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ABSTRACT: We consider the class of jet shapes known as angularities in dijet production
at hadron colliders. These angularities are modified from the original definitions in eTe™
collisions to be boost invariant along the beam axis. These shapes apply to the constituents
of jets defined with respect to either kp-type (anti-k7, C'/A, and kr) algorithms and cone-
type algorithms. We present an SCET factorization formula and calculate the ingredients
needed to achieve next-to-leading-log (NLL) accuracy in kinematic regions where non-
global logarithms are not large. The factorization formula involves previously unstudied
“unmeasured beam functions,” which are present for finite rapidity cuts around the beams.
We derive relations between the jet functions and the shape-dependent part of the soft
function that appear in the factorized cross section and those previously calculated for
ete™ collisions, and present the calculation of the non-trivial, color-connected part of the
soft-function to O(as). This latter part of the soft function is universal in the sense that it
applies to any experimental setup with an out-of-jet pr veto and rapidity cuts together with
two identified jets and it is independent of the choice of jet (sub-)structure measurement.
In addition, we implement the recently introduced soft-collinear refactorization to resum
logarithms of the jet size, valid in the region of non-enhanced non-global logarithm effects.
While our results are valid for all 2 — 2 channels, we compute explicitly for the ¢¢ —
qq’ channel the color-flow matrices and plot the NLL resummed differential dijet cross
section as an explicit example, which shows that the normalization and scale uncertainty
is reduced when the soft function is refactorized. For this channel, we also plot the jet size

R dependence, the pi** dependence, and the dependence on the angularity parameter a.
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1 Introduction

Jet production is associated with a large number of important scattering processes at col-
liders such as the Large Hadron Collider (LHC). It is therefore crucial to have a robust
understanding of jets and jet production, and indeed much experimental and theoretical
effort has gone into improving our understanding of jets. For hadron colliders, all the-
oretical predictions are based on the idea of QCD factorization [1, 2], which in its most



basic form states that hadronic cross sections can be factorized into parton distribution
functions (PDF's) and perturbatively calculable partonic cross sections. In multi-scale prob-
lems, these partonic cross sections can often be further factorized into pieces which only
depend on a single scale and the renormalization group evolution (RGE) of each piece
from the single scale that it is sensitive to (its “canonical scale”) to a common scale resums
the logarithms of ratios of these scales which would otherwise spoil the perturbative con-
vergence of the partonic cross section when the scales are widely separated. An effective
field theory approach to systematically factorizing cross sections is Soft-Collinear Effective
Theory (SCET) [3-6].

A paradigmatic application of SCET is the factorization and resummation of loga-
rithms in event shapes measured in ete™ collisions [7-10]. Such event shapes, denoted by
e, can often be defined so that they vanish in the limit of perfectly narrow jets (so for
example e = 0 for the tree-level process eTe™ — ¢g, and e — 0 for events with additional
radiation in the soft and collinear limits), and a fixed-order calculation of the cross sec-
tion to O(ay) would then contain logarithms of the form (1/e)al In™ e (for m < 2n — 1).
SCET factorization postulates that the partonic cross section can be written in terms a
hard function H which encapsulates the short-distance physics, jet functions J that en-
capsulate collinear radiation within each jet and a soft function S that encapsulates soft
cross-talk between the jets, provided that the soft-collinear overlap (i.e. the ‘zero-bin’)
has been properly subtracted from the jet functions [11]. For two back-to-back jets the
factorization formula takes the schematic form

Ao ~ H(Q) X Jn(Qe®) @ Jn(Qe®) © Sun(Qe) LD

where ® denotes a convolution over e, n and 7 are the light-cone directions of the jets,
the arguments of the functions denote the functions’ canonical scales, ) ~ E.y, is a short-
distance (hard) scale, and « is a parameter that depends on the choice of e with 0 < a < 1
such that the canonical scales satisfy Qe < Qe® < @ for e < 1. In the case of shapes
which characterize multijet events (such as those of [12]), factorization simply involves
more jet functions J,, for each jet with direction n; and a more complicated soft function
Sning.

One of the aims in the study of jet shapes is to study the internal energy patterns
within a jet, i.e., the jet’s substructure. This substructure can be used for example to help
distinguish quark and gluon jets, or jets of purely QCD origin from those associated with
other Standard Model mechanisms or from entirely new physics. Much work has recently
been done on the analytical understanding of jet substructure, both for Monte Carlo event
generator validation and for use as stand alone predictions [13—-24].

Jet measurements at hadron colliders typically involve identifying jets of size R with
the use of a jet algorithm, imposing a veto on the out-of-jet transverse momentum p§*
for all radiation! with (pseudo-)rapidity y in the range |y| < yeus measured with respect
to the beam axis. Such measurements are sensitive to hard scales (such as the Mandel-
stam variables s,t,u in the case of dijet production) in addition to scales induced by the

L As discussed below, to the order we work this is the same as putting a veto on the third hardest jet.



parameters R, Yeut, and pi*. When the substructure of jets is probed in the context of a

jet measurement, additional scales such as Qe and Qe® for jet shapes are induced. Thus,
there are not only scales associated with the substructure itself but also those associated
with the more global context with which the probed jet was produced, and the large set of
scales involved can span a wide range of energies.

Many of the ratios of these scales can be resummed using well known techniques such
as SCET in similar ways to those described above for eTe™. In addition to the ingredients
used in eTe™ collisions, factorization formulae for hadronic collisions involve beam functions
B which account for initial-state radiation [25, 26], and we schematically have

do?? ~ HXBQ®B® Jn, @ @ Jny @ Spanng... - (1.2)

While RGE of the functions appearing in eq. (1.2) resums a large set of logarithms, others,
such as logarithms of R [27-29] and non-global logarithms (NGLs) [30-33], can present
more of a challenge. Importantly, resummation of the jet size R has recently been explored
in the context of subjets in [34] and in jet rates in the context of ete™ collisions in [35, 36],
and in addition there has been progress in understanding NGLs both at fixed-order [37-40]
and more recently a few novel approaches to understanding their all-orders resummation
have been proposed [35, 41, 42].

In this paper we consider the case where the kinematics are such that NGLs are not
enhanced and instead focus on resummation of logarithms of ratios of the dynamical scales
associated with substructure (such as Qe/Q and Qe®/Q) with fixed p$™®, yeur, R, and jet
p%. To this end, we restrict ourselves to the kinematic region

efycut << 1

ph~ Vi~ Vin Vi

PR pf ~e < REK L. (1.3)

Our approximations are valid to the order we work within about a decade of the value(s)
of these parameters for which the NGLs are minimized. In the example we present, we
have e ~ O(1073) in the peak region of the distribution and R? ~ O(107!), which means
the leading NGLs, which are of the form o In"(pS* R? /pd. ) (and first appear for n > 2),
are not enhanced for p$*/pf. ~ O(1072).

One class of event shapes that has been studied extensively in the literature and is
the focus of the present work is that of angularities 7,, parameterized by a continuous
variable a (with a < 2 for IR safety). The choice a = 0 corresponds to the classic event
shape thrust and a = 1 corresponds to jet broadening. Angularities were originally defined
in [43, 44] and studied in the context of SCET in [10, 45, 46]. In ref. [12], “jet shapes”?
were defined by restricting the angularities to the constituents of a jet as defined by a jet
algorithm (as opposed to all particles in the event) and were resummed to next-to-leading
logarithmic (NLL) accuracy. In this work we consider a modified definition of angularities
that is designed to be boost invariant about the colliding hadrons’ axis, i.e., the beam axis.

2This is distinct from the jet shape as defined in [47, 48] and studied more recently in ref. [23, 49].



We also note that the definition of the angularities we consider (which differs from
that defined for eTe™ colliders by a rescaling in the small 7, limit) is such that the choice
a = 0 is closely related to the jet mass,

70 = m3/(p7)* + O(rf) . (1.4)

Jet mass resummation has been studied indirectly by looking at the 1-jettiness global
event shape [50] for single jet events in ref. [15], by using pQCD methods that neglect
color interference effects in ref. [14], and in the threshold limit in refs. [13, 51], but to
our knowledge has not been studied with the cuts described above, with full NLL’ color
interference effects,® and in a manner that is valid away from the threshold limit. In
addition, our results for a = 0 can be straightforwardly extended to NNLL using the
known anomalous dimensions together with the recently deduced two-loop unmeasured
jet function anomalous dimension [36], which controls the evolution of both unmeasured
jet and beam functions. In addition, we apply the refactorization procedure described
in ref. [36] which allows the resummation of logarithms of R in the region described by
eq. (1.3).

While we choose to study angularities as the choice of substructure observable, our
basic setup is much more general. Indeed, we obtain many of the results specific to our
choice of angularities by using identities that relate the jet functions and the observable-

+

dependent part of our soft function to analogous calculations in e™e™ collisions. The part of

the soft function that requires an entirely new calculation simply imposes the experimental
p* cut on radiation outside of the jets and the beams. This universal part of the soft
function, labeled S"™™¢  encapulates all the interjet cross-talk, and hence contains all
perturbative information associated with real emission about the directions n; and the color
flow. For each jet which has the angularity probed, which here and below we refer to (using
the terminology of ref. [12]) as a “measured jet”, we add a jet function and a soft function
contribution that are both angularity dependent but color- and direction-trivial. Thus,
other substructure measurements can be straightforwardly incorporated by substituting
for their appropriate contributions at this step. If no measurement is performed on a jet
(that is, the jet is identified but otherwise unprobed), which we refer to as an “unmeasured
jet”, only an unmeasured jet function (which we also present to O(as)) and S"™™€ are
required. For dijet production, which is the focus of the current work, all four Wilson lines
(those of the beams and the two jets) are confined to a plane, and the calculation of S"meas
to O(as) is tractable. In addition, the effect of different experimentally used vetoes, such
as putting a p§'" only on the third hardest jet (as opposed to all out-of-jet radiation) will
only result in a difference in S"™™¢2 at O(a?) so our calculations apply there as well.

We also point out that while for unmeasured jets, the jet size R must scale with the
SCET power counting parameter A and hence the requirement R < 1 is essential, for mea-
sured jets this is not strictly needed since 7, < 1 is sufficient to ensure SCET kinematics.

However, as we will see, both the jet algorithms and measurements simplify significantly

3For an explanation of which terms are included in our cross section by working to this order, see for
example ref. [52].



in this limit up to power corrections of the form R? and 7,/R?, respectively, although we
emphasize that the exact results can be obtained numerically using subtractions such as
those of ref. [53]. Finally, we note that because there is no measurement on any radia-
tion with |y| < ycut, our factorization formulae will include “unmeasured beam functions”,
which to our knowledge have not appeared in the literature.

This paper is organized as follows. In section 2, we define the classes of jet algorithms
and angularity definitions suitable for hadron colliders and relate them to the corresponding
ete™ algorithms and angularities in the small R limit. In section 3 we outline the 2 — 2
kinematic relations needed for dijet production and discuss how both the Born cross section
and the fully factorized and resummed SCET cross section are related to the basic building
blocks that we then calculate to fixed order in section 4, namely the hard, jet, soft, and
beam functions. We then use these results in section 5 to arrive at the NLL’ resummed
cross section for a generic 2 — 2 scattering channel both for when the jets are identified
but otherwise left unmeasured (i.e., we are inclusive in the substructure properties) and
for when the angularity of either (or both) jets is measured. From our calculations, one
can obtain results for the case where the angularities of both jets 7} and 72 are separately
measured (and by integrating, the case where 7! + 72 is measured) as well as the cases
where only one or neither are measured. For illustrative purposes, in our plots we focus on
the case where both 7} and 72 are measured and 7. = 72. Furthermore, we present explicit
results for the simple channel g¢' — g¢’ with different values of R and p$™ and for several
choices of the angularity parameter a, and demonstrate the reduction in scale uncertainty
resulting from the refactorization techniques of [36]. We conclude in section 6.

2 Jet algorithms and shapes at hadron colliders

The main difference between jet cross section measurements at eTe™ colliders and hadron
colliders is that the latter prefer observables that are invariant under boosts along the
beam direction. The kp-type algorithms used at the LHC (described in more detail in, for
example, ref. [54]) merge particles successively using a pairwise metric

2

: i \2 i \2
pij = min{(p7)?, (r7) p}?u (2.1)
where p = +1,0, and —1 for the kp, C/A, and anti-kp algorithms, respectively, piT is
the transverse momentum (with respect to the beam) of particle i, R is a parameter

characterizing the jet size, and

ARy = [ (Byij)? + (D)2 (2.2)

where Ay;; and Ag;; are the pseudo-rapidity and azimuthal angle differences of the par-
ticles measured with respect to the beam axis. Since pseudo-rapidities simply shift under
boosts and azimuthal angles are invariant, AR;; is invariant under boosts along the beam
direction. This pairwise metric is compared to the single particle metric of each particle,
defined as

pi = ()™ (2:3)



Two particles are merged if their pairwise metric is the smallest for the (ij) pair over all
particle pairs and is less than both of the single particle metrics, i.e., p;; < min{p;, p;}.

This latter constraint amounts to
ARZ‘]' <R. (2.4)

In the following, we will work under the assumption that all particles in the jet are close to a
jet axis at polar angle 6 ; with respect to the beam axis such that AR;; can be expanded as

1 )
AR = 4 6, \/(A9z‘j)2 +sin® 07 (Adij)2 + O((A0;)%, (Agy;)?)
_ 9 2
= S+ 003). (2.5)

where in the first equality Af;; and A¢;; are the angle differences in a spherical coordinate
system with 2 in the beam axis direction, and 6;; in the second equality is simply the angle
between particles ¢ and j. This implies we can impose an eTe™-type polar angle restriction
that particles are within a jet of size R and rescale the results by

R
coshyy’

R — Rsinf; = (2.6)
where y; is the jet pseudo-rapidity, up to O(R?) corrections. This allows us to recycle
many of the results of ref. [12]. The difference between our results and those obtained
from the exact expression eq. (2.2) can be obtained numerically, e.g., with the methods of
ref. [53], although the details are beyond the scope of the present work.

It is helpful to re-write the angularity definition used in ref. [12] in the context of ete™
collisions in terms of ingredients that are boost invariant, such as pr and the right-hand
side of eq. (2.5). To do so, first recall the definition used in terms of the pseudo-rapidities
y;s7 and transverse momenta pi‘] of particles with respect to the jet axis,

rete” Z p |~ Aoyl (2.7)
zEJet
In the small angle approximation, we can write this as

P (2B,) =2 (py) - a2|pT|(

i€jet

1+ 0(67)) . 2.8

o) o) (2.8
From the discussion above, all terms in the sum over particles are boost invariant. The one
term that is not boost invariant is just the overall factor of (2E;)2~%. Therefore, we can
arrive at a boost invariant version of 7, suitable for hadron colliders with a simple rescaling
by a dimensionless factor,

1 : -
Ta =T = or > Prl(ARy)*

i€jet

2—a
— <2EJ> = L 0(r). (2.9)
pr



We emphasize again that the quantities on the right-hand side of the first line of eq. (2.9)
are manifestly invariant under boosts along the beam axis, and that the second line allows
us to recycle many of the results of ref. [12].

The one main difference between measurements done at eTe™ colliders and hadron
colliders that requires a novel calculation is the out-of-jet energy veto. In eTe™ colliders,
this is typically a cut on energy, whereas in hadron colliders it is typically a veto on

cut

transverse momentum: pr = Esin@ < p3". This will require an entirely new soft function,
which we present below.

3 Factorized dijet cross section

For dijet production at tree-level, momentum conservation implies that there are just three
non-trivial variables to describe the final state at tree level, which we can take to be the
jet (pseudo-) rapidities y»? and the jet pr = |pt| = |p%|. The momentum fractions of the
incoming partons are related to these variables via

cosh —e™", (3.1)

T1,2 =

where Ay = y; — yo is the rapidity difference of the two jets and Y = (y; + y2)/2. The
(partonic) Mandelstam variables can be written as

A
s = 4p% cosh? 7y

A
t = —2p2e®Y/% cosh 73/

A
u = —2pAe /2 cosh Ty =-—s—t. (3.2)
The tree-level matrix element squared can be written as
|-/\/ltree|2 = Tr{HoSo}, (3-3)

where Hy and S are the tree-level hard and soft functions, respectively, so the Born cross
section takes form

do_born pT 1
- N Tr{H,S 4
dyrdyodpr 871'1,‘1,172Eé4mNf1($1’u)f2(x27u) r{HySo} (3.4)

where N is the normalization associated with averaging over initial particle quantum num-
bers (e.g., N = 4N?2 for quark scattering) and f;(x;, 1) is a PDF for parton i with momen-
tum fraction z;.

The effect of radiative corrections to eq. (3.4) is described in the soft and collinear limits
by higher-order hard, soft, beam, and jet functions. We consider the cases when both jets
are unmeasured and when both jets are measured. When both jets are unmeasured the



all-orders cross section takes the form

do

= dyidyadpr
pT 1

= S gL 3 B0 Bz ) TH{H(0)S™™ (1)} 11 (1) (1)

+ O(sR?, cuge™ 2ent) | (3.5)

do

where the J;(p) are unmeasured jet functions and S""™ is the unmeasured soft function.
When both jets are measured, the cross section takes the form

do
d A
7(7a:7a) dyrdysdprdr}dr?

_ pr 1 = 12 1 2
- mﬁB(‘rlaﬂ)B(m% /’L) Tr{H(N)S(TCHTaMU’)} ® [Jl(Taau)JQ(TahU’)]

+ O(asTé/RQ, ase_QyC“t) ,

(3.6)

where ® represents the two convolutions over the 722, The case of a single measured jet,
with the other jet unmeasured, is the obvious generalization of egs. (3.5) and (3.6). The
power corrections to egs. (3.5) and (3.6) can be included via matching to fixed order QCD.
Resummation of logs of 7, is achieved by RG evolution of each factorized component from
its canonical scale (cf. table 2) to the common scale p. Both the hard and soft function are in
general matrices (which here and below we will refer to with bold face) which are hermitian
and of rank R equal to the number of linearly independent color operators associated with
the hard process (e.g., R = 2 for qq¢ — qq, 3 for q¢ — gg, and 8 for gg — gg). These
operators mix under RG evolution which is accounted for with matrix RG equations. The
fixed order calculation of the components in egs. (3.5) and (3.6) and their RG evolution is
the subject of the next sections.

4 Fixed-order O(a;) calculation of factorized components

4.1 Jet functions

In ref. [12], there are both “measured” and “unmeasured” jet functions, corresponding to
jets whose angularity was measured as opposed to those that were identified but other-
wise unprobed. The latter can be obtained using the hadron collider algorithms with the
rescaling in eq. (2.6). We obtain

as [(Ci v p N al
=14 (B (A e 4.1
i@+ ) Gim) + (4

where i = ¢, g for quark and gluon jets (and C; is the Casimir invariant, C; = Cr and
Cy = C}y), respectively, and
3Cr Bo

Yq = 9 Yg = 9 (4-2)



(with By given in eq. (B.19)) and the finite corrections df,’alg are given in egs. (A.19)
and (A.30) of [12],

dF = 22— €2 + { "2 o (4.3)
CA%_TRN]”E 1fz:g
. 372 Opi3 if i =
d?]’kT - _Cii { F627 23 1 Z ! (44)

where df}kT is the same constant for all kp-type algorithms (kr, anti-k7, and C/A).
For measured jet functions, we need to apply the rescaling eq. (2.9). The identity

AT (AT = 7) = 6(r — AF), (4.5)

implies that this rescaling can be accomplished to all orders via the transformation

Ji(ra) = (j;)g_ajf*@ ((22?5])2_(17&) , (4.6)

where J¢ ¢ (7,) is the jet function of [12]. This gives

Ji(ra) = JE° € (4.7)

(7a) ‘QEJ—mT )

i.e., it is simply obtained from Jf+67(7a) by making the replacement 2FE; — pp. These
can be obtained for the quark case from ref. [46] and for the gluon case by performing the
integral in eq. (4.22) of ref. [12] after setting ©,15(z) — 0 which is valid to O(7,/R?). We
record the results here as

i) = o)~ 2 (£ (1)+ (324 ) st @

where
_ _20p [7-13a/2 73— 5a+9d%/4
) = 1—5/2[ 4 12 1-a (4.9)
_ /ldaz ﬂln[xl_“ v (1- x)l—a]:|
0 x

7T2 7r2 —a 2

fola) = 1 _1@/2 Ca ((1 — a)(flj; - 3) + 6(11—/;)
1 (1 —z(l— a:))2 L e
_/0 dz pr In[z +(1—x) ])

— TrNy (201823 - /0 de (2z(1 —z) — 1) Infz'™ + (1 - x)l_“})] .

Finally, we note that the integral over 7, of the measured jet function is not simply related
to the unmeasured jet function and refer the reader to ref. [36] for a detailed explanation.



4.2 Unmeasured beam functions

While the unmeasured beam function has not to our knowledge appeared in the literature,
it is directly related to the unmeasured fragmenting jet function of [55]. The unmeasured
fragmenting jet function for a jet of energy E and (eTe™) cone radius R can be written as

d ' / /
G(E,R,zp) =Y | S-Ty(B. R ) D} (/2. ) + O(A3en/E?). (4.10)

where D!(z, 1) is a fragmentation function for parton i in hadron h and the J;; are match-
ing coefficients which are given in eq. (5) of ref. [55]. The dependence on E and R in J;;
(at least to O(as)) is such that we can write

R
Jij(E,R, %', p) = Tij <2Etan 2,2’,u> : (4.11)

i.e., £ and R always appear in the combination F tan %. Using the crossing relations of
section ITIC of ref. [56], it can be shown that an unmeasured beam function in a collider
with center-of-mass energy E.,, and a rapidity cut of ycut can be written as

B; ($ia /«L) = B; (Ecma Yeuty Li, /,L)
dz _
ZZ/Zﬂj(xiEcme veut 2, ) fi (i) 2, 1) + O(Ayop/ E?) (4.12)
J

where J;; are the same matching coefficients as in eq. (4.10), at least to O(a,),* and we
used the correspondence between an eTe™ jet and a beam with label momentum z;E¢n
and rapidity cut yeut

R
FE tan B) — x;Eeme Yot (4.13)

which is valid up to O(e~2Yut) corrections. For the dijet cross section we consider, the x;
are fixed via eq. (3.1).

4.3 Soft function

In general, we can write the bare soft function at O(ay) for dijet production when both
jets have 7, measured as

S(ra,72) = SUmeass(r1)5(72) + [SoS™* (11)d(72) + (1 4+ 2)] + O(a?) (4.14)

a’'a a a

where S"™Meas — S + O(ay) is the part of the soft function that is always present (both
when the jets are measured and unmeasured). The bare soft function is px independent,
and we will distinguish the corresponding renormalized function with an explicit argument
p. In the cases that neither of the jets or only one jet is measured, the corresponding S™¢*®
pieces on the right-hand are simply not included, while S"™™¢8 ig always included. For
more jets, the result can be extended straightforwardly, although our explicit results only
apply to planar jet configurations (as is necessarily the case for dijet production).

Tt is argued in [57] that measured beam and jet functions have the same anomalous dimension to all
orders (at least for the measured case), but since the PDFs and fragmentation functions differ perturbatively
at O(a?) [58] the matching coefficients must differ for the beam and jet functions starting at this order.

~10 -



4.3.1 Calculation of the one-loop ingredients

The part of the soft function corresponding to the measurement of 7 on jet i, S™5(7),
is obtained from summing over the interference of jet ¢ with all other jets and the beams.
Contributions from radiation arising from the interference of jets/beams j and k with
j,k # i give power corrections in R. The calculation of S™(7%) can be obtained from

the results for S73°*(7;) given in eq. (5.18) of ref. [12] through the rescaling in eq. (2.9).

We find
] pr 2—a pr 2—a )
meas (i) _ 9 § : meas )
g (Ta) <2EJ) SZ] << ZEJ) Ta)

1<j
_laGi e 1 (NN o (4.15)
e m 1—€e)l—al\7! pr ’ '

which clearly has the desired boost-invariant properties.
The additional part of the soft function we require, S"*™¢$_ can be written as a sum
of contributions in the same manner as ref. [12],

N
gqunmeas _ Sg -+ |:S0 Z Ti‘Tj <S;;1cl + Z SZ) + h,c,:| , (4-16)
k=1

1<j

where h.c. denotes the hermitian conjugate. Here, we use the color space formalism as
described in refs. [59, 60]. The 4!/(2!)® = 6 matrices T;-T; are of rank R, the same as
that of Sy, and account for the mixing of color operators in a given basis into each other
at O(a). The difference from ref. [12] is that now each contribution involves a pr veto
instead of an energy veto as well as a different jet algorithm. In particular, defining

pr = @(ko sinfrp < p%ut)

0% = O(Rirs < R), (4.17)

we now have

mel _ Las (1 ina 2 2 d’k n - N 2 0
gind = 12 T =~ [ ¢ 5()0()0,, ,  (4.18)

K €27 p%“t

and

Lag [ p \* dek ng - N
k — id k 2 2e i " T 2 0 k
5ij €2m (p%“t) iy =9 H / (2m)4=1 (n; - k) (n; - k)(S(k )O(K”) 0, 0% , (4.19)

where i, j, and k can each be either of the beams or one of the jets (with i # j).

We first perform the energy and trivial parts of the angular integration of eq. (4.18) for
generic 4, j (either jet or beam). To do this, we align the 1-direction (or “2”) with direction
7; and put the 77; vector in the 12-plane, and the beam direction 7 in the 123-spatial part

of d-dimensional space. Using the shorthands ¢;; = 1—n;-nj, s;; = (1— cfj)lﬂ, ¢; = cosb;,
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and s; = sin#;, the dot products of the gluon’s 3-momentum, E, with these unit vectors
take the form

ﬁi -k = C1
_'j k= CijC1 + SijS1C2
g -k =npici + np2sica + nNp3s152c3, (4.20)

for the 4, 7, and beam directions, respectively. In this frame, IE}CI takes the form (in MS)

Zinel (A —ey)er=e / Wdel sin!=2¢ 9, / Fdez sin 2 0, ! !
K 2\/7?1“(1/2 — 6) 0 0 l—c1-— CijC1 — SijS1C2

X |:F(1/2_6)/7rd93 sin~1—2¢ 93(1 — (TLBlCl + np3sico + 7133818263)2)6 . (421)
Val(=€) Jo

The quantity in parenthesis to the e! power in the second line is the square of the sine of

the gluon-beam angle and comes from doing the k° (energy) integral over the pr veto, O,,..

For planar events (such as dijet events at hadron colliders), npz = 0 (since the beam is in

the ij-plane for all 7,7) and the integration over 65 can be easily performed. The entire

second line (the quantity in brackets) then becomes simply

lanar €
[. - ] P25 (1 (npier + npasicn)?)S, (4.22)

with n232 =1- "231- We also note that when i is equal to the beam direction (so np; =1
and npe = 0), this quantity reduces to

[- : } LB, sin%e 0 . (4.23)

In this case, the € dependence in the overall power of sin 61 cancels and we are left with
a divergence unregulated by dimensional regularization. This is the well-known rapidity
divergence that is present for a pr veto. This can be treated within the context of SCETy;
as was done for example in ref. [61]. Here, we will opt instead to veto on radiation only
below a rapidity cut y.ys which is consistent with what is done at the LHC since radiation
going down the beam pipes is not measured. We compute the soft function components
Ifj and I%;-‘d for the case i and j can each either be beams or jets in appendix A and record
the results in table 1. For the case that either ¢ or j is a beam, we only compute the full
out-of-beam contribution, e.g. If,n]gl + I?B (or Ig% + IgB + IEB for the case both ¢ and j
are beams) to avoid having to regulate the rapidity divergences in individual components.

For several of the components, we use the fact that the result is boost invariant along
the beam direction to boost to the frame where the jets are back-to-back. The relation
between the back-to-back frame beam-jet angle 67 and the jet rapidities in the lab frame is

A
cosf; = tanh Ty , (4.24)
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Contribution Result
Imcl + IB + IgB 2ycut
1 2 2
Ios+T45 O(R?)
. 5 2
IS + I8, + 18, — 5 + Yous — Y5 +€5g
I}y 1 R™ 26( — ¢ 12)
zyf otc-v. )
in A - € 2
Tinel <QCOShTy> (—f L(Ay)? +€X5)
i, + 1% IR=2(1 62”—2)
157 O vem)

Table 1. A summary of results for the “unmeasured” part of the soft function, S"™™™¢ up to
O(e~¥ut R?). Here, the subscript J refers to the two jets, J = 1,2, and B and B refer to the two
beams, and Ay = y; — y2. Each component is explicitly boost invariant about the beam direction
(with 2ycyt in the B-B interference terms in general given by the rapidity difference of the forward
and backward beam cuts).

where Ay = y1 — yo is the rapidity difference of the two jets. This also means that when
putting a polar angle restriction on the emitted gluon in the back-to-back frame, one has to
apply the correspondence eq. (4.24) in using eq. (2.6), which amounts to the replacement

R R
tan 3 — Jeosh AuT2 Ayj2’ (4.25)
where dependence on the left-hand side arises from enforcing a restriction on the polar
angle of the gluon about a jet (# < R) in the back-to-back frame.
Using the color algebra identity ), T; = 0 and the kinematic relations
nj-np
2
ny-np
2

In = —ys — In(2coshyy)

In

=yj —In(2coshyy), (4.26)

for jets J = 1,2, and
nine (2 cosh Ay /2)?
=In

1 _ 4.27
ny (2 coshyp)(2coshys)’ (427
we find
1 ) 1
guumeas _ § 1 {SO |:<2 +In pcut><sdw + Z C; IHR) —3 Z C; n?2R
T 1=1,2 1=1,2

—T-ToIn(1 4 2¥)In(1 + e_Ay)] + h.c.} +0(a?). (4.28)
In this equation,

iv TG - Ny
sd :ZTi-len ! — yeut(Cp + Cp) — Z C;1n(2 cosh y;)
i<j i=1,2

= Avygs(m;) — M'(my) , (4.29)
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where in the second line we wrote the result in terms two functions defined by

Avss(mi) = Y Cyln TEmC Cmeyt 201

i=B,B i=1,2

M (m;) = —ZT “T;In , (4.30)

mzm]

where s;; = 2p;-p; > 0 (and where p; = x;Ecp, for the beams i = B, B). Note that for later
convenience we have defined these functions so that each separately depends on a set of
parameters m;. The dependence on m; cancels in the sum in the second line of eq. (4.29).

4.3.2 Refactorization

We note here that one can also construct the ingredients needed for the refactorized cross
section as was done in ref. [36] for the resummation of (global) logs of R from the ingre-
dients in table 1. In particular, the conclusions of ref. [36] suggest that S""™S should be
factorized as

cut

1 2
gunmeas _ 250/ " dE [s5(E) ® si.(ER) ® s2,(ER)] + h.c.
0

— S+ = [so< PP+ D SEV(pFR) ) + h.c.] +0(?),  (4.31)

k=1,2

where ® is a convolution over the variable E and the functions S, and S%, are the global soft
(with radiation anywhere except for the beams) and soft-collinear (with radiation within
jet k) functions, respectively, and where

s:(07") = ) i (p7")
sk (pSHR) = i 9 gk (pR) (4.32)

d cut sc

with both functions f = S, S normalized as f(z) = 0(x) +>,_; (Z‘—;)nf(”) (). Note that
all of the non-trivial color mixing occurs in S;. This is due to the fact that the soft-collinear
modes of refs. [35, 36] are confined to a single jet and is expected to hold to all orders.

In terms of the ingredients in table 1, we have

SO () — () SO T [Z5 4 (S 65) (30, + 30T + Bipdip(T + T0)]

1<J

_ 4 H * CZ § div Ay —Ay

a (ﬁ“) ng%(l_ 12> +8% —2¢T1- Toln(1 +e™) In(1 +e77)
(4.33)

and
4 2e C 7T2

k(1) ¢, cut T T )2 Gk 1_ 2T ' 434
Ssc ( R) (cut) ; J (p%ltR> |: % € 12 ( 3)
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5 RG evolution and the total NLL’ cross section

In this section, we apply Renormalization Group (RG) methods to the functions calculated
in this paper and arrive at the result for the total NLL’ resummed cross section. These
functions can be divided into those which are multiplicatively renormalized and those that
renormalize via a convolution. The former include the hard function and unmeasured jet
functions and the unmeasured part of the soft function, and the latter includes measured
jet and soft functions.

5.1 Hard function

The hard function H for N — 2 jet production in hadron collisions is a matrix in color space
with rank R (the same as that of the soft function). It can be written in terms of Wilson
coefficients C; as (H);; = C’iC;‘, each of which mix into each other under renormalization,
ie., CPae = > (ZH(M))Z,jC’j which implies that

B = Zpy () H(1) 2y (1) - (5.1)
The p-independence of the left-hand side of eq. (5.1) implies that H = H(p) obeys the RGE
dH
=Ty H+HT} 2
dlnu H + H> (5 )
where p
Ty=-Z,—12 :
" H dlnp a (5:3)

This RGE preserves the hermiticity of H under RG evolution. I'yy in eq. (5.2) is given (to
O(aZ)) by [62, 63]
N
a

1 m? s
Ty = 3 ; {ci L.(as)In i R—r + Te(org) M(m;) (5.4)

where ~; is given in eq. (4.2), I'.(as) is the cusp anomalous dimension (given in eq. (B.20)),
and m; is an arbitrary parameter(s) which can be chosen for convenience and can be shown
to cancel between the first term and M(m;). The first term is (implicitly) proportional
to an identity matrix and M in the second term involvers a non-trivial matrix of rank R,
which can be written as

M) = = [ (ot )

= M/(m;) + ir'T, (5.5)

where A;; is 0 for beam-jet interference and 1 for beam-beam and jet-jet interference,
sij = 2p;-pj > 0, and in the second line we explicitly separated the terms of the form
A;jIn(—1) into the matrix 7T, where

T=) AyT:T, (5.6)

1<j
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and M’(m;) is defined in eq. (4.30). The matrix M is worked out for a set of choices of
color bases for all 2 — 2 channels in ref. [64] with the choice m? = —t > 0 (the Mandelstam
variable) in the ¢¢’ — ¢¢’ channel (and the choice for other channels obtained by crossing
relations). Importantly, for any p-independent choice for m;, M is independent of .

The effect of the color-trivial component of eq. (5.2) (i.e., the contribution from the
term in brackets in eq. (5.4)) can be obtained using the results in appendix B and gives
rise to a factor IIy as in eq. (B.8) with the parameters needed for Ky and wpy at NLL’
given in table 2. We can straightforwardly include the effect of T'c(as) M(m;) via matrix
exponentiation and record the solution as

H (1, porr) = g (g, o) W (s, o VB (e ) XL (1, o) (5.7)
where
as(p) o g
Iy (p, pp) = exp {M - ﬁd[a]f‘c(oz)} = exp {M<520 In afﬁg) +-- >} , (5.8)

where in the second equality we expanded to NLL’ accuracy. This matrix exponential can
be defined by first constructing the matrix R of eigenvectors of M such that R"'MR = Ay
is the diagonal matrix of eigenvalues of M, and then defining exp(M) = Rexp(Ag)R™1.

5.2 Jet functions and unmeasured beam functions

Since the jet functions can be obtained directly from rescalings of those in ref. [12] as
described in section 4.1, the renormalization is similarly related to the results in ref. [12].
For measured (renormalized) jet functions we have

fVJi(T(lz'v N) = 2Fc(as)cii_73 In l% + %% 5(7-;) - 2Fc(as)ciﬁ (:CZ-L)Jrv (59)
which is of the general form eq. (B.12) with cusp (I'r[as]) and non-cusp (vr[as]) pieces
given in table 2. Here and below, the ‘+’ distribution is defined for example in eq. (A.2)
of ref. [12].

To RG evolve the jet function, we perform the integral in eq. (B.13) for the case F' = J.
Integrals of this form are most easily performed by convolving the right-hand side against
1 = Z7'® Z and first performing the convolution of Up with the bare function, i.e., Z® F,
then expanding in ¢, and finally performing the Z~! convolution (which just removes the
1/e poles in a minimal subtraction scheme). For the jet function, we obtain

TR (1, 10) = Z7 (74, 110) @ [T (1) @ U (75, s )]

SRCIDE {Um;,u,w) (1 S R0

R R e [ )

= {UJ(TZ;wM:,UJ)(l+f§(7é;wf77MJ))}+v (510)
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where f;(7,, 1) is the one loop part of the renormalized jet function after RG evolution,

Fi(r, Q) = W(;ja){?;afi(a) + i [H(—l— Q) + (2—a)In pTTI’j(;)} (5.11)
+ ﬁia [(H(—l— Q)+ (2—a)In pTTl“/(“)> — M (-Q) + ﬂ;]} :

and H(z) is the harmonic number function and (!)(z) is the polygamma function of
order 1 and f;(a) is given in eq. (4.9). The natural scale for the jet function suggested by
eq. (5.11) is

P = (7)), (512

From the discussion in section 4.2 and the results of section 4.1, we have for both
unmeasured jet functions and unmeasured beam functions the anomalous dimensions

«
v, = 20 (a)Cy In pTLR + =, (5.13)
and
12 «

which have the form of eq. (B.4). We have summarized the cusp and non-cusp parts in
table 2 and ~; is given in eq. (4.2) for quark and gluon jets. Eqgs. (5.13) and (5.14) (together
with eq. (4.1)) suggests the canonical scale choices

PG = prR and up = riBEene Yeut (5.15)
with x; fixed via eq. (3.1).

5.3 Soft function

The total measured soft function, which includes both the S""™€2% and a 5™ contribution
for each measured jet as in eq. (4.14), can be evolved by using a multiplicative-type RGE
(cf. eq. (B.2)) for S""™S and a convolution-type RGE (cf. eq. (B.10)) for S™ and each
can be evolved from a separate scale (an unmeasured soft scale and a measured soft scale,
respectively). This corresponds an early version of “refactorization” originally suggested in
ref. [12]. A more complete refactorization procedure was recently introduced in [36] which
involves further refactorizing S"™™¢* into a global soft contribution and a soft-collinear
contribution, as in eq. (4.31). In this section, we demonstrate how both approaches are
achieved so that they can be compared numerically in section 5.5.

5.3.1 Unmeasured evolution

The unmeasured component of the soft function S"*™¢3S is renormalized much like the hard
function®
SunmeaS,bare — ZTS(:U') qunmeas (M) ZS(,Uf) (516)

5Note that eq. (5.16) takes the form of eq. (5.1) but with Zy <> Z%. This gives rise to the RGE eq. (5.17)
which is of the form eq. (5.2) but with %™ + T . RGE invariance then requires Ty = —T'4M™e2 4 ...
where the ellipses denote color-trivial contributions.
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which gives rise to an RGE of the form

T Msunmeas — Sunmeasrg’nmeas 4 h.c. , (517)

with

anmeas = Qs <SdiV — i T + Z C;In R)
™
1=1,2

W <A%S(mz +> G lnR) (5.18)

i=1,2

where SV and A~ are defined in eqs. (4.29) and (4.30), and M and T are defined in
egs. (5.5) and (5.6). In eq. (5.18), we have inserted the factor 7T to comply with matrix-
level consistency of the anomalous dimensions, which is consistent with the one loop bare
soft function calculation eq. (4.28) since SoT = TTS,.

The solution to this RGE is completely analogous to that of the hard RGE eq. (5.2).
The result is

SIS (1, ) = T 1, o) (XL (1, 05) 8™ () s ()] (5.19)

where IT§"™¢* is of the form eq. (B.8) with NLL’ parameters given in table 2 and

Rt 0 B R )

where in the second equality we expanded to NLL’ accuracy. Inspection of the unmeasured

soft function eq. (4.28) suggests the canonical unmeasured soft scale choice
M%nmeas = pcut (521)
5.3.2 Measured evolution

When the jets are measured, RGE takes the form

d
dln p

S(T;,Tg,,u) = /dT'dT" [S(T',T”,,u) I‘S(rj — 7'/,7'3 — 7" ) + h.c.] , (5.22)

with the soft anomalous dimension given to NLL accuracy by

1
Tslrdo i) = PES(00) + | 3 hdd) + o] 529
where 7™ is given by
, 1 pRY=e 1
meas (1 = —T.(as)C; 21 N _9 — .24
B = Tl {2 e —2(2) b e

which has the form of eq. (B.12). The 7, dependence of measured jets requires the inclusion
of the evolution kernels U (74, p1, po) as in eq. (B.14) with NLL’ parameters given in table 2
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To evaluate the effect of convolving these kernels, we use the same method as in egs. (5.10)
and (5.11). This gives for the RG evolved measured part of the soft function

1ag(us)C;  evEe

U(a, s pi5) (1 g R —

D(~26)[(—wy) ( usRI-\*
X ['(—2¢ — wh) ( pr T > )L

Sm roi 1) = Zg (7, p15) @

= Ug'(TZ;,,U,, MS)(]- + fé(Té;wgvu‘S’)) ) (525)
fatmm = 2% [0 o) (m1- o) s tR) T (5.26)
S\T588, 1 _71'(1—(1) ey 3 |’ .

which suggests the canonical scale choice

7
meas pPrT,

Hs Rl-a’

Taking the scales from which the two measured components and the unmeasured compo-

(5.27)

nent are evolved from to be uls’Q and fig, respectively, we record the final result as

S(Ta, T s s 13, [is) = Us(ra, 11, n§)US(T2, 1, 13) [1 + (£§(ma s wh, ph) + f3(725 w3, 13))]
x TIE™9 (11, fig) XIS (o, i) ™™™ (fis) TLs (1, fis)] - (5.28)
5.3.3 Refactorized evolution

The components of the refactorized S"™Me2 (cf. eq. (4.31)), ss and s¥, for k = 1,2 evolve as

dliluss(E) = /dE’ ss(E'\Tss(E — E'), (5.29)
and i,
T (BR) = [ (B R)TE (- F)R) (5.30)
respectively. The anomalous dimensions take the form eq. (B.12) and satisfy the relations
L p 2
3 4ETA(E) =~ cfou]in g henil] (5:31)

and

cut

1 [Pr , Qs
2/0 dETs(E) = Z (Cira{as} lnzﬁ - ’Yﬁemi[aso + ?(A%S(mi) - M(mz)) )
i=1,2 T

(5.32)
where we used that to all-orders, the non-cusp part of the anomalous dimension for ~s. is
the same as that of the hemisphere thrust distribution [36] (of the color-representation of
jet k). At O(as), Yem; = 0. The additional non-cusp parts of eq. (5.32) (which do not
appear in the analogous ete™ calculation [36]) are needed for this measurement to ensure
the consistency of refactorization at O(as),

1 pcut
- / D AB(T.(B) + Y TE(B) ) = T, (5.33)
2 J, k
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To RG evolve the refactorized soft function, we write

1 m 2e
Si) =~ <cut> £
pr

1 M 2e
I (5.34)

k=1,2

where fsc = > 1012 €71 fI . can be read off from the O(a) results eqs. (4.33) and (4.34)
and are given by

fo=-2(C1+Cy) fo=—f2
fi=0 £l =484
2
fe = %(Cl + () £ = —8T1 - Tpln(1+ ) In(1 +e72Y) — f2. (5.35)

This allows us to write the RG evolved bare functions (using a similar argument as that
described above eq. (5.10)) as

p%ut ) )
[ AP [50(8) © U1 1)) @012 (55 ER) @ VSR o)

cut

P

dE [SS(E) ®i:1,2 SZC(ER)] ® [USS(E/IU’SS7 M, Mss) ®i:1,2 Usic(ER/Msc’ M, Hsc)]

F(_QG)F(_Q) 048(,“55) Hss %
1=2 F(—Qe—st ( A7 (E) fs

n as(ﬂsc) < Hsc >2€f )
4 ER c

where in the 3rd line we truncated the series in parenthesis to O(a;) and we defined

Pr

dE

/0 cut
f

US(E> M’ MSS) )U“SC) ’

(5.36)

Qs = wss (1, pss) + Z wie(hs frse) (5.37)
i=1,2
and
US(E, QSa Hss, Msc) = [USS(E/HSSa M, ,Ufss) ®i:1,2 Ugc(ER/N507 M, Msc)] (538)
and used that Ug scales as
1
Us o E7170s, 5.39
I'(—Qs) (5.39)
Expanding in e and dropping the 1/€ poles gives the renormalized, refactorized and RG
evolved SUM™Meas(y,),
p%ut
SunmeaS(M) — Sunmeas(957 Hss, Msc) / arE US(Ea QSa Uss, Msc) (5-40)
0
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where

SunmeaS(quscjﬂss) = SO+{SO O‘S(H ) ( f2 —|—f1 <1 ‘ucist + H(_Q)> (541)
47T pT

f0<7T — M (1-Q) + <1n ;‘;t +H(—Q)>2>>

+as(usc)< f2+f1< fhsc +H(—Q)>

4 cut R

2
+ /0 (7:_¢(1)(1_Q)+<1n pglstcR—i—H(—Q)) )) +h.c.}.
T

We note that when combined into the full cross section in section 5.4, the y dependence

can be cancelled to all orders between eq. (5.40) and the remainder of the cross section
(using consistency and eq. (5.33)) at the expense of running all factorized components from
tss to the scale of the component. This means for example that we have

Qs — Z wéc(ﬂss:ﬂsc) = Wse - (5.42)
i=1,2

This means in particular we can make the replacement

Sunmeas (u) — Sunmeas (Wsm Hss, Nsc) Usc(wsca Hss, Nsc) (543)
where
p%ut K.sc“l"YEUJ.s(, MSC Wse
Usc(wsm Hss, Nsc) = /0 dE US(E7 Wscy Mss :U'SC) = F(l — wsc) <pCT“tR> s (544)

where Koo =) .4 o Kgc(ftss, phse). The parameters needed for K. and w,. at NLL’ (which
can be expanded as in eq. (B.16)) can be read off from egs. (5.31) and (5.32) and are given
in table 2

5.4 Total NLL’ resummed cross section

For the case of unmeasured jets, we can now readily assemble the ingredients in eq. (3.5)

to obtain
pr 1 - _
e NB(xlaM}?)B(vaHQB)Jl(H}])JQ( A5) T (fig, iy, i )
cm
x Te{H (pp) T (s, o) S™™ (f1s) T (fis, pir) } (5.45)

where here and below we use a bar over a parameter to denote that it is an unmeasured
quantity (so for example fig denotes the unmeasured soft scale while g denotes the mea-
sured soft scale), and z 2 are fixed to the values in eq. (3.1). The function II in eq. (5.45)
is defined as

as(ﬁs) da
H(us,m:st,ﬂs)HH(u,uH):exp{M / - Mmm}
as\UH

:exp{M[ﬁol z((“H))Jr ]} (5.46)
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I'rlo] yrlas] JF mp [LF
Vi Iy — Y, Sy 1| Lm0 ma
7:(72) FC’?%Z S 2-a pr pr(ri)t/E=o
) | Tots ) | e | i
Vi re; T2 1 prR prR
VB;: rc; e, 1 TiEeme Vet | a;EeYent
unmeas 0 i 235 Aryss(my) 1 o eyt
+22=(C1 + C2)InR
Yo I'(Cy + Cy) 20 Arygs (M) 1 P P
7§c -I'C; 0 1 p%ltR p%lt'R

Table 2. Ingredients for anomalous dimensions of the color-trivial parts components to the factor-
ization formula and the corresponding canonical scale choices pp, which take the form of eqgs. (B.4)
and (B.12). The hard and (unmeasured) soft components require an additional color-nontrivial
factor derived explicitly in the text. Here, C; is the quadratic Casimir (Cr or Cy4 for quarks and
gluons, respectively), ~; is given in eq. (4.2), I' = I'.(«a;) is the cusp (given in eq. (B.20)), z; are
the momentum fractions of the partons in the beams (fixed via eq. (3.1)), and A~ is given in
eq. (4.30) (and m; is an arbitrary parameter that cancels both within I'y and within I's and can
for example be chosen based on the partonic channel to coincide with the conventions of ref. [64]
as described in the text). For refactorizing the soft function as in [36], the last two rows are used

unmeas

in place of v§

with ITy and ITg defined in egs. (5.8) and (5.20), respectively, where in the second equality
we canceled the p dependence (to all orders) and in the third equality we expanded to NLL’
accuracy. We also used the definition of the overall multiplicative RG kernel as

o ] e
I s, a7 r) = W (s s T8 1 o) T Mo piy) TT TG0 i)
i=1,2 i=1,2

WF(/ESJ'LF)
= H eKF(ﬂSJ/'F) ,U/7F
mp

F=H,B1,B3,J1,J2

, (5.47)

where mp, K&, wi for F = J;, B;, H are given to NLL’ in eq. (B.16) in terms of the
parameters of table 2. To arrive at eq. (5.47), we used the consistency of the anomalous
dimensions to explicitly cancel the p dependence to all orders. Here and below, we denote
unmeasured quantities with bars to distinguish them from the corresponding measured
quantities below.

When the angularity of one or more jets is measured, we need to include S™(7})

(and its corresponding anomalous dimension 7g'**(7:)) for each measured jet, and we

need to replace the unmeasured jet functions J; with measured ones J(7¢) (and replace
IT% — Uy(7)). To perform the convolutions for measured jet functions with the measured
part of the soft functions, it is easier to first do the convolutions of the evolution factors
with each other, and then convolve the resulting full kernel with the renormalized functions.
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For the case of two measured jets, this yields

12 pT 1 1\ 5 2 12 12 - 12 12
do(7,,7,) = mﬁB@hﬂB)B(ﬂ?sz) s (r, ylg s S, Uy s s IVH)

X [L (f§(rasw i) + F1(Taswho i) + (1 2))]
.

x Tr {H (up) T (s, porr )™ (i) T (fis, pir) } (5.48)

where f4(7,Q, ) and f5(7,€, u) are given in egs. (5.11) and (5.26), respectively, and we
defined

meas/ 1,2 1,2 _ 1,2 12
II (Ta Mg sHS, Ry s Hp >:uH)

Hunmeas(

_ 1,2 1,2

M37MJ7 ),U’é 7/"LH) i/ _1 7 ) 7
— : | | UJ(T 7M,MJ)®US(T aM?MS)

Hi:l,Z I (e, 1) i=1,2 ‘ ’

— HunmeaS(

12 12
ms,ly s g aMH) H (549)

i=1,2

eKs+7B Wy s Wy o(rh)
D(—wy) \ml/) (ri)ttes’

where g is the Euler constant. The K% and w) appearing in these egs. (5.48) and (5.49)
are expanded to NLL’ in eq. (B.16) in terms of the parameters in table 2 and are evaluated
at the scales

W = Wy, 1)
K§ = K5(uy, 1) - (5.50)
To arrive at eq. (5.49), we used that
i (T 1) + 7 (74, 18) = 75, (1) 8(75) = 0 (5.51)

to explicitly cancel the i dependence of the measured jet and soft functions and the sub-
tracted out unmeasured jet functions (evaluated at the measured jet scale py). In partic-
ular, eq. (5.51) implies that

) dswh(pr,ms) , ) _
Kb (urms) [ S — K (op )+ K5 (o) =K (popry) (5.52)
mgs
(1 Jawh (o) ns Fswh (p.ps) 1 —& ()
myj mg mj ’
and that
ws (g, ps) = ws (i, ps) + wi(p, ) - (5.53)

Finally, we note that to refactorize the cross section and resum logarithms of R as in
ref. [36], we simply need to make the replacement eq. (5.43) for both the case of unmeasured
and of measured jet formula, egs. (5.45) and (5.48), respectively, and interpret fig — fiss.
We discuss the numerical impact of this effect in the next section.
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5.5 A simple example

We consider the simple partonic channel q¢' — q¢’. Of course to compute a physically
observable cross section we will need to sum over all partonic channels, however, this is
beyond the scope of this work. Our aim is to consider the scale variation of the cross
section and investigate the impact of refactorization of the soft function on the differential
cross section. We find the main effect of refactorization is to reduce the normalization of
the cross section and to lower the scale uncertainty, which is qualitatively similar to what
is found in the study of refactorization in e*e™ collisions recently completed in ref. [36].
We also study the dependence of the cross section on the parameters R, p*, and a, and
comment on the physics responsible for this dependence.

From the results of ref. [64] we have the (MS renormalized) hard function to O(a;) in

the color basis that corresponds to the t-channel 8 ® 8 and 1 ® 1 operators,

Qg
H(p) = 8¢* (Ho + o Hi () + O(a§)> : (5.54)
where
s2+u? (10
Hy=—35— 5.55
T <0 0) ’ (5.55)
and

§2 1+ 02 _ i
[Hl(:u)]ll = tiQ <— 4CF lIl2 ﬁ —+ 2Re[X1 (57 t, u)] In ? 4 2y>

2 2

S u
+ t—Q(CA —4CF) Re[Z(s,t,u)] + t—2(4CF —2C4) Re[Z(u,t, s)]
s2 +u? —t  s2Cp u? Cp
[Hi ()21 = TX2(SJ»U) ln? - ﬁﬁz(svta u) + tﬁﬁz(uvt s)
[Hi(w)he = [Hi(w)]5
[Hi(u)]22 =0, (5.56)

where X2, Z, and Y are defined in eqs. (33)—(36) of [64] and s, ¢, and w are given in terms
of the jet rapidities and pr in eq. (3.2).
To use the convention of [64], we set m; = /—t for this channel and have

40pIn =% —Cyln%% 2ln=4
! ) — s s s
M'(v—t) < % Iy = 0 (5.57)
A S
and
M(v—t) = M'(vV/—t) +irT, (5.58)
where

_[—2/Ca 2
T (CF o 0) | (559)
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Computing the eigenvalues of M gives

C t -
/\{{,2 = —2A<lnz2 —|—2i7r>+2C’F<ln8u+i7r>

C? ut 2 —u —t
+ A<ln2+2i7r) 2C’FC'A<1n+i7r>(ln+i7r>, (5.60)
4 s S S

and for the eigenvectors we find

A\ AT
R == (CF 1 C 2 ) . (561)

CA(ln_Tu—i—zﬁr) C—i(ln%“—i—m)

The MS renormalized soft function for the naive factorization is given by

SunmeaS(M) =S+ %{SO |:(Sdiv + QCFIHR) ]HI% — CFIHQR
s T

—T-ToIn(1 4 €2¥)In(1 + eAy)] + h.c.} : (5.62)

whereas the refactorized result is obtained with the replacement eq. (5.43). The tree level
soft function in this basis is given by

1
So = <2C€0A C%) (5.63)

In addition to Sp and the matrix component M’(m;) of S given above, we need the
matrix T-To, which for a general 2 — 2 scattering is given by

1
T1~T2:TB~TB—|—§(CB—|—CB—01—CQ). (5.64)
For qq — qq, C; = Cr for all i so the C; cancel and we have
1
T= 5[2TB-TB+2T1-T2] =2T;-T5. (5.65)

To estimate uncertainty from higher orders in perturbation theory, we vary the hard
scale pg and the unmeasured jet and soft scales, iy and fig, separately by +50% around
their central values, which we take to be the canonical scales pp given in table 2. For the
refactorized case, we vary the soft scales puss and pse simultaneously. However, to avoid
varying the measured jet and soft scales for pjs ~ Aqep, we vary them around profile
functions [65, 66]. This is done by defining p g as

(7)) = (1+ esg(r)) u(r?)
1(r) = (14 es9(r) (prR)Fs (u(rh)) 7= (5.66)

with ejg € (—1/2,1/2). The total uncertainty bands are defined to be the envelope of all
of the above variations.

— 95—



otl : ]
1 . 1 1 1 1 L 1 I3 1 1 L I L
0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

70
Figure 1. Profile functions for us and py. These functions are defined in eq. (5.66) and below.

In terms of the function
1

@) = oo a7 (5.67)

which becomes a Heaviside step function in the limit € — 0,

lim 0. (z) = 6(z), (5.68)
e—0
the function g(7) is chosen to be
g(T) = O, (T — T G, (7 — 1), (5.69)

and p(7) is chosen to be

B/ min
po +atty/—t, T<T
wr) =9 prr min (5.70)
Ri-a’ T>T,

where a and 3 are fixed by the continuity of u(7) and its first derivative to be

pr
IB(Tmin)B—l'R/l—a\/jt

1—a\ —1
Bz(l—MOR ) : (5.71)

pTTmin

o =

respectively. The continuity conditions also require that (3 is greater than unity which
implies we need 7™ > pe R /pr.

The profile functions for pg and py, for a = 0, are shown in figure 1. Egs. (5.69)
and (5.70) together ensure that for sufficiently small 7, the scale choice becomes frozen
to be pg (and non-perturbative physics dominates), above some scale 7™ we recover the
canonical choices (cf. m g of table table 2), and above a third scale 7™** individual H, J, S
scale variation begins to dampen (as that should be handled by the traditional y variation of
fixed-order QCD using a tail-region matching scheme). This is expected to give reasonable
scale variation for the range of validity, roughly 7™" < 7 < 7m8x
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For the sake of illustration, we plot the “normalized cross section” (which neglects the
PDFs and effects of the fixed order beam function corrections, the latter of which can be
found in [55] following the discussion in section 4.2), defined as

(w2, = pur) do(14,73)
(w2, = pp) oV = pmr) |y —ras,

B(z1, 0= p)
B(x1, 1= pp)

(5.72)

wal/lles]l

do(ry) =

For the kinematic and algorithm/observable parameters, we choose for a set of default
parameters (fixed to these values unless explicitly varying them in the figures)

Ecm = 10TeV y1 = 1.0 pr = 500 GeV R =0.6 (5.73)
a=0 yp=14  pSt=20GeV Yeur = 5.0, '
which corresponds to (via egs. (3.1) and (3.2))
t/s = —0.401
z1 = 0.169
u/s = —0.599 and (5.74)
29 = 0.015,
V3/Eem = 0.051
and for the profile functions parameters, we choose
. _ 61 62 0.1
70 = 2(1 — a) R ™ /pr = .00032(1 — a — = =10
- (1 —a)uoR ™ /pr (L—a) Fom = rmax (5.75)
T =.002 Lo = 200 MeV .

In figure 2 we show the NLL’ calculations for four different values of R, with all other
parameters set to their default values in eq. (5.73). In these plots the blue bands are the
predictions with a refactorized soft function and the red bands are the predictions without
refactorization. In the limit R — 1 the scales pgs and pg. coincide and the two calculations
must give the same result, as seen in the figure. For the smallest value of R = 0.4,
refactorization lowers the normalization of the cross sections by a factor of roughly two,
without changing the shape of the distribution or the location of the peak. Refactorization
gives a small reduction in the scale uncertainty for R < 1. Note that as R decreases the
peak in the 7y distribution shifts to smaller values of 7y because the jets are narrower.

Figure 3 shows the refactorized NLL’ resummed cross section for three different values
of p* with all other parameters set to their defaults in eq. (5.73). Interestingly the
shape of the distribution and the location of the peak in the cross section are completely
independent of p$™, only the normalization of the cross section is affected. As expected,
the cross section is larger for larger values of p§™. As discussed in the Introduction, the
NGLs, which are of the form o In"(p** R?/pd 7,), for n > 2, combine p$** and 7, in a
nontrivial way. It is possible that when the NGLs are included in the calulcation, the

location of the peak of the 7, distribution may no longer be p$"* independent. Therefore,

the dependence of the peak on p$' might be an observable that is sensitive to the NGLs.
Figure 4 shows the refactorized NLL’ resummed cross section for four different values
of a with other parameters set to the default values. As a is made large and negative, the

contribution to the angularity from particles collinear to the jet axis is suppressed by large
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Figure 2. Differential cross section for four different values of R with soft function refactorized
(blue) and without (red). Central values are dotted lines and band includes scale variation.

powers of the angle with the jet axis. Correspondingly the distribution is peaked at smaller
values of 7,, a behavior also seen in calculations of jet angularities in eTe™ collisions [12]. It
is important for obtaining sensible scale variation for all values of a that the parameter 7™
defined in eq. (5.75) is proportional (1 —a). Both perturbative and power corrections grow
with 1/(1 — a) and factorization breaks down completely for @ = 1 in SCET; (although an
SCETyy approach can be used for a =1 [67, 68]). Thus, one expects increasing uncertainty
as a — 1 from below, and we see from figure 3 that the uncertainties in the predictions are
substantially larger for ¢ = 0.5 than for a < 0.

6 Conclusion

In this work, we presented the factorization formulae valid for jet production in hadron
colliders with rapidity cuts about the beams, an out-of-jet pS"* veto, and the jets identified
with either a kp-type (including k7, C'/A, and anti-kr) or cone-type algorithm. We consid-
ered the cases that the jets can either be identified but otherwise unprobed (“unmeasured”
jets) or are further probed with angularities (“measured” jets). The ingredients of these
formulae involved jet functions, unmeasured beam functions, and an observable dependent
soft function. This soft function was further written in terms of a universal piece, S"r™meas,

cut

which encodes the out-of-jet energy veto p?'* and angularity independent (but color and

direction dependent) pieces.
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Figure 3. Differential cross sections for three different values of p$i.

We were able to relate all of the ingredients of the factorization formula except for

Sunmeas 4 analogous quantities that have previously been calculated in the context of

Sunmeas wag explicitly computed for the case of dijet

ete™ collisions to NLL’ accuracy.
production (for which all Wilson lines are coplanar) in terms of color operators T; - T}

that encode the color correlations at this order. We in turn explicitly presented results for
these color operators (which become matrices in color space) for the q¢' — ¢¢' channel,
and plotted the corresponding distribution for the illustrative example where both jets are
measured with 7, for @ = 0 in the 7} = 72 bin. We also generalized the refactorization of
ref. [36] to include color-mixing effects and found that, as was already seen in e*e™, the
normalization of the cross section and the corresponding scale uncertainty were reduced.
Using the results of ref. [36], our results can now be straightforwardly extended to NNLL
for any combination of measured (at least for a = 0) and unmeasured jets. The non-global
logarithms which we do not include and would appear in a fixed order calculation of the
soft function beginning at O(a?) have arguments of order p§"*R?/pd7, which for the peak
region of the distribution (where we trust our calculation) is O(1) to within a decade.
Armed with this foundation, we can now (after including all the partonic channels)
make meaningful comparisons with Monte Carlo event generators and directly with data.
It will be of particular interest to study the sensitivity of the proposed, factorized cross
section to effects like multiple parton interactions. Other observables that are sensitive
to radiation near the beam pipes like beam thrust [69] have been noted to receive O(1)
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Figure 4. Differential cross sections for four different values of a.

corrections from these effects. We expect that our observables will be less sensitive to
this effect because the jets are isolated and the unmeasured beam functions should not be
sensitive to radiation near the beam pipe. We also hope to be able to incorporate other
effects with the recent developments for NGLs as discussed in the Introduction. In addition,
the authors, together with other collaborators [70], are actively involved in extending the
results of this paper to cross sections for jets in which there is an identified heavy hadron.
The work of refs. [55, 57, 71-73] shows that these cross sections can be calculated by
replacing the jet function for the jet with the identified hadron with so-called fragmenting
jet functions. These are related to the well-known fragmentation functions by a matching
calculation at the jet energy scale. These calculations will be applied to the production of
jets with open heavy flavor and heavy quarkonia, especially .J/1) and Y. The cross sections
will take essentially the same form as the cross sections in this paper, with an additional
convolution of the cross section with the heavy quark or quarkonium fragmentation as well
as a modified f; factor that depends on the matching coefficients in the fragmenting jet
function. We expect to compare these predictions to Monte Carlo event generators and
LHC measurements [70].
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A Calculations of soft function components

In this appendix, we calculate the various components needed for SU"™e#  As explained in
the main body of the text, we only calculate combinations of terms that explicitly remove
radiation out of the beams, i.e., with ¥ > yeut Or ¥ < —Ycut- We use the definitions
cyg = ny-ip, s;g = (1— 03)1/2, ¢; = cosb;, and s; = sinf;. All the expressions are
special cases of the general form eq. (4.21) in the planar limit, given by the substitution in
eq. (4.22). For subtraction terms Sfj defined in eq. (4.19) there is an additional factor of
—Ok given in eq. (4.17).

A.1 Beam-beam interference terms

We first calculate the beam-beam interference with the gluon out of the beams
out _ rincl B B
Tpp=Tpp +Ipp +Ips

= W/ﬁde sin 6 1 ! /ﬂdﬁ sin~2¢ ¢
T2 =0 Sy T T T v e f, P ?

eVEE /tanh Yeut dC]_
F(l - 6) — tanh ycut - C%
1 + tanh yeyt
n———Jcut
1 — tanh yeyt

= 2ycut . (Al)

The region that must be added to remove radiation in the jets goes as R? and so is
power suppressed for small jets, but we record it here for completeness. In a frame where

the jet is perpendicular to the beam,
eVEE R T 1y
Ilp=———— [ dfisin' ™20 /d0 in"2 0y [1 — 27 A2
Bh JAT/2—0) /0 1 sin 1 ; 5 sin 2[ (s1¢2) ] (A.2)

In this frame (07 = 7/2), we can make the substitution R — Rsin7/2 = R to get a frame
invariant result. This gives
2 1

I}s = %111(1 —R?) - e<12 -5 Lis(1 - RQ)) = O(R?). (A.3)
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A.2 Beam-jet interference terms

The beam-jet interference term with the gluon out of both beams is simplest to compute
in the polar coordinates about the beam axis. Defining cos 6. = t. = tanh ycyt, it can be
written as

I3 =I5 + 1i, +I§J
(1 _ CJ)67E6 /'71'—9(; ) /7r L 1 1
= df 0 df ‘o
2ﬁ1“(1/2—e) e 1S 0 2 S 21—011—CJ01—8J8162
e’)/E6

te dey 1—c ~
= Fi(1/2,1;1 — ¢ A4
9 /_tcl—C%l—ClQJQ 1(/7 ) 6,2), ( )

where z = (1 — c2)(1 —c%)/(1 — c1c)?. We can proceed by extracting the c; = ¢; singular
via the identity

- (1 NZS 1—ciep\'H*
Bz 11-6z)= e
2 1(2’ ’ 6’Z> I'(1/2 — €) cos e [z <|01—CJ)

- F(el\/fe)gﬁl <; 1; ; +el— Z)} - (A9

The singularities are regulated by the |¢; — ¢ J|_1_26 in the first term in brackets on the

right hand side of eq. (A.5) (and the second term is finite and O(e)). After adding and
subtracting the rest of the functional dependence on ¢y, f(c1), at the point ¢; = ¢ (so that
lep — ey 7172 (f(c1) = f(cy)) can safely be expanded in €) and performing some algebra,
we arrive at the result

YEE€
T8 = rimo ] g * 5[ (0 = 1) In (1= 2t

—€ B In2 (1 _6_2(ycut_yJ)) + Lis (6_2(ycut_yJ)) _|_% In2 (1 _6_2(96ut+y.1)):|}

S O(e Ve A
_F(l—e) |:_2€+ycut_yJ+ (6 ):| ( 6)

For the jet region subtraction term S j 5, in coordinates about the jet axis, we have

1—cy)eree /R - T .
A _ (d—ey)eree dfy sin' %0 / do 29
BT = o/mr(1/2 —€) Jo L " Jo 2 52

1 1
1— 21€
% 17011761161*5]5102[ (CJCI+8J8162) }
(1—cy)erEe /1 L
T 2V/A0(1/2— ) dei(l = ‘ A.
AT (1/2= ) Jeor ) (A7)

where we defined

flo)=0+c)° /wdQQ sin—% 6, [1 = (ce+s(1 = ) 2e)?f (A.8)

0 1 —cjc—s5(1—c2)2c

~32 -



Up to corrections that scale as O(R?), we can set f(c) = f(1) which is just

aV/AT(2— ) A9

1) = 1—CJ 5 I'(l—e

Using the substitution eq. (2.6), we find

g e Ly 2
IBJ_*F(l*E)QER +O(R7). (A.10)

A.3 Jet-jet interference terms

For the jet-jet interference terms, we work in coordinates about the jet axes in the frame
where they are back-to-back, and then convert to lab frame variables. For the term with
the gluon allowed anywhere, labeling the jets as 1 and 2, we have in the frame of back-to-
back jets,

e’)’E€ . .
Ijéj fFl/Q—e / d9151n1201/d9251n292

1— 2

1z 1+ [1— (cser + sgs1¢2)?]
T o [ et — ) e Al
N IED) /0 a(l—e)” " glar), (A.11)

where we defined
glc) =(1+ c)‘l‘e/ 0y sin=2 05 [1 — (e + s(1 — ) V2e) %] . (A.12)
0

As before, we can add and subtract g(1), with

2717 L, /7l(1/2 —¢)
1_st?, NS (A.13)

9(1) =

and expand the part of the integrand with (1 —u)™'~¢(f(u) — f(1)) in e. To evaluate the
result, note that

T 1-— 1—¢2 1/2 1— 2 1/2 P 2
hcy,c1) = l do In (cch + ( 1)< ( CJ) cos )

—c? 2
In [% (%) } for |c1| < |ey]

= o , (A.14)
21n el for |e1| > |ey]
and that . )
dey ™ 1. 51—¢cy
=——+4 =1 A.15
/0 T ¢ f(CJvcl) e tal e (A.15)
to finally obtain
Ee (1 —cos? 0\ 1 1-
Ilncl € cos” s - — 4 = 1 2 76‘] (A16)
I'l—e 4 e 2 l+cy

— 33 —



Noting that ¢y = cosf; in the back-to-back frame is related to the jet rapidities in the lab
frame via cosf; = tanh Ay /2 (cf. eq. (4.24)), we find

T = — g (eosh(/2) |1 - Sy
I'(1—e e 2
— (2cosh(Ay/2)) " [1 N 7;;] | (A.17)
For the jet region subtraction terms, we have
T}, = e 2/1 dey(1—c1) 1 ¢g(er), (A.18)
VaL(1/2 =€) Jeosr

which now involves the integral of h(cys,c1) (cf. eq. (A.14)) over the range ¢; € (cos R, 1)
with ¢; < cos R (so only the case |ci| > |cy| is needed). After some algebra and using the
substitution tan R/2 — R /(2 cosh Ay/2), we arrive at the result

eEe 1

Ty = ————R7% Al
27— 2 (4.19)

B Review of renormalization and RG evolution

In this appendix we review renormalization and RG evolution for multiplicatively renor-
malized functions that are trivial in color-space (namely, the unmeasured jet and beam
functions) and for functions of 7, which renormalize and evolve via a convolution (such
as measured jet functions and the measured part of the soft function). The RGE for the
non-trivial color-space matrix components of the hard and (unmeasured) soft functions is
derived explicitly in section 5.1 and section 5.3, respectively.
Renormalization of the multiplicative-type functions which are trivial in color-space
takes the form
FP = Zp(u)F(p) . (B.1)

The independence of the left-hand side on p gives rise the RG evolution equation,

uiﬂmzwmww, (B.2)

where the anomalous dimension vz is defined as

1 d
Yr(p) = — p——2Zr (1), B.3
(19 = = gy 2 1) (5.3)
and to all orders in « takes the form,
12
Yr(p) =Trplo]ln —5 +ypla] (B.4)
mg

where I'r[a] and vr[a] have the expansions

Trlas] = (Z‘;)ro + (Z‘;)zrg T (B.5)
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and

2
— ()0 (S ) A4
vrlas] = <47r>’YF + (471') g+ (B.6)
The RGE eq. (B.2) has the solution

where the evolution kernel Iy is given by

wr (,10)
T (1, o) = €<F (40) (ﬁ) , (B8)

where Kp(u, o) and wre(u, po) will be defined below in eq. (B.15).
Renormalization of functions which depend on the jet shape, 7,, takes the form of a
convolution,

() = [z~ o) P, (B.9)
and satisfies the RGE

d
:U’@F(Tav H) = /dT(/z ’VF(T(I - T(/za /J“)F(T(/z’ :U‘) ) (BlO)

with the anomalous dimension in this case given by

_ d
(o) = — / 7, 2 (= T w2 o) (B.11)

and taking the general form

T 2
e (ras 1) = —Tplo] (; [@;“)L ity m)) T elasld(ra) (B.12)

The solution of eq. (B.10) is

F(Tanu) = /dT/ UF(Ta - T(;a Na.UO)F(T(;a,UO) s (B'13)

where to all orders in a; the evolution kernel Up is given by [74-78]

eKr+ypwr Lo JFWF G(Ta)
Ur(Tas s o) = T(—wr) <mF> [(Ta)HwFL’ (B.14)

where g is the Euler constant.
The exponents wg(u, po) and Kp(p, po) of egs. (B.8) and (B.14) are given by (where
we set jp = 1 in the multiplicative case of eq. (B.4))

2 as(1) do
wr () = = / o Fgtel (B.15a)
as() doy as() do o do’
Kr(p, o) = Sl p Bl . B.15b
#(u: o) /aswo) Bl T /asw By F1°! /aswo) Bla] (B-15)
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At NLL (and NLL’) accuracy we can write wr(u, o) and Kpr(p, o) as

Y F(I; /81 O[s(/JIO)
wF(M"u’O)‘NLL = _jF%O [lnr + (Fg — 50) i (r— 1)} , (B.16a)
'yF 27TF2 [r—l—rlnr
K In
F(/"LHU’O)‘NLL Qﬂo (/80)2 as(ﬂ)
' g\l—r+Inr B1 | 9
£ _— | B.16b
+<F2 ﬁo) i Snh }  (B16D)

where r = a4(u)/as(po), which can be evaluated at two loops via the equation,

1 1 50 < 0 ) B [ Bo ( p )}
+ — + In |1+ —as(Mz)In , B.17
as(,u) (Mz> MZ 471'50 2 ( Z) MZ ( )
with By, 81 are the one-loop and two-loop coefficients of the beta function,
Blas] = LT Bo(22) + 5 as 2+ (B.18)
sl =M dn s [P\ 4 1 ) .

and where (with Tg set to 1/2)

LCy 2Ny B = 34C%  10CaN;

fo=—3 3 3 3

—2CpNy . (B.19)

In eq. (B.16), we have used that I'p[ag] for F'= H, J, S (hard, jet, and soft) is propor-
tional to I'cysp[cvs], where

2
« o
Ceusplas] = (4;>F2 + <47r> it (B.20)
Here 1“2 = 4 and the ratio of the one-loop and two-loop coefficients of I'cygp, is [79)]
r, (67 =° o, 10Ny (B.21)
0 \9 3)74 9 '

At NLL’, we will need both I'} and B; in the expressions of wr and Ky for NLL’ resum-
mation.
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