
J
H
E
P
0
4
(
2
0
1
6
)
0
9
6

Published for SISSA by Springer

Received: February 26, 2016

Revised: March 31, 2016

Accepted: April 1, 2016

Published: April 15, 2016

Holographic construction of excited CFT states

Ariana Christodoulou and Kostas Skenderis

STAG Research Centre and Mathematical Sciences, University of Southampton,

High-field, Southampton SO17 1BJ, U.K.

E-mail: misc1g13@soton.ac.uk, K.Skenderis@soton.ac.uk

Abstract: We present a systematic construction of bulk solutions that are dual to CFT

excited states. The bulk solution is constructed perturbatively in bulk fields. The linearised

solution is universal and depends only on the conformal dimension of the primary operator

that is associated with the state via the operator-state correspondence, while higher order

terms depend on detailed properties of the operator, such as its OPE with itself and gener-

ally involve many bulk fields. We illustrate the discussion with the holographic construction

of the universal part of the solution for states of two dimensional CFTs, either on R× S1

or on R1,1. We compute the 1-point function both in the CFT and in the bulk, finding

exact agreement. We comment on the relation with other reconstruction approaches.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence

ArXiv ePrint: 1602.02039

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP04(2016)096

mailto:misc1g13@soton.ac.uk
mailto:K.Skenderis@soton.ac.uk
http://arxiv.org/abs/1602.02039
http://dx.doi.org/10.1007/JHEP04(2016)096


J
H
E
P
0
4
(
2
0
1
6
)
0
9
6

Contents

1 Introduction 1

2 Quantum field theory considerations 4

3 Global AdS 6

3.1 Lorentzian solution 7

3.2 Euclidean solution 8

3.3 Matching conditions 9

3.4 1-point function 13

4 Poincaré AdS 14
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1 Introduction

A central question in holography is how the bulk is reconstructed from QFT data. In this

paper we would like to ask and answer a simpler question:“what is the bulk dual of a CFT

state?” While it has been clear since the early days of AdS/CFT that normalisable bulk

solutions are related to states [1], a precise construction of a bulk solution given a state

has not been available prior to this work.1

The construction is an application of the real-time gauge/gravity dictionary [8, 9] and

it can be applied to any state that has a (super)gravity description. We will however focus

on a simple example: a state that to leading order in a large N limit can be described by a

1A related question that received more attention over the years is the converse: given a bulk solution

with normalisable asymptotics what is the dual state? For such solutions, the leading order asymptotic

behavior of the solution is related with the 1-point function of the gauge invariant operators in a state

and from the 1-point functions one may extract information about the dual states. Examples of such

computations include the computation of 1-point functions for the solutions corresponding to the Coulomb

branch of N = 4 SYM [2], the 1-point functions for the LLM solutions [3] in [4] and 1-point functions for

fuzzball solutions [5–7].
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scalar field in a fixed AdS background. An additional motivation for studying this example

is that the bulk solution appeared also in related work [10] and we will discuss similarities

and differences with that work.

Let us briefly review what is known about bulk reconstruction using the example of a

scalar field in a fixed background, starting first with the case of Euclidean signature. It is

well known that a scalar field Φ of mass m2 = ∆(∆− d) in AdSd+1 is dual to an operator

O∆ of dimension ∆. The bulk field has an asymptotic expansion of the form [11]

Φ(r, x) = rd−∆φ(0)(x) + · · ·+ r∆ log r2ψ(2∆−d)(x) + r∆φ(2∆−d)(x) + . . . (1.1)

where r is the holographic (radial) direction and x denotes the collective set of boundary

coordinates. φ(0)(x) is the source for the dual operator and φ(2∆−d)(x) is related to the

1-point function,

〈O∆〉 = (2∆− d)φ(2∆−d)(x) +X(φ(0)), (1.2)

where X(φ(0)) is a local function of the source φ(0) (whose exact form depends on the bulk

theory under discussion). φ(0)(x) and φ(2∆−d)(x) are the only two arbitrary coefficient

functions in the above expansion. All subleading terms down to r∆ (including ψ(2∆−d)

but not φ(2∆−d)(x)) are locally related to φ(0)(x) and similarly all terms that appear at

higher orders can be determined in terms of φ(0) and φ(2∆−d)(x). Thus, given the pair

(φ(0)(x), φ(2∆−d)(x)) one can iteratively construct a unique bulk solution. A different (non-

perturbative) argument for uniqueness is to note that the 1-point function is the canonical

momentum π∆ in a radial Hamiltonian formalism [12] and by a standard Hamiltonian

argument, specifying a conjugate pair (φ(0), π∆) uniquely picks a solution of the theory.

This argument however does not tell us whether the solution is regular in the interior.

Indeed in quantum field theory, the vacuum structure is a dynamical question: in general

one cannot tune the value of 〈O∆〉. The counterpart of this statement is that a generic pair

(φ(0), π∆) leads to a singular solution2 and it is regularity in the interior that selects 〈O∆〉.
In Lorentzian signature new complications arise. In the bulk, boundary conditions

alone do not determine a unique solution: Lorentzian AdS is a non-hyperbolic manifold.

Indeed, there exist normalisable modes which are regular in the interior and vanish at the

boundary, leaving the boundary data unaffected.

On the QFT side, there are related issues. While in Euclidean signature there is

only one type of correlator, in Lorentzian signature, there are multiple types of correla-

tors (time-ordered, Wightman functions, advanced, retarded, etc.). In addition, one may

wish to consider these correlators on non-trivial states (such as thermal states, states that

spontaneously break some symmetries, general non-equilibrium states). All of this data

may be nicely encoded by providing a contour in the complex time plane and considering

the path integral defined along this contour. Different types of correlators and different

initial/final states are encoded by operator insertions along this contour. This is known as

the Schwinger-Keldysh formalism [13–16].

2Some of these pairs do not correspond to QFT data at all while others are singular in supergravity but

they would be regular in string theory. It is not currently known how to distinguish between the two cases.
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Figure 1. In-in time contour (left) and corresponding AdS manifold (right). The manifolds labeled

by L are empty Lorentzian AdS and those labeled by E are empty, Euclidean AdS.

A bulk version of this formalism was developed in [8, 9]: the gauge/gravity duality acts

in a piece-wise fashion on the various parts of the time contour and appropriate matching

conditions are imposed at the corners. More specifically, real time pieces of the contour

are associated with Lorentzian AdS manifolds, imaginary time pieces with Euclidean AdS

manifolds and the matching conditions require that the fields and their conjugate momenta

are continuous across the different manifolds. In this way, the initial conditions are traded

for boundary condition in the Euclidean parts of the spacetime. In this formalism, imposing

boundary conditions on the entire bulk manifold, uniquely specifies the bulk solution, as

in the Euclidean case.

This is a general method that may be used to study correlation functions in general

non-equilibrium states. In this paper we will use it to construct a bulk solution that

corresponds to an excited CFT state. By the operator-state correspondence any such state

may be obtained by acting with scalar primary operators O∆ on the CFT vacuum,

|∆〉 = O∆|0〉. (1.3)

In the Schwinger-Keldysh formalism, in-in correlators in this state may be obtained by

considering the in-in contour C on the left panel of figure 1. On the gravity side we

consider the manifold corresponding to the in-in field theory time contour shown in the

right panel of figure 1. The operator O∆ corresponds to a massive bulk scalar field and we

will solve the scalar field equation in all four parts of the bulk spacetime. The boundary

conditions we use are sources turned on in the two Euclidean manifolds , i.e. φ(0)(x) 6= 0 for

x ∈ ∂E where ∂E the boundary of the Euclidean manifolds. In the Lorentzian manifolds

we want purely normalisable solutions so we set the sources equal to zero, i.e. φ(0)(x) = 0

for x ∈ ∂L where ∂L is the boundary of the Lorentzian manifolds.

This paper is organised as follows. In the next section we discuss the QFT computation

of the expectation value of operators in this state. We will later compute the same quantity

by a bulk computation in order to confirm that the bulk solution indeed represents the state

it should. In section 3 we discuss the construction of the solution dual to a state of a two

dimensional CFT on R × S1, while in section 4 we solve the same problem for a CFT

– 3 –
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on R1,1. We conclude in section 5, where we also discuss the relation with the work [10].

Appendix A contains a number of technical details relevant for section 4.

As this paper was finalised, we received [17] which presents related material. Prelimi-

nary version of this work was presented in a number of international workshops [18].

2 Quantum field theory considerations

In this section we setup the problem using the Schwinger-Keldysh formalism. Let us denote

by φ(0) the source that couples to O∆. We would like to compute expectation values in the

state |∆〉 = O∆|0〉, inserted at ~x = t = 0. To realise this set up we consider the contour

shown in figure 2. We insert the operator O∆ at small imaginary distance τ0 = −ε at t = 0

and at τ3 = ε at t2 = 2T , where τ0, t1, t2 and τ3 are contour times in the four segments. In

complexified time the insertions are at t = 0 + iε and t = 0− iε. Performing the Euclidean

path integral over the imaginary part of the contour provides the initial and final conditions

for the Lorentzian path integral. Altogether the path integral under consideration is

Z
[
φ(0); C

]
=

∫
[Dφ] exp

[
−i
∫
C

dtdd−1x
√
−g(0)

(
LQFT + φ(0)(x)O∆(x)

)]
(2.1)

If we compute this path integral for general φ(0)(x) and then differentiate w.r.t. φ+
(0) and

φ−(0), where φ±(0) = φ(0)(0±,~0) and 0± = 0± iε, and then set to zero the sources in the imag-

inary part of the contour, the resulting expression will be the desired generating functional

of in-in correlators in the state |∆〉.
In later sections we will construct the gauge/gravity analogue of (2.1). Corresponding

to φ(0) there is bulk scalar field Φ and the best we can currently do holographically is

to construct (2.1) perturbatively in the bulk fields (or perturbatively in a large N limit,

see below). Correspondingly we will consider the source φ(0)(x) in the imaginary part as

being infinitesimal, with the product of the two sources at the same point set to zero,

(φ(0)(x))2 = 0, so that we generate a single insertion. If we relax this condition we will

generate states that are superpositions of the states associated with “single trace” and

“multi-trace” operators. The path integral (2.1) with φ(0)(x) infinitesimal also contains

terms linear in the sources which would not contribute if we were to differentiate w.r.t.

both φ+
(0) and φ−(0). However, these linear terms still provide a non-trivial check that we are

constructing holographically the correct path integral and as such we will consider them

in detail.

Let Oi be gauge invariant operators. Their 1-point function is given by

〈Oi(t, ~x)〉 =

∫
[Dφ]Oi(t, ~x) exp

[
− i
∫
C

dt′dd−1~x′
√
−g(0)

(
LQFT + φ(0)(x

′)O∆(x′)
) ]
.

(2.2)

Expanding in the sources we obtain

〈Oi(t, ~x)〉 = φ+
(0)〈0|O∆(0+,~0)Oi(t, ~x)|0〉+ φ−(0)〈0|Oi(t, ~x)O∆(0−,~0)|0〉

+ φ+
(0)φ

−
(0)〈0|O∆(0+,~0)Oi(t, ~x)O∆(0−,~0)|0〉. (2.3)

= φ+
(0)〈∆|Oi(t, ~x)|0〉+ φ−(0)〈0|Oi(t, ~x)|∆〉+ φ+

(0)φ
−
(0)〈∆|Oi(t, ~x)|∆〉
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Figure 2. In-in complex time contour with operator insertions at t = 0± iε.

Note that the correlators that appear here are all Wightman functions, as can be seen

from the time contour. The expectation value of Oi in the state |∆〉 appears in the terms

quadratic in the sources. As mentioned above, we kept the terms linear in the sources

because these terms may be used as a non-trivial check that we construct the correct

path integral.

If we linearise in the sources then only the contribution of the first line of (2.3) survives.

This corresponds in gauge/gravity duality to linearising the bulk field equations. In this

case the 1-point function is related to the 2-point function at the conformal point. Since

2-point functions in CFT are diagonal then the only operator that has a non-zero 1-point

function is precisely the operator associated with the excited state

〈O∆〉 6= 0, 〈Oi〉 = 0 (linear approximation) (2.4)

This implies that if we want to work out the linearised bulk solution dual to the state |∆〉,
it suffices to only consider the bulk field that is dual to the operator O∆ in a fixed AdS

background.3

This is no longer the case if we consider the full field equations, as now the second line

in (2.3) is also relevant and

〈O∆〉 6= 0, 〈Oi〉 6= 0, (2.5)

for all operators Oi that appear in the OPE of O∆ with itself (so that the 3-point function

in (2.3) is non-zero). This implies that the bulk solution will now include all bulk fields

that are dual to these operators. In particular, the energy momentum tensor Tij appears

in the OPE so one can no longer ignore the back-reaction to the metric.

The CFTs that appear in gauge/gravity duality admit a ’t Hooft large N limit and

one may also use the large N limit to organise the bulk reconstruction. In particular, if we

normalise the operators such that their 2-point function is independent of N , then 3- and

higher-point functions go to zero as N →∞. With this normalisation, the first line in (2.3)

is the leading order term in the large N limit. We would like to emphasise however that

3Note that if we set φ+
(0) = φ−(0) ≡ φ(0) (with φ(0) infinitesimal) and the bulk action is quadratic in Φ so

that the linear approximation is exact, the bulk solution would have the interpretation as being dual to the

state |0〉+φ(0)|∆〉. In this paper we are taking the view that the bulk action contains interaction terms and

the linear approximation is the first step towards constructing the full solution perturbatively. From the

full solution one may extract the in-in correlators in the state |∆〉 by computing the renormalised on-shell

action and keeping the terms proportional to φ+
(0)φ

−
(0).

– 5 –
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with this normalisation not all 1/N2 terms correspond to non-planar corrections (quantum

corrections in the bulk).

An alternative normalisation is to normalise the operators such that all connected n-

point function scale as N2 to leading order (i.e. computed using planar diagrams). With this

normalisation all 1/N2 corrections are associated with non-planar diagrams. In AdS/CFT

this normalisation is known as the “supergravity normalisation”: all leading order factors

of N come from Newton’s constant and 1/N2 corrections are due to quantum corrections

(loop diagrams).

Either way the leading order construction of the bulk solution dual to a state is uni-

versal while the higher order terms depend on the CFT under consideration. In this paper

we will discuss in detail the universal part of the construction. The method can be readily

extended to higher order once the CFT input is given.

To keep the technicalities at the minimum we will discuss the case of 2d CFT either on

R× S1 (with coordinates (t, φ)) or on R1,1 (with coordinates (t, x)) and we set the source

equal to one, φ±(0) = 1. For a CFT on R × S1 the 1-point function in the first line in (2.3)

then gives,

〈O∆(t, φ)〉 =
C

(cos(t− iε)− cosφ)∆
+

C

(cos(t+ iε)− cosφ)∆
, (2.6)

while for a CFT on R1,1 we obtain

〈O∆(t, φ)〉 =
C̃

(−(t− iε)2 + x2)∆
+

C̃

(−(t+ iε)2 + x2)∆
, (2.7)

where C and C̃ are the normalisations of the 2-point functions in the two cases.4 The bulk

solution dual to this state in global AdS should reproduce (2.6) while the bulk solution in

Poincaré AdS should yield (2.7).

3 Global AdS

As discussed in the previous section if we want to obtain the bulk solution dual to the state

|∆〉 = O∆|0〉 of a CFT on R × S1 to linear order in the sources, it suffices to consider a

free scalar Φ of mass m2 = ∆(∆− 2) in global AdS – this field is dual to the operator O∆.

We will take ∆ = 1 + l with l = 0, 1, 2, . . ., as this is the case in most models embedded in

string theory, though the results hold for any ∆ ≥ 1 with minimal changes. We will also

set 1/16πGN = 1, ` = 1, where GN is the three dimensional Newton constant and ` is the

AdS radius.

The appropriate spacetime is that in the right panel of figure 1, with the Lorentzian

pieces being global Lorenzian AdS spacetimes and the Euclidean ones, their Wick rotated

version. The real-time gauge/gravity prescription instructs us to solve the field equations

of the scalar Φ in the four different parts of the spacetime and then match them. Since

we are only aiming at constructing the leading order universal part, it suffices to solve the

free field equations.

4 Actually, since R × S1 and R1,1 are conformally related one may relate (2.6) and (2.7) and then

C̃ = 2∆C [9].

– 6 –



J
H
E
P
0
4
(
2
0
1
6
)
0
9
6

3.1 Lorentzian solution

The metric for global AdS2+1 and for Lorentzian signature can be written as

ds2 = −(1 + r2)dt2 +
dr2

1 + r2
+ r2dφ2. (3.1)

In these coordinates the conformal boundary of AdS is at r → ∞. The field equation

describing a massive scalar field propagating in this background without back-reaction is

given by (
(1 + r2)∂2

r +
1 + 3r2

r
∂r −

1

1 + r2
∂2
t +

1

r2
∂2
φ −m2

)
Φ(t, r, φ) = 0. (3.2)

Substituting the solution ansatz

e−iωt+ikφf(ω, k, r) (3.3)

one finds that f(ω, k, r) satisfies

0 = (1 + r2)f ′′ +
3r2 + 1

r
f ′ −

(
k2

r2
− ω2

r2 + 1
+m2

)
f. (3.4)

where the prime denotes a derivative w.r.t. r. The solution of this ODE is given in terms

of a hypergeometric function,

f(ω, k, r) = Cωkl(1 + r2)ω/2r|k| 2F1(ω̂kl, ω̂kl − l; |k|+ 1;−r2) (3.5)

where l = ∆− 1 = {0, 1, 2, . . . }, ∆ = 1 +
√

1 +m2, ω̂kl = (ω + |k|+ l+ 1)/2, k ∈ Z, ω ∈ R
and Cωkl = (Γ(ω̂kl)Γ(ω̂kl−ω))/((l−1)! |k|!). The normalisation constant has been chosen to

make the coefficient of the leading order term in the near boundary expansion of f(ω, k, r)

equal to 1. Note that f(ω, k, r) = f(ω,−k, r) = f(ω, |k|r) and f(ω, k, r) = f(−ω, k, r).
Near the conformal boundary the solution admits the following series expansion in r,

f(ω, |k|, r) = rl−1 + · · ·+ r−l−1α(ω, |k|, l)
[
ln(r2) + β(ω, |k|, l)

]
+ . . . (3.6)

where

α(ω, |k|, l) =
(ω̂kl − l)l(ω̂kl − |k| − l)l

l! (l − 1)!
(3.7a)

β(ω, |k|, l) = −ψ(ω̂kl)− ψ(ω̂kl − l − ω). (3.7b)

From this expression we see that the modes have simple poles in the ω plane which appear

at normalisable order, i.e. at r−l−1 = r−∆. Thus, by integrating over ω, in the absence of

sources, we obtain the normalisable modes.

– 7 –
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The poles of f(ω, k, r) are at ω = ω±nk = ±(2n + |k| + l + 1), n ∈ N. It follows that

near the conformal boundary the normalisable modes are given by

g(ωnk, |k|, r) =
1

4π2i

∮
ωnk

dω f(ω, |k|, r)

=
1

4π2i

∮
ωnk

dω

[
non-norm. term +

(ω̂kl − l)l (ω̂kl − |k| − l)l
l!(l − 1)!

(
ln(r2)

− ψ(ω̂kl)− ψ(ω̂kl − ω − l)
)

+ . . .

]
=

1

π
r−l−1 (n+ |k|+ 1)l(n+ l)!

n!l!(l − 1)!
+ . . . (3.8)

where the contours are defined clockwise for the poles at ω+
nk and counterclockwise for poles

at ω−nk such that g(ω+
nk, |k|, r) = g(ω−nk, |k|, r). Combining this result with equation (3.5)

allows us to extend the normalisable modes to finite r,

rlg(ωnk, |k|, r) =
1

π
r|k|(1 + r2)−

|k|+l+1
2

(n+ 1)l(n+ |k|+ 1)l
l!(l − 1)!

2F1

(
n+ |k|+ l + 1,−n; l + 1;

1

1 + r2

)
. (3.9)

Then, a normalisable Lorentzian solution has the form

ΦL(t, r, φ) =
∑
k∈Z

∞∑
n=0

(
bnk e−iω

+
nkt+ikφ + b†nk e−iω

−
nkt−ikφ

)
g(ωnk, |k|, r), (3.10)

where bnk and b†nk are arbitrary coefficients, to be determined from the matching conditions.

3.2 Euclidean solution

The metric for global AdS2+1 and for Euclidean signature can be obtained from the

Lorentzian one, (3.1), by Wick rotation, t = −iτ . Similarly, one may obtain the Euclidean

solutions by analytically continuing the Lorentzian modes,

e−ωτ+ikφf(ω, k, r) = Cωkl e
−ωτ+ikφ(1 + r2)ω/2r|k|

2F1(ω̂kl, ω̂kl − l; |k|+ 1;−r2). (3.11)

In accordance with our choice of boundary conditions, the general solution in the Euclidean

caps requires that we turn on a source φ(0)(τ, φ) on the boundary. Since we are working

with momentum modes, we need to express the source in momentum space. For a general

source φ−(0)(τ, φ) with support on the boundary of the past Euclidean cap and away from

the matching surface at τ = 0 we have

φ−(0)(ω, k) =

∫ 2π

0
dφ

∫ 0

−∞
dτ eωτ−ikφφ−(0)(τ, φ) (3.12)

– 8 –
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Since the range of τ is over the half real line only, it is natural to use Laplace rather than

Fourier transforms. Using this, the most general solution in the past Euclidean cap is

Φ−E(τ, r, φ) =
1

4π2i

∑
k∈Z

∫ i∞

−i∞
dω e−ωτ+ikφφ−(0)(ω, k)f(ω, |k|, r)

+
∑
k∈Z

∞∑
n=0

d−nke
−ω−nkτ+ikφg(ωnk, k, r) (3.13)

where the integration over ω is along the imaginary axis and g(ωnk, |k|, r) is defined in (3.9).

The second term in equation (3.13) is included to make the solution as general as possible.

It behaves as r−l−1 near the boundary and it decays exponentially as τ → −∞ so it does

not affect the asymptotic behaviour of the solution and, therefore, it can not be excluded.

To explicitly see that the solution has a source term, recall that for large r, f has the

expansion in (3.6) and thus the Euclidean solution asymptotes to5

Φ−E(τ, r, φ) = rl−1 1

4π2i

∑
k∈Z

∫ i∞

−i∞
dω e−ωτ+ikφφ−(0)(ω, k) +O(rl−2)

= rl−1φ(0)(τ, φ) +O(rl−2) (3.14)

In this paper we choose the source profile to be a δ-function localised at (τ, φ) = (−ε, 0),

ε > 0, i.e. φ−(0) (τ, φ) = δ(τ + ε)δ(x), which implies φ−(0)(ω, k) = exp(−ωε).
The integral over ω can be done explicitly close to the matching surface using contour

integration. Denoting time in the past Euclidean cap by τ0 and considering −ε < τ0 ≤ 0 we

close the ω-contour to the right (such that Re(ω) > 0), and picking up the contributions

from the poles at ω = ω+
nk we obtain

Φ−E(τ0, r, φ) =
∑
k∈Z

∞∑
n=0

(
φ−(0)(ω

+
nk, k)e−ω

+
nkτ0+ikφ + d−nke

−ω−nkτ0+ikφ
)
g(ωnk, |k|, r). (3.15)

The analysis for the future Euclidean cap follows along the same lines. In particular,

denoting Euclidean time in the future Euclidean cap by τ3, 0 ≤ τ3 < ∞, and using a

δ-function source localised at (τ3, φ) = (ε, 0) where ε is the same as for the past Euclidean

cap, φ+
(0)(τ3, φ) = δ(τ3 − ε)δ(φ), φ+

(0)(ω, k) = exp(ωε) and considering the solution close to

the matching surface, 0 ≤ τ3 < ε, we obtain

Φ+
E(τ3, r, φ) =

∑
k∈Z

∞∑
n=0

(
φ+

(0)(ω
−
nk, k)e−ω

−
nkτ3+ikφ + d̃+

nke
−ω+

nkτ3+ikφ
)
g(ωnk, |k|, r). (3.16)

3.3 Matching conditions

The time contour considered here is the in-in contour shown on the left of figure 3, with

the corresponding AdS manifold shown on the right. It runs from i∞ to 0, then to T , then

5Here we assume that the source admits a Laplace transform. This is true in particular if φ(0)(ω, k)

can be extended to a meromorphic function with no singularities for Re(ω) > c, for some finite c. Here for

simplicity we take c = 0.
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τ0

τ3

t1

t2

T
×

×

ε

−ε

τ3

t1

Lt2

L

T

2T

τ0

E

E

ε

−ε

×

×

Figure 3. In-in time contour (left) and corresponding AdS manifold (right).

back to 0 and then to −i∞. Accordingly, the contour-integrated action is

S =−
∫ 0

−∞
dτ0 LE(Φ−E) + i

∫ T

0
dt1 LL(Φ1

L)− i
∫ 2T

T
dt2 LL(Φ2

L)−
∫ ∞

0
dτ3 LE(Φ+

E). (3.17)

where

LE = 1
2

∫
d3x
√
g
(
gµν∂µΦE∂νΦE +m2Φ2

E

)
(3.18)

and

LL = −1
2

∫
d3x
√
−g
(
gµν∂µΦL∂νΦL −m2Φ2

L

)
. (3.19)

The matching conditions are

Φ−E
∣∣
τ0=0

= Φ1
L

∣∣
t1=0

, ∂τ0Φ−E
∣∣
τ0=0

= −i∂t1Φ1
L

∣∣
t1=0

Φ1
L

∣∣
t1=T

= Φ2
L

∣∣
t2=T

, ∂t1Φ1
L

∣∣
t1=T

= −∂t2Φ2
L

∣∣
t2=T

(3.20)

Φ2
L

∣∣
t2=2T

= Φ+
E

∣∣
τ3=0

, ∂t2Φ2
L

∣∣
t2=2T

= −i∂τ3Φ+
E

∣∣
τ3=0

.

From the previous section we have that the solutions in the four manifolds are

− ε < τ0 ≤ 0 :

Φ−E(τ0, r, φ) =
∑
k∈Z

∞∑
n=0

(
φ−(0)(ω

+
nk, k)e−ω

+
nkτ0+ikφ + d−nke

−ω−nkτ0+ikφ
)
g(ωnk, |k|, r) (3.21a)

0 ≤ τ3 < ε :

Φ+
E(τ3, r, φ) =

∑
k∈Z

∞∑
n=0

(
φ+

(0)(ω
−
nk, k)e−ω

−
nkτ3+ikφ + d̃+

nke
−ω+

nkτ3+ikφ
)
g(ωnk, |k|, r) (3.21b)

0 ≤ t1 ≤ T :

Φ1
L(t1, r, φ) =

∑
k∈Z

∞∑
n=0

(
bnk e−iω

+
nkt1+ikφ + b†nk e−iω

−
nkt1−ikφ

)
g(ωnk, |k|, r), (3.21c)
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T ≤ t2 ≤ 2T :

Φ2
L(t2, r, φ) =

∑
k∈Z

∞∑
n=0

(
b̃nk e−iω

+
nkt2+ikφ + b̃†nk e−iω

−
nkt2−ikφ

)
g(ωnk, |k|, r) . (3.21d)

Applying to these the matching conditions we obtain the following relations: from the

matching conditions at τ0 = 0, t1 = 0

bnk =φ−(0)(ω
+
nk, k) = e−ω

+
nkε, (3.22a)

b†nk =d−nk. (3.22b)

From the matching conditions at t1 = T, t2 = T

b†nk = b̃nke
−2iω+

nkT , (3.23a)

bnk = b̃†nke
−2iω−nkT . (3.23b)

Finally, from the matching conditions at t2 = 2T, τ3 = 0

b̃nk = φ+
(0)(ω

−
nk, k)e−2iω−nkT = e−iω

−
nk(2T+iε), (3.24a)

b̃†nk = d̃+
nke
−2iω+

nkT . (3.24b)

Note that had we chosen the position in complex time where we insert the sources to

be different for the two caps, say τ0,source = −ε and τ3,source = ε̃ where ε̃ > 0, then the

relationships bnk =
(
b†nk

)∗
and b̃nk =

(
b̃†nk

)∗
would have implied that ε = ε̃.

In what follows we refer to terms proportional to e−iω
+
nkt (eω

+
nkτ for Euclidean) as the

positive frequency modes and e−iω
−
nkt (e−ω

−
nkτ for Euclidean) as the negative frequency

modes. From the matching conditions we observe that the positive frequency exponential

source modes from the past Euclidean cap source the positive frequency oscillatory nor-

malisable modes in the first Lorentzian manifold. As these modes evolve into the second

Lorentzian manifold they give rise to the negative frequency oscillatory normalisable modes.

Finally, they become positive frequency normalisable modes in the future Euclidean cap.

The negative frequency source modes from the past Euclidean manifold decay and do not

enter the Lorentzian manifolds. In addition to source modes, there are negative frequency

normalisable modes in the past Euclidean manifold. These modes come from negative

frequency source modes in the future Euclidean cap which become positive frequency nor-

malisable modes in the second Lorentzian manifold, then evolve into negative frequency

normalisable modes in the first Lorentzian manifold and finally they give rise to negative

normalisable modes in the past Euclidean cap. The absence of positive frequency normalis-

able modes in the past Euclidean manifold is due to the fact that these grow exponentially

as τ0 → −∞. Schematically, the different modes evolved as shown below: starting from

the past Euclidean modes,

φ−0 (ω+
nk, k) −→ bnk −→ b̃†nke

−2iω−nkT −→ d̃+
nk

φ−(0)(ω
−
nk, k) −→ decay (3.25)

d−nk −→ b†nk −→ b̃nke
−2iω+

nkT −→ φ+
(0)(ω

−
nk, k),

– 11 –
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ε−ε

τ0
0

Past Euclidean

t1

T

Lorentzian

t2

2T

Lorentzian

τ3

Future Euclidean

(a) Mode parameters: n = 2, k = 1, l = 1, r = 1, φ = 0, ε = 0.1

ε
−ετ0

0

Past Euclidean

t1

T

Lorentzian

t2

2T

Lorentzian

τ3

Future Euclidean

(b) Mode parameters: n = 4, k = 2, l = 3, r = 1, φ = 0, ε = 0.1

Figure 4. Tracing individual modes through the four segments of the manifold.

and, similarly, starting from the future Euclidean cap,

φ+
(0)(ω

−
nk, k) −→ b̃nke

−2iω+
nkT −→ b†nk −→ d−nk

φ+
(0)(ω

+
nk, k) −→ decay (3.26)

d̃+
nk −→ b̃†nke

−2iω−nkT −→ bnk −→ φ−(0)(ω
+
nk, k).

Figure 4 shows plots of the time evolution of individual modes from exponentially de-

caying source modes in the Euclidean manifolds to oscillatory, normalisable modes in the

Lorentzian manifolds. These plots were obtained by fixing r and φ to be 1 and 0 respec-

tively, and with the source insertions located at ε = 0.1. The vertical axis corresponds

to the amplitude of the scalar mode and the horizontal axis to contour time. Then these

plots show two individual modes as they evolve from imaginary time in the past Euclidean

manifold, to real time in the two Lorentzian manifolds and then back to imaginary time in

the future Euclidean manifolds.
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Combining all three sets of relationships between the coefficients of the different modes

we find

b†nk = φ+
(0)(ω

−
nk, k), (3.27a)

b̃†nk = φ−(0)(ω
+
nk, k)e−2iω+

nkT . (3.27b)

Returning to the Lorentzian fields, we can now replace the original, arbitrary coeffi-

cients b±nk and b̃±nk with the above results to obtain expressions in terms of the Euclidean

source modes.

Φ1
L(t, r, φ) =

∞∑
n=0

∑
k∈Z

[
φ−(0)(ω

+
nk, k)e−iω

+
nkt+ikφ + φ+

(0)(ω
−
nk, k)e−iω

−
nkt−ikφ

]
g(ωnk, |k|, r)

(3.28a)

Φ2
L(t, r, φ) =

∞∑
n=0

∑
k∈Z

[
φ+

(0)(ω
−
nk, k)eiω

+
nkt+ikφ + φ−(0)(ω

+
nk, k)eiω

−
nkt−ikφ

]
g(ωnk, |k|, r). (3.28b)

where we used the relation between physical and contour time, t1 = t and 2T − t2 = t.

3.4 1-point function

Having constructed normalisable Lorentzian solutions, we will now extract the 1-point

function to verify that this solution is indeed dual to the state |∆〉. For this we need to

obtain the asymptotic expansion of the bulk field near the conformal infinity as in (1.1)

and use [11],

〈O∆(t, φ)〉 = −(2∆− 2)φ(2∆−d)(t, φ). (3.29)

We can choose to consider the insertion either in the upper part of the contour or in

the lower. In the former case the 1-point function can be extracted from the asymptotic

expansion of Φ1
L while in the latter case from the asymptotic expansion of Φ2

L. In both

cases, the answer should be the same.

For concreteness, we consider the case the operator is in the upper part of the contour

so the relevant field is Φ1
L. Since this a normalisable mode, φ(2∆−2) is the coefficient of the

leading order term as r →∞,

φ(2∆−2) =
1

π

∞∑
n=0

∑
k∈Z

e−ω
+
nkε
(

e−iω
+
nkt+ikφ + e−iω

−
nkt−ikφ

)
α(ωnk, |k|, l), (3.30)

where we have used

g(ωnk, |k|, r) =
1

π
r−∆α(ωnk, |k|, l) + O

(
r−∆−1

)
(3.31)

Performing the sums over n and k and inserting in (3.29) we finally get

〈O∆(t, φ)〉 =
l2

2lπ

(
1

(cos(t− iε)− cosφ)∆
+

1

(cos(t+ iε)− cosφ)∆

)
. (3.32)

This is indeed equal to value we got via a QFT computation in (2.6). In our case, C =

l2/(2lπ), which is the standard supergravity normalisation of the 2-point function.
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4 Poincaré AdS

In this section we will study the same problem but for a CFT on R1,1. Then the relevant

problem is to solve the free field equation for a massive scalar field in Poincaré AdS.

4.1 Lorentzian solutions

The metric for the Poincaré patch of Lorentzian AdS2+1 is given by

ds2 =
1

z2

(
dt2 + dz2 + dx2

)
(4.1)

with the asymptotic boundary at z = 0. In this background the Klein-Gordon equation is

given by (
∂2
z −

1

z
∂z − ∂2

t + ∂2
x −

m2

z2

)
Φ(t, z, x) = 0. (4.2)

Substituting the ansatz

Φ (t, z, x) = e−iωt+ikxfωk(z) (4.3)

we get

f ′′ωk(z)− 1

z
f ′ωk(z) +

(
ω2 − k2 − m2

z2

)
fωk(z) = 0. (4.4)

To solve this ODE we need to consider the cases −ω2 + k2 > 0 (spacelike modes) and

−ω2 + k2 ≤ 0 (timelike modes).

4.1.1 Timelike modes

For timelike modes

− ω2 + k2 = −q2 ≤ 0. (4.5)

The two linearly independent solutions to the z-ODE are

f1(z) = zJl(qz) (4.6a)

f2(z) = zYl(qz) (4.6b)

where Jl and Yl are Bessel functions of the first and second kind respectively, and l =√
1 +m2 ∈ {0, 1, 2, . . . }, q2 = ω2 − k2. The boundary behaviour of these solutions is

zJl(qz) −−−→
z→0

z1+l

(
ql

2lΓ(l)
− . . .

)
normalisable (4.7a)

zYl(qz) −−−→
z→0

z1−l
(
−2lΓ(l)

qlπ
+ . . .

+ z2l (−1)lqlΓ(−l)
2lπ

+ . . .

)
non-normalisable. (4.7b)

As z →∞,

zJl(qz) −−−→
z→∞

z1/2 sin

(
π

4
− lπ

2
+ qz

)√
2

πq

+ z−1/2 sin

(
π

4
+

lπ

2
− qz

) (
4l2 − 1

)
4
√

2πq3
+ . . . (4.8a)
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zYl(qz) −−−→
z→∞

− z1/2 sin

(
π

4
+

lπ

2
− qz

)√
2

πq

− z−1/2 cos

(
π

4
+

lπ

2
− qz

) (
4l2 − 1

)
4
√

2πq3
+ . . . (4.8b)

From these expressions we observe that there are no individual timelike modes that remain

finite in the bulk. Therefore, any solution that is finite must be constructed by integrating

over infinitely many such modes.

4.1.2 Spacelike modes

For spacelike modes

− ω2 + k2 = q2 ≥ 0. (4.9)

The two linearly independent solutions to the z-ODE become

f1(z) = zIl (qδz) (4.10a)

f2(z) = zKl (qδz) (4.10b)

where Il and Kl are modified Bessel functions of the first and second kind respectively, l

is as defined above and qδ =
(
−ω2 + k2 − iδ

)1/2
, with δ > 0 an infinitesimal parameter.

Looking again at the near boundary behaviour of the solutions we find

zIl(qz) −−−→
z→0

z1+l

(
ql

2lΓ(l)
+

q2+lz2

22+l(1 + l)Γ(1 + l)
+O

(
z3
))

normalisable (4.11a)

zKl(qz) −−−→
z→0

z1−l
(

2l−1Γ(l)

ql
− 2l−3Γ(l)z2

ql−2(l − 1)
+O

(
z3
))

+ z1+l

(
qlΓ(−l)

2l+1
+
ql+2z2Γ(−l)
2l+3(1 + l)

+O
(
z3
))

non-normalisable. (53b)

As z →∞,

zIl(qz) −−−→
z→∞

z1/2

√
2πq

[
eqz
(
1 + O

(
z−1
))

+ e−qz
(
i(−1)l + O

(
z−1
))]

(4.11a)

zKl(qz) −−−→
z→∞

z1/2e−qz
[√

π

2q
+

4l2 − 1

8z

√
π

2q3
+O

(
z−2
)]
. (4.11b)

Here one set of modes, namely the non-normalisable zKl(q z) modes, remain finite at the

interior whereas the normalisable ones diverge. Consequently, the only physical spacelike

modes are the non-normalisable ones.

We are now in position to construct the Lorentzian solutions using the physical modes

we have found. Our choice of boundary conditions for the Lorentzian manifolds dictates

that there are no sources present. Accordingly, we construct Lorentzian solutions using

only normalisable modes,

ΦL (t, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
aωk e−iωt+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+ c.c.

]
. (4.12)
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4.2 Euclidean solution

The metric for the Poincaré patch of Euclidean AdS2+1 can be obtained from the Lorentzian

one, (4.1), by Wick rotating t = −iτ . Similarly, the solutions to the Klein-Gordon equation

for Euclidean signature can be obtained by analytically continuing the Lorentzian modes

and possibly deforming the ω contour when necessary. Applying this logic, one finds that,

for τ ≤ 0, the normalisable Euclidean solution can be cast in the general form

Φ−E (τ, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi

[
dωk eωτ+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
(56a)

and for τ ≥ 0

Φ+
E (τ, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi

[
d̃ωk e−ωτ+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
. (56b)

The non-normalisable Euclidean solution is constructed using modes proportional to

zKl(p z), where now p = (ω2 + k2)1/2. These are non-normalisable, source modes which

we normalise such that, as z → 0,

CωkzKl(p z) = 1 · z1−l + . . . (4.14)

The resulting modes are convoluted with the modes of a source with a δ-function profile,

localised in spacetime on the boundary. We consider a delta function source localised at

τ = −ε, x = 0, where ε > 0. Then the corresponding bulk solution is given by

Φ−E (τ, z, x) =
z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
eiωτ+ikxφ−(0)(ω, k)

(
ω2+k2

)l/2
Kl

(√
ω2+k2 z

)]
φ−(0)(ω, k) = eiωε. (4.15)

Indeed, it is easy to see that in the limit z → 0 this is δ-function source localised at

(τ, x) = (−ε, 0). Similarly, for τ ≥ 0 and for a source localised at (τ, x) = (ε, 0), the

solution takes the form

Φ+
E (τ, z, x) =

z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
φ+

(0)(ω, k) eiωτ+ikx
(
ω2+k2

)l/2
Kl

(√
ω2+k2 z

)]
φ+

(0)(ω, k) = e−iωε. (4.16)

4.3 Matching conditions

We will consider the in-in field theory contour and corresponding manifold discussed in

section 3.3 and shown in figure 3. Thus, the contour-integrated action and matching con-

ditions are identical to those used for global AdS2+1. The solutions in each manifold, which

are constructed by appropriate modifications of the general solutions obtained above, are

0 ≤ t1 ≤ T :

Φ1
L(t1, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
aωk e−iωt1+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+ c.c.

]
,

(4.17a)
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T ≤ t2 ≤ 2T :

Φ2
L (t2, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
ãωk e−iωt2+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
+ c.c.

]
,

(4.17b)

for the two Lorentzian segments, and

−∞ < τ0 ≤ 0 :

Φ−E (τ0, z, x) =
z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
eiω(τ0+ε)+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)
+

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi
dωk eωτ0+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.18a)

0 ≤ τ3 <∞ :

Φ+
E (τ3, z, x) =

z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
eiω(τ3−ε)+ikx (ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

)
+

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi
d̃ωk e−ωτ3+ikxz θ

(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.18b)

for the two Euclidean segments. The Lorentzian solutions are purely normalisable whereas

the Euclidean solutions are linear combinations of a non-normalisable piece and a nor-

malisable piece. In momentum space we saw that the individual modes are either Bessel

functions of the first kind, Jl, or modified Bessel functions of the second kind, Kl. These

functions are not orthogonal to each other. We circumvent this complication by making

use of the following two integrals of Bessel functions [19]∫ ∞
0

dz zJn(za)Jn(zb) =
1

a
δ(b− a), a, b ∈ R (4.19a)∫ ∞

0
dz zKν(za)Jν(zb) =

bν

aν(a2 + b2)
, Re(a) > 0, b > 0. (4.19b)

To extract individual modes from our solutions we perform the following steps. Given a

field Φ(t, z, x) or its time derivative ∂tΦ(t, z, x), where t here can be either real or imaginary

time, we multiply by θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
e−ikx and integrate first over x from −∞

to +∞ and then over z from zero to +∞,∫ ∞
0

dz θ(ω2 − k2)Jl

(√
ω2 − k2 z

)∫ ∞
−∞

dx e−ikxΦ(t, z, x)
∣∣
on matching surface

. (4.20)

To perform the z integral one needs to use either equation (4.19a) or (4.19b). The Heaviside

step function is to ensure that the conditions associated with these two equations are

satisfied. Some of the details of this calculation are given in appendix A.

Applying the matching conditions to these solutions and using the above prescription

to extract individual modes we finally obtain the following relations which hold for ω2 > k2.

Note that normalisable modes exist only for ω2 > k2 so the above matching conditions are

sufficient for our purposes.
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From the matching conditions at τ0 = 0, t1 = 0, between the past Euclidean cap and

the first Lorentzian manifold, we obtain

a|ω|k + a†−|ω| −k =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e−|ω|ε

=

(
ω2 − k2

)l/2
π

Γ(l)2l−1
φ−(0)(i|ω|, k) (4.21a)

a−|ω|k + a†|ω| −k =− id|ω|k. (4.21b)

From the matching conditions at t1 = T, t2 = T , between the two Lorentzian manifolds,

a|ω|k + a†−|ω| −k =
(
ã−|ω|k + ã†|ω|−k

)
e2i|ω|T (4.22a)

a−|ω|k + a†|ω|−k =
(
ã|ω|k + ã†−|ω|−k

)
e−2i|ω|T (4.22b)

Finally, the matching conditions at t2 = 2T, τ3 = 0, between the second Lorentzian mani-

fold and the future Euclidean cap give

ã|ω|k + ã†−|ω| −k =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e−|ω|(ε−2iT )

=

(
ω2 − k2

)l/2
π

Γ(l)2l−1
e2i|ω|Tφ+

(0)(−i|ω|, k) (4.23a)

ã−|ω|k + ã†|ω| −k =− id̃|ω|ke−2i|ω|T . (4.23b)

Given the matching relations it is easier to redefine the Lorentzian coefficients by intro-

ducing bωk = a|ω|k + a†−|ω|−k and b†ω−k = a−|ω|k + a†|ω|−k for the first Lorentzian manifold

and b̃ωk = ã|ω|k + ã†−|ω|−k and b̃†ω−k = ã−|ω|k + ã†|ω|−k for the second Lorentzian manifold.

In terms of these new coefficients the solutions become

Φ1
L(t1, z, x) =

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2π

[(
bωk e−iωt1+ikx + b†ω−ke

iωt1+ikx
)

z θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.24)

with an analogous expression for Φ2
L(t2, z, x).

Re-expressing the matching conditions in terms of b’s and b̃’s,

bωk =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
φ−(0)(iω, k) = b̃†ω−ke

2iωT = −id̃†ω−k (4.25a)

b†ω−k = − idωk = b̃ωke
−2iωT =

(
ω2 − k2

)l/2
π

Γ(l)2l−1
φ+

(0)(−iω, k) (4.25b)

where the frequency ω is greater or equal to zero. Note that had we not chosen the source

insertion points in the past and future Euclidean caps to be the same, reality conditions

for the Lorentzian solutions would dictate that they have to be the same.
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Identifying the coefficients of e−iωt (e−ωτ ) as the positive frequency oscillatory (expo-

nential) modes and the coefficients of e+iωt as the negative ones, we see that our modes

evolve in an analogous way as we saw in the global case. In particular, the positive fre-

quency normalisable modes in the first Lorentzian manifold are sourced by exponentially

decaying positive frequency source modes in the past Euclidean manifold whereas the pos-

itive frequency source modes decay. The positive frequency Lorentzian modes from the

first manifold then evolve across the matching surface at t1 = T = t2 to become nega-

tive frequency modes in the second Lorentzian manifold and finally they become negative

frequency normalisable modes in the future Euclidean manifold. There are no positive fre-

quency normalisable modes in the future manifold as these grow exponentially as τ3 →∞.

The negative frequency normalisable modes in the first Lorentzian manifold are the

evolution of positive frequency normalisable modes which we have included in the past

Euclidean manifold. As they evolve across the matching surface into the second Lorentzian

manifold they become the positive frequency normalisable modes which are associated to

negative frequency source modes turned on in the future Euclidean manifold.

Returning to the Lorentzian fields, we can now replace the arbitrary coefficients bωk
and b̃ωk with the above results to obtain

Φ1
L(t1, z, x) =

z

Γ(l)2l

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

[(
φ−(0)(iω, k)e−iωt1 + φ+

(0)(−iω, k)eiωt1
)

eikx
(
ω2 − k2

)l/2
θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
, (4.26a)

Φ2
L(t2, z, x) =

z

Γ(l)2l

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

[(
φ+

(0)(−iω, k)e−iωt2 + φ−(0)(iω, k)eiωt2
)

eikx
(
ω2 − k2

)l/2
θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
. (4.26b)

Equations (4.26a) and (4.26b) demonstrate explicitly how the Euclidean source modes

generate the purely normalisable solutions in the Lorentzian bulk.

4.4 1-point function

We will now extract the 1-point function to verify that the solution indeed describes an

excited state. For this we need to extract the coefficient φ(2∆−2), which in our case is the

leading order coefficient of the bulk solution. As in the case of global AdS, we consider the

case where the operator is in the upper part of the contour so the relevant field is Φ1
L. Then

φ(2∆−2)(t, x) = lim
z→0

z∆Φ1
L(z, t, x) =

1

22l−1Γ(l)Γ(l + 1)
(4.27)∫ ∞

−∞

dk

2π

∫ ∞
0

dω

[
θ
(
ω2 − k2

) (
ω2 − k2

)l
e−ωε+ikx cos(ωt)

]
Eliminating first the Heaviside step function and setting ω = rk, we obtain

φ(2∆−2)(t, x) =
1

22l−1Γ(l)Γ(l + 1)

∫ ∞
0

dk

2π

∫ ∞
1

dr
[
k2l+1

(
r2 − 1

)l
e−krε (4.28)(

cos
(
k(rt+ x)

)
+ cos

(
k(rt− x)

)) ]
.
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Then we perform the k integral,

φ(2∆−2)(t, x) =
(−1)∆Γ(2∆)

22∆−1πΓ(∆− 1)Γ(∆)

∫ ∞
1

dr

[
(r(t+ iε)− x)−2∆ + (r(t+ iε) + x)−2∆

+ (r(t1 − iε) + x)−2∆ + (r(t− iε)− x)−2∆

] (
r2 − 1

)∆−1
, (4.29)

and finally, we compute the r integral,

φ(2∆−2)(t, x) = − l
π

(
1

(−(t− iε)2 + x2)∆
+

1

(−(t+ iε)2 + x2)∆

)
(4.30)

and thus,

〈O∆(t, x)〉 =
2l2

π

(
1

(−(t− iε)2 + x2)∆
+

1

(−(t+ iε)2 + x2)∆

)
(4.31)

This is indeed equal to value we got via a QFT computation in (2.7). In our case, C̃ = 2l2/π,

which is the standard supergravity normalisation of the 2-point function. Note also that

the normalisations in (3.32) and (4.31) are related as in the footnote 4, as they should.

5 Discussion

We presented in this paper a construction of a bulk solution dual to a general excited

CFT state, |∆〉, where ∆ is the scaling dimension. By the operator-state correspondence,

the state is generated by an operator O∆ acting on the vacuum. The corresponding bulk

solution at linearised level involves only the bulk scalar Φ which is dual to the operator O∆.

This part is universal: it is the same for all CFTs whose spectrum contains an operator

with such dimension. To construct the full bulk solution we need more information about

the CFT. In particular, we need to know the OPE of O∆ with itself. All bulk fields that

are dual to operators that appear in this OPE are necessarily turned on in the bulk.

In this paper we discussed in detail the construction of the universal part, for states of

two dimensional CFTs either on R × S1 or R1,1. From the bulk perspective this leads to

the construction of solutions of free scalar field equations either in global AdS3 or Poincaré

AdS3. The solutions describe normalisable modes and their coefficients are directly related

to the dual state. In more detail, the CFT state is generated by a Euclidean path integral

which contains a source for O∆ and the coefficients of the bulk normalisable modes are

given in terms of the source. Normalisable modes describe bulk local excitations and thus

our results give a direct relation between CFT states and bulk excitations. To substantiate

the claim that these solutions are dual to the state |∆〉, we computed the 1-point function

of local operators both in the CFT and in the bulk and found perfect agreement.6 Our

discussion generalizes straightforwardly to higher dimensions.

6As emphasised in section 2, this agreement is a non-trivial check that we are constructing the correct

path integral. To holographically compute expectation values in the state |∆〉 we would need the solution

to quadratic order in the bulk fields.
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To go beyond this leading order computation, one needs to be more specific about

the CFT (as mentioned above). In particular, one would need to take into account the

backreaction to the metric. Given appropriate CFT data (for a CFT with a known bulk

dual), the construction of the bulk solution dual to any given state can proceed along the

same lines. It would be interesting to explicitly carry this out in detail in concrete examples.

In our discussion we explicitly demonstrated how a solution of the bulk field equations

is reconstructed from QFT data: given a Schwinger-Keldysh contour and insertions we

constructed a unique bulk solution. To make this more explicit one may rewrite the bulk

solution in the Lorentzian part in the following form,

Φ(t, r, φ) =

∫
∂AdS

dt′ dφ′ K(t, r, φ|t′, φ′)〈O(t′, φ′)〉 (5.1)

where K(t, r, φ|t̂, φ̂), is the so-called smearing function, whose detailed form will not be

needed here. The derivation of this relation follows closely the discussion in [10] and it will

not be repeated here.

For us (5.1) is a map between expectation values of the boundary theory and classical

fields in the bulk. In [10] the idea was different. The main point was to look for CFT

operators that behave like bulk local operators. The initial ansatz in [10] was

Φ̂(t, r, φ) =

∫
∂AdS

dt′ dφ′ K(t, r, φ|t′, φ′)O(t′, φ′), (5.2)

and the smearing function K(t, r, φ|t′, φ′) was fixed by rewriting the bulk normalisable

modes in this form. The hat on the left hand side indicates that this is a quantum oper-

ator. If we quantize canonically the bulk scalar field then the coefficients bnk and b†nk of

the normalisable modes (see (3.10)) are promoted to creation and annihilation operators.

However, the matching condition relates these coefficients to a CFT source and the latter is

not a quantum operator. One may still reconcile the two pictures if one considers the bulk

solutions as being associated with a coherent state, as was recently argued in [17]. Then

the eigenvalue of the annihilation operator acting on the coherent state would be equal to

the value of the source. This would give a map from states |∆〉 of the CFT to coherent

states in the bulk and it would be interesting to understand this map in more detail.

As emphasised, (5.1) and (5.2) hold at the linearised level in the bulk (free fields).7

While (5.1) and (5.2) may be related at this order, it is not clear this will continue to be

the case at non-linear level. There has been work in extending (5.2) to higher orders, see

for example [20–24]. In these papers, the map is modified by including additional terms

on the r.h.s. of (5.2), which are double-trace operators. The coefficients are then fixed

by requiring bulk locality. In our case, the full bulk solution will instead involve many

additional bulk fields, which are dual to single-trace operators. It would be interesting to

clarify the relation between the two reconstruction formulae at non-linear order.

7This is also the leading term in the ’t Hooft large N limit, if we normalise the CFT operators such

that their 2-point function has coefficient 1 in the large N limit. One should keep in mind however that

with this normalisation the subleading terms in N do not necessarily correspond to quantum loops, see the

discussion in section 2.
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Another application of our construction is in the context of the fuzzball program [25–

28]. As was argued in [5, 6, 27, 29], the fuzzball solutions for black holes with AdS throats

are the bulk solutions dual to the states that account for black hole entropy. In all previ-

ous works, fuzzball solutions were constructed by solving supergravity equations and the

relation to CFT states was only studied afterwards (for a class of fuzzballs). The construc-

tion here allows one to pursue a direct (iterative) construction of bulk solutions dual to

individual states. It would be interesting to carry out such computations. One may also

use the results here to sharpen an old argument [30, 31] that the number of supergravity

solutions dual to the 3-charge BPS black holes cannot exceed that of the 2-charge ones.

This will be discussed elsewhere.

Acknowledgments

This work was supported by the Science and Technology Facilities Council (Consolidated

Grant “Exploring the Limits of the Standard Model and Beyond”) and by the Engineering

and Physical Sciences Research Council. KS thanks the 2015 Simons Center Summer

Workshop and the Galileo Galilei Institute for Theoretical Physics for hospitality and the

INFN for partial support during the completion of this work.

A Matching conditions for the Poincaré AdS

Here we demostrate how individual modes can be extracted from the solutions obtained

for the Poincaré patch of AdS. We only present the calculations for the matching surface

at τ0 = 0, t1 = 0 but the same method can be applied straightforwardly to the other

matching surfaces.

Our analysis makes use of the following two identities of the Bessel functions∫ ∞
0

dz zJn(za)Jn(zb) =
1

a
δ(b− a) (A.1)∫ ∞

0
dz zKν(za)Jν(zb) =

bν

aν(a2 + b2)
. (A.2)

Focusing first on the Lorentzian solution, on the hypersurface located at t1 = 0 the field

and its derivative are given by

Φ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[(
aωke

ikx + a∗ωke
−ikx

)
z

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
(A.3a)

−i∂t1Φ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[(
−aωkeikx + a∗ωke

−ikx
)
ωz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)]
. (A.3b)
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Multiplying the above expressions by θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)
e−ikx and integrating first

over x from −∞ to +∞ and then over z from zero to +∞, we find

∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikxΦ1
L (t1, z, x)

∣∣
t1=0

=
θ(ω2 − k2)

2π|ω|

(
a|ω|k + a−|ω|,k + a∗|ω| −k + a∗−|ω| −k

)
(A.4a)∫ ∞

0
dz θ

(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikx
(
−i∂t1Φ1

L (t1, z, x)
∣∣
t1=0

)
=
θ(ω2 − k2)

2π

(
−a|ω|k + a−|ω|k − a∗−|ω| −k + a∗|ω| −k

)
(A.4b)

In more details:∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikxΦ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
−∞

dω′

2π
θ
(
ω2 − k2

)
θ
(
ω′2 − k′2

) [
aω′k′e

i(k′−k)x

+a∗ω′k′e
−i(k′+k)x

]
z Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)
=

∫ ∞
−∞

dω′

2π

∫ ∞
0

dz θ
(
ω′2 − k2

)
θ
(
ω2 − k2

) (
aω′k + a∗ω′−k

)
z

Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k2 z

)
=

∫ ∞
−∞

dω′

2π
θ
(
ω′2 − k2

)
θ
(
ω2 − k2

)(
aω′k + a∗ω′−k

) δ (√ω′2 − k2 −
√
ω2 − k2

)
√
ω2 − k2

(A.5)

where in the last line we used (A.1) to perform the z integral.

To proceed we make use of the relation

δ
(√

ω′2 − k2 −
√
ω2 − k2

)
=

√
ω2 − k2

|ω|
[
δ
(
ω′ + |ω|

)
+ δ

(
ω′ − |ω|

) ]
(A.6)

to obtain∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikxΦ1
L (t1, z, x)

∣∣
t1=0

=

∫ ∞
−∞

dω′

2π|ω|
(
aω′k + a∗ω′−k

)
θ
(
ω2 − k2

)
θ
(
ω′2 − k2

) [
δ
(
ω′ + |ω|

)
+ δ

(
ω′ − |ω|

) ]
=
θ(ω2 − k2)

2π|ω|

(
a|ω|k + a−|ω|k + a∗|ω| −k + a∗−|ω| −k

)
. � (A.7)

The computation for the derivative is very similar.
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Focusing now on the Euclidean solution, on the hypersurface located at τ0 = 0, the

field and its derivative are given by

Φ−E (τ0, z, x)
∣∣
τ0=0

=
z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
eiωε+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

) ]
+

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi

[
bωk eikxz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

) ]
(A.8a)

∂τ0Φ−E (t0, z, x)
∣∣
τ0=0

=
z

Γ(l)2l−1

∫ ∞
−∞

dk

2π

∫ ∞
−∞

dω

2π

[
i ωeiωε+ikx

(
ω2 + k2

)l/2
Kl

(√
ω2 + k2 z

) ]
+

∫ ∞
−∞

dk

2π

∫ ∞
0

dω

2πi

[
ω bωk eikxz

θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

) ]
(A.8b)

By using the same method we find∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikxΦ−E (τ0, z, x)
∣∣
τ0=0

= θ
(
ω2 − k2

)((ω2 − k2
)l/2

2lΓ(l)|ω|
e−|ω|ε +

d|ω|k

2πi|ω|

)
(A.9a)

∫ ∞
0

dz θ
(
ω2 − k2

)
Jl

(√
ω2 − k2 z

)∫ ∞
−∞

dx e−ikx
(
∂τ0Φ−E (τ0, z, x)

∣∣
τ0=0

)
= θ
(
ω2 − k2

)(
−
(
ω2 − k2

)l/2
2lΓ(l)

e−|ω|ε +
d|ω|k

2πi

)
. (A.9b)

Obtaining these results requires a bit of extra work because our Euclidean solutions consists

of two terms, one of which is in terms of the modified Bessel function of the second kind

and therefore we need to use (A.2) and perform a contour integration in the ω plane.

In more detail, this is done as follows,∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikxΦ−E (τ0, z, x)
∣∣
τ0=0

=

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
−∞

dω′

2π

[
z θ
(
ω2 − k2

) (
ω′2 + k′2

)l/2
eiω
′ε−i(k−k′)x

2l−1Γ(l)

Jl

(√
ω2−k2 z

)
Kl

(√
ω′2+k′2 z

)]
+

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
0

dω′

2πi

[
dω′k′e

i(k−k′)x

θ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
zJl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]
= I1 + I2 (A.10)
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where

I1 =

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
−∞

dω′

2π

[
z θ
(
ω2 − k2

) (
ω′2 + k′2

)l/2
eiω
′ε−i(k−k′)x

2l−1Γ(l)

Jl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k′2 z

)]
, (A.11a)

I2 =

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
0

dω′

2πi

[
dω′k′e

i(k−k′)xθ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
zJl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]
. (A.11b)

The computation of I2 is identical to what we did for the Lorentzian field above,

I2 =

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
0

dω′

2πi

[
z dω′k′e

i(k−k′)xθ
(
ω2 − k2

)
θ
(
ω′2 − k′2

)
Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k′2 z

)]
=

∫ ∞
0

dz

∫ ∞
0

dω′

2πi

[
zdω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

)
Jl

(√
ω2 − k2 z

)
Jl

(√
ω′2 − k2 z

)]

=

∫ ∞
0

dω′

2πi
dω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

) δ(√ω′2 − k2 −
√
ω2 − k2

)
√
ω2 − k2

=

∫ ∞
0

dω′

2π|ω|i
dω′kθ

(
ω2 − k2

)
θ
(
ω′2 − k2

) (
δ
(
ω − |ω′|

)
+ δ(ω + |ω|)

)
= θ
(
ω2 − k2

) d|ω|k

2πi|ω|
(A.12)

where we used equations (A.1) and (A.6).

The computation of I1 goes as follows,

I1 =

∫ ∞
0

dz

∫ ∞
−∞

dx

∫ ∞
−∞

dk′

2π

∫ ∞
−∞

dω′

2π

[
z θ
(
ω2 − k2

) (ω′2 + k′2
)l/2

2l−1Γ(l)
eiω
′ε−i(k−k′)x

Jl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k′2 z

)]
=

∫ ∞
0

dz

∫ ∞
−∞

dω′

2π

[
z θ
(
ω2 − k2

) (ω′2 + k2
)l/2

2l−1Γ(l)
eiω
′εJl

(√
ω2 − k2 z

)
Kl

(√
ω′2 + k2 z

)]
=

∫ ∞
−∞

dω′

2π

θ
(
ω2 − k2

)
2l−1Γ(l)

eiω
′ε

(
ω2 − k2

)l/2
ω′2 + ω2

(A.13)

where for the last line we used equation (A.2). The integral over ω′ is performed us-

ing contour integration. Closing the contour in the upper half plane and picking up the
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contribution from the pole at i|ω| we obtain,

I1 =
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2lπΓ(l)

2πiRes

[
eiω
′ε

ω′2 + ω2
;ω′ = i|ω|

]

= i
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2l−1Γ(l)

[
e−|ω|ε

2i|ω|

]
=
θ
(
ω2 − k2

) (
ω2 − k2

)l/2
2lΓ(l)|ω|

e−|ω|ε. (A.14)

Combining the results for I1 and I2,∫ ∞
0

dz θ
(
ω2 − k2

)
Jl(
√
ω2 − k2 z)

∫ ∞
−∞

dx e−ikx
(
∂τ0Φ−E (τ0, z, x)

∣∣
τ0=0

)
= θ
(
ω2 − k2

)(
−
(
ω2 − k2

)l/2
2lΓ(l)

e−|ω|ε +
d|ω|k

2πi

)
. (A.15)

The computations for the derivative follow along the same lines.
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