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1 Introduction

Models with matrix like degrees of freedom make numerous appearances throughout phys-

ics. Applications range from the study of the spectra of heavy atoms to models of emergent

geometry [1–6]. In this paper we will concern ourselves with a particular class of quantum

mechanical models whose degrees of freedom are purely fermionic rectangular matrices ψAi,

with A = 1, . . . ,M and i = 1, . . . , N . The matrices transform in the (M,N) bifundamental

representation of a U(M) × SU(N) symmetry group. In a Lagrangian description of the

system, transition amplitudes can be expressed as path integrals over Grassmann valued

paths ψAi. Grassmann matrices naturally appear as the supersymmetric partners of bosonic

Hermitian matrices in supersymmetric matrix quantum mechanical theories such as the low

energy worldline dynamics of a stack of N D0-branes in type IIA string theory [3, 7] or the

Marinari-Parisi matrix model [8]. Our interest is in quantum mechanical models consisting

of only the Grassmann matrices.
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Ordinary integrals over Grassmann matrices were studied extensively in [9–11]. There,

it was shown how the problem of Grassmann matrix integrals at large N , M can be

expressed as an eigenvalue problem for the composite N × N matrix Φij =
∑

A ψ̄iAψAj ,

which is effectively bosonic. Unlike bosonic matrices, a Grassmann valued matrix cannot

be diagonalized and characterized in terms of eigenvalues. Instead, the authors were able

to analyze the model by diagonalizing Φij . Certain features of the Φij integral, such as a

contribution to the potential of the form tr log Φ, were shown to be universal and specifically

related to the Grassmann nature of the original problem. Along a similar vein, emergent

bosonic matrices from spin systems were considered in [12, 13]. The models of interest in

our work can be viewed as multi-particle quantum mechanical models of fermions which

can occupy a finite set of single particle states |A, i, α〉, labeled by the matrix indices. In

particular the Hilbert space is finite dimensional. Fermionic multi-particle models often

arise as lattice models in condensed matter physics, where there is typically an assumption

about some sort of nearest-neighbour interaction between the fermions reflecting spatial

locality. In contrast, the class of models of interest in our paper have no such notion of

spatial locality. They are described by actions of the form:

S =

∫
dt i

∑
A,α,i

ψ̄αiA∂tψ
α
Ai − trN×N V

( ∑
A,α,β

ψ̄αiAσαβψ
β
Aj

)
. (1.1)

The potential V (x) is an N × N matrix valued function. The index α is an spinor index

associated to the d-dimensional rotation group, but we will focus on the particular case of

d = 3 and take the σαβ to be the ordinary Pauli matrices. We will also demand that the

potential V (x) be SO(3) invariant.1 An example of such a model was studied in [14]. The

objects we wish to understand are path integrals over {ψ̄αiA(t), ψαAi(t)} rather than simple

integrals. In particular, we study to what extent the Grassmann matrix models at large N

and M can be described in terms of a composite bosonic matrix degree of freedom. We then

describe several features of the emergent bosonic matrix quantum mechanical systems. We

focus on the case where V (x) is quartic in the Grassmann matrices, but the techniques we

develop can be used more generally.

As mentioned, our models have a finite dimensional Hilbert space. In this sense they

differ from many of the quantum mechanical models studied in the context of holography,

such as the D0-brane quantum mechanics or N = 4 super Yang-Mills, where the systems

have an infinite space of states, even at finite N . On the other hand, several proposals have

been made throughout the literature suggesting that the holographic dual of a de Sitter

universe (or at least its static patch) is indeed a system with a finite dimensional Hilbert

space [15–20]. Our considerations are particularly similar, in spirit, to those of [15, 16]

where the basic building blocks are also taken to be a large collection of fermionic operators.

Part of our motivation is to understand to what extent systems with a finite Hilbert space

can give rise to a holographic description with a dual gravitational theory in an appropriate

large N type limit. In order for this to be the case, bosonic variables (such as the Hermitean

1Part of the reason for choosing an SO(3) index is to mimic the examples of matrix quantum mechanics

that appear in holography, where the matrices are labeled by a similar rotational index. We discuss this

further in the outlook.
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matrices) should emerge from the discrete variables, at least at low energies and in an

appropriate large N limit. The models studied in this work serve as toy models where this

can be seen explicitly, and we can examine to what extent the bosonic effective degrees of

freedom adequately capture the physics and when this description breaks down.

The first part of the paper provides a detailed study for the N = 1 case, in which

the degrees of freedom are organized as vectors. We derive several results regarding the

physics of the effective composite degree of freedom ψ̄αAσαβψ
β
A. We show to what extent

the theory is described by three bosonic degrees of freedom x = (x, y, z) transforming as an

SO(3) vector. The Euclidean path integral is expressed as a path integral over x and a low

velocity expansion is developed at large M . We study the theories at finite temperature

and note a breakdown of the bosonic description at high temperatures. We describe the

structure of the emergent classical phase space for the effective bosonic theory, which is the

compact Kähler manifold CP1. Some of the results in this section have appeared in several

contexts (see for example [21, 22, 25]). However, certain aspects of our treatment are novel

and furthermore our treatment naturally generalizes to the matrix case. This is studied in

the second part of the paper, where now the effective theory becomes that of three bosonic

Hermitian N × N matrices Σa
ij , with a ∈ {x, y, z}. The matrix Σa

ij transforms in the

adjoint of SU(N) and is an SO(3) vector. The matrix analogue of the emergent classical

phase space is identified as a compact Kähler manifold, first introduced by Berezin [26].

The Kähler metric is parameterized by a complex N × N matrix Zij . We discuss how

the Zij and Z†ij relate to the description of the system in terms of the Σa
ij as well as the

original Grassmann matrices. The volume of the Kähler metric computes the dimension of

the Hilbert space captured by the (quantized) classical phase space. It is shown to precisely

match the dimension of the U(M) invariant Hilbert space of the original Grassmann theory.

We end with an outlook discussing speculative connections of our models to holography.

2 Vector model

In this section we discuss a quantum mechanical model in which the degrees of freedom

are a vector ψαA of complex Grassmann numbers, with A = 1, . . . ,M and α = 1, 2 a spinor

index of SU(2), the double cover of the rotational group SO(3). Our system has a 22M

complex-dimensional Hilbert space of states. The purpose of the section is to analyze a

simplified version of the matrix model studied in the next section, which however still

retains some of the salient features.

We focus on an action with quartic interactions of the specific form:

S =

∫
dt i ψ̄αA∂tψ

α
A + g

(
ψ̄αAσ

a
αβψ

β
A

)(
ψ̄γBσ

a
γδψ

δ
B

)
, (2.1)

where it is understood that the A and α indices are summed over and the σaαβ = {σxαβ , σ
y
αβ ,

σzαβ} are the three Pauli matrices. The model has an SU(2)×U(M) global symmetry group.

The (ψ̄αA) ψαA transform in the (anti-)fundamental representation of U(M) and SU(2).

Upon canonical quantization, the non-vanishing anti-commutation relations between

the fermionic operators are given by {ψ̄αA, ψ
β
B} = δαβδAB. The SU(2) generators working

– 3 –
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on these operators are given by Ĵa = ψ̄αAσ
a
αβψ

β
A/2. The U(M) generators are given by:

Ĵ n = ψ̄αAT
n
ABψ

α
B + c Î δn0 , n = 0, 1, . . . ,M2 − 1 . (2.2)

The TnAB with n > 0 are the traceless generators of SU(M) subgroup of U(M), and T 0
AB =

δAB generates the U(1) subgroup of U(M). c is a normal ordering constant that appears

as a possible central extension of the U(1). As expected, [Ĵ n, Ĵa] = 0. We take g > 0 in

what follows and measure quantities in units of g so that g = 1.

2.1 Spectrum

The Hamiltonian of the system is proportional to the normal ordered square of the angular

momentum operator:

Ĥ = − : ψ̄αAσ
a
αβψ

β
A ψ̄

γ
Bσ

a
γδψ

δ
B : = −4 : Ĵ · Ĵ : = −4 Ĵ · Ĵ + 3n̂ , (2.3)

where n̂ ≡ ψ̄αAψαA, commutes with the Ĵa. If we view the index A as a lattice site, the system

above is describing two-body SU(2) spin-spin interactions of spin-1/2 fermions between all

M possible lattice sites, each with equal strength. From (2.3), it follows that the the

eigenstates |J,m;n〉 can be labeled by their total angular momentum J , their angular

momentum m in the z-direction and their eigenvalue n with respect to the n̂ operator.

The energy of |J,m;n〉 is simply E = −4J(J + 1) + 3n. For M > 1, the ground states |g〉
are the (M + 1) states in the maximally spinning spin-M/2 multiplet, whereas the J = 0

state with n = 2M has maximal energy. We can construct the full Hilbert space by acting

with the ψ̄αA operators on the particular J = 0 state |0〉, defined to be the state annihilated

by all the ψαA. For instance the ground state with maximal spin-z angular momentum is

|M/2,M/2;M〉 =
∏
A ψ̄

1
A|0〉 and has energy Eg = −M(M − 1).

For each A we have two states with vanishing angular momentum in the z-direction,

and a spin-1/2 doublet. The full Hilbert space can thus be written succinctly as H =

(0 ⊕ 1/2 ⊕ 0)⊗M . The degeneracies for a given angular momentum in the z-direction can

be obtained from the partition function:

Z[q] = tr q
∑
A JzA =

2M∑
k=0

(
2M

k

)
qM/2−k/2 (2.4)

From the above partition function, we can also obtain the degeneracies of the multiplets

with total spin J :

dJ =

(
2M

M + 2J

)
−
(

2M

M + 2(J + 1)

)
. (2.5)

Indeed, there is exactly one state with m = M/2, which is part of the maximally spinning

(ground state) multiplet. There are 2M states with m = (M − 1)/2, each of which is part

of a spin-(M − 1)/2 multiplet. However, out of the M(2M − 1) states with m = M/2− 1,

one is already part of the maximally spinning multiplet, leaving (2M2 − M − 1) spin-

(M−2)/2 multiplets. Generalizing this argument to all eigenvalues of Ĵz yields the formula

above. As expected,
∑

J(2J + 1)dJ = 22M and dM/2 = 1. At large M , using the Stirling

– 4 –
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Figure 1. Plot of dJ vs. J for M = 70.

approximation, we find a large degeneracy of 22M/M J = 0 states. Moreover, for small

J/M , we can use the approximations:(
2M

M + 2J

)
≈
(

2M

M

)
e−4J2/M ,

(
2M

M + 2(J + 1)

)
≈
(

2M

M

)
e−4(J+1)2/M . (2.6)

From these we can derive that dJ peaks at J ≈
√
M/8. We show a plot of the degeneracies

dJ in figure 1.

The dJ are the exact degeneracies for the operator ˆ̃H = (Ĥ − 3n̂), with eigenvalues

ẼJ = −4J(J + 1). At large M , the dJ are also approximately the degeneracies of Ĥ for

several of its lowest lying states. For example, the energy difference between the ground

state with J = M/2 and the nearest energy level with J = (M − 1)/2 is 2M to leading

order. The n̂ operator does not split the energies of the (M + 1)-fold degenerate states in

the ground state multiplet, but it does split the energies of the 2M distinct J = (M − 1)/2

multiplets into two bands of M multiplets separated by an O(1) amount in energy. Since

the energies of both the J = M/2 and J = (M − 1)/2 multiplets are −M2 at large M , to

leading order in M the dJ are a good approximation of the degeneracies of Ĥ for the two

lowest lying states. More generally, considerations similar to those leading to (2.5) lead to

the formula for the degeneracies of distinct J-multiplets with a given n:

dJ,n =

(
M

n
2 + J

)(
M

n
2 − J

)
−
(

M
n
2 + J + 1

)(
M

n
2 − J − 1

)
, (2.7)

where n = 2J, 2J + 2, . . . , 2M − 2J .2 When J ∼ 3M/8 and below, the energy split among

multiplets with the same value of J is large enough to cause overlaps between their energy

levels and those of multiplets with different J . For example, the J = 0 states have energies

ranging between E0 ∈ [0, 6M ] which can easily be seen to overlap with the energy levels of

the J = 1/2 states.

In case we had considered gauging the U(M) symmetry, the spectrum would have

changed significantly. For instance, by selecting the normal ordering constant c = −M ,

the only gauge invariant states are the (M + 1) maximally spinning ground states.

2As a simple check,
∑
n dJ,n = dJ reproduces (2.5). Furthermore,

∑
J dJ,n(2J + 1) =

(
2M
n

)
, where

J = n/2, n/2− 1, . . . covers positive integer or half-integer values, depending on whether n is even or odd.

– 5 –
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2.2 Effective theory

We would now like to recast the Euclidean path integral of the theory as a Euclidean path

integral of a bosonic (mesonic) variable and understand several features of the model in

terms of the bosonic degree of freedom. The Euclidean path integral computes features

in the low energy sector the system. For instance, the generating function of vacuum

correlation functions is given by:

Z[ξαA, ξ̄
α
A] =

∫
Dψ̄αADψαA e−SE [ψ̄,ψ]−

∫
dτ ξ̄αAψ

α
A−

∫
dτψ̄αAξ

α
A , (2.8)

where the Euclidean action SE is obtained from −iS by a Wick rotation t = −iτ . Upon

introducing an auxiliary three-vector x and integrating out the Grassmann variables, this

can be recast as:

Z[ξαA, ξ̄
α
A] =

∫
Dx det(−∂τ + σ · x)M e−

∫
dτ r2/4e−

∫
dτ ξαA(−∂τ+σ·x)−1

αβ ξ̄
β
A , (2.9)

where r = |x|. From the partition function we can read off the effective action for the x

degree of freedom:

Seff = −M Tr log(−∂τ + σ · x) +

∫
dτ

r2

4
. (2.10)

As it stands, the above action is highly non-local in τ . We would like to understand under

what conditions this action can approximated by a small velocity expansion. Generally

speaking there is no a priori reason for this to be the case in a quantum system, given that

the spectrum is discrete and one cannot continuously change the kinetic energy. However,

one may hope that it would be a valid approximation at large M . We will see that this is

the case.

2.2.1 Small velocity expansion

It is useful to diagonalize the 2 × 2 Hermitian matrix x · σ for each τ . Since the σ are

traceless, we take some U ∈ SU(2) such that U † σ · xU = r σz for each τ . The U matrix is

parameterized by a unit vector n = (sin θ cosφ, sin θ sinφ, cos θ). Explicitly:

U =

(
cos θ2 e−iφ sin θ

2

eiφ sin θ
2 − cos θ2

)
. (2.11)

It then follows that:

det(−∂τ + σ · x)M = eM Tr log(−∂τ−U†U̇+r σz) . (2.12)

Notice that we can transform the above functional determinant under the time reparame-

terization symmetry

τ → f(τ) , r(τ)→ ḟ(τ)r
(
f(τ)

)
, U(τ)→ U

(
f(τ)

)
, (2.13)

eM Tr log(−∂τ−U†U̇+r σz) → eM Tr log ḟeM Tr log(−∂τ−U†U̇+r σz) . (2.14)

– 6 –
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The first factor on the right-hand side of (2.14) is independent of U and r and can be

absorbed into the overall normalization of the path integral. The above symmetry can

therefore be used to set r to a constant in performing a small velocity expansion of the

functional determinant.3 It follows from this that no time derivatives will be generated

for r.

We expand (2.12) in powers of υaσa = i U †U̇ by expanding the logarithm. The zeroth

order term is the effective potential governing r. Going to Fourier space, the computation

becomes:

Veff = −M
∫
dω

2π
log(ω2 + r2) +

r2

4
= −M r +

r2

4
, (2.15)

where we have regulated the ω-integral by differentiating once with respect to r and re-

integrating it back while setting the constant of integration to zero. Note that the effective

potential is minimized at r = 2M for which V
(min)

eff = −M2. To leading order in M this

agrees with the exact ground state energy of the system Eg = −M(M + 2).

The first order term in the velocity expansion is given by:

S
(1)
kin = −M

∫
dω

2π
(−iω + rσz)−1

αβ iσ
a
αβ υ̃

a(0) = i
M

2

∫
dτ(1− cos θ)φ̇ , (2.16)

where υ̃a(l) is the Fourier transform of υa at frequency l. The linear velocity piece S
(1)
kin is

the phase picked up by a unit charge moving on the surface of a two-sphere, in the presence

of a magnetic monopole of strength M/2 at the origin.

Similarly, the quadratic kinetic term is found to be:

S
(2)
kin = M

∫
dτ

1

2r

(
(υx)2 + (υy)2

)
= M

∫
dτ

1

8r
(θ̇2 + sin2 θ φ̇2) , (2.17)

where in the right-hand side we have expressed the answer in terms of x, but now written in

spherical coordinates. The higher order terms can be similarly computed and they contain

even powers of time derivatives of the angular variables divided by one less power of r.4

Denoting the characteristic frequency for some particular motion of θ and φ by ωc, the

condition that there is a small derivative expansion is:

ωc � r . (2.18)

For r near the minimum of the effective potential, we have ωc � M . Hence, for large M

there is a parametrically large range of frequencies allowing for a small velocity expansion.

2.3 Finite temperature

As was previously noted, the original Grassmann system contains a large number of high

energy, i.e. J = 0, states at large M . On the other hand the ground state energy is

3In other words, if we view the symmetries (2.13) as (0+1)-dimensional diffeomorphisms of the worldline,

r(τ) becomes the einbein which can always be gauge fixed to a constant.
4In appendix B we consider a modified vector model where the leading kinetic piece is (2.17).

– 7 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
8

Eg = −M(M − 1). Thus the thermal partition function Z[β] = Tr e−βĤ at large β is

dominated by the ground states and goes as:

lim
β→∞

Z[β] = (M + 1) eM(M−1)β , (2.19)

whereas at small β we have simply the dimension of the Hilbert space:

lim
β→0

Z[β] = 22M . (2.20)

The transition between these two behaviors occurs at β ∼ 1/M .

We now consider the finite temperature partition function as a Euclidean path integral

over x. We must integrate out the Grassmann numbers with anti-periodic boundary con-

ditions along the thermal circle. In analogy to previous calculations, we can compute the

thermal effective potential. What changes is that the ω-integrals are replaced by sums over

the thermal frequencies ωn = 2π(n + 1/2)/β with n ∈ Z. The thermal effective potential

thus becomes:

Veff(β) = −M
β

∑
n∈Z

log(ω2
n + r2) +

r2

4
= −2M

β
log cosh

rβ

2
+
r2

4
. (2.21)

As before, the sum has been regulated by differentiating with respect to r.

For large β, the minimum of Veff is at r = 2M as for the zero temperature analysis.

We can find the critical point for r in a large β expansion. To first order:

r = 2M(1− 2e−2Mβ + . . .) . (2.22)

From this we see the tendency of r to decrease upon increasing the temperature. At small

β, we can Taylor expand:

Veff(β) =
r2

4
− β

4
M r2 +O(β2) . (2.23)

We see that for β . 1/M the thermal potential is minimized at r = 0. In figure 2 we show

a plot for the values of r minimizing Veff(β) as we vary β.

When r is near zero, we can no longer assume that the kinetic contributions are small

and thus our analysis breaks down. This as an indication that the high temperature phase

does not have a reliable small velocity description in terms of x. Instead, the correct

description requires taking into account the full set of Grassmann degrees of freedom.

2.4 Bloch coherent state path integral

So far we have introduced the variable x as a convenient integration variable to capture

correlations in the vacuum state and thermal properties. Here we would like to point out

that in a fixed large angular momentum sector, there is some more significance to x.

Following Bloch, we define a collection of coherent states built from the state |v〉, which

has the lowest angular momentum in the z-direction and hence is also a minimal energy

– 8 –
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Figure 2. Plot of value of r minimizing Veff(β) vs. 103×β for M = 70. Notice that the value stays

close to 2M = 140 all the way down to β ∼ 1/M .

state. In other words |v〉 =
∏
A ψ̄

2
A|0〉. We can act on |v〉 with the spin raising operator

Ĵ+ = Ĵx + i Ĵy to generate states in the maximally spinning multiplet,

|z̄〉 =
1

(1 + zz̄)M/2
ez̄ Ĵ+ |v〉 , z ∈ C . (2.24)

These states are not orthogonal, but they constitute an over-complete basis of the Hilbert

space of the maximally spinning multiplet,

〈w|z̄〉 =
(1 + wz̄)M

(1 + ww̄)M/2(1 + zz̄)M/2
,

∫
d2z

M + 1

π(1 + zz̄)2
|z̄〉 〈z| = I . (2.25)

The purpose of these states is to describe, with minimal uncertainty, points on the S2 of

spin directions. Indeed, the angular momentum expectation value defines a point on S2 —

through the stereographic projection — with decreasing uncertainty in the large M limit

Ja ≡ 〈z|Ĵa|z̄〉 =
M

2(1 + |z|2)

(
z + z̄, i(z̄ − z), |z|2 − 1

)
, (2.26)

〈z|(Ĵa − Ja)2|z̄〉
〈z|Ĵa|z̄〉2

=
2

M
.

One may ask about transition amplitude between two such states: 〈zN |e−iT Ĥ |z̄0〉 for some

given Hamiltonian Ĥ built out of the Ĵa. The result is [23, 24]:

〈zN |e−iT Ĥ |z̄0〉 =

∫
DzDz̄ (M + 1)

π(1 + zz̄)2
eiS(z,z̄), (2.27)

with

S = i
M

2

∫
dt

(z ˙̄z − żz̄)

1 + zz̄
−
∫
dtH(z, z̄) , (2.28)

where H(z, z̄) ≡ 〈z|Ĥ|z̄〉. The boundary conditions are z(T ) = zN and z̄(0) = z0. For our

particular choice of Hamiltonian, H(z, z̄) = −M(M − 1). Given the first order form of the

action (2.28) appearing in the path integral (2.27), the complex variable z can be viewed
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Figure 3. Schematic plot of classical and nearby trajectories on the Bloch sphere for some H(z, z̄),

contributing to the path integral (2.28). At large M the classical trajectory dominates.

as a complex coordinate parameterizing a two-dimensional phase space. From the linear

velocity piece in (2.28) we note that the phase space is curved and compact, with Kähler

metric:

ds2 = 2M
dzdz̄

(1 + zz̄)2
. (2.29)

This is the Fubini-Study metric on CP1 ∼= S2, and we occasionally refer to it as the Bloch

sphere. Hence, the paths in (2.27) can be depicted as in figure 3. The symplectic form is

given by the Kähler form and the large M limit plays the role of the small Planck constant

limit. Time evolution of a function A(z, z̄) in the emergent classical phase space is governed

by the Poisson bracket, i.e. Ȧ(z, z̄) = {A(z, z̄), H(z, z̄)}p.b. = iM−1(1 + zz̄)2(∂z̄H∂zA −
∂z̄A∂zH). The SU(2) symmetry of the original Grassmann model acts on z as:

z → (αz + β)(γz + δ)−1 ,

(
α β

γ δ

)
·

(
α β

γ δ

)†
= I2×2 . (2.30)

Since the classical phase space has finite volume, we recover the fact that the underlying

system has a finite number of ground states. The complex coordinate (z, z̄) can be related

to the spherical coordinates introduced in (2.11) by identifying the expectation value (2.26)

with the bosonic variable x introduced in the previous section. The stereographic projection

then gives z = eiφ cot θ/2. With this identification, the linear velocity term in (2.28)

becomes precisely the one found in (2.16). Thus, we see that certain transition amplitudes

are captured by a real time path integral between different points localized on an S2. This

allows for physical interpretation of the (θ, φ) coordinates as real time degrees of freedom,

rather than merely integration variables.

We can quantize this low energy effective theory to leading order in the velocity ex-

pansion. This becomes the quantum mechanics of an electrically charged particle with unit

charge. Its motion is confined to a unit sphere in the presence of a magnetic monopole of

strength M/2 at the origin. Thus, to leading order in M the ground states are given by

the M lowest Landau levels, each with energy Eg = −M2 for our choice of Hamiltonian.

Due to the Dirac quantization condition, we recover that M must be an integer.

We have seen how certain low energy features in the original Grassmann theory are

described in the language of the effective bosonic degree of freedom x. Instead of maximally
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spinning states built out of anti-commuting creation operators, we have lowest Landau

levels of a charged particle. The energies (at least in the the low energy regime) are

registered by the absolute value of x. We have observed the breakdown of the bosonic

effective theory at high temperatures. Certain features were particular to our model. But

others such as the presence of linear velocity terms and the absence of a kinetic term for r

may be general features of a larger class of models. At this point we proceed to generalize

these observations to the case where we have a matrix worth of Grassmann degrees of

freedom.

3 Matrix model

The goal of this section is to analyze a matrix version of the vector model studied above.

Given that the model is more complicated, we will not be able to attain as explicit a

description, however we will uncover and generalize several of the features found in the

vector model.

3.1 Action and Hamiltonian

Our degrees of freedom are now 2MN complex rectangular Grassmann matrices, ψ̄αiA and

ψαAi, with A = 1, . . . ,M and i = 1, . . . , N . As before, α is an SU(2) spinor index. The

dimension of the Hilbert space now becomes 22NM . The Grassmann elements obey the

anti-commutation relations {ψαAi, ψ̄
β
jB} = δαβδijδAB.

We will focus on the following action:5

S =

∫
dt i ψ̄iA∂tψAi + g (ψ̄iAσ

aψAj)(ψ̄jBσ
aψBi) . (3.1)

When N = 1, the above action reduces to the one analyzed in the previous section. The

model exhibits a U(M)× SU(N)× SU(2) global symmetry. The SU(2) acts by simultane-

ously rotating all the Grassmann elements. The capitalized index of (ψ̄αiA) ψαAi transforms

in the (anti-)fundamental representation of U(M) whereas the lower case index transforms

in the (anti-)fundamental of SU(N).

The Hamiltonian of the model is given by:

Ĥ = −g
∑
i,j,A,B

: ψ̄iAσψAjψ̄jBσψBi : (3.2)

If we view the A index as a lattice site, our system describes SU(2) spin-spin interactions

of the spin-1/2 fermions. But now the fermions are labeled by an additional quantum

number, the color index i = 1, 2, . . . , N , which can be exchanged through the interaction.

Since interactions between all lattice sites have the same strength, the model exhibits no

notion of spatial locality.

We will analyze g > 0 and from now on choose units setting g = 1. Unlike the vector

case previously studied, the combinatorial problem of finding the exact spectrum of Ĥ

seems to be rather difficult and we have not solved it. Instead, we will try to extract

5We have and will continue to suppress the SU(2) spinor index in ψαAi to avoid cluttering of indices.
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information about the low energy sector of the theory by going to an effective description

in terms of bosonic matrices. Before doing so, we will establish some further properties

about the operator algebra.

3.1.1 U(2N) operator algebra

The analogues of the spin operators Ĵa =
∑

A ψ̄Aσ
aψA/2 studied in the previous section are

the U(M) invariant N×N spin matrix operators: Ŝaij =
∑

A(ψ̄iAσ
aψAj)/2. These operators

transform as vectors in the three-dimensional real representation of SU(2), as well as in the

adjoint of the SU(N). Introducing an additional operator Ŝ0
ij =

∑
A(ψ̄iAσ

0ψAj)/2, with

σ0 the 2× 2 identity matrix, we have the following closed operator algebra:

[Ŝaij , Ŝ
b
kl] =

1

2
δab
(
δkjŜ

0
il − δilŜ0

kj

)
+
i

2
εabc
(
δkjŜ

a
il + δilŜ

b
kj

)
, (3.3)

[Ŝ0
ij , Ŝ

a
kl] =

1

2

(
δkjŜ

a
il − δilŜakj

)
, (3.4)

[Ŝ0
ij , Ŝ

0
kl] =

1

2

(
δkjŜ

0
il − δilŜ0

kj

)
. (3.5)

The N diagonal components of the Ŝaij generate N copies of the usual su(2) algebra.

The above operators can be arranged in a 2N × 2N Hermitian matrix σµαβ ⊗ Ŝµij (with

µ = {0, x, y, z} summed over) and hence they generate a u(2N) algebra. They act as

ψαAi → ψαAiG
αβ
ij and ψ̄αiA → (Gαβij )−1 ψ̄βjB with Gαβij = eiλ

αβ
ij ∈ U(2N) and λαβij = λµijσ

µ
αβ the

elements of a 2N × 2N Hermitian matrix.

The U(2N) symmetry manifestly commutes with the U(M) group and preserves the

anti-commutation relations between the ψαAi and ψ̄αiA. Our Hamiltonian (3.2) does not

commute with the full U(2N) but rather the U(N) diagonal subgroup generated by the

Ŝ0
ij . When N = 1, the U(2N) algebra becomes nothing more than the global SU(2)

symmetry of the vector model, which not only commutes with the U(M) global symmetry

but also with the Hamiltonian.

3.2 Effective theory

We introduce three N × N Hermitian bosonic matrices Σa
ij = (Σx

ij ,Σ
y
ij ,Σ

z
ij). In analogy

with the vector case, we introduce them as auxiliary variables which are given on-shell by

Σa
ij = 2 Ŝaij . Upon integrating out the ψαAi, the generating function of vacuum correlations

of ψ and ψ̄ can be expressed as a Euclidean path integral over the Σij :

Z[ξαAi, ξ̄
α
iA] =

∫
DΣ eM Tr log(−∂τ+R)− 1

4
tr

∫
dτ Σ·Σ e

∫
dτ ξ̄αiA(−∂τ+R)−1

ij,αβξ
β
Aj . (3.6)

We have defined R ≡ Σx⊗σx+Σy⊗σy+Σz⊗σz. We also denote the full functional trace by

‘Tr’ and reserve the ‘tr’ symbol for the ordinary matrix trace. It follows from this definition

that tr R = 0. The global SU(N) symmetry acts as Σ → UΣU †. Also, Σ transforms as

in the three-dimensional (vector) representation of the global SU(2) symmetry group. We

can also write down the generating function for vacuum correlations of the composite spin-

matrix operator Ŝaij . These are computed by the correlation functions of Σij itself:

Z[Jaij ] =

∫
DΣ eM Tr log(−∂τ+R)− 1

4
tr

∫
dτ Σ·Σ e

1
4

tr
∫
dτJ·Σ− 1

16
tr

∫
dτJ·J , (3.7)
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where Jaij are sources for the Ŝaij . It is worth noting that, unlike the N = 1 case, the Ŝaij
no longer commute with the Hamiltonian and thus non-trivial time correlations amongst

them may exist.

We now proceed to study the validity and properties of the ‘small velocity’ expansion

of det(−∂τ + R) = exp[Tr log(−∂τ + R)]. Since R is a 2N × 2N Hermitian matrix, we can

diagonalize it as U †RU = λ with λ = diag[λ1, . . . , λ2N ], U ∈ U(2N) and λn ∈ R. Note

that due to the tracelessness of R, not all λn can have the same sign. Similar to the N = 1

case, in the diagonal R frame, we can write the functional determinant as:

Tr log(−∂τ + R) = Tr log(−∂τ − U †U̇ + λ) . (3.8)

With the above expression we can again use the time reparameterization symmetry

τ → f(τ) , λn(τ)→ f ′(τ)λn
(
f(τ)

)
, U(τ)→ U

(
f(τ)

)
, (3.9)

to see that the effective action will be independent of λ̇n, analogous to how the vector

model is independent of ṙ. Using the propagator:

G(ω) = diag
[
(−iω + λ1)−1, . . . , (−iω + λ2N )−1

]
, (3.10)

we can expand the logarithm in powers of the Hermitian matrix υ = iU †U̇ . Each term

in the expansion will be endowed with a U(2N) symmetry taking U †U̇ → Λ†(U †U̇) Λ and

λ→ Λ† λΛ with Λ ∈ U(2N).

The linear velocity contribution to the effective action is:

S
(1)
kin = −iM tr

∫
dω

2π
G(ω) υ̃(0) = −i M

2

∑
m

sgn(λm)

∫
dτ
[
i U †U̇

]
mm

. (3.11)

The υ̃(l) is the Fourier transform of υ at frequency l. To define the above ω-integral we

have put a cutoff at large ω, performed the exact integration and then taken the large

cutoff limit. The kinetic piece containing two time derivatives in U(τ) is given by:

S
(2)
kin = −M

2
tr

∫
dω dl

(2π)2
G(ω) υ̃(l)G(ω) υ̃(−l)

=
M

2

∑
n,m

∫
dτ
[
i U †U̇

]
nm

Λmn
[
i U †U̇

]
mn

, (3.12)

with Λmn = 1/|λm − λn| and the sum running only over the pairs (n,m) for which λn and

λm have opposite signs. The reason why only pairs of λm with opposite sign appear in the

sum is that the integral appearing in (3.12):

Imn =

∫
dω

2π

1

(−iω + λm)

1

(−iω + λn)
(3.13)

vanishes whenever λn and λm have the same sign. It is interesting to note that the effective

kinetic piece of the theory, and hence what we mean by the dynamical content, depends

on the particular distribution of eigenvalues λn.

– 13 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
8

Having obtained expressions for the first few velocity dependent terms in the effective

action, we can estimate when the low velocity expansion is valid. Denoting the character-

istic frequency for some motion as ωc, then in order for S
(1)
kin to be large compared to S

(2)
kin

one requires:

ωc �
λn
N
. (3.14)

The factor of N stems from the fact that S
(2)
kin has an additional matrix index to be summed

over that was not present in the vector model previously studied. In what follows we will

see that the effective potential is minimized for λm ∼ M . Thus, in the limit M � N , we

can have a large range of allowed ωc (in units where g = 1). If instead M does not scale

with N and we take the large N limit, the window of allowed ωc shrinks to zero.

Since the global symmetry group of the theory, for our choice of Hamiltonian, is not

the full U(2N), the situation is not as simple as the N = 1 case. For instance, the Σ

measure in the path integral is not U(2N) invariant. Moreover, it is in general complicated

to quantify how the Σ matrices are encoded in the λn eigenvalues and U matrices. In what

follows we express several parts of the effective action directly in terms of the Σ.

3.2.1 Effective potential

We would now like to focus on the effective potential Veff for Σ. In order to compute this

we can take Σ to be time independent. Veff must respect the SU(N)× SU(2) symmetries.

For instance it can contain a piece which is the trace of a function of the SU(2) invariant

matrix Σ · Σ. Moreover, when the Σ are diagonal (or when they all commute with each

other), it must reproduce N copies of the potential (2.15) we found in the vector model.

Finally, the piece of Veff originating from the functional determinant must scale linearly in

Σ. We can write a general expression by noting that:

det2N×2N (−iω + R) =

2N∏
n=1

(−iω + λn) , (3.15)

is the characteristic polynomial for matrix R with eigenvalues λn. We must also take the

product over all ω, a procedure which must be regulated. For each λn, we can express the

product over the ω as the exponential of an integral over the logarithm:

1

2

∫
dω

2π
log(ω2 + λ2

n) =
|λn|

2
. (3.16)

To define the above integral,6 we have subtracted the integral of log(ω2). Putting things

together:

Veff = −M
2

2N∑
n=1

|λn|+
1

4
tr Σ ·Σ = −M

2
tr
√

R2 +
1

4
tr Σ ·Σ . (3.17)

6One may be concerned about the discontinuity of the first derivative at λn = 0. However, the expression

agrees with what we expect of the determinant
∏
ω(1 + λ2

n/ω
2). Namely, it should equal one when λn = 0,

it should be symmetric under λn → −λn and have an exponent linear in λn. Moreover, one can check that

at any non-zero temperature T for which ω → 2πT (n+ 1/2) with n ∈ Z, the kink at λn = 0 smoothens out.
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As expected, Veff is invariant under both the SU(N) and SU(2) global symmetries. It is

instructive to write the 2N × 2N matrix R2 explicitly:

R2 =

(
Σ ·Σ− i[Σx,Σy] [Σz,Σx + iΣy]

−[Σz,Σx − iΣy] Σ ·Σ + i[Σx,Σy]

)
. (3.18)

From the above expression, it immediately follows that tr R2 = 2 tr Σ ·Σ. However, this

does not imply that tr
√

R2 = 2 tr
√

Σ ·Σ unless all the Σ commute amongst each other.

Thus, we see how the commutator interaction enters the potential. If it happens that the

Σ are almost commuting, we can perform a matrix Taylor expansion of tr
√

R2, which to

leading order gives:

−M
2

tr
√

R2 ≈ −M tr
√

Σ ·Σ+
M

16
tr(Σ ·Σ)−1/2i[Σa,Σb](Σ ·Σ)−1i[Σa,Σb]+ . . . (3.19)

The indices (a, b) run over all distinct pairs of (x, y, z), thus rendering the expression SO(3)

invariant. Since the Hermitian matrix Σ ·Σ has positive eigenvalues, and the commutator

i[Σa,Σb] is Hermitean, we see that non-zero commutations cost potential energy. Thus,

at least locally the potential (3.17) is minimized when the Σ mutually commute (which

means, in turn, that we can mutually diagonalize the Σ). In this approximation, we can

estimate the minimum value of Veff as the first term in the expansion (3.19). The problem

we want to solve becomes a saddle point approximation of the following matrix integral for

M � N :

Z[Σ] =

∫
dΣxdΣydΣzeM tr

√
Σ·Σ−tr Σ·Σ/4 . (3.20)

In order to obtain the saddle point equation for the eigenvalues, we first introduce a delta

function δ(ρ−Σ ·Σ) and integrate out the Σ, such that we remain with an integral over

the N × N Hermitian ρ matrix. Upon diagonalizing ρ, and including the Vandermonde

contribution, we can obtain the potential for its eigenvalues ρi ≥ 0. It is convenient at this

point to rescale ρi = M2ρ̃i. We find:

Veff [ρ̃i] = −
∑
j 6=i

log |ρ̃i − ρ̃j | −M2
∑
i

(√
ρ̃i −

ρ̃i
4

+
2N

M2
log ρ̃i

)
, (3.21)

up to an additive constant of order N2 logM . The log ρ̃i contribution comes from the

measure of the path integral: there is a Jacobian when changing variables from the Σ

matrices to the ρ matrix. The saddle point equation governing the eigenvalues is:

N∑
j 6=i

1

ρ̃i − ρ̃j
= −2N

ρ̃i
−M2

(
1

2
√
ρ̃i
− 1

4

)
. (3.22)

To leading order in a large M expansion (taking M to be much larger than N) we can

consider ρ̃i to be peaked around ρ̃i ∼ 4. Expanding about ρ̃i = 4 + δi for small δi, and

keeping the leading term only, we have:

N∑
j 6=i

1

δi − δj
=
M2

32
δi . (3.23)
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For large7 N , the above eigenvalue equation is solved by the Wigner semicircle distribu-

tion [5] and has compact support in the interval (
√

32N/M) × [−1, 1]. Thus, going back

to the original eigenvalues, we see that they are peaked around ρi ≈ 4M2 with a width

of order
√
NM . We can approximate the ground state energy to be V

(min)
eff ≈ −M2N . It

would be interesting to study subleading corrections, due to the repulsion of eigenvalues

from the Vandermonde, but we will not do so here.

There is a slightly more efficient way to see the above. Using the property tr R2 =

2 tr Σ ·Σ we can write the effective potential (3.17) completely in terms of the eigenvalues

of R as:

Veff =
1

2

2N∑
n=1

(
−M |λn|+

λ2
n

4

)
. (3.24)

Again, at least in the limit M � N where we can ignore the effects of the matrix measure,

we find V
(min)

eff ≈ −M2N as before.

We now proceed to study the kinetic contribution linear in velocity.

3.2.2 Linear velocity term

We consider the linear velocity term for the matrix model. The simplest case occurs when

the Σij matrix is diagonal, i.e. Σij = xi δij with i = 1, . . . , N . In this case, we simply find

a sum of N terms (one for each xi) each identical with the vector case. Each will have

their own M + 1 lowest Landau levels. Generally, however, the Σa will not be mutually

diagonalizable. Inspired by the expression (2.28), we claim that the linear velocity term is

given by:

S
(1)
kin = i

M

2
tr

∫
dt
[
Ż†(I + ZZ†)−1Z − Z†(I + ZZ†)−1Ż

]
, (3.25)

where Zij is a complex N ×N matrix. The stereographic map (2.26) relating z to a point

on the Bloch sphere is generalized to:

Σx + iΣy ≡ 2M Z (I + Z†Z)−1, (3.26)

Σx − iΣy ≡ 2M Z† (I + ZZ†)−1, (3.27)

Σz ≡M
[
I− (I + ZZ†)−1 − (I + Z†Z)−1

]
. (3.28)

In order to verify that Σa = (Σa)† it is useful to take advantage of identities such as:

(I + ZZ†)−1Z = Z(I + Z†Z)−1. Naturally, when N = 1 our expression (3.25) reduces to

the expression (2.28). It is also time reparameterization invariant under τ → f(τ) and

Zij(τ)→ Zij
(
f(τ)

)
. Moreover, our expression is invariant under the global SU(N), under

which Z → ΛZΛ†, with Λ ∈ SU(N). In fact, as we shall see in the next subsection, (3.25)

invariant under a larger group U(2N) acting as:

Z → (AZ +B)(CZ +D)−1,

(
A B

C D

)
·

(
A B

C D

)†
= I2N×2N , (3.29)

where A, B, C and D are N ×N matrices. The U(2N) invariance is in agreement with our

observation that terms stemming from the functional determinant (3.8) exhibit a U(2N)

7We are considering here the situation where both M and N are large but M � N .
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symmetry. This generalizes the SU(2) symmetry (2.30) that is present in the N = 1 case.

Recall that in the N = 1 case, the linear velocity term only depended on two of the three

variables in x. Analogously, our expression (3.25) only depends on 2N2 of the 3N2 variables

in the three Hermitian matrices Σa.

3.3 Berezin coherent states

As in the vector case, the matrix action (3.25) can stem from a curved phase space endowed

with a Kähler structure. These compact Kähler manifolds were studied extensively by

Berezin [26]. The Kähler metric is given by:

ds2 = M tr dZ(I + ZZ†)−1dZ†(I + Z†Z)−1, (3.30)

where c is a normalization constant. The Kähler potential is given by:

K = M log(I + ZZ†) . (3.31)

This potential transforms under the U(2N) isometry (3.29) as

K → K −M log det(Z†C† +D†)−M log det(CZ +D) , (3.32)

leaving the metric (3.30) invariant. It is the natural generalization of the N = 1 case.

More precisely, what Berezin shows [26] is that there exist a collection of coherent

states, analogous to the Bloch coherent states, parameterized by a complex matrix Zij .

Explicitly:

|Z†ij〉 =
eZ
†
ij Ŝ

+
ji

det(I + Z†Z)M/2
|v〉 , Ŝ±ij = Ŝxij ± iŜ

y
ij , (3.33)

where the state |v〉 is the state annihilated by all ψ1
Ai and ψ̄2

iA operators. It can be expressed

as |v〉 =
∏
A,i ψ̄

2
iA|0〉, where |0〉 is the state that is annihilated by all the ψαAi operators.

Consequently |v〉 is annihilated by Ŝ−ij . The overlap between two Berezin coherent states

is given by:

〈Wij |Z†ij〉 =
det(I +WZ†)M

det(I +W †W )M/2 det(I + Z†Z)M/2
. (3.34)

At large M the quantum evolution of a certain class of U(M) invariant operators in

the Grassmann theory becomes approximately classical with an emergent curved phase

space [26], the geometry of which is described by the Kähler metric (3.30). The role of large

M becomes that of the small Planck constant. The classical Hamiltonian, governing the

time evolution of functions on the emergent phase space, is given by H[Z,Z†] = 〈Z|Ĥ|Z†〉.
The volume of the emergent classical phase space computes the number of quantum states

obtained upon quantizing it. The number of quantum states was computed in [27]. The

result reads:

dimHK =
N∏
j=1

Γ[N +M + j]Γ[j]

Γ[N + j]Γ[M + j]
. (3.35)

We can study the behavior of dimHK in various limits. When N � M � 1 we find

dimHK ∼ 22MN to leading order. Thus in this limit, the dimension of the effective Hilbert
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space closely approximates the full Hilbert space of the original Grassmann system. For

M � N � 1 we find instead dimHK ∼ MN2
. Finally, for M = αN where α is fixed in

the large N limit, we have:

log dimHK = f(α)N2 + . . . (3.36)

with:

f(α) =
1

2

(
α2 log(α)− 2(α+ 1)2 log(α+ 1) + (α+ 2)2 log(α+ 2)− 2 log 4

)
. (3.37)

Notice that in the limit α → 0, f(α) ∼ 2α log 2 for which log dimHK ∼ 2NM log 2.

Similarly, in the α → ∞ limit, f(α) ∼ logα for which log dimHK ∼ N2 logM . As shown

in the appendix, (3.35) is precisely the number of states we would obtain in the Grassmann

matrix model, had we gauged the U(M) global symmetry. This is to be expected. The

full space of U(M) invariant states can be built by acting with a function of the U(M)

invariant operator Ŝ+
ij on the state |v〉 (which is itself defined to be U(M) invariant by a

suitable choice of the normal ordering constant in the U(M) generators).

3.3.1 Hamiltonian and path integral

In the vector case, the Hamiltonian Ĥ (2.3) we studied was constant along the Bloch two-

sphere given that all the Bloch coherent states had the same total angular momentum.

In this regard our matrix model differs from the vector case. Given our Hamiltonian

operator (3.2), the Hamiltonian H[Z,Z†] ≡ 〈Z|Ĥ|Z†〉 governing time evolution on the

emergent classical phase space is found to be:

H[Z,Z†] = −NM2 +M2 tr(S0)2, (3.38)

to leading order in M . We have defined:

S0 ≡
[
(I + ZZ†)−1 − (I + Z†Z)−1

]
. (3.39)

Notice that H[Z,Z†] is invariant under Z → UZU † where U ∈ SU(N). Moreover, the

Hamiltonian H[Z,Z†] is minimized when Z and Z† commute, where it takes the value

Emin = −NM2. Consequently, the state |v〉 is one of these minimal energy states. This

agrees with our analysis of the effective potential in section 3.2.1, where the minimum

was also found to be −NM2 in the large M limit. When Z and Z† commute they can

be mutually diagonalized and the Kähler metric becomes N copies of CP1, i.e. one Bloch

sphere for each eigenvalue. Furthermore, as was found in the analysis of section 3.2.1,

the commutator of Z and Z† costs energy. Nevertheless, since the Z can be continuously

deformed, there is a rich low energy sector continuously connected to the ground states

given by almost commuting complex matrices.

Given the kinetic term and the Hamiltonian on phase space, following Berezin [26],

we can write down the real time path integral for transition amplitudes between coherent

states |Z†i 〉 and 〈Zf |. It reads:

Afi =

∫
Dµ[Z,Z†] exp

(
M

2
tr

∫ T

−T
dt
[
Ż(I + Z†Z)−1Z† − h.c.

]
− i
∫ T

−T
dtH

[
Z,Z†

])
,

(3.40)
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with boundary conditions Z†[−T ] = Z†i and Z[T ] = Zf . The measure factor is given by:

Dµ[Z,Z†] ≡ 1

N
DZ DZ†

det(I + ZZ†)2N
. (3.41)

The normalization constant N ensures that Tr I =
∫
dµ[Z,Z†] = dimHK . It can be

computed by use of the Selberg integral SN (1,M + 1, 1) [31].

Consider finally the following rescaling Z = M−1/2Z̃, with Z̃ fixed in the large M limit,

and in addition M � N . To leading order in the large M expansion, the path integral

becomes:

Afi =

∫
DZ̃DZ̃† exp

[
1

2
tr

∫ T

−T
dt ( ˙̃ZZ̃† − h.c.)− i tr

∫ T

−T
dt
[
Z̃, Z̃†

]2]
. (3.42)

This limit is a small fluctuation limit in which the geometry of the curved phase space

becomes flat and the Hamiltonian boils down to the trace of the square of the commutator.

Naturally, in the N = 1 case, no such commutator arises, and the rescaling limit simply

describes motion in a small flat patch of the full CP1.

Thus, we generalize several of the features observed in the vector model to the matrix

model. As before, there is an emergent classical phase space endowed with a Kähler

metric, a low velocity expansion of a bosonic Hermitian matrix model in a suitable large

M regime and a large number of low energy states. Given the appearance of a bosonic

matrix model, we can wonder about a holographic interpretation at large N . We end with

some speculative remarks on this question.

4 Outlook

We have discussed systems with a finite dimensional Hilbert space, whose constituents are

a large number of spin-1/2 fermions. For certain collections of states, we have seen how

the systems we have considered exhibit an emergent classical phase space parameterized

by complex coordinates. The phase space is endowed with a Kähler metric which in the

simplest case is nothing more than the round two-sphere. More generally, it is a complex

matrix generalization thereof. In the vector case, the size of the Bloch sphere (2.29) scales

as the logarithm of the dimension of the Hilbert space. The specific Hamiltonian we con-

sidered, commutes with the total angular momentum operator. Consequently, transition

amplitudes between different Bloch coherent states lie on a Bloch sphere of fixed size. One

manifestation of this is that the parameter r acquires no time derivatives in the effective

action. More generally, one might imagine Hamiltonians with matrix elements connecting

Hilbert spaces with different total angular momenta. In such a case, one might consider

an additional direction given by the size of the two-sphere, such that in a suitable large

M limit, the low energy degrees of freedom are parameterized by coordinates in a three-

dimensional ball. So long as the dimension of the Hilbert space remains finite, there is

still a cap on the maximal size of the two-sphere. A natural matrix generalization of the

parameter r is given by the trace of the Hermitian matrix
√

Σ ·Σ. Unlike the vector case,

transitions between different values of tr
√

Σ ·Σ are possible within the space of Berezin

– 19 –



J
H
E
P
0
4
(
2
0
1
6
)
1
3
8

coherent states. In other words, the Kähler metric of the emergent classical phase space

does not constrain Σ ·Σ (which is a now a function of Z and Z†) to take a specific value.

Holographically, large N matrix models might be associated with a gravitational the-

ory. For the quantum mechanical model [7] dual to the ten-dimensional geometry near a

collection of N D0-branes, one has nine N ×N Hermitian bosonic matrices XI
ij and their

Fermionic superpartners. The index I is an SO(9) index, corresponding to the rotational

symmetry of the eight-sphere in the near horizon of a stack of N D0-branes in type IIA

string theory. The indices i and j run from 1 to N . The Hilbert space is infinite dimen-

sional and there are states with indefinitely high energy. In these models, the emergent

radial direction has been argued to be captured by the energy scale. At high energies, the

quantum mechanics is weakly coupled. One manifestation of this, from the bulk viewpoint,

is that the size (in the string frame) of the eight-sphere shrinks indefinitely at large radial

distances, eventually leading to a stringy geometry.

Consider now a system where the spectrum is capped, as occurs in the deep infrared

of a CFT living on a spatial sphere (due to the curvature coupling of the fields). In such a

situation we expect the emergent sphere to cap off. This is indeed what happens in global

anti-de Sitter space where the sphere at fixed r and t smoothly caps off in the deep interior.8

Consider now the geometry of the static patch of four-dimensional de Sitter space:

ds2 = −dt2(1− r2) +
dr2

(1− r2)
+ r2dΩ2

2 . (4.1)

Notice that the size of the two-sphere resides on a finite interval. It smoothly caps off

at r = 0 and is largest at r = 1 where the cosmological horizon resides. If, somehow, r

was an emergent holographic direction related to the energy scale [28], then it would seem

we have to cap the spectrum both in the infrared as well as the ultraviolet. This would

indicate a holographic quantum mechanical dual with a finite number of states [15–20], so

long as the spectrum is discrete. If moreover we require the holographic model to have

a matrix-quantum mechanical sector described by ordinary bosonic matrices, perhaps the

systems we have considered above are natural candidates. We postpone the examination of

this proposal and the relation to other approaches of de Sitter holography (for an overview

see [29]) to future work.
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A Counting U(M) gauge invariant states

In this appendix we present the derivation of the formula for the dimension of the Hilbert

space of two complex Grassmann matrices χiA and θiA with indices ranging from i = 1, . . . , N

and A = 1, . . . ,M .

Therefore we consider the action:

S =

∫
dt
[
χ̄iAiDtχiB + θ̄iAiD̄tθiB −

(
m1χ̄

i
Aχ

i
A +m2θ̄

i
Aθ

i
A

)]
, (A.1)

with Dt = ∂t + iAt and D̄t = ∂t − iAt. The gauge field At = AδtT
δ is a Hermitian

M ×M matrix, with T δ the M2 generators of U(M). The Grassmann matrices transform

in the (anti-)fundamental representation of U(M) (we pick χA, θ̄A in the fundamental). We

consider the case with m1 > 0 and m2 > 0. From the Poisson brackets originating from the

above action we obtain the anti-commutation relations of fermionic creation/annihilation

operators:

{χiA, χ̄
j
B} = δABδij , {θiA, θ̄

j
B} = δABδij . (A.2)

Integrating out the gauge field gives us M2 constraints:

δAt : χ̄AT
δ
AB χB − θ̄AT δAB θB = 0 , ∀ δ = 1, 2, . . . ,M2 (A.3)

We define the vacuum state |0〉 of the theory to be annihilated by all χ and θ operators.

Note that it obeys the gauge constraint and is thus gauge invariant. Moreover, acting with

gauge invariant operators always increases the energy, hence |0〉 is unique.

We wish to find the thermal partition function and extract the entropy S(T ) at in-

finite temperature. We can then use the fact that limT→∞ S(T ) = log dimH to find the

dimension of the Hilbert space with a U(M) singlet constraint imposed. In the absence of

the gauge field At, we would have dimH = 22NM .

A.1 Euclidean path integral

We can compute the thermal partition function as a Euclidean path integral. Wick rotate

time t→ −iτ such that

SE =

∫ β

0
dτ
[
χ̄iADτχiB + θ̄iAD̄τθiB +m1χ̄

i
Aχ

i
A +m2θ̄

i
Aθ

i
A

]
. (A.4)

The Grassmann variables obey anti-periodic boundary conditions around the thermal circle.

The Euclidean path integral of interest is:

Z[β] =

∫
DAτDχDχ̄DθDθ̄ e−SE . (A.5)

The gauge transformations acting on Aτ are given by Aτ → UAτU
†+ i∂τU ·U †. Due to the

non-contractible thermal circle, we can only fix the gauge up to the holonomy around the

thermal circle [30]. The Fadeev-Popov procedure in doing so gives us the following action

for the (time independent upon gauge fixing) eigenvalues of Aτ which we denote αA:∫ M∏
A=1

dαA

( ∏
A<B

sin2 β(αA − αB)

2

)
. (A.6)
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We have dropped an overall constant which we must later recover by computing the zero

temperature entropy, which should vanish because the ground state is unique. We have

yet to calculate the contribution to the action of the fundamental matter fields. We first

expand them in a Fourier expansion:

χ(τ) =
∑
n∈Z

ei2π(n+1/2)τ/βχn , θ(τ) =
∑
n∈Z

ei2π(n+1/2)τ/βθn . (A.7)

Thus we obtain the thermal eigenvalues:

λAn = 2π(n+ 1/2)/β + im1 + αA , λ̃An = 2π(n+ 1/2)/β + im2 − αA . (A.8)

The determinant to be evaluated is given by
∏
n λ

A
n λ̃

A
n . It is UV divergent. We regulate the

logarithm of the determinant by taking two derivatives with respect to m and integrating

m twice while setting the integration constants to zero. The result is:

∑
n

log λAn λ̃
A
n = log cos

(
β(im1 + αA)

2

)
+ log cos

(
β(im2 − αA)

2

)
. (A.9)

Our remaining integral becomes (we are rescaling the eigenvalues by a factor of the tem-

perature in obtaining the below formula):

Z[β] = N
∫ ∏

A

dαA
∏
A<B

sin2

(
αA − αB

2

)
×
∏
A

cosN
(
iβm1 + αA

2

)
cosN

(
iβm2 − αA

2

)
. (A.10)

Our task has been reduced to solving a multi-variable integral for the N variables αA. To

compute the constant N we fix the ground state to have vanishing energy and due to its

uniqueness, we have: limβ→∞ Z[β] = 1. The integrals required were solved by Selberg [31].

For instance we have for the β = 0 integral (see (1.17) of [31]):

∫ π

−π

( M∏
A=1

dαi
2π

) ∏
A<B

sin2 (αA−αB)

2

∏
A

cos2N αA
2

= 2−2MN−M(M−1)
M∏
j=1

Γ[2N+j]Γ[1+j]

Γ[N+j]Γ[N+j]
.

(A.11)

We can use the same formula with N = 0 to fix the normalization by considering the

β →∞ limit. Thus, using the Selberg integrals, we obtain the final result:

dimH =
1

Γ[M + 1]

M∏
j=1

Γ[2N + j]Γ[1 + j]

Γ[N + j]Γ[N + j]
. (A.12)

Some algebraic manipulations show that the above expression is in fact equivalent to (3.35)

as can be easily checked numerically for several cases. Some simple checks are also possible.

For N = 1 we find dimH = (M+1). These states are given by acting with powers of χ̄Aθ̄A
on |0〉.
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B Modified vector model

In this appendix we briefly mention a slight modification of the vector model considered

in the main body of the text. The degrees of freedom are given by two sets of M complex

fermion spinors {ψαA, θαA}. We consider the following Euclidean action:

SE =

∫
dτ ψ̄αA∂τψ

α
A + θ̄αA∂τθ

α
A −

(
ψ̄αAσαβψ

β
A − θ̄

α
Aσαβθ

β
A

)2
. (B.1)

Following the procedure outlined in the main text, we end up with an effective action for

a bosonic three-vector x:

Seff = M Tr log(−∂τ + x · σ) +M Tr log(−∂τ − x · σ) +
1

4

∫
dτ r2. (B.2)

Performing a small velocity expansion one realizes that the term linear in velocity in fact

cancels. This is due to the relative sign in front of x in the two functional determinants

in (B.2). Thus the leading term in the velocity expansion is:

S
(2)
kin = M

∫
dτ

1

4r

(
θ̇2 + sin2 θ φ̇2

)
. (B.3)

The reason for the cancellation is that this model has a Hamiltonian given by the difference

in angular momentum. The ground state is given by the configuration where the two

angular momenta, whose operators are given by Ĵ1 = ψ̄AσψA/2 and Ĵ2 = θ̄AσθA/2, are

anti-aligned. In the language of the charged particle on the two-sphere, it is as if we have

added a positron on top of the electron, thus canceling the effect of the Lorentz force,

leaving an ordinary kinetic term for the bound neutral particle. The configuration space

is still parameterized by the angles on a two-sphere. The mass of the neutral particle

is twice that of the original one, explaining the 1/4 as opposed to the 1/8 in (B.3). As

before, at large M we have a controlled low velocity expansion. At high energies, the two

angular momenta can fluctuate independently and this simple picture is lost. A similar

modification can be made for the matrix model.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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