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1 Introduction

The inclusive weak radiative decay B̄ → Xsγ is known to provide valuable tests of the

Standard Model (SM), as well as constraints on beyond-SM physics. Measurements of its

CP- and isospin-averaged branching ratio Bsγ at the Υ(4S) experiments, namely CLEO [1],

Belle [2, 3] and Babar [4–7], contribute to the following world average1 [8]

Bexp
sγ = (3.43± 0.21± 0.07)× 10−4 (1.1)

for Eγ > E0 = 1.6GeV in the B-meson rest frame. A significant suppression of the

experimental error is expected once Belle II begins collecting data in a few years from

now [10, 11].

Let us describe the relation of Bsγ to decay rates in an untagged measurement at

Υ(4S). One begins with the CP-averaged decay rates

Γ0 =
Γ(B̄0 → Xsγ) + Γ(B0 → Xs̄γ)

2
, Γ± =

Γ(B− → Xsγ) + Γ(B+ → Xs̄γ)

2
. (1.2)

1The new semi-inclusive measurement by Belle [9] which supersedes [2] is not yet taken into account in

this average.

– 1 –



J
H
E
P
0
4
(
2
0
1
5
)
1
6
8

Their isospin average Γ = (Γ0 +Γ±)/2 and asymmetry ∆0± = (Γ0 −Γ±)/(Γ0 +Γ±) are

related to Bsγ as follows

Bsγ = τB0Γ

(
1 + rfrτ
1 + rf

+∆0±
1− rfrτ
1 + rf

)
. (1.3)

Here, rτ = τB+/τB0 = 1.076 ± 0.004 [8] and rf = f+−/f00 = 1.059 ± 0.027 [8] are the

measured lifetime and production rate ratios of the charged and neutral B-mesons at Υ(4S).

The term proportional to ∆0± in eq. (1.3) contributes only at a permille level, which follows

from the measured value of ∆0± = −0.01± 0.06 (for Eγ > 1.9GeV) [7, 12, 13].

The final state strangeness in eq. (1.2) (−1 for Xs and +1 for Xs̄) as well as the

neutral B-meson flavours have been specified upon ignoring effects of the B0B̄0 and K0K̄0

mixing. Taking the K0K̄0 mixing into account amounts to replacing Xs and Xs̄ by X|s|
with an unspecified strangeness sign, which leaves Γ0 and Γ± invariant. Next, taking

the B0B̄0 mixing into account amounts to using in Γ0 the time-integrated decay rates of

mesons whose flavour is fixed at the production time. Such a change leaves Γ0 practically

unaffected because mass eigenstates in the B0B̄0 system are very close to being orthogonal

(|p/q| = 1) and having the same decay width [13]. In the following, we shall thus ignore

the neutral meson mixing effects.

Theoretical calculations of the B̄ → Xsγ decay rate are based on the equality

Γ(B̄ → Xsγ)Eγ>E0 = Γ(b → Xp
s γ)Eγ>E0 + δΓnonp, (1.4)

where the first term on the r.h.s. stands for the perturbatively calculable inclusive decay

rate of the b quark into charmless partons Xp
s = s, sg, sgg, sqq̄, . . . and the photon. For

appropriately chosen E0, the second term δΓnonp becomes small, and is called a non-

perturbative correction. For E0 = 1.6GeV, the uncertainty due to poor knowledge of

δΓnonp has been estimated to remain below 5% of the decay rate [14]. The non-perturbative

correction is partly correlated with the isospin asymmetry because δΓnonp depends on

whether B̄ = B̄0 or B̄ = B− [14].

As far as the perturbative contribution Γ(b → Xp
s γ) is concerned, its determination

with an accuracy significantly better than 5% is what the ongoing calculations aim at. For

this purpose, order O(α2
s ) corrections need to be evaluated. Moreover, resummation of log-

arithmically enhanced terms like
(
αs ln(M

2
W /m2

b)
)n

is necessary at each order of the usual

αs-expansion.
2 Such a resummation is most conveniently performed in the framework of an

effective theory that arises after decoupling of the electroweak-scale degrees of freedom. In

the SM, which we restrict to in the present paper, one decouples the top quark, the Higgs

boson and the gauge bosons W± and Z0. Barring higher-order electroweak corrections, all

the relevant interactions are then described by the following effective Lagrangian:

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2

[
V ∗
tsVtb

8∑

i=1

Ci(µ)Qi + V ∗
usVub

2∑

i=1

Ci(µ)(Qi −Qu
i )

]
,

(1.5)

2After the resummation, subsequent O(1), O(αs) and O(α2
s ) terms in this expansion are called Leading

Order (LO), Next-to-Leading Order (NLO) and Next-to-Next-to-Leading Order (NNLO).
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where GF is the Fermi constant, and Vij are the Cabibbo-Kobayashi-Maskawa (CKM)

matrix elements. The operators Q
(u)
i are given by

Qu
1 = (s̄LγµT

auL)(ūLγ
µT abL),

Qu
2 = (s̄LγµuL)(ūLγ

µbL),

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL),

Q2 = (s̄LγµcL)(c̄Lγ
µbL),

Q3 = (s̄LγµbL)
∑

q

(q̄γµq),

Q4 = (s̄LγµT
abL)

∑

q

(q̄γµT aq),

Q5 = (s̄Lγµ1γµ2γµ3bL)
∑

q

(q̄γµ1γµ2γµ3q),

Q6 = (s̄Lγµ1γµ2γµ3T
abL)

∑

q

(q̄γµ1γµ2γµ3T aq),

Q7 =
e

16π2
mb(s̄Lσ

µνbR)Fµν ,

Q8 =
g

16π2
mb(s̄Lσ

µνT abR)G
a
µν , (1.6)

where the sums inQ3,...,6 go over all the active flavours q = u, d, s, c, b in the effective theory.

Decoupling (matching) calculations give us values of the electroweak-scale Wilson co-

efficients Ci(µ0), where µ0 ∼ (MW ,mt). Next, renormalization group equations are used to

evolve them down to the low-energy scale, i.e. to find Ci(µb), where µb ∼ mb/2 is of order

of the final hadronic state energy in the B̄-meson rest frame. Determination of the Wilson

coefficients C1,...,8(µb) up to O(α2
s ) in the SM was completed in 2006 [15–19]. Matching

calculations up to three loops [16] and anomalous dimension matrices up to four loops [19]

were necessary for this purpose. The three-loop matching calculation has recently been

extended to the Two-Higgs-Doublet-Model case [20]. Most of the final results have been

presented for the so-called effective coefficients

Ceff
i (µ) =





Ci(µ), for i = 1, . . . , 6,

C7(µ) +
∑6

j=1 yjCj(µ), for i = 7,

C8(µ) +
∑6

j=1 zjCj(µ), for i = 8,

(1.7)

where the numbers yj and zj are such that the LO decay amplitudes for b → sγ and

b → sg are proportional to the LO terms in Ceff
7 (µb) and Ceff

8 (µb), respectively [21]. In

the MS scheme with fully anticommuting γ5, one finds ~y = (0, 0,−1
3 ,−4

9 ,−20
3 ,−80

9 ) and

~z = (0, 0, 1,−1
6 , 20,−10

3 ) [22].
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Once the Wilson coefficients Ceff
i (µb) have been found up to the NNLO, one proceeds

to evaluating all the on-shell decay amplitudes that matter at this order for3

Γ(b → Xp
s γ)Eγ>E0 =

G2
Fαemm5

b,pole

32π4
|V ∗

tsVtb|2
8∑

i,j=1

Ceff
i (µb) C

eff
j (µb)×

×
[
G̃

(0)
ij (E0) +

αs

4π
G̃

(1)
ij (E0, µb) +

(αs

4π

)2
G̃

(2)
ij (E0, µb) +O(α3

s )

]
+ . . . , (1.8)

where ellipses stand for higher-order electroweak corrections. At the LO, the symmetric

matrix G̃
(0)
ij takes the form

G̃
(0)
ij (E0) = δi7δj7 + T

(0)
ij , (1.9)

where T
(0)
ij describe small tree-level contributions to b → sqq̄γ from Qu

1,2 and Q3,...,6 [23, 24].

At the NLO and NNLO, numerically dominant effects come from G̃
(n)
77 , G̃

(n)
17 and G̃

(n)
27 .

While G̃
(2)
77 is known in a complete manner [25–29], calculations of G̃

(2)
17 and G̃

(2)
27 are still

in progress. Contributions from massless and massive fermion loops on the gluon lines

have been found in refs. [30–32], and served as a basis for applying the Brodsky-Lepage-

Mackenzie (BLM) approximation [33]. The remaining (non-BLM) parts of G̃
(2)
(1,2)7 have

been known so far in the heavy charm quark limit only (mc ≫ mb/2) [34, 35].

In the present work, we evaluate the full G̃
(2)
(1,2)7 for mc = E0 = 0. It is achieved by

calculating imaginary parts of several hundreds four-loop propagator-type diagrams with

massive internal lines. Next, both limits are used to interpolate in mc those parts of the

non-BLM contributions to G̃
(2)
(1,2)7 whose exact mc-dependence is not yet known. It will

give us an estimate of their values at the measured value of mc, and for non-vanishing E0.

Our current approach differs in several aspects from the one in ref. [34] where

interpolation in mc was applied to a combined non-BLM effect from all the G̃
(2)
ij with

i, j ∈ {1, 2, 7, 8}.4 In the present paper, the only interpolated quantities are the above-

mentioned parts of G̃
(2)
(1,2)7. Exact mc-dependence of most of the other important non-BLM

contributions to G̃
(2)
ij is now available thanks to calculations performed in refs. [29, 32, 36].

Last but not least, the current analysis includes the previously unknown mc-independent

part of G̃
(2)
78 [37], all the relevant BLM corrections to G̃

(2)
ij with i, j 6= 7 [31, 38, 39],

tree-level contributions T
(0)
ij [23, 24], four-body NLO corrections [24], as well as the

updated non-perturbative corrections [14, 40, 41]. The only contributions to G̃
(2)
ij with

i, j ∈ {1, 2, 7, 8} that remain neglected are the unknown (n ≥ 3)-body final state

contributions to the non-BLM parts of G̃
(2)
ij with i, j 6= 7.

The article is organized as follows. In section 2, we describe the calculation of G̃
(2)
(1,2)7 for

mc = E0 = 0. A new phenomenological analysis begins in section 3 where mc-dependence

of the considered correction is discussed, and the corresponding uncertainty is estimated.

3Following the notation of ref. [25], we use tilde over G in the r.h.s. of eq. (1.8) to indicate the overall

normalization to m5
b,pole.

4At the NNLO level, we neglect the small Wilson coefficients C3, . . . , C6, and the CKM-suppressed effects

from Qu
1,2.
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In section 4, we evaluate our current prediction for Bsγ in the SM, which constitutes an up-

date of the one given in ref. [42]. We conclude in section 5. Appendix A contains results for

all the massless master integrals that were necessary for the calculation in section 2. Several

relations to quantities encountered in ref. [43] are presented in appendix B. In appendix C,

we collect some of the relevant NLO quantities. Appendix D contains a list of input pa-

rameters for our numerical analysis together with a correlation matrix for a subset of them.

2 Calculation of G̃
(2)
17 and G̃

(2)
27 for mc = E0 = 0

2.1 The bare calculation

Typical diagrams that had to be evaluated for the present project are shown in figure 1.

They represent a subset of possible unitarity cut contributions to the b-quark self-energy

due to the interference of various effective operators. At the highest loop level, i.e. four-

loops, this interference involves the operators Q1,2 and Q7. We need to consider two-,

three- and four-particle cuts. Possible five-particle cuts would necessarily involve real

cc̄ pairs originating from the Q1,2 operator vertices, while open charm production is not

included in B̄ → Xsγ by definition. For this reason, we skip the diagrams with five-particle

cuts together with all the diagrams with real cc̄ production or virtual charm loops on the

gluon lines. In section 3, contributions from virtual charm loops on the gluon lines will be

taken over from the mc 6= 0 calculation of ref. [32], and added to the final result.

For efficiency reasons, we work directly with cut diagrams and employ the technique

first proposed in [44]. The idea of the method is to represent cut propagators as

− 2πiδ(p2 −m2) =
1

p2 −m2 + iε
− 1

p2 −m2 − iε
. (2.1)

As long as we perform only algebraic transformations on the integrands, there is no dif-

ference between the first and second terms on the r.h.s. of the above equation, and it is

sufficient to work with one of them only. This is particularly convenient for the integration-

by-parts (IBP) method for reduction of integrals [45]. The only difference in such an ap-

proach between complete integrals and cut integrals is that a given integral vanishes if the

cut propagator disappears due to cancellation of numerators with denominators. This fact

reduces the number of occurring integrals in comparison to a computation without cuts.

In practice, the calculation follows the standard procedure. Diagrams are generated

with DiaGen [46], the Dirac algebra is performed with FORM [47], and the resulting scalar

integrals are reduced using IBP identities with IdSolver [46]. The main challenge of this

calculation begins after these steps. The amplitudes for the interference contributions

are expressed in terms of a number of master integrals, most of them containing massive

internal b-quark lines and a non-trivial phase space integration in D = 4 − 2ǫ spacetime

dimensions, with up to four particles in the final state. A feeling for the size of the problem

can be gained from table 1.

Having a large number of massive cut integrals, it is advantageous to devise a strategy

to treat them in a uniform manner. It is clear that purely massless cut integrals are easier to

– 5 –
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Figure 1. Sample diagrams for G̃
(2)
(1,2)7 with some of the possible cuts indicated by the dashed lines.

nD nOS neff nmassless

two-particle cuts 292 92 143 9

three-particle cuts 267 54 110 11

four-particle cuts 292 17 37 7

total 851 163 290 27

Table 1. Number of diagrams nD, number of massive on-shell master integrals nOS , number of

effectively computed massive master integrals neff , and number of massless master integrals nmassless.

The last two columns are explained in the text.

calculate than massive ones. Therefore, we aim at replacing a calculation of massive prop-

agator integrals by a calculation of massless ones. This can be achieved by extending the

integral definitions. We assume, namely, that the external momentum squared p2b is a free

parameter, and treat coefficients Ii in the ǫ-expansion of the master integrals as functions

of a single dimensionless variable x = p2b/m
2
b . IBP identities give us differential equations

d

dx
Ii(x) =

∑

j

Jij(x)Ij(x) , (2.2)

– 6 –
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Figure 2. Diagrammatic representation of the asymptotic large mass expansion of two non-planar

master integrals.Thick and thin lines represent massive and massless propagators, respectively, while

dashed lines show the unitarity cuts.

with Jij(x) being certain rational functions of x. Boundary conditions for these equations

in the vicinity of x = 0 are given by asymptotic large-mass expansions, i.e. by power-log

series in x. A few leading terms in the series for each Ii can be found by calculating

products of massive tadpole integrals up to three loops and massless propagator ones up

to four loops, as illustrated in figure 2. Next, higher-order terms can be determined from

the differential equations themselves by substituting Ii in terms of power-log series in x.

For our application it turns out that around 50 terms are sufficient to obtain the desired

accuracy. This gives us high-precision boundary conditions at small but non-vanishing x

for solving the differential equations (2.2) numerically.

On the way from the vicinity of x = 0 to the physical point at x = 1, one often

encounters spurious singularities on the real axis. To bypass them, the differential equations

are solved along ellipses in the complex x plane. Several such ellipses are usually considered

to test whether the numerical solution is stable.

Naively, one might think that as long as there are no infinities at x = 1, the numerical

solution could be continued up to that point. However, there is an essential singularity

there, and the integrals behave as (1− x)n lnm(1− x), with n,m > 0 being some positive

powers. Due to such a behaviour, the numerical solution has poor convergence, as the

algorithms assume locally polynomial behaviour of the considered functions. In order to

overcome this problem, we perform another power-log expansion around x = 1, and match

it onto the numerical result. To determine the maximal power of the logarithms, we begin

with observing that the highest poles in the cut diagrams could potentially be of order

1/ǫ6, due to the presence of collinear and soft divergences. The coefficient of the leading

singularity contains no ln(1−x) because logarithms are generated by expanding expressions

– 7 –
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Figure 3. Left (a): integration contour in the complex x plane. The numerical integration (NI) is

performed between the regions close to x = 0 and x = 1 that are accessible by power-log expansions

(PLE). Right (b): diagrams that give the terms marked with κ in eq. (2.3).

of the form (1 − x)aǫ/ǫ6 (with a being some constant) in the framework of expansion by

regions. Thus, finite parts of the master integral expansions may only contain ln6(1 − x).

Higher powers may be needed due to the presence of spurious singularities, i.e. poles in

the coefficients at the master integrals in the physical amplitude. In practice, we have

used an ansatz with logarithm powers up to fifteen. Our numerical matching has shown

that such high powers never occur in the considered problem, i.e. the respective expansion

coefficients are consistent with zero to very high numerical precision. Using the matched

series, we finally obtain the required values of the original master integrals at x = 1. The

solution procedure is schematically represented in figure 3a.

Since the master integrals are considered for x 6= 1, their overall number neff is larger

than it would be for x = 1, i.e. neff > nOS . However, the massless integrals that are

necessary to determine the boundary conditions near x = 0 are not only simpler, but

also their number nmassless is much smaller than nOS , as seen in table 1. All the massless

integrals that we had to consider are depicted in appendix A, in figure 7 and table 3.

Using the above method, we have obtained the following bare NNLO results for the

considered interferences in the Feynman-’t Hooft gauge:

G̃
(2)bare
17 = −1

6
G̃

(2)bare
27 +

80

81 ǫ2
+

1592 + 54π2

243 ǫ
+ 42.0026519628,

G̃
(2)bare
27 = − 4

3 ǫ3
− 30332 + 432π2

2187 ǫ2
− 67.66077706444119

ǫ
+ 44.5070537274

+κnl

(
32

729 ǫ
+ 0.6520676315

)
+ nl

(
352

729 ǫ2
+

11624

2187 ǫ
+

228656

6561
− 188

243
π2

)

+nb

(
352

729 ǫ2
+

5.17409838118169

ǫ
+ 15.1790288135

)
+O(ǫ). (2.3)

Here, nl and nb denote numbers of massless and massive (m = mb) quark flavours, while

κ = 1 marks contributions from the diagrams in figure 3b describing interferences involving

four-body sqq̄γ final states and no cc̄γ couplings. The terms proportional to nl and nb but

not marked by κ reproduce (after renormalization) the mc → 0 limits of what is already

– 8 –
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known for non-zero mc [30–32]. For compactness, all the results in this subsection are given

for µ2 = eγm2
b/(4π), where γ is the Euler-Mascheroni constant.

Some of the numbers in eq. (2.3) have been given in an exact form even though our

calculation of the master integrals at x = 1 is purely numerical. However, the accuracy is

very high (to around 14 decimals), so identification of simple rationals is possible. Moreover,

renormalization gives us relations to lower-order results where more terms are known in

an exact manner (see below). For the nl-term, after verifying numerical agreement with

refs. [30, 39], we have made use of the available exact expressions.5 Several other numbers

in this subsection that have been retained in a decimal form can actually be related to

quantities encountered in ref. [43], as described in appendix B.

Let us now list all the lower-order bare contributions that are needed for renormal-

ization. For this purpose, it is convenient to express eq. (1.8) in terms of Ci rather than

Ceff
i , and denote the corresponding interference terms by Ĝ

(n)
ij rather than G̃

(n)
ij . All the

necessary Ĝ
(0)
i7 and Ĝ

(1)bare
i7 read6

Ĝ
(0)
77 =

Γ(2− ǫ) eγǫ

Γ(2− 2ǫ)
,

Ĝ
(0)
47 =

4

3
Ĝ

(0)
37 = − 4

9
Γ(1 + ǫ) eγǫ Ĝ

(0)
77 ,

Ĝ
(0)
67 =

4

3
Ĝ

(0)
57 = 4

(
5− 3 ǫ− ǫ2

)
Ĝ

(0)
47 ,

Ĝ
(1)bare
27 = −6 Ĝ

(1)bare
17 = − 92

81 ǫ
− 1978

243
+

777π2 − 27185

729
ǫ+O(ǫ2),

Ĝ
(1)bare
47 =

16

3 ǫ2
+

3674

243 ǫ
+ 43.76456245573869 + 94.9884724116 ǫ

+κnl

(
− 16

243
+

44π2 − 612

243
ǫ

)
+ nl

(
16

81 ǫ
− 4

243
+

264π2 − 2186

729
ǫ

)

+nb

(
16

81 ǫ
+ 0.04680853247986 + 0.3194493123 ǫ

)
+O(ǫ2),

Ĝ
(1)bare
77 =

4

3 ǫ
+

124

9
− 16

9
π2 +

(
212

3
− 58

9
π2 − 64

3
ζ3

)
ǫ+O(ǫ2),

Ĝ
(1)bare
78 =

16

9 ǫ
+

280

27
− 16

27
π2 +

(
382

9
− 16

9
π2 − 160

9
ζ3

)
ǫ+O(ǫ2),

Ĝ
(1)bare
7(12) = −6 Ĝ

(1)bare
7(11) =

2096

81
+

39832

243
ǫ+O(ǫ2). (2.4)

The last line of the above equation describes contributions from the so-called evanescent

operators that vanish in four spacetime dimensions

Q11 = (s̄Lγµ1γµ2γµ3T
acL)(c̄Lγ

µ1γµ2γµ3T abL)− 16Q1,

5In particular, for the function given in eq. (13) of ref. [39], we have limmc→0 h
(2)
27 (δ = 1) = 41

27
− 2

9
π2.

6Ĝi7 differ from G̃i7 only for i = 3, 4, 5, 6.
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Q12 = (s̄Lγµ1γµ2γµ3cL)(c̄Lγ
µ1γµ2γµ3bL)− 16Q2. (2.5)

In Ĝ
(1)bare
(1,2)7 , the three-particle-cut contributions alone (b → sγg) read

Ĝ
(1)3P
27 = −6 Ĝ

(1)3P
17 = − 4

27
− 106

81
ǫ+O(ǫ2). (2.6)

In addition, several interferences need to be calculated with the b-quark propagators

squared, to account for the renormalization of mb. We find

Ĝ
(1)m
27 = −6 Ĝ

(1)m
17 = − 1

3 ǫ2
− 21 + 4π2

81 ǫ
+

1085

81
− 161

972
π2 − 40

27
ζ3

+

(
59071

486
− 1645

2916
π2 − 65

81
ζ3 −

7

81
π4

)
ǫ+O(ǫ2),

Ĝ
(0)m
47 =

4

3ǫ
+ 2 +

50− 2π2

9
ǫ+

94− 3π2 − 32ζ3
9

ǫ2 +O(ǫ3). (2.7)

Our conventions for their global normalization will become clear through the way they

enter the renormalized NNLO expression in eq. (2.10) below.

Some of the diagrams with Q4 insertions contain b-quark tadpoles that are the only

source of 1/ǫ2 terms in Ĝ
(1)bare
47 , and 1/ǫ terms in Ĝ

(0)m
47 . Such divergences are actually nec-

essary to renormalize the 1/ǫ3 poles in eq. (2.3). These tadpole diagrams have been skipped

in the NLO calculation of ref. [43] because they give no contribution to the renormalized

Ĝ
(1)
47 , i.e. they cancel out after renormalization of mb.

Among all the bare interferences given in this section, not only the NNLO ones are

entirely new, but also Ĝ
(1)bare
7(12) , Ĝ

(1)m
27 and Ĝ

(0)m
47 . The remaining LO and NLO results are ex-

tensions of the known ones by another power of ǫ, as necessary for the current calculation.7

2.2 Renormalization

Our results in the previous subsection contain no loop corrections on external legs in the

interfered amplitudes. Such corrections are taken into account below, with the help of

on-shell renormalization constants for the b-quark, s-quark and gluon fields

ZOS
b = 1− 4

3
α̃s s

ǫ eγǫ Γ(ǫ)
3− 2ǫ

1− 2ǫ
+O(α̃2

s ),

ZOS
s = 1 +O(α̃2

s ),

ZOS
G = 1− 2

3
nb α̃s s

ǫ eγǫ Γ(ǫ) +O(α̃2
s ), (2.8)

where α̃s =
αs
4π = g2s

16π2 and s = 4πµ2

m2
b

e−γ . The QCD coupling gs and the Wilson coefficients

Ci are renormalized in the MS scheme: gbares = Z̄ggs, and Cbare
i =

∑
j CjZ̄ji. The cor-

responding MS renormalization constants can be taken over from the literature (see, e.g.,

7Exceptions are Ĝ
(0)bare
77 Ĝ

(1)bare
77 and Ĝ

(1)bare
78 , for which sufficiently many terms in the ǫ expansions have

been already found in refs. [25, 27, 37]. Our results agree with theirs, barring different conventions for the

global 1 +O(ǫ) normalization factor (see the end of subsection 2.2).
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refs. [17, 19])

Zg=1 + α̃s
ǫ

(
−11

2 + f
3

)
+O(α̃2

s ), Z77=1 + 16 α̃s
3 ǫ +O(α̃2

s ),

Z11=1− 2 α̃s
ǫ +O(α̃2

s ), Z21=
6 α̃s
ǫ +O(α̃2

s ),

Z12=
4 α̃s
3 ǫ +O(α̃2

s ), Z22=1 +O(α̃2
s ),

Z13=α̃2
s

(
10

81 ǫ2
− 353

243 ǫ

)
+O(α̃3

s ), Z23=α̃2
s

(
− 20

27 ǫ2
− 104

81 ǫ

)
+O(α̃3

s ),

Z14=−1
6Z24 + α̃2

s

(
1
2ǫ2

− 11
12 ǫ

)
, Z24=

2 α̃s
3 ǫ + α̃2

s

(
−188+12f

27 ǫ2
+ 338

81 ǫ

)
+O(α̃3

s ),

Z15=α̃2
s

(
− 1

81 ǫ2
+ 67

486 ǫ

)
+O(α̃3

s ), Z25=α̃2
s

(
2

27 ǫ2
+ 14

81 ǫ

)
+O(α̃3

s ),

Z16=α̃2
s

(
− 5

216 ǫ2
− 35

648 ǫ

)
+O(α̃3

s ), Z26=α̃2
s

(
5

36 ǫ2
+ 35

108 ǫ

)
+O(α̃3

s ),

Z17=−1
6Z27 + α̃2

s

(
22

81 ǫ2
− 332

243 ǫ

)
, Z27=

116 α̃s
81 ǫ +α̃2

s

(
−3556+744f

2187 ǫ2
+ 13610−44f

2187 ǫ

)
+O(α̃3

s ),

Z18=
167 α̃s
648 ǫ +O(α̃2

s ), Z28=
19 α̃s
27 ǫ +O(α̃2

s ),

Z1(11)=
5 α̃s
12 ǫ +O(α̃2

s ), Z2(11)=
α̃s
ǫ +O(α̃2

s ),

Z1(12)=
2 α̃s
9 ǫ +O(α̃2

s ), Z2(12)=O(α̃2
s ), (2.9)

where f = nl+nb here, as we have skipped all the charm loops on the gluon lines. For the b-

quark mass renormalization, we use the on-shell scheme everywhere (ZOS
m = ZOS

b +O(α̃2
s )),

to get the overall m5
b,pole in eq. (1.8).

With all the necessary ingredients at hand, we can now write an explicit formula for

the renormalized interference terms up to the NNLO (i = 1, 2)8

α̃s G̃
(1)
i7 +α̃2

s G̃
(2)
i7 =ZOS

b ZOS
m Z̄77

{
α̃2
s s

3ǫ G̃
(2)bare
i7 +(ZOS

m −1) sǫ
[
Z̄i4 Ĝ

(0)m
47 +α̃s s

ǫ Ĝ
(1)m
i7

]

+ α̃s (Z
OS
G − 1) s2ǫ Ĝ

(1)3P
i7 + Z̄i7 Z

OS
m

[
Ĝ

(0)
77 + α̃s s

ǫ Ĝ
(1)bare
77

]
+ α̃s Z̄i8 s

ǫ Ĝ
(1)bare
78

+
∑

j=1,...,6,11,12

Z̄ij s
ǫ
[
Ĝ

(0)
j7 + α̃s s

ǫ Z̄2
g Ĝ

(1)bare
j7

]


 + O(α̃3

s ), (2.10)

where Ĝ
(0)
j7 = 0 for j = 1, 2, 11, 12. Once the above expression is expanded in α̃s, and O(α̃3

s )

terms are neglected, all the 1/ǫn poles cancel out as they should. Our final renormalized

results at E0 = mc = 0 read

G̃
(1)
27 = −6 G̃

(1)
17 = − 1702

243
− 416

81
ln

µ

mb
,

G̃
(2)
17 = −1

6
G̃

(2)
27 +

136

27
ln2

µ

mb
+

94 + 8π2

9
ln

µ

mb
+ 22.6049613485,

8Obviously, the renormalized G̃
(n)
i7 remain unchanged after replacing Z̄g → Zg, Z̄ij → Zij and s →

µ2/m2
b on the r.h.s. of eq. (2.10) and inside the on-shell constants (2.8).
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G̃
(2)
27 =

(
11792

729
+

800

243
(nl + nb)

)
ln2

µ

mb
+

(
1.0460332197 +

64

729
κnl

+
2368

243
nl + 9.6604967166nb

)
ln

µ

mb
− 14.0663747289 + 0.1644478609κnl

+

(
54170

6561
+

92

729
π2

)
nl − 1.8324081161nb. (2.11)

They are, of course, insensitive to conventions for the global 1+O(ǫ) normalization factor

in eqs. (2.3)–(2.7), so long as it is the same in all these equations. In particular, it does not

matter that our Ĝ
(0)
77 differs from the one in ref. [25] by an overall factor of Γ(1 + ǫ) eγǫ.

As already mentioned, the nl terms not marked by κ in eq. (2.11) agree with the

previous calculations where both mc 6= 0 and mc = 0 were considered. In the case of the nb

terms, the current result extends the published fit (eq. (3.3) of ref. [32]) down to mc = 0.

All the remaining terms are entirely new.

3 Impact of the NNLO corrections to (Q7, Q1,2) interferences on the

branching ratio

In the description of our phenomenological analysis, we shall strictly follow the notation

of ref. [34], where the relevant perturbative quantity

P (E0) =
8∑

i,j=1

Ceff
i (µb) C

eff
j (µb) Kij(E0, µb), (3.1)

has been defined through

Γ[b → Xp
s γ]Eγ>E0

|Vcb/Vub|2 Γ[b → Xp
ueν̄]

=

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 6αem

π
P (E0). (3.2)

The relation between G̃
(n)
i7 for i = 1, 2 and Ki7 = α̃sK

(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) is thus very

simple

α̃sK
(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) =
α̃s G̃

(1)
i7 + α̃2

s G̃
(2)
i7 +O(α̃3

s )

1 + α̃s(50− 8π2)/3 + O(α̃2
s )

, (3.3)

where the denominator comes from the NLO correction to the semileptonic b → Xp
ueν̄

decay rate.

In the following, we shall write expressions for K
(2)
i7 that are valid for arbitrary mc

and E0 but incorporate information from our calculation in the previous section, where

E0 = mc = 0 has been assumed. For this purpose, four functions

fNLO(z, δ) = Re r
(1)
2 (z) + 2φ

(1)
27 (z, δ),

fq(z, δ) = Re r
(2)
2 (z) − 4

3
h
(2)
27 (z, δ),
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fb(z) ≃ −1.836 + 2.608 z + 0.8271 z2 − 2.441 z ln z,

fc(z) ≃ 9.099 + 13.20 z − 19.68 z2 + 25.71 z ln z, (3.4)

of z = m2
c/m

2
b and δ = 1−2E0/mb are going to be useful. Explicit formulae for r

(1)
2 (z) and

Re r
(2)
2 (z) can be found in eq. (3.1) of ref. [43] and eq. (26) of ref. [30], respectively. For

h
(2)
27 (z, δ), we shall use a numerical fit from eq. (13) of ref. [39]. An analytical expression

for φ
(1)
27 (z, δ) for 4z < 1− δ (which is the phenomenologically relevant region) reads

φ
(1)
27 (z, δ) = − 2

27
δ(3− 3δ + δ2) +

4

3
z δ sδ Lδ +

12− 8π2

9
z2δ +

4

3
z(1− 2z)(s0L0 − sδLδ)

+
2π2 − 7

9
zδ(2− δ)− 8

9
z(6z2 − 4z + 1)(L2

0 − L2
δ)−

8

9
zδ(2− δ − 4z)L2

δ , (3.5)

with sδ =
√
(1− δ)(1− δ − 4z), s0 =

√
1− 4z, Lδ = ln

√
1−δ+

√
1−δ−4z

2
√
z

and L0 =

ln 1+
√
1−4z

2
√
z

.

In the δ = 1 case, φ
(1)
27 and h

(2)
27 for z < 1

4 are given by

φ
(1)
27 (z, 1) =− 2

27
+
12−8π2

9
z2+

4

3
z(1−2z)s0L0+

2π2−7

9
z− 8

9
z(6z2−4z+1)L2

0+
4

3
π2z3,

h
(2)
27 (z, 1)≃

41

27
− 2

9
π2 − 2.24 z1/2 − 7.04 z + 23.72 z3/2 + (−9.86 z + 31.28 z2) ln z. (3.6)

The functions fb(z) and fc(z) in eq. (3.4) come from eqs. (3.3) and (3.4) of ref. [32], re-

spectively. These numerical fits (in the range z ∈ [0.017, 0.155]) describe contributions from

three-loop b → sγ amplitudes with massive b-quark and c-quark loops on the gluon lines.

The ratio z = m2
c/m

2
b is defined in terms of the MS-renormalized charm quark mass

at an arbitrary scale µc. In practice, we shall use µc = 2.0GeV as a central value. As far

as the renormalization scheme for mb is concerned, we assume the following relation to the

on-shell scheme
mb,pole

mb
= 1 + α̃sxm +O(α̃2

s ). (3.7)

In the 1S and kinetic schemes, one finds xm = 8
9παΥ and xm = 64µkin

9mb

(
1 + 3µkin

8mb

)
, respec-

tively. In our numerical analysis, the kinetic scheme is going to be used.

Complete expressions for the NNLO quantities K
(2)
17 and K

(2)
27 can now be written as

follows

K
(2)
17 (z, δ) = −1

6
K

(2)
27 (z, δ) +A1 + F1(z, δ) +

(
94

81
− 3

2
K

(1)
27 − 3

4
K

(1)
78

)
Lb −

34

27
L2
b ,

K
(2)
27 (z, δ) = A2 + F2(z, δ)−

3

2
βnl=3
0 fq(z, δ) + fb(z) + fc(z) +

4

3
φ
(1)
27 (z, δ) ln z

+

[
(8Lc − 2xm) z

d

dz
+ (1− δ)xm

d

dδ

]
fNLO(z, δ) +

416

81
xm

+

(
10

3
K

(1)
27 − 2

3
K

(1)
47 − 208

81
K

(1)
77 − 35

27
K

(1)
78 − 254

81

)
Lb −

5948

729
L2
b , (3.8)
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where βnl=3
0 = 9, Lb = ln(µ2

b/m
2
b) and Lc = ln(µ2

c/m
2
c), while the relevant K

(1)
ij are

collected in appendix C.

The expressions Ai+Fi(z, δ) contain all the contributions that are not yet known for

the measured value of mc. They correspond to those parts of the considered interference

terms that are obtained by: (i) setting µb = mb, µc = mc and xm = 0, (ii) removing

the BLM-extended contributions from quark loops on the gluon lines and from b → sqq̄γ

decays (q = u, d, s), except for those given in figure 3b.

We define the constants Ai by requiring that Fi(0, 1) = 0. Then we evaluate Ai

from eq. (2.11) by setting there µ = mb, nb = 0 and κnl = 3. Next, a replacement

nl → nl +
3
2β

nl
0 = 33

2 is done in the remaining nl-terms. Finally, eq. (3.3) is used to find

A1 ≃ 22.605, A2 ≃ 75.603. (3.9)

These two numbers are the only outcome of our calculation in section 2 that is going to be

used in the phenomenological analysis below.

Apart from the condition Fi(0, 1) = 0, everything that is known at the moment about

the functions Fi(z, δ) are their large-z asymptotic forms. They can be derived from the

results of ref. [35].9 Explicitly, we find

F1(z, δ) =
70

27
ln2 z +

(
119

27
− 2

9
π2 +

3

2
φ
(1)
78 (δ)

)
ln z − 493

2916
− 5

54
π2 +

232

27
ζ3 +

5

8
φ
(1)
78 (δ)

−A1 +O
(
1

z

)
,

F2(z, δ) = −4736

729
ln2 z +

{
−165385

2187
+

1186

729
π2 − 2π

9
√
3
+

2

3
Y1 +

4

3
φ
(1)
47 (δ) +

832

81
φ
(1)
77 (δ)

+
70

27
φ
(1)
78 (δ)

}
(ln z + 1)− 956435

19683
− 2662

2187
π2 +

20060

243
ζ3 −

1624

243
φ
(1)
77 (δ)

−293

162
φ
(1)
78 (δ)−A2 +O

(
1

z

)
. (3.10)

The constant Y1 and the necessary φ
(1)
ij functions are given in appendices B and C, respec-

tively.

Let ∆Bsγ denote the contribution from F1,2(z, δ) to Bsγ . Then the relative effect is

given by

∆Bsγ

Bsγ
≃ U(z, δ) ≡ α2

s (µb)

8π2

C
(0)
1 (µb)F1(z, δ) +

(
C

(0)
2 (µb)− 1

6C
(0)
1 (µb)

)
F2(z, δ)

C
(0)eff
7 (µb)

. (3.11)

For µb = 2.0GeV, we have αs(µb) ≃ 0.293, C
(0)
1 (µb) ≃ −0.902, C

(0)
2 (µb) ≃ 1.073, and

C
(0)eff
7 (µb) ≃ −0.385.

9We supplement them now with the previously omitted large-mc contributions from the diagrams in

figure 1 in ref. [35] or, equivalently, figure 3b in the present paper. The effect of such a modification is

numerically very small.
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Figure 4. The interpolating function defined in eq. (3.12) (solid line) and asymptotic behaviour

of the true function U(z, 1) for mc ≫ mb/2 (dashed line). The vertical line corresponds to the

measured value of mc/mb.

We shall estimate the contribution to Bsγ that comes from the unknown U(z, δ) by con-

sidering an interpolation model where U(z, 1) is given by the following linear combination

Uinterp(z, 1) = x1 + x2 fq(z, 1) +

(
x3 + x4 z

d

dz

)
fNLO(z, 1). (3.12)

The numbers xi are fixed by the condition U(0, 1) = 0 as well as by the large-z behaviour

of U(z, 1) that follows from eq. (3.10). This determines xi in a unique manner, namely xi ≃
(−0.0502, 0.0328, 0.0373, 0.0309)i. In figure 4, the function Uinterp(z, 1) is plotted with a

solid line, while the dashed line shows Uasymp(z, 1), i.e. asymptotic large-z behaviour of the

true U(z, 1). Note that
√
z = mc/mb rather than z is used on the horizontal axis. The ver-

tical line corresponds to the measured value of this mass ratio. The plot involves some extra

approximation in the region between
√
z ≃ 0.4 and

√
z ≃ 0.8 where we need to interpolate

between the known small-z and large-z expansions of Re r
(2)
2 (z) (see figure 1 of ref. [34]).

In refs. [34, 42] the uncertainty in Bsγ due to unknown mc-dependence of the NNLO

corrections has been estimated at the ±3% level. The size of the interpolated contribution

in figure 4 implies that no reduction of this uncertainty is possible at the moment. One

might wonder whether the uncertainty should not be enlarged. Our choice here is to leave

it unchanged, for the following reasons:

(i) Our choice of functions for the linear combination in eq. (3.12) is dictated by the

fact, that these very functions determine the dependence on z of the known parts of

K
(2)
17 and K

(2)
27 . The known parts are either those related to renormalization of the

Wilson coefficients and quark masses (in the terms proportional to Lb and Lc) or

the renormalization of αs (the function fq parametrizes the considered correction in

the BLM approximation). It often happens in perturbation theory that higher-order

corrections are dominated by renormalization effects. If this is the case here, the true

U(z, 1) should have a similar shape to Uinterp(z, 1).

(ii) The growth of Uinterp(z, 1) for mc > mb/2 is perfectly understandable. In this region,

logarithms of z from eq. (3.10) combine with Lb from eq. (3.8), and the asymptotic
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large-mc behaviour of K
(2)
(1,2)7 is determined by ln(µb/mc) and ln(µc/mc) only (see

eqs. (5.12) and (5.14) of ref. [35]). Thus, the growth of the correction for large z

can be compensated by an appropriate choice of the renormalization scales, which

means (not surprisingly) that the dangerous large logarithms can get resummed using

renormalization group evolution of the Wilson coefficients, masses and αs.

(iii) Our ±3% uncertainty is going to be combined in quadrature with the other ones,

which means that it should be treated as a “theoretical 1σ error”. To gain higher

confidence levels, it would need to be enlarged.

(iv) In the considered interference terms K17 and K27, the dependence on δ is very weak

in the whole range δ ∈ [0, 1], both at the NLO and in the BLM approximation for the

NNLO corrections. Specifically, changing δ from 1 (E0 = 0) to 0.295 (E0 = 1.6GeV)

results in modifications of fNLO by +0.2% and fq by +1.0%, respectively, for the

measured value of mc. The corresponding changes at mc = 0 amount to −0.7% and

−2.4% only. Thus, our estimates made for δ = 1 are likely to be valid for arbitrary δ.

In the phenomenological analysis below, we shall take K
(2)
17 and K

(2)
27 as they stand in

eq. (3.8), replace the unknown Fi(z, δ) by F interp
i (z, 1) interpolated analogously to eq. (3.12)

F interp
1 (z, 1) = −23.75 +

35

12
fq(z, 1) +

(
2129

936
− 9

52
π2 − 0.84 z

d

dz

)
fNLO(z, 1),

F interp
2 (z, 1) = −3.01 − 592

81
fq(z, 1) +

(
−10.34 − 9.55 z

d

dz

)
fNLO(z, 1), (3.13)

and include a ±3% uncertainty in the branching ratio due to such an approximation.

4 Evaluation of Bsγ in the SM

In the present section, we include all the other corrections to Bsγ that have been evaluated

after the analysis in refs. [34, 42]. Next, we update the SM prediction. To provide infor-

mation on sizes of the subsequent corrections, the description is split into steps, and the

corresponding modifications in the branching ratio central value are summarized in table 2.

The steps are as follows:

1. We begin with performing the calculation precisely as it was described in ref. [34]

but only shifting from B(B̄ → Xsγ) to Bsγ , which amounts to CP-averaging the

perturbative decay widths. No directly CP-violating non-perturbative corrections to

B(B̄ → Xsγ) were considered in ref. [34]. It was not equivalent to neglecting them

but rather to assuming that they have vanishing central values. A dedicated analysis

in ref. [48] leads to an estimate of 0.4± 1.7% for such effects.

2. The input parameters are updated as outlined in appendix D. In particular, we use

results of the very recent kinetic-scheme fit to the semileptonic B decay data [49].
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1 2 3 4 5 6 7 8 9 10 total

−0.6% +1.0% −0.2% +2.0% +1.0% +1.6% +2.1% −0.5% +0.2% −0.4% +6.4%

Table 2. Shifts in the central value of Bsγ for E0 = 1.6GeV at each step (see the text).

0.2 0.4 0.6 0.8 1

-30

-20

-10

0
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20

30

40
(b)

(c)

(a)

P(2)rem2

m m/c b

Figure 5. Interpolation of P
(2)rem
2 inmc as in figure 2 of ref. [34] but with updated input parameters

and with renormalization scales shifted to (µc, µb) = (2, 2)GeV. In addition, the thick solid (red)

line shows the case with the presently known boundary condition at mc = 0 imposed.

3. Central values of the renormalization scales (µc, µb) are shifted from (1.5, 2.5)GeV

to (2, 2)GeV. Both scales are then varied in the ranges [1.25, 5]GeV to estimate the

higher-order uncertainty. In the resulting range of Bsγ , the value corresponding to

the (2, 2)GeV renormalization scales is more centrally located than the (1.5, 2.5)GeV

one, after performing all the updates 1-10 here. It is the main reason for shifting

the default scales. The (2, 2)GeV choice is also simpler (both scales are equal),

and µc is exactly as in the fit from which we take mc(µc) (appendix D). As far as

µb is concerned, it should be of the same order as the energy transferred to the

partonic system after the b-quark decay. For the leading b → sγ contribution from

the photonic dipole operator P7, this energy equals to 1
2mb which gives 2.3GeV when

one substitutes mb = mb,kin from appendix D.10 Rounding 2.3 to either 2.5 or 2.0

for the default value is equally fine, given that the observed µb-dependence of Bsγ is

weak (see figure 6), and our range for µb is [1.25, 5]GeV.

4. In the interpolation of P
(2)rem
2 (see ref. [34] for its definition), we shift to the so-

called case (c) where the interpolated quantity at mc = 0 was given by the (Q7, Q7)

interference alone.

5. The mc = 0 boundary for P
(2)rem
2 is updated to include all the relevant interferences,

especially the ones evaluated in section 2. The thick solid (red) line in figure 5 shows

the new P
(2)rem
2 in such a case, while the remaining lines are as in figure 2 of ref. [34]

(somewhat shifted due to the parameter and scale modifications only).

10The measured photon spectra are also peaked at around 2.3GeV, which confirms the leading role of

the two-body partonic mode.
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6. At this point, we abandon the approach with mc-interpolation applied to the whole

non-BLM correction P
(2)rem
2 . As before, the penguin operators Q3,...,6 and the CKM-

suppressed ones Qu
1,2 are neglected at the NNLO level. The corrections K

(2)
17 and

K
(2)
27 are treated as summarized at the end of the previous section. For K

(2)
78 , the

complete results from refs. [36, 37] are included. K
(2)
77 is made complete by taking

into account its exact mc-dependence [29, 50], in addition to the previously included

terms. For the NNLO interferences among Q1, Q2 and Q8, only the two-body final

state contributions are present at this step. They are infrared-finite by themselves,

and given by products of the well-known NLO amplitudes r
(1)
i (see eq. (3.1) of ref. [43])

whose imaginary parts matter here, too.

7. Three- and four-body final state contributions to the NNLO interferences among Q1,

Q2 and Q8 are included in the BLM approximation, using the results of refs. [31, 38,

39]. Non-BLM corrections to these interferences remain neglected. The corresponding

uncertainty is going to be absorbed below into the overall ±3% perturbative one.

8. Four-loop Q1,...,6 → Q8 anomalous dimensions from ref. [19] are included in the

renormalization group equations.

9. The LO and NLO contributions from four body final states are included [23, 24].

They are not yet formally complete, but the only neglected terms are the NLO ones

that undergo double (quadratic) suppression either by the small Wilson coefficients

C3,...,6 or by the small CKM element ratio |V ∗
usVub| / |V ∗

tsVtb|. The uncertainty that

results from neglecting such terms is below a permille in Bsγ . As far as the CKM-

suppressed two-body and three-body contributions are concerned, the two-body NLO

one has already been taken into account in ref. [34]. The remaining NLO and NNLO

ones (also those with double CKM suppression) are included at the present step.

Their contribution to Bsγ is below a permille. However, the branching ratio Bdγ [51]

receives around 2% enhancement from them.

10. We update our treatment of non-perturbative corrections. The O
(
αsΛ

2/m2
b

)
correc-

tion to the (Q7, Q7) interference from ref. [40] replaces the previous approximate ex-

pression from ref. [52]. Moreover, we include a similar correction [41, 53] to the charm-

less semileptonic rate that is used for normalization in [P (E0)+N(E0)] (see eqs. (D.2)

and (D.4) in appendix D). In consequence, the previous (tiny) effect in N(E0) gets

reduced by a factor of around 4. Finally, our treatment of non-perturbative effects in

interferences other than (Q7, Q7) gets modified according to ref. [14]. A vanishing con-

tribution to the branching ratio central value from such corrections is assumed, except

for the leading O
(
λ2/m

2
c

)
one [54] where mc is fixed to 1.131GeV. At the same time,

a ±5% non-perturbative uncertainty in the branching ratio is assumed, as obtained in

section 7.4 of ref. [14] by adding the relevant three uncertainties in a linear manner.11

11If their ranges were treated as 1σ ones and combined in quadrature, the uncertainty would go down

to 3.3%.
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Figure 6. Renormalization scale dependence of Bsγ in units 10−4 at the LO (dotted lines), NLO

(dashed lines) and NNLO (solid lines). The upper-left, upper-right and lower plots describe the

dependence on µc, µb and µ0 [GeV], respectively. When one of the scales is varied, the remaining

ones are set to their default values.

Our final result reads

BSM
sγ = (3.36± 0.23)× 10−4 (4.1)

for E0 = 1.6GeV, where four types of uncertainties have been combined in quadrature:

±5% non-perturbative (step 10 above), ±3% from our interpolation of F1,2(z, δ) (section 3),

±2.0% parametric (appendix D), as well as ±3% from higher-order perturbative effects.

The latter uncertainty is assumed to account for approximations made at the NLO and

NNLO levels, too. In the NLO case, it refers to the doubly suppressed terms mentioned in

step 9 above. In the NNLO case, it refers to neglecting the penguin operators at this level,

and using the BLM approximation in step 7 above. If we relied just on the renormalization-

scale dependence in figure 6 (with 1.25GeV < µc, µb < 5GeV), we could reduce this uncer-

tainty to around±2.4%. However, apart from the scale-dependence, one needs to study how

the perturbation series behaves, which is hard to judge before learning the actual contribu-

tions from F1,2(z, δ). Thus, we leave the higher-order uncertainty unchanged with respect

to refs. [34, 42]. Our treatment of the electroweak corrections [55] remains unchanged, too.

The central value in eq. (4.1) is about 6.4% higher than the previous estimate of

3.15 × 10−4 in refs. [34, 42]. Around half of this effect comes from improving the mc-

interpolation. As seen in figure 5, the currently known mc = 0 boundary for the thick line

is close to the edge of the previously assumed range between the curves (a) and (b). It

is consistent with the fact that the corrections in steps 4 and 5 sum up to 3% being the
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previous “1σ” interpolation uncertainty. The mc = 0 boundary has been the main worry

in the past because estimating the range for its location was based on quite arbitrary

assumptions. It is precisely the reason why no update of the SM prediction seemed to

make sense until now, given moderate sizes of the other new corrections.

5 Conclusions

We evaluatedO(α2
s) contributions to the perturbative Γ(b → Xsγ) decay rate that originate

from the (Q7, Q1,2) interference for mc = E0 = 0. The calculation involved 163 four-loop

massive on-shell propagator master integrals with unitarity cuts. Our updated prediction

for the CP- and isospin-averaged branching ratio in the SM reads BSM
sγ = (3.36± 0.23)×

10−4. It includes all the perturbative and non-perturbative contributions that have been

calculated to date. It agrees very well with the current experimental world average Bexp
sγ =

(3.43±0.21±0.07)×10−4. An extension of our analysis to the case of Bdγ and an update of

bounds on the Two Higgs Doublet Model is going to be presented in a parallel article [51].
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A Massless master integrals

In the course of this work, it has been necessary to compute a number of massless scalar

integrals with various unitarity cuts. All of them are depicted in figure 7 and table 3. They

occur after applying the large mass expansion for p2b ≪ m2
b , as well as in the decay rate

calculation itself. Apart from the four-loop diagrams with four-particle cuts, and the four-

loop diagrams 4L3C1, 4L3C2 and 4L3C3 with three-particle cuts, values of all our master

integrals can either be found in the literature [56–60] or obtained using standard techniques

described, for instance, in ref. [64]. Let us note that the results for all the massless propaga-

tor four-loop master integrals in refs. [65, 66] are not sufficient here because they correspond

to sums over all the possible cuts, while certain cuts need to be discarded in our case.

In the following, we explain our computation of the four-particle-cut master integrals

in dimensional regularization with D = 4−2ǫ. The total momentum is q = p1+p2+p3+p4,

and we have p2i = 0 for i = 1, . . . , 4. Moreover, all the internal lines are massless. The
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4L4C1 4L4C2 4L4C3 4L4C4

4L4C5 4L4C6 4L4C7 4L4C8

Figure 7. The massless four-particle-cut diagrams calculated in the course of this work.

momenta are in Minkowski space, and we tacitly assume that all the propagators below

contain an infinitesimal +iη with η > 0. We also define the invariants

sijk... ≡ (pi + pj + pk + . . .)2 . (A.1)

We therefore have s12+s13+s14+s23+s24+s34 = q2 as a constraint from overall momentum

conservation.

Our convention for the loop measure is

∫
[dk] ≡

∫
dDk

i (2π)D
, (A.2)

and we define the prefactor

SΓ ≡ 1

(4π)D/2 Γ(1− ǫ)
. (A.3)

Note that our definition of SΓ is different from the one in eq. (4.13) of ref. [57].

As far as integration over the four-particle massless phase space in D = 4− 2ǫ dimen-

sions is concerned, we closely follow ref. [57]. The phase space measure reads

dPS4 =
dD−1p1

(2π)D−1 2E1
. . .

dD−1p4
(2π)D−1 2E4

(2π)D δ(D)(q − p1 − p2 − p3 − p4) . (A.4)

It can be rewritten in terms of invariants and angular variables according to

dPS4 = (2π)4−3D
(
q2
)1−D

2 21−
D
2 (−∆4)

D−5
2 θ(−∆4) dΩD−1 dΩD−2 dΩD−3

×δ(q2 − s12 − s13 − s14 − s23 − s24 − s34) ds12 ds13 ds14 ds23 ds24 ds34 , (A.5)

with the Gram determinant

∆4 = λ(s12s34, s13s24, s14s23) , λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz . (A.6)
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2PCuts 3PCuts

1L2C1

2L2C1 2L3C1

3L2C1 3L3C1

4L2C1 4L2C2 4L3C1 4L3C2 4L3C3

4L2C3 4L2C4 4L3C4 4L3C5 4L3C6

4L2C5 4L2C6 4L3C7 4L3C8 4L3C9

Table 3. The massless two- and three-particle-cut diagrams used in the course of this work.

It turns out that integration over angular variables is trivial in all the cases we en-

counter here, and we can use
∫
dΩD =

2πD/2

Γ(D/2)
. (A.7)

Performing the angular integration, and furthermore applying the steps explained in

ref. [57] to factorize the phase space measure, we arrive at

dPS4 =
2π

(
q2
)2−3ǫ

(4π)
3D
2 (1− 2ǫ)Γ(1− ǫ)Γ2(12 − ǫ)

dt dv dχ dz1 dy134 dy1234 δ(1− y1234) (A.8)

t−ǫ (1− t)−ǫ v−ǫ (1− v)−ǫ χ− 1
2
−ǫ (1− χ)−

1
2
−ǫ z−ǫ

1 (1− z1)
1−2ǫ y1−2ǫ

134 (1− y134)
1−2ǫ.
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All the integration variables t, v, χ, z1, y134, and y1234 run from 0 . . . 1 and originate from

sijk... = q2 yijk... , y13 = (y13, b − y13, a)χ+ y13, a ,

y12 = ȳ134 z̄1 t̄ , y13, b/a = B ±
√

B2 − C ,

y23 = ȳ134 z1 , B = y134 (t̄ v̄ + v t z1) ,

y14 = y134 z̄1 v , C = y2134 (t̄ v̄ − v t z1)
2 ,

y24 = ȳ134 z̄1 t ,
√

B2 − C = 2 y134
√
t
√
t̄
√
v
√
v̄
√
z1 ,

y124 = z̄1 (1− y134v̄) , y13, b − y13, a = 2
√
B2 − C , (A.9)

where t̄ = 1− t, and analogously for all the other variables. The substitutions (A.9) should

be done in the integrands, too.

A.1 Results for the four-particle-cut master integrals

We are now in position to present results for the four-particle-cut diagrams depicted in

figure 7. Normalization factors are extracted according to

I4L4Ci = 2π eiπǫ S4
Γ

(
q2
)ai−4ǫ

Ĩ4L4Ci , (A.10)

where the ai follow from dimensional considerations. One finds ai =

(2, 2, 1,−1, 0,−1,−1, 0)i for i = 1, . . . , 8.

We start with I4L4C1,

I4L4C1 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−ǫ

∫
dPS4 y

−ǫ
12 , (A.11)

which yields

Ĩ4L4C1 =
Γ(ǫ)Γ9(1− ǫ)Γ(1− 2ǫ)Γ(2− 3ǫ)

Γ2(2− 2ǫ)Γ(3− 4ǫ)Γ(4− 5ǫ)
. (A.12)

The next integral to consider is I4L4C2,

I4L4C2 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2 + p4)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−ǫ

∫
dPS4 y

−ǫ
134 , (A.13)

and we get

Ĩ4L4C2 =
Γ(ǫ)Γ10(1− ǫ)Γ(2− 3ǫ)

Γ2(2− 2ǫ)Γ(3− 3ǫ)Γ(4− 5ǫ)
. (A.14)

We proceed with I4L4C3,

I4L4C3 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p3 + p4)2 (p1 + p2 + p4)2
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=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−1−ǫ

∫
dPS4 y

−ǫ
134 y

−1
124 , (A.15)

and arrive at

Ĩ4L4C3 =
Γ(ǫ)Γ10(1− ǫ)Γ(1− 2ǫ)

Γ3(2− 2ǫ)Γ(4− 5ǫ)
3F2(1, 1− ǫ, 2− 3ǫ ; 2− 2ǫ, 4− 5ǫ ; 1). (A.16)

The expansion of Ĩ4L4C3 in ǫ is conveniently done with the package HypExp [68, 69],

Ĩ4L4C3 =
1

4ǫ
+

(
37

8
−π2

12

)
+

(
809

16
− 35π2

24
−5ζ3

)
ǫ+

(
13677

32
− 253π2

16
− 29π4

144
−71ζ3

)
ǫ2

+

(
198241

64
− 12995π2

96
− 3521π4

1440
− 1287

2
ζ3 +

67

6
π2ζ3 −

315

2
ζ5

)
ǫ3 +

(
2597477

128

−192175π2

192
− 17519π4

960
− 1481π6

6048
− 19139

4
ζ3 +

925

6
π2ζ3 + 170ζ23 − 2049ζ5

)
ǫ4

+O(ǫ5) . (A.17)

We now move to I4L4C4,

I4L4C4 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p3 + p4)2 (p1 + p3)2 (p1 + p2 + p4)2 (p1 + p2)2

=
eiπǫ Γ(ǫ)Γ2(1− ǫ)

(4π)D/2 Γ(2− 2ǫ)

(
q2
)−3−ǫ

∫
dPS4 y

−ǫ
134 y

−1
124 y

−1
13 y−1

12 , (A.18)

which does not reveal a closed form since we cannot avoid y13 in the integrand. We therefore

compute it from the following two-fold Mellin-Barnes representation [61–64, 67]

Ĩ4L4C4 =
Γ(ǫ)Γ6(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(−2ǫ)Γ2(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

Γ(z1 + z2 − ǫ)Γ(−ǫ− z1 − z2)Γ(z1)

×Γ(1− z1)Γ(1− 2ǫ− z1)

Γ(2− 5ǫ− z1)

Γ(−z2)Γ(1 + z2)Γ(−1− ǫ− z2)Γ(1− ǫ+ z2)

Γ(1− 3ǫ+ z2)Γ(−ǫ− z2)
. (A.19)

The integration contours in the complex plane can be chosen as straight lines parallel to the

imaginary axis. The integral is then regulated [67] for c1 = 1/2, c2 = −1/4, and ǫ = −7/4.

We perform an analytic continuation to ǫ = 0 with the package MB.m [67], which is also

used for numerical cross checks. The expansion of Ĩ4L4C4 in ǫ reads

Ĩ4L4C4 =
1

4ǫ5
+

1

ǫ4
+

(
3− 13π2

24

)
1

ǫ3
+

(
8− 13π2

6
− 33

2
ζ3

)
1

ǫ2
+

(
20− 13π2

2
− 397π4

1440

−66ζ3

)
1

ǫ
+

(
48− 52π2

3
− 397π4

360
− 198ζ3 +

131

4
π2ζ3 −

687

2
ζ5

)

+

(
112− 130π2

3
− 397π4

120
− 24539π6

60480
− 528ζ3 + 131π2ζ3 +

897

2
ζ23 − 1374ζ5

)
ǫ

+O(ǫ2) . (A.20)
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The next integral, I4L4C5, with

I4L4C5 =

∫
dPS4

∫
[dk]

1

k2 (k + p4)2 (k + p1 + p2 + p4)2 (p2 + p3)2
(A.21)

=
eiπǫ Γ(1 + ǫ)Γ(−ǫ)Γ(1− ǫ)

(4π)D/2 Γ(1− 2ǫ)

(
q2
)−2−ǫ

∫
dPS4

1∫

0

dx
1

[y12 + x y14 + x y24]
1+ǫ y23

,

can again be expressed to all orders in ǫ. One first integrates over x, and finally finds

Ĩ4L4C5 = − Γ(ǫ)Γ6(1− ǫ)Γ3(−ǫ)

Γ(2− 5ǫ)Γ(2− 2ǫ)

[
Γ(1− ǫ)

Γ(2− 2ǫ)
3F2(1, 1− ǫ, 1− 2ǫ ; 1 + ǫ, 2− 2ǫ ; 1)

− Γ(1− 3ǫ)

(1− 3ǫ)Γ(1− 4ǫ)
3F2(1, 1− ǫ, 1− 3ǫ ; 1 + ǫ, 2− 3ǫ ; 1)

]
. (A.22)

The expansion of Ĩ4L4C5 in ǫ reads

Ĩ4L4C5 =
2ζ3
ǫ2

+

(
14ζ3 +

31π4

180

)
1

ǫ
+

(
78ζ3 +

217π4

180
− 20

3
π2ζ3 + 114ζ5

)

+

(
406ζ3 +

403π4

60
− 140

3
π2ζ3 + 798ζ5 +

799π6

7560
− 125ζ23

)
ǫ+ O(ǫ2) . (A.23)

Also the next integral, I4L4C6, with

I4L4C6 =

∫
dPS4

∫
[dk]

1

k2 (k − p2)2 (k + p4)2 (k + p1 + p4)2 (p1 + p2)2
(A.24)

=
eiπǫ Γ(2 + ǫ)Γ2(−ǫ)

(4π)D/2 Γ(−2ǫ)

(
q2
)−3−ǫ

∫
dPS4

1∫

0

dx

1∫

0

dy
1

[x y24 + y y14 + xy y12]
2+ǫ y12

,

reveals a closed form which, however, turns out to be more complicated. One first integrates

over x and y, and finally finds

Ĩ4L4C6 =
Γ(ǫ)Γ6(1− ǫ)Γ2(−ǫ)Γ(−1− 3ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 4ǫ)

[
− 3

2
Γ(1− 2ǫ)Γ(ǫ)− 2Γ2(1− 2ǫ)Γ(2ǫ)Γ(1 + ǫ)

−2Γ(1− 2ǫ)Γ(1 + ǫ)
(
ψ(0)(1− ǫ)− ψ(0)(ǫ)− ψ(0)(1− 4ǫ) + 2ψ(0)(1− 2ǫ) + γ

)

−4Γ(−ǫ) 3F2(1,−ǫ,−ǫ ; 1+ǫ, 1−ǫ ; 1)− 4Γ2(−2ǫ)

Γ(−3ǫ)
3F2(−ǫ,−ǫ,−ǫ ; −3ǫ, 1−ǫ ; 1)

+
Γ2(1− ǫ)Γ(1− 4ǫ)

(1 + ǫ)2Γ(1− 3ǫ)Γ(−2ǫ)
4F3(1, 1− ǫ, 1− ǫ, 1 + ǫ ; 2 + ǫ, 2 + ǫ, 1− 3ǫ ; 1)

− Γ2(1− 2ǫ)Γ(1 + ǫ)

Γ(−2ǫ)
4F3(1, 1, 1− 2ǫ, 1− 2ǫ ; 2, 2, 1− 4ǫ ; 1)

]
, (A.25)

where ψ(0)(z) = d
dz ln Γ(z). The expansion of Ĩ4L4C6 in ǫ reads

Ĩ4L4C6 =
5

6ǫ5
− 5

6ǫ4
+

(
35

6
− 79π2

36

)
1

ǫ3
+

(
−65

6
+

79π2

36
− 58ζ3

)
1

ǫ2
+

(
275

6
− 553π2

36
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+
643π4

2160
+58ζ3

)
1

ǫ
+

(
−665

6
+
1027π2

36
− 643π4

2160
−406ζ3+

1301

9
π2ζ3−

2590

3
ζ5

)

+

(
2315

6
− 4345π2

36
+
4501π4

2160
+
63229π6

272160
+754ζ3−

1301

9
π2ζ3+1884ζ23+

2590

3
ζ5

)
ǫ

+O(ǫ2) . (A.26)

The next integral, I4L4C7, has not been necessary for the actual calculation of G̃
(2)
17

and G̃
(2)
27 because it stems from diagrams where the charm quark loop is cut. However, we

still give the result, as it is the most complicated integral, and might be useful for future

computations of other interferences. The difficulty is due to the fact that one cannot avoid

y13 in the integrand, and the resulting Mellin-Barnes representation is four-dimensional.

Starting from

I4L4C7 =

∫
dPS4

∫
[dk]

1

k2 (k − p1)2 (k + p2 + p3 + p4)2 (k + p3 + p4)2 (p1 + p2 + p3)2

=
eiπǫ Γ(2 + ǫ)Γ2(−ǫ)

(4π)D/2 Γ(−2ǫ)

(
q2
)−3−ǫ

×
∫
dPS4

1∫

0

dx

1∫

0

dy
1

[y34 + x (y13+y14)+y (y23+y24)+xy y12]
2+ǫ y123

, (A.27)

we first integrate over x and y, and find the following Mellin-Barnes representation.

Ĩ4L4C7 =
Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

×Γ(−ǫ− z1)Γ(1− ǫ+ z1)Γ(1− 3ǫ+ z1 − z2)Γ(1− 2ǫ− z2)Γ(−ǫ− z1 + z2)

Γ(1− z2 − 3ǫ)Γ(1− z2 − 4ǫ)Γ(1 + z2 − ǫ)

×Γ(−z1)Γ(1 + z1)Γ(−z2)Γ(1 + z2)Γ(−z2 − ǫ)Γ(z2 − ǫ)

Γ(1− z1 − 3ǫ)Γ(2 + z1 − 3ǫ)

− 2Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ2(1− 3ǫ)

Γ(1− 5ǫ)Γ(1− 2ǫ)Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

c3+i∞∫

c3−i∞

dz3
2πi

×Γ(−z1)Γ(1 + z1 − z3)Γ(−z2)Γ(1 + z2)Γ(−z1 + z3 − ǫ)Γ(z2 − ǫ)Γ(−z2 − z3 − ǫ)

Γ(1− z1 + z2 + z3 − 4ǫ)Γ(2 + z1 − z3 − 3ǫ)

×Γ(z3)Γ(1− 4ǫ+ z2 + z3)Γ(1− 2ǫ+ z1)Γ(−z1 + z2 + z3 − ǫ)Γ(1− ǫ+ z1 − z3)

Γ(1 + z3 − 3ǫ)Γ(1 + z2 − ǫ)

+
Γ(ǫ)Γ5(1− ǫ)Γ(−ǫ)Γ(1− 3ǫ)

Γ(1− 5ǫ)Γ(1− 2ǫ)Γ(−2ǫ)Γ(2− 2ǫ)

c1+i∞∫

c1−i∞

dz1
2πi

c2+i∞∫

c2−i∞

dz2
2πi

c3+i∞∫

c3−i∞

dz3
2πi

c4+i∞∫

c4−i∞

dz4
2πi

×Γ(−z3)Γ(z3 − z1)Γ(−z2)Γ(1 + z2)Γ(−z4)Γ(1 + z1 + z4)Γ(z2 − ǫ)

Γ(1− z1 + z2 + z3 − z4 − 4ǫ)Γ(1 + z1 − z3 − ǫ)
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×Γ(1− ǫ+ z1)Γ(z1 − z2 − z3 − ǫ)Γ(−z1 + z3 − z4 − ǫ)Γ(−z1 + z2 + z3 − z4 − ǫ)

Γ(1 + z3 − ǫ)Γ(1 + z2 − ǫ)

×Γ(−z1 − 2ǫ)Γ(1 + z2 + z3 − 2ǫ)Γ(1 + z1 − z3 + z4 − ǫ) . (A.28)

The expansion of Ĩ4L4C7 in ǫ reads

Ĩ4L4C7 = −2π4

45ǫ
+

(
−16π4

45
+ 2π2ζ3 − 58ζ5

)

+

(
−104π4

45
+ 16π2ζ3 − 464ζ5 + 84ζ23 − 1289π6

5670

)
ǫ+ O(ǫ2) . (A.29)

We have also derived an alternative, seven-fold, Mellin-Barnes representation for Ĩ4L4C7

and used it to confirm (A.29) numerically with the help of the code MB.m [67].

The last integral, I4L4C8, reads

I4L4C8 =

∫
dPS4

∫
[dk]

1

k2 (k + p1 + p2 + p4)2 (k + p1 + p2)2 (p1 + p3 + p4)2
(A.30)

=
eiπǫ Γ(1 + ǫ)Γ(−ǫ)Γ(1− ǫ)

(4π)D/2 Γ(1− 2ǫ)

(
q2
)−2−ǫ

∫
dPS4

1∫

0

dx
1

[y12 + x y14 + x y24]
1+ǫ y134

.

Again, one first integrates over x, and finally finds an expression involving a one-

dimensional Feynman parameter integral

Ĩ4L4C8 =
Γ(1− 3ǫ)Γ(1− 2ǫ)Γ4(1− ǫ)Γ4(−ǫ)Γ(2ǫ)Γ3(1 + ǫ)

Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)Γ(3ǫ)

+
Γ2(1− 3ǫ)Γ(1− 2ǫ)Γ4(1− ǫ)Γ3(−ǫ)Γ2(1 + ǫ)Γ(2ǫ)

Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)

−Γ(1− 3ǫ)Γ5(1− ǫ)Γ4(−ǫ)Γ(1 + ǫ)

2 Γ(2− 5ǫ)Γ(2− 4ǫ)Γ(2− 2ǫ)
3F2(1, 1− ǫ, 2ǫ ; 1 + ǫ, 1 + 2ǫ ; 1)

−Γ(1− 3ǫ)Γ7(1− ǫ)Γ2(−ǫ)Γ(ǫ)

2 Γ(3− 5ǫ)Γ2(2− 2ǫ)Γ(−2ǫ)

×
1∫

0

dt t1−2ǫ (1−t)−ǫ
2F1(1, 2−4ǫ ; 3−5ǫ ; t) 2F1(1, 1−ǫ ; 2−2ǫ ; t) . (A.31)

The expansion of Ĩ4L4C8 in ǫ reads

Ĩ4L4C8 = −ζ3
ǫ
+

(
−11ζ3 −

19π4

360

)
+

(
−83ζ3 +

23π2ζ3
6

− 36ζ5 −
209π4

360

)
ǫ

+

(
−535ζ3+

253π2ζ3
6

+70ζ23−396ζ5−
1577π4

360
+
13π6

378

)
ǫ2+O(ǫ3) . (A.32)

A.2 Results for the three-particle-cut master integrals

In this section, we describe our computation of the three-particle-cut diagrams 4L3C1,

4L3C2 and 4L3C3. Similarly to eq. (A.10), we extract the normalization factors according

to

I4L3Ci = 2π e2πiǫ S4
Γ

(
q2
)bi−4ǫ

Ĩ4L3Ci , (A.33)
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where the bi again follow from dimensional considerations. One finds b1 = 0 and b2 = −1.

For 4L3C3, we have used a different method, as explained below.

The kinematics and the phase space measure are much simpler in the three-particle

case, compared to the four-particle one. The total momentum is q = p1 + p2 + p3, and we

have p2i = 0 for i = 1, . . . , 3. We define the invariants

sijk... ≡ (pi + pj + pk + . . .)2 (A.34)

as before, and have s12+s13+s23 = q2 as a constraint from overall momentum conservation.

The phase space measure

dPS3 =
dD−1p1

(2π)D−1 2E1
. . .

dD−1p3
(2π)D−1 2E3

(2π)D δ(D)(q − p1 − p2 − p3) (A.35)

is again taken over from ref. [57]. After integration over angular variables one finds

dPS3 =
2π S2

Γ Γ
2(1− ǫ)

(
q2
)1−2ǫ

Γ(2− 2ǫ)
dy12 dy13 dy23 y

−ǫ
12 y−ǫ

13 y−ǫ
23 δ(1− y12 − y13 − y23).

The integration variables y12, y13, and y23 run from 0 . . . 1, and originate from sij = q2 yij .

The latter substitutions have to be made in the integrands, as well.

Our first three-particle-cut integral I4L3C1 reads

I4L3C1 =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

k21 (k1 + p1)2 k22 (k2 + p3)2 (k1 + k2 − p2)2
(A.36)

=
e2πiǫ S2

Γ Γ
2(−ǫ)Γ3(1− ǫ)Γ(1 + 2ǫ)

Γ(1− 3ǫ)

(
q2
)−1−2ǫ

×
∫
dPS3

1∫

0

dx

1∫

0

dy
1

[x y12 + x y y13 + y y23]
1+2ǫ .

It can be expressed in a closed form valid to all orders in ǫ. One first integrates over x,

and finally finds

Ĩ4L3C1 = −3Γ(1− 2ǫ)Γ(−3ǫ)Γ2(−ǫ)Γ(ǫ)Γ(2ǫ)Γ(2ǫ+ 1)Γ5(1− ǫ)

2 Γ(2− 5ǫ)Γ(2− 2ǫ)
(A.37)

+
Γ4(−ǫ)Γ(2ǫ)Γ5(1− ǫ)

(2ǫ− 1)2 Γ(2− 5ǫ)Γ(−2ǫ)
3F2(1, 1− ǫ, 1− 2ǫ ; 2− 2ǫ, 1 + ǫ ; 1)

+
Γ2(1− 2ǫ)Γ4(−ǫ)Γ(1 + ǫ)Γ(2ǫ)Γ4(1− ǫ)

Γ(2− 4ǫ)Γ(1− 3ǫ)Γ(2− 2ǫ)
3F2(ǫ, 1− 2ǫ, 1− 2ǫ ; 2− 4ǫ, 1 + ǫ ; 1)

− Γ(1− 2ǫ)Γ5(−ǫ)Γ(2ǫ)Γ5(1− ǫ)

4 Γ(1−3ǫ)Γ(2−3ǫ)Γ(2−2ǫ)Γ(−2ǫ)
4F3(1, 2ǫ, 1−ǫ, 1−ǫ ; 2−3ǫ, 1+ǫ, 1+2ǫ ; 1) .

The expansion of Ĩ4L3C1 in ǫ reads

Ĩ4L3C1 =
2ζ3
ǫ2

+

(
14ζ3 +

π4

9

)
1

ǫ
+

(
78ζ3 +

7π4

9
− 6π2ζ3 + 78ζ5

)
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+

(
406ζ3 +

13π4

3
− 42π2ζ3 + 546ζ5 +

5π6

63
− 140ζ23

)
ǫ+ O(ǫ2) . (A.38)

The next three-particle-cut integral is I4L3C2,

I4L3C2 =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

(k1 + p1 + p2)2 k21 (k1 − k2 + p1)2 (k1 − k2)2 (k2 + p2)2 k22
.

(A.39)

Despite the fact that p3 does not appear in the integrand, the result of the integral is

quite lengthy. In the end, we find the following expression that involves a one-dimensional

Feynman parameter integral:

Ĩ4L3C2 =
Γ(−3ǫ− 1)Γ(−ǫ)Γ(ǫ)Γ6(1− ǫ)Γ3(−2ǫ)Γ2(1 + 2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(−4ǫ)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ(2ǫ)Γ7(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 4ǫ)Γ(−3ǫ)Γ(2 + 2ǫ)
3F2(1, 1, 1− ǫ ; 1− 4ǫ, 2 + 2ǫ ; 1)

−Γ(−3ǫ− 1)Γ3(−ǫ)Γ2(1 + 2ǫ)Γ7(1− ǫ)Γ2(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ(1− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)
3F2(1, 1, 1− ǫ ; 1− 2ǫ, 2 + 2ǫ ; 1)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ(2ǫ)Γ6(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)

1∫

0

dt t−ǫ (1− t)−3ǫ−1

× [2F1(−2ǫ,−2ǫ ; 1− 2ǫ ; 1− t)− 1] 2F1(1, 1 ; 2 + 2ǫ ; t)

−2Γ(−3ǫ− 1)Γ2(−ǫ)Γ2(1 + 2ǫ)Γ6(1− ǫ)Γ2(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ(2 + 2ǫ)

1∫

0

dt t−ǫ (1− t)−ǫ−1

× [2F1(−2ǫ,−2ǫ ; −3ǫ ; 1− t)− 1] 2F1(1, 1 ; 2 + 2ǫ ; t)

+
Γ(−3ǫ− 1)Γ2(−ǫ)Γ2(1 + 2ǫ)Γ6(1− ǫ)Γ(−2ǫ)

Γ(1− 5ǫ)Γ(2− 2ǫ)Γ2(−3ǫ)Γ2(2 + 2ǫ)

1∫

0

dt t1+ǫ (1− t)−3ǫ−1

× [2F1(−2ǫ,−2ǫ ; −3ǫ ; 1− t)− 1] [2F1(1, 1 ; 2 + 2ǫ ; t)]2 . (A.40)

The expansion of Ĩ4L3C2 in ǫ reads

Ĩ4L3C2 =
1

3ǫ5
− 1

3ǫ4
+

(
7

3
− 13π2

18

)
1

ǫ3
+

(
13π2

18
− 13

3
− 61

3
ζ3

)
1

ǫ2
+

(
55

3
− 91π2

18
− 11π4

180

+
61

3
ζ3

)
1

ǫ
+

(
169π2

18
− 133

3
+

11π4

180
− 427

3
ζ3 +

353

9
π2ζ3 − 233ζ5

)

+

(
463

3
− 715π2

18
− 77π4

180
+

17π6

140
+

793

3
ζ3 −

353

9
π2ζ3 +

1763

3
ζ23 + 233ζ5

)
ǫ

+O(ǫ2) . (A.41)

For the last integral I4L3C3, we employ a different approach. Due to the structure of

the integrand, it is not possible to find a regulated Mellin-Barnes representation. Therefore,

we begin with evaluating an integral I4L3C3′ defined as

I4L3C3′ =

∫
dPS3

∫
[dk1]

∫
[dk2]

1

[(k1 + k2)2]
2 (k2 + p2)2 k21 (k1 + p3)2 (k1 + p1 + p3)2 s12
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=
e2πiǫ S2

Γ Γ
2(−ǫ)Γ3(1− ǫ)Γ(2 + 2ǫ)Γ(−2ǫ)

Γ(1− 2ǫ)Γ(−3ǫ)

(
q2
)−3−2ǫ

×
∫
dPS3

1∫

0

dx

1∫

0

dy
yǫ

[x y y12 + x y13 + y y23]
2+2ǫ y12

. (A.42)

Again, we extract the normalization factor according to

I4L3C3′ = 2π e2πiǫ S4
Γ

(
q2
)−2−4ǫ

Ĩ4L3C3′ , (A.43)

The above quantity can be expressed in terms of a one-dimensional Feynman parameter

integral as follows:

Ĩ4L3C3′ =
3Γ4(−ǫ)Γ(2ǫ)Γ6(1− ǫ)

4 Γ2(1− 3ǫ)Γ(2− 2ǫ)
− 5Γ2(1− 2ǫ)Γ5(1− ǫ)Γ3(−ǫ)Γ2(2ǫ)Γ(1 + ǫ)

2 Γ(1− 5ǫ)Γ(2− 2ǫ)

+
5Γ4(1− ǫ)Γ5(−ǫ)Γ(1 + 2ǫ)

2 Γ(1− 5ǫ)Γ(2− 2ǫ)
3F2(1,−ǫ,−ǫ ; 1− ǫ, 1 + ǫ ; 1)

+
3Γ6(1− ǫ)Γ3(−ǫ)Γ(2ǫ)

2 Γ(1− 3ǫ)Γ(1− 2ǫ)Γ(2− 2ǫ)

1∫

0

dt t−2ǫ (1− t)−2ǫ−1

× [2F1(1,−5ǫ ; 1− 2ǫ ; 1− t)− 1] 2F1(−ǫ,−2ǫ ; 1− 2ǫ ; t) . (A.44)

The expansion of Ĩ4L3C3′ in ǫ reads

Ĩ4L3C3′ =
1

(1− 2ǫ)

[
− 3

2ǫ5
+

37π2

12ǫ3
+

100ζ3
ǫ2

+
149π4

80ǫ
+ 1727ζ5 −

505

3
π2ζ3

+

(
186493π6

90720
− 2680ζ23

)
ǫ+O(ǫ2)

]
. (A.45)

The original integral I4L3C3 can then be obtained by relating it to I4L3C3′ with the help of

integration-by-parts identities.

B Relation to ref. [43]

Several decimal numbers in subsection 2.1 can be related to the quantities encountered in

ref. [43] as follows. In the finite part of Ĝ
(1)bare
47 in eq. (2.4), we have

43.76456245573869 = Y1 ≡ 19039

486
+

11

27
π2 − π

9
√
3
− 16

27
Xb +

1

6
Re[a(1)− 2b(1)],

0.04680853247986 = Y2 ≡ 2Re b(1)− 4

243
, (B.1)

where

Xb = −9

8
− π2

5
− 2

3
ζ3 +

1

10
ψ(1)

(
1

6

)
,

Re a(1) =
16

3
+

164

405
π2 − 16

9
ζ3 −

300π + 64π3

135
√
3

+
32π

√
3− 72

405
ψ(1)

(
1

6

)
,
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Re b(1) =
320

81
+

632

1215
π2 − 4π

3
√
3
− 8

45
ψ(1)

(
1

6

)
, (B.2)

and

ψ(1)(z) =
d2

dz2
ln Γ(z). (B.3)

The above exact expressions for Xb and Re a(1) are new. They come from the three-fold

Feynman parameter integrals in eqs. (3.2) and (3.3) of ref. [43].

In the 1
ǫ -part of G̃

(2)bare
27 in eq. (2.3), we have

−67.66077706444119 = −2

3
Y1 −

103762

2187
+

44

27
π2 − 160

27
ζ3,

5.17409838118169 = −2

3
Y2 +

11384

2187
. (B.4)

Finally, in the coefficients multiplying ln(µ/mb) in eq. (2.11), we have

1.0460332197 = −4

3
Y1 −

37708

729
+

304

27
π2,

9.6604967166 = −4

3
Y2 +

7088

729
. (B.5)

C NLO results of relevance for section 3

The NLO quantities K
(1)
ij that occur in eq. (3.8) are given by

K
(1)
27 = −6K

(1)
17 = Re r

(1)
2 − 208

81
Lb + 2φ

(1)
27 (δ),

K
(1)
47 = Re r

(1)
4 +

76

243
Lb + 2φ

(1)
47 (δ),

K
(1)
77 = −182

9
+

8

9
π2 − 32

3
Lb + 4φ

(1)
77 (δ),

K
(1)
78 =

44

9
− 8

27
π2 +

16

9
Lb + 2φ

(1)
78 (δ), (C.1)

where r
(1)
2 and r

(1)
4 can be found in eq. (3.1) of ref. [43]. The function φ

(1)
27 has been already

given in eq. (3.5) here. The remaining ones read

φ
(1)
77 = −2

3
ln2 δ − 7

3
ln δ − 31

9
+

10

3
δ +

1

3
δ2 − 2

9
δ3 +

1

3
δ(δ − 4) ln δ,

φ
(1)
78 =

8

9

[
Li2(1− δ)− 1

6
π2 − δ ln δ +

9

4
δ − 1

4
δ2 +

1

12
δ3
]
,

φ
(1)
47 (δ) = φ

(1)A
47 (δ) + φ

(1)B
47 (δ), (C.2)

where12

φ
(1)A
47 (δ) =

1

54
π
(
3
√
3− π

)
+

1

81
δ3 − 25

108
δ2 +

5

54
δ +

2

9

(
δ2 + 2δ + 3

)
arctan2

√
1− δ

3 + δ

12Eq. (3.12) of ref. [34] gives φ
(1)A
47 only, and contains a misprint in the coefficient at limmc→mb

.
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−1

3

(
δ2 + 4δ + 3

)
√

1− δ

3 + δ
arctan

√
1− δ

3 + δ
,

φ
(1)B
47 (δ) =

34 δ2 + 59 δ − 18

486

δ2 ln δ

1− δ
+

433 δ3 + 429 δ2 − 720 δ

2916
. (C.3)

The latter function is a new result from ref. [24] that originates from sqq̄γ final states

(q = u, d, s). Contributions to b → Xp
s γ from such final states at the NLO have been

neglected in the previous literature because they are suppressed by phase space factors and

the small Wilson coefficients C3,...,6.

D Input parameters

In this appendix, we collect numerical values of the parameters that matter for our branch-

ing ratio calculation in section 4. The photon energy cut is set to E0 = 1.6GeV. Our central

values for the renormalization scales are µb = µc = 2.0 GeV and µ0 = 160 GeV.

Masses of the b and c quarks together with the semileptonic B → Xcℓν̄ branching ratio

Bcℓν̄ and several non-perturbative parameters are adopted from the very recent analysis

in ref. [49].13 In that work, fits to the measured semileptonic decay spectra have been

performed with optional inclusion of constraints from the b-hadron spectroscopy, as well

as from the quark mass determinations utilizing moments of R(e+e− → hadrons) [71].

While mc is MS-renormalized, mb and the non-perturbative parameters are treated in

the kinetic scheme. We choose the option where both mb and mc are constrained by

R(e+e− → hadrons), and mc(2GeV) is used in the fit. Once the parameters are ordered

as {mb,kin, mc(2GeV), µ2
π, ρ3D, µ2

G, ρ3LS , Bcℓν̄} (expressed in GeV raised to appropriate

powers), their central values ~x, uncertainties ~σ, and the correlation matrix R̂ read [53]

~x =
(

4.564 1.087 0.470 0.171 0.309 −0.135 10.67
)
,

~σ =
(

0.017 0.013 0.067 0.039 0.058 0.095 0.16
)
,

R̂ =




1.000 0.461 −0.087 0.114 0.542 −0.157 −0.061

0.461 1.000 −0.002 −0.020 −0.125 0.036 0.029

−0.087 −0.002 1.000 0.724 −0.024 0.049 0.153

0.114 −0.020 0.724 1.000 −0.101 −0.135 0.076

0.542 −0.125 −0.024 −0.101 1.000 −0.011 −0.009

−0.157 0.036 0.049 −0.135 −0.011 1.000 −0.023

−0.061 0.029 0.153 0.076 −0.009 −0.023 1.000




. (D.1)

Apart from the above parameters, the analysis of ref. [49] serves us as a source of a

numerical formula for the semileptonic phase-space factor

C =

∣∣∣∣
Vub

Vcb

∣∣∣∣
2 Γ[B̄ → Xceν̄]

Γ[B̄ → Xueν̄]
, (D.2)

13See also the previous version [70] where more details on the method are given.
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which reads [53]

C = g(z) {0.903− 0.588 [αs(4.6GeV)− 0.22] + 0.0650 [mb,kin − 4.55]

− 0.1080 [mc(2GeV)− 1.05]− 0.0122µ2
G − 0.199 ρ3D + 0.004 ρ3LS

}
, (D.3)

where g(z) = 1 − 8z + 8z3 − z4 − 12z2 ln z and z = m2
c(2GeV)/m2

b,kin. Next, we use C

in the expression [72]

Bsγ(Eγ > E0) = Bcℓν̄

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2 6αem

π C
[P (E0) +N(E0)] , (D.4)

to determine the radiative branching ratio. Known contributions to the non-perturbative

correction N(E0) are given in terms of µ2
π, ρ

3
D, µ

2
G and ρ3LS . The semileptonic branching

ratio Bcℓν̄ is CP- and isospin-averaged analogously to eq. (1.3), while the isospin asymmetry

effects in both decay rates are negligible. Thus, neither the lifetimes nor the production

rates need to be considered among our inputs.

The remaining parameters that are necessary to determine P (E0) and the overall factor

in eq. (D.4) are as follows:

αem(0) = 1/137.036, MZ = 91.1876 GeV, MW = 80.385 GeV [13],

αs(MZ) = 0.1185± 0.0006 [13], mt,pole = (173.21± 0.51± 0.71) GeV [13],

∣∣∣∣
V ∗
tsVtb

Vcb

∣∣∣∣
2

= 0.9626± 0.0012 [73],
mb

mq
∈ (10, 50). (D.5)

For the electroweak and O(Vub) corrections to P (E0), we also need

αem(MZ) = 1/128.940, sin2 θW = 0.23126 [13],

MHiggs = 125.7GeV [13],
V ∗
usVub

V ∗
tsVtb

= −0.0080 + 0.018 i [73]. (D.6)

The quark mass ratio mb/mq (q = u, d, s) in eq. (D.5) serves as a collinear regulator wher-

ever necessary. Fortunately, the dominant contributions to Γ(b → Xp
s γ) are IR-safe, while

all the quantities requiring such a collinear regulator contribute at a sub-percent level only.

They undergo suppression by various multiplicative factors (C3,...,6, Q2
dαs/π, etc.), and by

phase-space restrictions following from the relatively high E0 ∼ mb/3. Changing mb/mq

from 10 to 50 affects the branching ratio by around 0.7% only. We include this effect in our

parametric uncertainty even though the dependence on mb/mq is spurious, i.e. it should

cancel out once the non-perturbative correction calculations are upgraded to take collinear

photon emission into account (see refs. [38, 74, 75]). Thus, the parametric uncertainty due

to mb/mq might alternatively be absorbed into the overall ±5% non-perturbative error [14].

Our range for mb/mq roughly corresponds to the range [mB/mK ,mB/mπ], which is moti-

vated by the fact that light hadron masses are the physical collinear regulators in our case.

All the uncertainties except for those in eq. (D.1) are treated as uncorrelated. One

should remember though that the dependence of C on αs is taken into account via eq. (D.3).
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