 (2015) 232

[arXiv:1405.2395] [INSPIRE].

[75] F.W. Stecker, Cosmic gamma rays, NASA Special Publication 249 (1971).

[76] K. Agashe, R. Franceschini and D. Kim, Using Energy Peaks to Measure New Particle

Masses, JHEP 11 (2014) 059 [arXiv:1309.4776] [INSPIRE].

[77] R. Franceschini and D. Kim, unpublished.

[78] K. Agashe, R. Franceschini, D. Kim and M. Schulze, Top quark mass determination from the

energy peaks of b-jets and B-hadrons at NLO QCD, arXiv:1603.03445 [INSPIRE].

[79] CMS collaboration, Measurement of the top-quark mass from the b jet energy spectrum,

CMS-PAS-TOP-15-002 (2015).

[80] K. Agashe, R. Franceschini, D. Kim and K. Wardlow, Using Energy Peaks to Count Dark

Matter Particles in Decays, Phys. Dark Univ. 2 (2013) 72 [arXiv:1212.5230] [INSPIRE].

[81] I. Low, Polarized charginos (and top quarks) in scalar top quark decays, Phys. Rev. D 88

(2013) 095018 [arXiv:1304.0491] [INSPIRE].

[82] C.-Y. Chen, H. Davoudiasl and D. Kim, Z with missing energy as a warped graviton signal at

hadron colliders, Phys. Rev. D 89 (2014) 096007 [arXiv:1403.3399] [INSPIRE].

[83] D. Kim and J.-C. Park, Energy peak: back to the Galactic Center GeV gamma-ray excess,

Phys. Dark Univ. 11 (2016) 74 [arXiv:1507.07922] [INSPIRE].

[84] K. Agashe, R. Franceschini, D. Kim and K. Wardlow, Mass Measurement Using Energy

Spectra in Three-body Decays, arXiv:1503.03836 [INSPIRE].

[85] CMS collaboration, Search for top-squark pairs decaying into Higgs or Z bosons in pp

collisions at
√
s = 8 TeV, Phys. Lett. B 736 (2014) 371 [arXiv:1405.3886] [INSPIRE].

[86] CMS collaboration, Search for top-squark pair production in the single-lepton final state in

pp collisions at
√
s = 8 TeV, Eur. Phys. J. C 73 (2013) 2677 [arXiv:1308.1586] [INSPIRE].

[87] J. Alwall et al., The automated computation of tree-level and next-to-leading order

differential cross sections and their matching to parton shower simulations, JHEP 07 (2014)

079 [arXiv:1405.0301] [INSPIRE].

[88] R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244

[arXiv:1207.1303] [INSPIRE].

[89] CMS collaboration, CMS Physics: Technical Design Report Volume 2: Physics Performance,

CERN-LHCC-2006-021 (2006).

[90] ATLAS collaboration, ATLAS detector and physics performance: Technical Design Report,

2, CERN-LHCC-99-15 (1999).

[91] A. Juste et al., Determination of the top quark mass circa 2013: methods, subtleties,

perspectives, Eur. Phys. J. C 74 (2014) 3119 [arXiv:1310.0799] [INSPIRE].

[92] G. Cortiana, Top-quark mass measurements: review and perspectives, arXiv:1510.04483

[INSPIRE].

– 36 –

http://dx.doi.org/10.1007/JHEP08(2013)129
http://arxiv.org/abs/1305.6150
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6150
http://dx.doi.org/10.1016/j.physletb.2014.12.044
http://arxiv.org/abs/1405.2395
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2395
http://dx.doi.org/10.1007/JHEP11(2014)059
http://arxiv.org/abs/1309.4776
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4776
http://arxiv.org/abs/1603.03445
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.03445
http://cds.cern.ch/record/2053086
http://dx.doi.org/10.1016/j.dark.2013.03.003
http://arxiv.org/abs/1212.5230
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5230
http://dx.doi.org/10.1103/PhysRevD.88.095018
http://dx.doi.org/10.1103/PhysRevD.88.095018
http://arxiv.org/abs/1304.0491
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0491
http://dx.doi.org/10.1103/PhysRevD.89.096007
http://arxiv.org/abs/1403.3399
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3399
http://dx.doi.org/10.1016/j.dark.2016.01.001
http://arxiv.org/abs/1507.07922
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07922
http://arxiv.org/abs/1503.03836
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03836
http://dx.doi.org/10.1016/j.physletb.2014.07.053
http://arxiv.org/abs/1405.3886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3886
http://dx.doi.org/10.1140/epjc/s10052-013-2677-2
http://arxiv.org/abs/1308.1586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1586
http://dx.doi.org/10.1007/JHEP07(2014)079
http://dx.doi.org/10.1007/JHEP07(2014)079
http://arxiv.org/abs/1405.0301
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.0301
http://dx.doi.org/10.1016/j.nuclphysb.2012.10.003
http://arxiv.org/abs/1207.1303
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1303
http://cds.cern.ch/record/942733
http://cds.cern.ch/record/391177
http://dx.doi.org/10.1140/epjc/s10052-014-3119-5
http://arxiv.org/abs/1310.0799
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.0799
http://arxiv.org/abs/1510.04483
http://inspirehep.net/search?p=find+EPRINT+arXiv:1510.04483

	Introduction
	Developing a template for massive decay products
	The energy spectrum of a massless decay product
	Properties
	The massless ansatz

	The energy spectrum of a massive decay product
	Properties
	The massive ansatz


	Accuracy of the template for massive particles energy spectra
	Application 
	Signal collider signature 
	Backgrounds and event selection 
	Fitting strategy and mass extraction 
	Simulation study and results

	Conclusions

