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in the presence of a constant background B-field. We have found an exact agreement.
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1 Introduction

D-branes are non-perturbative objects in superstring theory which play the central role
in exploring different aspects of the theory, from statistical computation of black hole en-
tropy [1] to realization of the AdS/CFT correspondence [2] or appearance of noncommuta-
tive geometry in string theory [3]. These objects should be described by the supersymmetric
extension of the cubic string field theory [4] which includes massless and all infinite tower
of the massive excitations of the open strings. In the Wilsonian effective action, however,
the effect of all massive states appears in the higher derivatives of the massless fields.

At long wavelength limit, the higher derivative terms can be ignored and D-branes
are completely described by Dirac-Born-Infeld (DBI) action [5, 6] which includes constant
metric, B-field and dilaton, as well as the first derivative of the massless NS fields. A non-
Abelian extension for DBI action has been proposed in [7]. The leading higher derivative
corrections to the Abelian DBI action should include acceleration which appears through
the second fundamental form  (see e.g., [8]) and the first derivative of the gauge field
strength in the NS part, as well as the first and the second derivatives of the metric, B-field
and dilaton in the NSNS part. The first derivative of the metric appears also through €2
and the second derivatives of the metric appears through the curvature terms.

The leading higher derivative corrections of the metric have been found in [9] by
requiring the consistency of the effective action with the O(a'?) terms of the corresponding
disk-level scattering amplitude [10, 11]. For totally-geodesic embeddings of the world-
volume in the ambient spacetime (€2 = 0), the corrections to the DBI action in string
frame for vanishing gauge field and B-field and for a constant dilaton is the following
action [9]:*
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In our index notation the Greek letters (u,v,---) are the indices of the space-time coordinates, the
Latin letters (a,b,c,---) are the world-volume indices and the letters (i, 7, k, - - - ) are corresponding to the
normal coordinates of the D-brane.



where Rab = éCdRcadb, Rij = @CdRa'dj and @ab is the pull-back of the bulk metric, éab =
0a XH 0y X" 9. In above equation, the Riemann curvatures are the projections of the bulk
Riemann tensors into the world-volume or the transverse space. For example:

Raped = 0a X0y XP 0. X 04 X" Roppun - (1.2)

The above action includes all orders of the velocity through the pull-back operator in the
static gauge, i.e., X% = 0% and X’ = \' . The acceleration terms (£ # 0) have been also
found in [9] (see also [12]). The consistency of these couplings with T-duality may include
all orders of dilaton, B-field and F'.

In [15, 16], it has been shown that the consistency of the couplings in (1.1) at zero ve-
locity with linear T-duality transformation, requires VH and VV ¢ couplings to appear as:
m2a/?T,

=R
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where 72’,#,, = RW + V,V,¢ and H is the field strength of the B-field. The consistency
of the action (1.1) at zero velocity and non-zero € with nonlinear T-duality should also
include H* couplings in which we are not interested in this paper. Such couplings have
been found in [13, 14] for O-planes. In this paper, we are interested to include all orders
of the constant Abelian gauge field strength F' in the above action. This can be done
by releasing the assumption in [15] that the velocity is zero, because the world-volume
transverse scalars transform to the gauge fields under the T-duality transformations.
Recently, it has been observed in [26] that in a T-duality invariant world-volume theory
in flat spacetime, all orders of gauge field strength and all orders of the D-brane velocity

appear in the following two matrices:

GM = 9, X"9p X" G,
OM = P, X 9 X" O (1.4)

where G and © are the symmetric and antisymmetric parts of ( b respec-

FTONONTT)
tively. They transform into each other under T-duality [26]. Using these matrices, in the
next section we construct world-volume R?, Ré,¢?, RVH,pH and (VH)? couplings by
requiring them to be invariant under the linear T-duality and to reduce to (1.1) when
F = 0. In section three, in order to confirm our result with the S-matrix element, we use
the standard extension F' — F + P[B], to include all pull-back of B-field into the action.
We then compare the resulting couplings for zero velocity and gauge field strength with
the o2 terms of the disk-level S-matrix element of two massless NSNS vertex operators in

the presence of constant background B-field [27, 28]. We will show an exact agreement.

2 T-duality constraint

In this section, we are going to impose the constraint that the effective action should be
invariant under linear T-duality transformations, to include constant gauge field strength



into the action (1.3). Let us first review the strategy presented in [15] and [17]. As we
know under T-duality the Neumann and Dirichlet boundary conditions are exchanging [19],
this is due to the fact that a compact direction that is lying in the world-volume of the
D-brane in original picture, becomes a transverse direction after T-duality. Symbolically if
we consider S as an action for D-brane and y as a compact direction then under T-duality

we will have:
., T-dualit .
Sp,l(a,y),i] «+—— Sp,_,[a, (i,y)], (2.1)

where a represents the tangent coordinate to the D-brane and ¢ stands for normal coordi-
nate. The y-index on the left-hand side is a tangent coordinate whereas on the right-hand
side it is a normal coordinate.

The T-duality transformation for gauge field is fly = MY which is a linear transfor-
mation. However, the T-duality transformation for NSNS fields are nonlinear [20-25].
Assuming NSNS fields as perturbations around the flat space, one can find the relevant
linear T-duality transformations for the closed string fields, i.e.,

- 1 -
ﬁb:d’*ﬁhyya hyy = — hyy, hul/:hﬁw’
hyuy = By, By = hyy, B, = By - (2.2)
One can use the T-duality implied by (2.1) as a constraint to find some new couplings from
the known ones, in fact this is the method have been used in [15] and [17].
Before going through the T-duality consideration we note that the curvature terms,
and those terms with VV¢ and VH in equation (1.3) are the projections of the correspond-

ing bulk tensors into the world-volume or the transverse space. By using the projection
operator onto the vector space normal to the D-brane defined as:

9
1= ST pltny =G G (2.3)
I=p+1

where n/7 is the normal vector to the D-brane (see e.g., [8, 18]) and G = 9, X D, XV G
is the first fundamental form, one can transform the transverse indices in the action (1.3)
into the bulk space-time coordinates. As an example:

RyRY = 1M 1°PR,, Rp, = 1M 1PG®9, XPOyX* Ropyirn GU0. X0 X" Rppry
= LM 1BGPAGTT Ry pur Roour - (2.4)

Apart from the overall constant factor, the Lagrangian density in the action (1.3) can be

rewritten as:

L = GG (2R" 5" Ry prs — R Rappr) —2G P G GP* (2R 5™ Rppusr — Rowp” Ry )
—%éaﬁvaméf’ VsH. 5, + GPCV  Ho "V sHppm — géaﬁé%épﬁv ©Hp5:V Hor
F4R x5, GOPVIVAD — 8R3,, GOP GV 0o + 2V 5V VPV

4GPV N 3¢ VHV 0 . (2.5)



Writing in this form, all the Riemann curvatures, VH and VV¢ will be the bulk tensors.
Moreover, in this form, the transverse scalar fields appear in the action just through the
first fundamental form G*. To find the scalar couplings, it is sufficient to break the
indices of G to tangent and normal indices and to go to the static gauge i.e., X* = o°
and X = X\ as follows:

éz’a _ Grabab)\i ,
GI = GPI NN | (2.6)

where G is the inverse of the pull-back metric in the static gauge Gup = Gab + Oa N O N\; +
29i1a O N i

The bulk metric in G*¥ is not flat, so the Lagrangian density (2.5) is covariant and
contains all orders of the D-brane velocity. It would be desirable to include all orders of
gauge field in a covariant expression. That expression may be found by expanding G*”
in (2.5) in terms of different orders of g and velocity, and then include appropriate B-field
and F' to make each term to be invariant under the T-duality. To restrict the calculation
for finding only F-terms, we assume the bulk metric in G** to be flat metric. Then the
extension G** — G* where G* is given in (1.4), produces the following couplings:

L = GG (2Ra" 5" Rypur — Raw" R pupn) —2GP GG (2R 5™ Rppur — Rawp” Ry )
—%Gaﬁvaméﬂ VsHys, + GOPGNV  Ho "N s H e — gGaﬁGW‘SGP“V ZHp5:V Hor
F4Ro\5,G VIV G — 8RR 5,0, GOP GV o6 + 2V 5V 0V V¢
—4GPY NV 5pVHV 0. (2.7)

Obviously this action reduces to (2.5) when F' — 0. When the indices of G*” are not the
y-index, the above expression is invariant under linear T-duality. The matrix G*” has even
number of F', so the above couplings are also invariant under the parity.

However, the above action is not invariant under the linear T-duality when the indices
of G* are the y-index. It has been shown in [26] that under T-duality G* transforms to
OM. So in the T-duality invariant theory there must be new couplings involving ©#" as
well. Using the fact that G* has even number of F' and ©*” has odd number of F', the
invariance under parity requires the new terms contracted by even number of © in R?, R¢
and H? terms and odd number in RH and ¢H couplings.? Moreover, the couplings R? and
H? in (2.7) in which the indices of G* can be the y-index, contain two or three GH’s. As
a result, T-duality requires the new terms with structure R? and H? to have two or three
© and/or G. The couplings R¢ in which the indices of G can be the y-index, contain
one or two G*”s. As a result, T-duality requires the new terms with structure R¢ to have
two ©s, and the terms with structure H¢ to have one, two or three © and/or G. Note

2In fact we have observed that for example by considering a term such as RRO, the T-duality transfor-
mation leads to RHG couplings, which reduce to RH couplings in vanishing F' limit, but such terms do
not exist in (2.5), so T-duality requires parity invariance.



that the indices of G*¥ in ¢? term can not be the y-index, so there is no new coupling with
structure ¢2.
All possible independent R? and R¢ terms are then the followings:

L= GQB@HA (alRomleB)\,uu + aQRaunyRﬁ,u)\l/ + a3chﬂijn)\,ul/ + pRBHAuvuvad))
+ @aﬁ@HAij (054Ran,upR,8)\up + 045Ra,ul-£pR,8V)\p + O‘ﬁRaﬁupR,‘i)\up + 047RaHBpR/\,qu) )
(2.8)

where a7y, -+, a7 and p are constants. Similarly for H? terms we have:

Lo = 00 (BN Hs" Ny Hoyu + B2 Ny Hs VY Hoy
+ B3V, Ho Vs Hgy + 81V, Hys" V Hog,, )
+ 0% G (85 Vs sy Vo Hoyun + 86 Vo o Vs Hgun+ 87 Vs Hay* Vi Hoy
+ BsViuHar Vi Hpsx + BoV,Hop Vi Hysx+ 810V Han N Vi, Hspun

+ 811V Hog Vi Hsyn+ B12VaHo 5,V Hopy + B13VaHgs, V> Hary)
(2.9)

where 1, --- , f13 are unknown coefficients. The new possible RH and ¢H couplings are:

L3 = 0G0, Rps5 Vo Ho " + 09 Ropyu Vs Ho M + 03 Ry 15, VY Hog"
+ 04 R0 V" Hon™ + 05 Rp50 Vo Ho™™)
+ O GG (06 Rp50pV o Hyp’ + 07 RiyupV gHon” + 05 Rspp Vo Hog”
+ 09R3upV s Hon + 019 RV s Hyp + 011 Rs0pV jHon”
+ 012R305pV uHor”)
+ P e (013R5/WPV5H04’YP +014R55vauHa7p
+ 015R860p VP Hayp + 016 Rop0pVyHap?)
+7,0%907°0%V V6V sHppr + 150V Hop, VOV 6
+ 730GV sHg VoV g + 1,0 GOV Ho g VoV ¢
+ 75,00 GOV g Hops VOV 1, (2.10)

here again o1, -- ,016 and 1, - - - , 5 are unknown coefficients. In writing the above terms
we have considered independency by taking care of the Bianchi identities (for more details
see appendix A). In this regard (2.8)—(2.10) are the most general Lagrangians. In our
calculation we are going to assume constant G and © and to work with the second order of
perturbations, so the terms with coefficients (33, 8g, 015 and y; are total derivatives. Hence,
we ignore them, i.e., 83 = B = 015 = 71 = 0. On the other hand, for some specific relations
between the coefficients of some of the above terms, there might be total derivatives which
should be dropped. We will find such terms after imposing the T-duality constraint.

In order to fix the unknown coefficients in above Lagrangians by the linear T-
duality (2.2), we need to expand the metric around the flat background as g,, = 1 + huw
and keep terms up to the second order of perturbation expansion. Moreover one needs
to expand GM and ©*” up to the third order of velocity and/or F' in the static gauge.



Performing these steps for (2.7)—(2.10), we compute both sides of relation (2.1). Next we
apply the linear T-duality on left(right) hand side and identify it with right(left) hand side
to fix the unknown coefficients. After all we find the following relations:

CVQ—O, a3 = %, 045——4,
%—Q—f§7(W=87 p= —38;

o o o _510
61_07 52_07 ﬁ4_]—7 67_7+611+ﬂ5)

B1o B11 P11 B1o

= — = — = —2—-— =2—— 2.11
BS 47 59 45 512 47 ﬁ13 47 ( )
092 %, 0'3:*4, o4 =0, 0'5:4, g = 16 4+ 2019,
o7 =011, og = —8, o9 =16 — o011, o2 = — 16, 014=8+%;
Y2 =2, 3 =274, V5= —4—m.

In obtaining the above results we have used the integration by part and assumed G*” and
OM are constant. Substituting (2.11) into the Lagrangian (2.8) for R? and R¢ terms, we
have found:

L1 = @aﬁ@vdGlm( — 4Rap,y>\R/3,£5)\ + 2Ra5p>\R75,€)\ + SROWﬁ)\R(;pm\)
—80°P0" R0 VOV 0. (2.12)

We have also found that the unfixed coefficients, a1 and a4 appear in the following
expressions:

1
al@a5676 (RQWPHR@SP,.; — 2Raﬁp5R7595> (2.13)

1
+ a4®aﬁ®’y5GPﬂ <Ra’yp)\RB5H)\ - 2Ra6p)\R'y5/£)\> N

However, they are total derivatives up to the second order of the perturbations. Since
our calculations are valid up to the second order of the perturbations, we can ignore these
terms, i.e., a1 = oy = 0. For H? terms, we have found

Lo = 00" ,H,,’N Hop, + 20°° 01 GP7 (V \Hpyo V> Hopp — VaHue V> Hogp).-
(2.14)
We have also showed that the constants 85, 519 and $11 are the coefficients of total derivative
terms, so we set them to zero. Finally for RH and ¢H couplings in (2.10) we get:

L3 = 890G G" (2Rgs1pV o Hyp” — RipvpVoHop” + 2RV s Hon — 2R g5,V - Hor")
+40°°G (R Vy Hot — Roys VY Hogt)
+80°0" 0" (Ryy1p Vo Ho” + RpsupV yHan ') + 20PNV s H o5, VOV ¢
—40°8 GV g H o p5VOV 1 . (2.15)

We have also found that the constants o1, 019,011,013 and 4 are again the coefficients of
total derivative terms, so we set them to zero too.



It is interesting to note that the consistency of the couplings (2.5) with the linear
T-duality could uniquely fix all orders of constant F. They are given in (2.7), (2.12),
(2.14) and (2.15). Similar observation has been made in [26] in making the world-volume
transverse scalar couplings at order o’ in the bosonic string theory to be consistent with
T-duality. In the next section, we are going to compare the above couplings with the
corresponding disk-level S-matrix element.

3 Comparison with S-matrix

In the previous section, we have found the couplings of two massless NSNS states at order
a? to all orders of gauge field which appear through G and ©. It is known that the
pull-back of B-field can be included into the D-brane effective action via the replacement
F — F + P[B]. This combination is invariant under B-field gauge transformation as
P[B] — P[B] — P[dA], F — F + P[dA]. After this replacement, we set the velocity and
gauge field strength F' to zero. This produces then the couplings of two NSNS states at
order a'? to all orders of constant B-field. Such couplings may be compared with the disk-
level S-matrix element of two NSNS vertex operators in the presence of background B-field.

The S-matrix element of two NSNS vertex operators in the presence of background
B-field has been calculated in [27, 28], i.e

T\/—det (n+ B) I'(—t/2)T'(—2s) t
A= —2sa1+ - az |, 3.1
(1—t/2—2s) 1Ty (3:1)
where t = —2p1 po is the square of the momentum transfer in the transverse directions
and s = —fpl -D-pq is the momentum flow parallel to the world-volume of the D-brane. D
is defined such that for world-volume coordinates it is D = (ng)“b and for transverse
directions it is D% = —§%. The kinematic factors a; and as are given by:

a1 = Tr(e1-D) p1-€2-p1 — p1-€2-D-e1-p2 — p1-ea-€1 DT -p1 — p1-ed-e1-D-py

1
_§(p1'52'51T'p2 +pa-et e2-p1) — s Tr(er-e5) + {1 2} )

az = Tr(e1-D) (p1-€2-D-pa + p2-D-e2-p1 + pa-D-2-D-p3) + p1-D-e1-D-e2-D-ps

1
—§(p2-D~€2-£1T-DT-p1 —|—p1-DT-£1T-52-D-p2) —sTr(e;-D-eg-D)
tsTr(er-el) + Tr(e-D)Tr(ea- D) (s + £/4) + {1 PN 2} , (3.2)

where €1 and €5 are the polarizations of the NSNS states. In order to find the corresponding

2 we need to expand it in powers of o/p? which is given as

A _Tp\/—dth(n+B)(_2sal+;a2> (1 m2a? +0(o/4)) . (3:3)

effective action at order «

Y

The leading order of this amplitude contains a t-channel and s-channel in addition to some
contact terms. This order completely is described by supergravity action in the bulk plus



the DBI action on the D-brane [27].> At all other orders, the amplitude just contains
contact terms which are the effective couplings in the momentum space. We are interested
in the o/?-contact terms.

In what follows we impose physical conditions for graviton (e,, = €,,) and B-field
(v = —€uy) to find two-graviton, two-B-field and one-graviton-one-B-field couplings in the
presences of background B-field. For two gravitons we can simplify O(a/)? part as follows:

A ~ s°Tr(e1-€2) — 25 Tr(e1-Vi)p1-go-p1 + %Tr(sl-VS)Tr(ag-VS)(le +t)
+stTr(ey-e9-Vg) + 2t p1-Vs-e1-62-Vg-p1 + 28 p1-e2-Vg-e1-pa — stTr(e1-Vg-e2-Vs)
+4sp1-e2-e1-Vg-p1 — 2tTr(e1-Vs)p1-e2-Vs-p1 + 2tTr(e1-Vs)p1-Vs-e2-Vs-p1
—2t p1-Vg-e9-Vg-e1-Vg-p1 — stTr(e1-Va-e9-Vy) — 4t p1-Va-e2-Va-e1-Vs-p1
+2tTr(e1-Vs)p1-Va-ea-Va-pr — 2t p1-Va-e9-Vg-e1-Va-p1 + {1 — 2} , (3.4)

n+DT _ 1
2 - n+B°
The amplitude is invariant under parity (Vg — Vs,V4 — —Vy4 ). We observe that the

where Vg and V4 are the symmetric and antisymmetric parts of V =

B-dependence appears as HLB which is the same as the F-dependence in the T-duality
invariant couplings that we have found in the previous section. More precisely, the parts of
amplitude (3.4) that contain the symmetric matrix Vg, coincide with the R? terms in (2.7).
The other terms containing the antisymmetric matrix V4, also completely reproduce (2.12).
This part of the S-matrix calculations has been done already in [28]. Our results confirm
the computations of [28] after considering some identities for R? structures (for more details
see appendix A).

The contact terms for two antisymmetric B-fields can be found by imposing the cor-
responding polarization tensors in (3.2), i.e.,

A~ %5(48 +t)Tr(e1-€2) — 2s pa-c1-€2-p1 + stTr(e1-Vg-e2) —4s p1-e2-1-Vs-p1
—st Tr(e1-Vs-e9-Vg) + 28 po-e1-Vs-ea-p1 — 2t p1-Vg-e1-Vg-e2- Vs p1
—st Tr(e1-Va-e9-Va) + 2t p1-Va-eg-e1-Va-p1 + it(2s +¢)Tr(e1-Va)Tr(e1-Va)
=2t Tr(e1-Va)pr-e2-Va-pr — 4t p1-Va-e2-Va-e1-Vs-p1

—4¢ Tr(sl-VA)p1~VA~€2-Vs~p1 — 2t pl'VA'€2'VS'€1'VA'p1 + {1 — 2} . (3.5)

Again we see that the part without V4 is in agreement with H? terms in (2.7) and the
remaining part is reproduced exactly by (2.14).

The amplitude for one graviton and one antisymmetric B-field has no counterpart
at zero background B-field limit because it has odd number of V4. Imposing physical

3This is similar to bosonic string computations [29].



conditions for graviton and B-field in amplitude (3.3), we have found

A~ 25t Tr(e1-29-Via) + dst Tr(e1-Ve-e9-Va) — %t(éls + 1) Te(er-Vi) Tr(e1 - Va)
+4s p1-Va-ea-€1-p2 +4s p1-Va-er-ea — 4s p1-ea-Va-e1-p2 + 25 pa-e1-p2Tr(e1-Va)
—2t p1-Vs-e1-paTr(e2-Va) — 4t p1-Va-eza-e1-Vs-p1 + 2t p1-Va-e2-p1Tr(e1-Vs)
—2t p1-Vs-e1-Vs-p1Tr(e2-Va) + 4t p1-Vs-e1-Va-e2-Vs-p1
—4t p1-Va-e2-Vs-p1Tr(e1-Vs) + 4t p1-Vs-e1-Vs-ea-Va-p1 — 4t p1-Vs-e2-Vs-e1-Va-p1
+4t p1-Va-er-Varer-Va-pr — 2t pr-Va-er-Va-piTr(e2-Va) . (3.6)

In this amplitude £; is the polarization of graviton and o belongs to B-field. These con-
tact terms reproduce exactly the couplings (2.15) in the momentum space. We have also
replaced the dilaton polarization €, = 1., +£,p, +{,p, where £ is an auxiliary vector satis-
fying #p = 1, in the amplitude and found exact agreement with the corresponding couplings
in the previous section. This ends our illustration of precise agreement between the cou-
plings that we have found in the previous section by the linear T-duality calculations and
the S-matrix element of two NSNS vertex operators in the presence of background B-field.
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A On Riemann polynomial identities

The method we have used here to construct the independent Riemann polynomials is
according to work of [30] and using the Mathematica package xAct [31] which is projecting
Riemann tensors onto their Young tableaux:

1
Rapu — §(2Raﬂ;w — Ravgu + Rappy) - (A1)

For example it is easy to show that the identity QRO@WR“W” = RaguyR“ﬁ“” holds. Sim-
ilarly there are other many identities for R? terms contracted with other tensors, which
reduce the number of independent terms. As another example one may consider the fol-
lowing two terms independent:

21 Ras" Rayor T T + 9 Ros™ Rpgy TP T (A.2)
where T is an arbitrary tensor. But by projecting these terms one gets:

2 4
§(2:c1 + 29) Ray Ry pu TP TH +- §(2:c1 + 29) Roy R pun TP TH

1 1
+§(2.%'1 + l‘Q)RapHNRﬁpVNTa/BTV“ — §(2:L’1 + Hfz)RapM'{Rgm,pTa’BTV“, (A3)



which means that the above terms are not independent and by x2 = —2x; we have an
identity. As another example consider the following three terms:

21 Rop” Rpups TP T + 29 Ro " Rpp TP TH + 23R0" " Ry TP TH (A.4)

we can show that we have an identity when x9 = —2x; and z3 = 2z; . Similarly one may
go further to find more independent structures by generalizing above procedure.

To find independent couplings for V H, one should impose the Bianchi identity dH = 0.
This can be done by writing H in terms of B.
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