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1 Introduction

If conformal field theories have exactly marginal operators there is a conformal manifold
parameterised by the couplings for the marginal operators. In two and four dimensions
CFTs with associated conformal manifolds are not uncommon, at least with A" = 1 su-
persymmetry [1]. The situation is much less clear in higher dimensions; whether any non
trivial CFTs with marginal operators exist in six dimensions remains doubtful but not
inconceivable [2]. Here we aim to extend some results obtained in two and four dimensions
to the significantly more complicated case of six.

To this end we consider the response of a CF'T extended to a curved space background
to a Weyl rescaling of the metric v,,,. In general, CF'Ts are invariant under Weyl rescalings
of the background metric, v, — €*77,,, up to a finite sum of local contributions formed
from curvature tensors and o, with coefficients commonly referred to as central charges. In
two dimensions there is just the Virasoro central charge ¢, so that the trace of the energy
momentum tensor is proportional to ¢ R, with R the scalar curvature which is equal to
the two dimensional Euler density Es. In four dimensions there are just two coefficients
¢, a, which are related to the square of the Weyl tensor and the four dimensional FEuler
density Fy4. These results for CFTs on curved backgrounds may be used to construct
effective field theories for a dilaton 7, with terms O(7?) in two dimensions, and O(73, 7%)
in four dimensions, which survive on reduction to flat space and are proportional to ¢, a



respectively. By considering dilaton scattering in four dimensions the crucial positivity
constraints allowing arguments for an irreversible RG flow between UV and IR fixed points
have been obtained [3, 4].

For CFTs with a conformal manifold it is convenient to allow the couplings g for
the marginal operators to be local or x-dependent. The couplings can then be treated as
sources for the marginal operators. In that case there are additional local contributions
under a Weyl rescaling depending on derivatives of g/. Such terms are restricted by power
counting. In two dimensions this procedure generates a unique two index tensor g;; on
the conformal manifold, while in four dimensions a four index tensor is present also. In
two dimensions gr; is identical with the metric defined by Zamolodchikov [5] in terms of
the two point functions for the scalar operators coupled to g’ and which for unitary the-
ories is necessarily positive. A similar result applies in the four dimensional case so the
corresponding metric is again positive.

Away from a conformal critical point the response to Weyl rescalings with local cou-
plings must satisfy Wess-Zumino consistency conditions stemming from the fact that the
Weyl group is Abelian. The resulting equations relate the RG flow of the central charge
¢ in two and a in four dimensions to the corresponding gyy. For positive g;; the RG flow
is irreversible [6-8]. In two dimensions this approach is equivalent to the Zamolodchikov
c-theorem. In four dimensions the metric is necessarily positive in the neighbourhood of
a fixed point, but unlike two dimensions there is no simple general non perturbative ar-
gument, although arguments based on dilaton effective actions can be applied [8]. For
renormalisable quantum field theories in four dimensions the metric and related quantities
may be calculated perturbatively in terms of the vacuum amplitude, most directly with a
curved space background and using local couplings at two loops [9], but also just restricting
to flat space at three loops [7, 10, 11].

It is natural to consider extensions to higher dimensions, in particular six. The dilaton
effective action was constructed in [12] and also [14, 15]. The local RG approach was also
extended to six dimensions in [16]. The number of contributions which it is necessary to
consider increases significantly; in the approach followed in [16] there are O(100) different
consistency conditions to be analysed. Due to complications arising from the analytic
structure of 3 — 3 amplitudes there is no derivation of irreversibility of RG flow along the
same lines as that applied in four dimensions [12], and recently a two loop calculation in
six dimensional ¢3 theory showed that the metric relevant for RG flow was not positive in
this theory [17].

In this paper we endeavour to understand further the complications arising in six
dimensions by considering a six dimensional conformal field theory with exactly marginal
operators. The approach followed here, based on assuming local couplings for all marginal
operators and considering the response to Weyl rescalings of the metric, defines various
tensors on any conformal manifold. An infinitesimal Weyl rescaling determines the trace of
the energy momentum tensor. As is well known, in six dimensions on a curved background
with fixed couplings and neglecting scheme dependent contributions, this is expressible
in terms of three scale dimension six Weyl invariants, with coefficients ¢y, ¢, c3, and the
topological Euler density Eg, with coefficient a [18, 19]. Thus ¢, c2, c3,a may be regarded



as the central charges in six dimensions, corresponding to the two dimensional ¢ and four
dimensional ¢, a. With local couplings to marginal operators it is further possible to obtain
three rank two symmetric tensors, as well as rank four and rank six tensors. One rank two
symmetric tensor can be related to the two point function for marginal operators and is
therefore positive. This may then be taken as a metric for the conformal manifold. However,
contrary to the case in two and four dimensions, this is not the tensor that features in the
equation for the RG flow of a. The additional symmetric tensors present in six dimensions
are constructed in terms of the Weyl tensor and so are absent in any conformally flat space.

In the next section we review the response of a CFT containing exactly marginal
operators in four dimensions and then consider the extension to six. In six dimensions it is
necessary to consider Weyl transformations which are rather more involved than in four.
Besides the Weyl tensor the results can be expressed more simply in terms a basis involving
the Cotton and Bach tensors [22]. Their definitions and some basic properties are reviewed
in appendix A. It is also necessary to consider various conformally covariant differential
operators which extend the conformal Laplacian Ay = —V2+£R, where € = (d—2)/4(d—1)
with d the spacetime dimension. In four dimensions the results involve A4, the conformal
extension of (V?)2, while in six dimensions it is necessary to consider the Branson operator
Ag [50] whose leading term is —(V?)3.

As an illustration of these results we consider in section 3 the conformal theory in
six dimensions which is obtained from the quantum field theory of free two-forms. In
this case we may introduce a local coupling in the action as 1/¢g? which acts as a source
for the dimension six scalar operator formed by the gauge invariant classical Lagrangian
density. After suitable gauge fixing we determine the one loop anomalous contributions
under a Weyl rescaling of the metric, extending the results in [20] to include contributions
involving derivatives of g. The results fit the general structure determined in section 2.

In section 4 results obtained from calculations at two loops for ¢ theory on a curved
background with local couplings are also presented. This theory has non zero S-functions
and conformal invariance is broken but perturbative calculations should satisfy the con-
straints obtained in section 2 to lowest order. We also present results for the central charges
c1,c2,c3,a to O(g?). To ensure that the results are compatible with the general analysis
it is necessary to ensure when using dimensional regularisation that the one loop countert-
erms are such as to ensure the initial free theory is conformal away from d = 6. Although
¢> theory is problematic, since it lacks a minimum energy ground state, we assume it may
be stabilised by a small ¢* term and that it may then still be used to define an effective
conformal theory, at least to leading order.

We also consider in section 5 some positivity conditions which are obtained by relations
to two point functions. These serve as a check on the results for ¢ which is related to the
energy momentum tensor two point function and also a two index tensor on the space
of marginal couplings which is related to the two point function for the exactly marginal
dimension six scalar operators. The coefficients c¢1, co as well as c3 determine the energy
momentum tensor three point function. This also satisfies positivity restrictions related to
the energy flux at infinity [21] and these are shown to be satisfied to lowest order beyond
free theory by ¢ theory.



Various details are contained in four appendices. In appendix A we present a detailed
summary of results for conformal tensors, the Weyl, Cotton and Bach tensors, and also
differential operators which transform nicely under Weyl rescaling of the metric and are
relevant for our calculations. We also give an expression for the coincident limit of the
Seeley-DeWitt coefficient az, which determines the one loop results, in terms of the basis
of conformal tensors. In appendix B we describe briefly the six dimensional results ob-
tained by integrating the infinitesimal Weyl rescaling of the metric. Appendices C and D
contain the detailed results necessary to calculate the coincident limit of ag for fermions
and two-forms respectively.

2 Response to Weyl rescalings for CFTs

In general the vacuum functional W, depending on the metric and couplings, for a CFT re-
sponds to an infinitesimal Weyl rescaling, 0,7, = 20 ,u, in even d dimensions according to

(47r)g W = /dd:L‘ —yoLg, (2.1)

with Ly a local scalar of dimension d formed from the metric, the couplings and deriva-
tives. In general Ly is constrained by the integrability conditions following from (d,d,7 —
05105 )W = 0. We initially consider solutions such that

O0oLg+doLg= VM(Xd*“’ 0,0), XM = X" (2.2)
We assume that in (2.1) Ly has the freedom
Lqg~ Lg+V,V, 24", (2.3)

since such contributions can in general be cancelled by local contributions to W. For
variations (2.3) compatible with (2.2) then

X~ X" 42 Z M —'y“” Zd)\)\ if 024" +doZs" =0. (2.4)

Under a finite rescaling (2.1) extends to

[SIISW

(4m) 3 (W[2%0] — W h]) = / Aoy =7 La(o), (2.5)

where L4(0) is obtained by a Taylor expansion,

1
Li(o) =0Lqg— 000,00y —— Xg," +V,J",
go (r+2)! (2.6)

Xar1" = (06 +do)Xa,M, Xa o = X",

so that Xg," = O(c") and J* is arbitrary. The sum in (2.6) truncates after a finite
number of terms.

Before proceeding to the six dimensional case we recapitulate previous results obtained
in four dimensions [7]. The extra terms involving derivatives of the couplings depend on a



symmetric two index tensor gy; and also a four index tensor c¢;jx . It is natural to express
the contributions to L4 using the Christoffel connection formed from gy,

1

g = 59 (079LK + Ok gLy — OL9JIK) g = H. (2.7)

We may also allow for a background gauge field A, € g coupled to conserved currents. If
F,, is the associated field strength, then

1
Ly=cWPPA W, 0\ —a By — 7 Hab F,M Fy
1 .
+ 591 D%*¢'D%*g’ — g170"9' (2P, — v R) 0”9”7 (2.8)
1
+ 5 CLIKL o"g' 0,97 0 g™ B,9" .

Here,
D" =V?¢" + T, 0"g7 09" (2.9)

E4 is the Euler density, given by (A.9) for d = 4, and P, and R are the Schouten tensor
and its trace given by (A.1) for d = 4. In (2.8) clearly gr; = g1, crukL = C(ryy(KL) =
cixrry and Kgp i a symmetric invariant bilinear form in a convenient basis {t,} for g so
that, for any X € g, X = X,t,. If g is simple then k., — k. We may also extend
G#gl — Bugl + Aau(Tag)I but for simplicity we neglect such contributions here.

It is straightforward to check that (2.8) satisfies (2.2) with

X4 = —8a Gy + g1 (20"g"0" g7 — 4" 9*g"0rg”) | (2.10)
and G4" as in (A.13) with d = 4, so long as a is constant. From (2.6) it is easy to see that
X41" = 16a(V'0" 0 — 4" V?0), Xy = —16a(20"00" 0 + 4" D adyo). (2.11)
Using (2.10), (2.11) in (2.6) gives
Li(0) =0 Ly + % 915 (209" 0" g7 — 4" 01 g 0rg”) 00 0,0

. (2.12)
+4a <G4“”8u08,,0 + V20 00,0 + 3 (3"08“0)2> ,

which reproduces the well known results for the four dimensional dilaton effective action
and the dg terms calculated in [7].

In six dimensions we follow a similar route by determining the general form for Lg
satisfying (2.2). There are various contributions which may be analysed independently.
For any six dimensional CFT in the absence of local couplings Lg is given by just

Lé%: Z ¢ I +aFEg, (213)
1=1,2,3

where an appropriate basis for the dimension six conformal scalars [;, and also an explicit
expression for the Euler density Fg, are given in appendix A. Iy, I> are the two independent



scalars cubic in the Weyl tensor while I3 = W”“”)‘VZW,)W)\ + .-+, Since 6,1; + 601, =0
and 0, L + 60Fs = 24V ,,(Ge""0,0), with Gg"” the six dimensional generalisation of the
Einstein tensor, it is easy to verify that (2.13) satisfies (2.2) with

X = 240G . (2.14)

There are also three potential dimension six conformal scalars formed from Fj,, for

which we may take

1 .
Lf = -1 Kab(Fa" (D*Fu)p — 4 RF," Fy ) — 2(VuVy + 2P (Kap Fo# Fy1)
2.15)
1. 1 (
- Z ab W,uu)\p Falw Fb/\p + g fabc Faw/FbuAFcAu )

with Kgep, Rep Symmetric invariant tensors and fup. an antisymmetric invariant tensor.

For free scalars, fermions and also two-form gauge fields the coefficients ¢;,a were
calculated in [20]. For scalars and fermions the results can be straightforwardly ex-
tended to include background gauge fields. For t, the real antisymmetric or anti-hermitian
generators determining the gauge couplings to scalars or fermions, then, letting k), =
—ktr(toty), Ray = —Rtr(taty), fave = —f tr(tatpts)), we have

el Tley  Tles  Tla K I3 f
28 5 5 1 1 1
SCalarS —3 3 2 9 30 18 15 (2 16)
. 896 191 16 8 52 ’
fermions -5 —-32 40 &5 3 3 %
two-forms — % — % 180 442

Our main motivation in this paper is to consider contributions depending on derivatives
of the couplings. We first consider terms which are the direct extension of the terms in-
volving g7y in (2.8). This can be constructed starting from a leading contribution involving

six derivatives

1 1
S, = §gUD“D2gIDMD2gJ + §R1KLJD2g18“gK3MgLD2 T (2.17)

with D2g! defined as in (2.9) and
D'D?*¢" = 9"D?¢" + Tl 00 g™ D?g" . (2.18)

In (2.17) R;krs is the Riemann tensor defined as usual in terms of the Christoffel connec-
tion T, in (2.7). The Weyl variation of S; gives

6,51 + 6051 = —8g1;D*¢' D'3" ¢’V ,0,0 + 3 g1;D?¢' D*¢’ V30
+4gr50"9"0" g7 (V,0,V?0 + 8V, (Pyy 0*0) + 2V, (RD,0))
—2gr;0"9" 0,97 (V2V20 + 8V (P, 0*0) + 2V"(R0,0))

+ V. (4 g17D*¢' D*(8" g7 0,0) — 3g17D*g' D?g” 0Ho
—4g1;0"g'8 g7 (0,V?0 + 8P, 00 +2Rd,0)
+2g1,0*g'0\g” (0"V?0 + 8 P 9,0 + 2 R0"0)) .

(2.19)



If we then add the four derivative term

Sy = —4 gIJ(ngID“(?”gJ + D“@”gIDQgJ) P, + 3gUD2gID2gJ]A%

N . 2.20
+ V(4 P*g1,0,9' D*g” — 491,0"" 0" g" O R + 2 g1 ;09" Org” " R) | (2.20)

we may obtain
85(S1 + S2) +60(St + S2) = grs0"g' 097 A + V(XM 0,0), (2.21)

for
Ay = 4V,0,V?0 + 32VN(Py(,0,)0) — 16 VX (Pu0r0) + 16 V(,(P,),0*0)
—8V(,(R9,0) (2.22)
+ v (= 2V2V20 — 8 V(P 0" 0) + 4 VH(RO,0))
and
X§" =4g1,D%' D"0"g" — 34" g1, D*g' D*g”
+ 8P gr;0Mg Org” — 16(P*g150x9" 0" g” + g1,0"g  Org” P) (2.23)
+16 91,09 0"g” R+~ (16 91,09 079" Py, — 80 9" 059" R) ,
where P,,, R are given by (A.1) with d = 6. The remaining A,, terms in (2.21) may be
cancelled by taking

S3 = 491,0"9"0g” (B + 6 Pa P, — 4P, R+ V,0,R)

R . 2.24
—2g1,0"¢" 0,97 (2Pp\PP* —2R* + V?R). (2:24)
Hence, we may satisfy (2.2) for d = 6 by taking
Li=-5—-5-85
6 b (2.25)

+ gl,IJauglaugJ W}LprWlIpr + 927IJ8N918/L9J Wl/)\prVpr .

The terms involving g;; are a natural generalisation of the unique L, implicitly defined
by (2.8), and L§ = —%guaﬂglaug‘]. The sign is chosen so as to ensure later that g7s is
positive in unitary theories. In six dimensions there are further possibilities involving rank
two tensors which are formed in terms of the Weyl tensor, as included in (2.25). For these
terms (2.2) becomes essentially trivial.

Further contributions to Lg involve at least four ¢’s with derivatives. To construct
these we first consider

Ty = jiisxL % (vphIJ up v,\hKLw\ AL v)\hKLIW)
LA CT RO ENCTAD (2.26)
+ 1K1 (v“a”gf Vidug ~ 1V V2gJ> 0°g" pg"
hIJ

for uv Symmetric and traceless,

1
hIJ,uV = a(,uglay)gJ - 6 Vv 8)\!)]8)\9] ) (227)



and ji,17kL = Ji,(1J) (kL) = Ji,kL1J- In this case

011 + 60T = 8)\0'].17[][([/ (2 Vu(hIJ/\VhKL“V) + GA(h”W hKLm,))

. . (2.28)
— 0o (Jo,rukr + ja,rsxr) 0 (049" 09" 0 g™ ,g") .
Terms involving two derivatives of o may be cancelled by
T, = — jl,IJKL (2 P'u,y hIJu)\ hKL V)\ + RhIJuV hKL#V)
+ (Jorsrr + jarsrr) RO*g' 0,97 8 g% 0, 9"
. 1 2.2
Ok (h”“’\ hKLup N . BLJ v hKLW VQQM) (2.29)
1 . .
~ 1 O (Go,rokr + Ja k) g 0.9’ 0 g™ 0, 9" V2™ .
Hence
Ly =Ti +To+ jarirr Wy, BT H REEA (2.30)
satisfies (2.2) with
Xguu _ jl,IJKL (2 hIJ,u)\ hKLl//\ + ,y,uzz hIJ)\thLAp) (2 31)

— " (Jo,ruxL + J3,10KL) Mg ong’ 309K3ng .
In (2.30) we have allowed for a possible trivial term involving the Weyl tensor. If in (2.26)
VAhEEL ,, — DyhEE ,, and similarly 9, (0 g% 0,g%) — DA (8" g% 0,g%), V*0"g! — Dro" ¢!,
V¢! — D?¢!, with D, the covariant derivative including the the Christoffel connec-
tion (2.7), then correspondingly in (2.29) Onrji 1k — DmJji 1k with Dy the covariant
extension of Jj;.
The remaining potential contribution to Lg involves six ¢g’s with derivatives,

1
Lg = 5 krikLmN 0" g'0,9” 0" g% 0,97 g™ Dug" (2.32)

defining a rank six tensor with appropriate symmetries.

3 Two-forms

In six dimensions there are three free conformal field theories. In four dimensions with
abelian gauge fields it is still possible to determine the leading one loop contribution to
the metric on the conformal manifold. Here we describe the analogous calculation in six
dimensions following the approach described in [24] and extending the six dimensional
results in [20].

For a two-form B, € Q@ where Q" is the space of n-forms comprised of antisym-
metric n-index tensors, the starting Lagrangian is just!

1
L = ——— (dB)""“(dB . 3.1
1292 ( ) ( )MVW ( )
!The exterior derivative d : Q) — Q"*V s defined so that (AF)pyopin gy = (0 4+ 1) Oy Py ) for

Fui i, € Q) and is independent of the metric. The adjoint & : Q™ — Q=Y is correspondingly given

by (6F)u1»~un—1 = 7%7N1V1 o .’y/»"n—ll’n—law(\/ 77'7(‘))\')’”1‘01' e 'Yun_lp"_lF/\mmpan = 7VAF%M1»~/M,71'
Of course d? = 62 = 0.



This is invariant under gauge transformations By, — B, + (dA)., A, € QW It is
convenient here to add the covariant Feynman gauge fixing term,

S ) 1)

Rescaling B,,, — gB,,, the quantum theory is defined in terms of the functional determi-
nants of the Laplacians

A :5/d/+d/5/:Q(n) _>Q(n)’ d = Edg’ 5’:957, (3.3)

so that [20]

W= —% In Det A® 4+ InDet A — %ln Det A, (3.4)
AW i related to a fermionic vector ghost and A to a bosonic scalar ghost; the degrees
of freedom in d dimensions are then 1d(d — 1) —2d +3 = 1(d — 2)(d — 3).

Continuing to a Euclidean metric the functional determinant of an elliptic differential
operator A may be defined in terms of the heat kernel by

—InDet A = ¢A'(0), Cals) = F(ls) /Ooodv' o1 Tr(e*TA) . (3.5)

Under Weyl rescaling of the metric, for F),,. ,, an n-form, d5(dF)u,. 4., = 0, whereas
O (OF ) iy = =2(d=n~+1)0 (0F)py..ppyy +2(d—n)(6 0 F )y ..pp_, - Hence, with d = 6,

5, A% = —26A® 1 25d'§ +2d'6 0 —adod,
6, A = — 20 AW 4 25608 +4d'6' 6 —6d'08 +280d —208d, (3.6)
6o A = 25 A0 _458d +480d .

Using relations such as A = A®)d’ we may obtain

60 <T1“Q(2) (e_TA(2)) —2 TrQ(1> (e_TA(l)) + 3 Tl“Q(o) (e_TA(O))>

3.7)
d (
= —27’5 (TI“Q@) (U e_TA(Q)) —2Trqn) (U B_TA(I)) + 3 Trg0 (U 6_TA(O))> ,
so that from (3.4) and (3.5)
—rA(®) —r A —r A0)

S, W = (Trﬂm (0e™ A7) —2Trgu) (e ™) + 3 Trgo (ce ™8 )) o (3.8)

with |,0 denoting the 7% term in the Laurent expansion in 7.
In each case the Laplacians defined in (3.3) have the form
A=-D?>+2R1y +Ya, (3.9)

for AV — V and D, = V, + A, with A, an appropriate connection on V. For
such elliptic operators the associated heat kernel Ka(x,y;7), corresponding to e ™ has



the well known expansion (47TT)%dKA(ZE, T3T) ~ D >0 A/ () T with aa .| the diagonal
Seeley-DeWitt coefficients. Hence for d = 6

(4m)? Tey (o e ™) |, = / B /7 o try (ansl) (3.10)
with try the matrix trace and

2
7! trv(CLA73’) = dlIﬂV(S Eg — ;II + gfg + 2[3)

+ 14(3try (1) + 5 Wy, try (FPFA) — 8try (FF F\F2 )

(3.11)
1 1 1 1
—Tltry | = Ya> + — YA AoYA + — W W\ Ya + — F*F,, Y,
TV(G A+12 A 2A+180 PUVA A+12 Y A)
+ TV VL, ZAY.
Here try (1) = try (F*D?F,,) + - - is a dimension six conformal scalar formed from F,,,

and Ay = —D? + 2 R with DuYA = 0,YA + [Ay, Ya]. For zero-forms Fy, — 0 while acting
on one-forms A, Fy, — RM“,,\p and on two-forms B, F), — 2 5[M[“,R,,]”/],\p. An explicit
form for Za" in (3.11) is given in appendix A.

For the operators A and letting Yam) = Ya,

Yo=-—2R+U,
Vi =(R+U)§F +4PF + UL, (3.12)
Yol = UM/ + 202 B + U ) 6,71 = Wt
where
1 L 1 " 9. 1
U = 3 Vot + 1 v, vl Uw =Uyy =—-Vyv,, v, =g 8“972' (3.13)

From (3.11) §,W in (3.8) is then determined in the form (2.1) with
Lo = troe (ap@ 3l) = 2trom) (aam 31) +3troo (apm 31) + ViV ZH, (3.14)

up to the arbitrariness in (2.3). Here troe) (1) = 15, trga) (1) = 6, trgo) (1) = 1. The vari-
ous traces necessary to determine (3.14) using (3.11) are given in appendix D. Neglecting
the terms involving U we get

1/ 1 1
I = < ~ 380081y — 5 2378 I + 180 I + 442 Eﬁ) : (3.15)

which reproduces the results of [20] listed in (2.16). In terms of v, defined in (3.13)
1 3 -
Lf=—¢ PV 0" O\V, 0¥ + 2 Py, VFEY Vo — LRV Vot

N R . 1 R
— (Buw+6 P\P,—4 P, R+V,0, R)v"v” + (P’\pP,\p—R2+2 VQR) v, 0"

1 11
+ 3 W")‘WW”,\W Vv ~ T35 W“”’\pr,\p v, (3.16)

1 1 .
~1 <<V“v” Vv, — 1 \ia Vﬂ)”) v’v, + R (vpvp)2>

1 1
~ 33 v, Ao (vVy,) — o1 (vFv,)?

,10,



for Ay = —V? + 2R. The first two lines in (3.16) agree with the form expected from
S1 4 So+ S35 given by (2.17), (2.20) and (2.24) and there are also contributions which may
be identified with ja, j3 in (2.26), (2.29), with coefficients — 55, —1, as well as (2.32).
4 Calculations in scalar ¢3 theory

In six dimensions the only conventionally renormalisable quantum field theory is the appar-
ently unphysical (although for imaginary couplings the theory has relevance in statistical
physics [25]) ¢ theory given by the Lagrangian
L(6,V) = 5 (0006 + E46:6:F) = V(6), V(8) = g Agwdidion, i=1,...mg,
(4.1)

where Weyl invariance in six dimensions requires &g = % However using dimensional regu-
larisation with d = 6 — ¢ it is necessary to keep e-dependent terms to ensure compatibility
with conformal constraints to two loop order so that £; = % — ﬁa + O(e?). Two loop
calculations for six dimensional ¢ theory on curved backgrounds were initiated in [26, 27]
and recently extended to local couplings in [17] while the S-function has been determined
to three loops in [28-32].

For a finite perturbative expansion starting from (4.1) it is necessary of course to add
counterterms %, ;. containing poles in . These may be restricted to the form, up to total
derivatives,

1 . - o . .
Ler(9,V) = D) tr(ENOup + Eap NG R) — Ver (@), Gij = NijkPr - (4.2)

Vet (@) is a polynomial of degree three and includes ¢-independent terms of dimension six
depending on the curvature and derivatives of the couplings. Renormalisability on a curved
background and with local couplings dictates that in (4.1) £ (¢, V') should be extended to
Z(¢,V,a) depending on a background gauge field a,;; = —a,, j; and also a general cubic V/,

0u0i = (Dud)i = Bubi+ auijs, V(0) = = Ngw didyn + 3 muj 06y + hi b, (43)

so that

Lo = L(6.V.0) + Lon (6, V,a) = L(bo, Vo, a0) — (4;)3 (V.a). (4.4)

Here x is a dimension six scalar independent of ¢ and formed from the curvature and the

couplings with derivatives.
The RG equations take the form

(47)2%(3, + do + Dy + Dy) Lo = 0 L + V,u(X*9,0), (4:3)
for
) T T . 0
Dy = [af ik gy T Pmij 5= 4 Bri g+ (0 DpA)ig 5— |
3 /d T O'<,8/\1]k Ak + B i + B Shi + (p u)\) J 5a,”'j>

1 5 (4.6)
Dd) = — /ddx 0<2(d — 2)(51']' + %j><;5j @ .
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In (4.6) Briji = —1e Niji+Brijis Bmij = —2Mij+ (Ym - m)ij + Bmij, with B ij independent
of m, and f; = —(%(d +2)0i; — %-j)hj + Bhi, with ), independent of h. D may contain
additional terns involving 9,0 but these are neglected as they are unimportant here. As
usual (4.5) determines the higher order € poles in .%.

As shown by Brown and Collins in four dimensions for ¢* theory [33] the subtraction
prescription implied by (4.2) suffices to ensure Weyl invariance remains valid to one loop
order so that results at two loops for the ¢-independent counterterms should be consistent
with the general constraints described here. At one loop the necessary counterterms are
determined by aa 3| for the operator A = (=V?2 + (d — 2)R)1 4+ m + ¢ which gives

) 1/ 1 ) 1 o
(4m)3Ver (@) = = ( — —tr((m+@)*) — — tr(m + @) W AW o

€ 6 180
1 . 1 .
+ 6 tr(p (V? — 2R)m) — 3 tr(0"m d,m + 2 Rm?)
1/5 28 5 (4.7)
+n¢ﬁ §Eﬁ—§ll+§]—2+213 ,
(4r)’ N = b
6e

The one loop results for (§y,7 are standard, and are given in [17], but in addition we
must take (p™) - dN)y; = — & Vgt dNjir — ANkt Ajir)s BYmsj = — & 0" Akt A ji as well as
By ilm=0 = —ﬁ Nijj W”“”)‘WPWA. For the scalar theory defined by (4.1) it is then easy
to read off

1/5 28 D
L?(l):n¢>7|<9E6_3Il+3[2+213)7 (4.8)

which of course confirms the results for free scalar fields in (2.16).

Extending the calculations to two loops, letting A;jx — (47r)gAijk, leads to

R(2) _ AijkAijk (2 13
9

1
L ‘h-—"L--1I). 4.9
6 9 x 6! LT 43> (4.9)

This is in agreement with similar two loop calculations in [26, 27]% although a non conformal
tensorial basis was used in these papers.

The two loop calculations may also be extended to allow for z-dependent couplings
leading to contributions to x(?) in (4.4) involving derivatives of A. There is a single double
pole in e, independent of ¢, which is proportional to 0%\;;r0,\ijk W”“”)‘pr;\ whose
coefficient is in accord with (4.5), although it is necessary to take account of the m terms
in (4.7). Discarding terms with two overall derivatives and also some scheme dependent
terms proportional to Wp/‘”)‘WpW » these may be reduced to a conformally covariant form

In [26] the relevant results are contained in (3.21) but it is necessary to have an additional factor ¢ in
the R*(€R +...) term.
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and give, after rescaling A as before to absorb factors of 4,

1
 6x6!
+8(BM + 6 PFAPYy — 4 PM R + V*0” R) O, \ijk Oy Niji
—4(2 P/\”P)\,J —2R*+ V?R) 0" \iji DuXijk)
4 23
9 x 6! 180 x 6!

This has exactly the form expected from (2.25) and shows the presence of all three possible

Lg ) = (8“V2)\,-jk 8pv2>\ijk_ 16 P VQ)\Z'jk VuﬁyAijk+6R VQ)\ijk v2>\ijk

(4.10)

W,u)\pwwl/)\pw 8u)\ijk: 81/)\ijk - WV/\prV)\pw 8'u)\ijk: 8u)\ijk: .

two index tensors on the conformal manifold although the coefficient of the last term
in (4.10) is scheme dependent.

5 Positivity constraints

The various terms present in Ly, Lg correspond to contact terms for identities resulting from
Weyl scaling for correlation functions of the operators Oy coupled to the marginal couplings
¢! and also the energy momentum tensor. Positivity conditions arise most straightforwardly
by considering two point functions. Restricting o to be a constant then (2.1) is equivalent to

i 0
(47) % i /ddx\ﬁ La, (5.1)

for p a regularisation scale and where, by analytic continuation, the metric is taken to
be Euclidean and {W — W. Applied to the two point function, obtained by functional
differentiation of W twice with respect to g, (5.1) requires

0 915 (0°)*6"(2)/(47)*, d =4,
— (O (x) O4(0 = 5.2
{010 OO gm0y {QU PO, d=s.
Conformal invariance dictates
1
<Ol(x) OJ(0)>|89:07'Y;L1/:5”,1/ = GIJ R 2 (53)

()4

~“ may be defined as an analytic function in « with poles at o =

For general d, (z?)
%d +n, n=0,1,2,.... Hence for d even it is necessary to regularise, denoted in (5.3) by
R, so that (2)~? makes sense as a distribution for all x, or equivalently has a well de-
fined Fourier transform. This is essential in order to make a connection with the identities
in (5.2) and requires the introduction of the arbitrary scale . A convenient prescription
is provided by differential regularisation [34], which gives

1 1 1
R(xi)‘* T >1< 3 (82>3(a:2 T“%z) ’ =4 5.4)
R(x2)6 TRV (82)4<(x2)2 lanxQ) , d=6.
Substituting (5.3) with (5.4) on the left hand side of (5.2) gives
(2r%)°Gry=24g15, d=4,  7°Gr;=360g1, d=6. (5.5)
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Unitarity implies positivity conditions on Gyj. To apply unitarity here it is sufficient
to use the Fourier transforms
42 P2

o L
4 k- 2,2
/dxel z—x2lnu:p——k2 In R

; 1 473 e2Vk?
6 ik-x 2.2
/d Te @2) Inp“x” = — 5z <ln Tu? — 1> ,

where 7y is the Euler-Mascheroni constant. It is then straightforward from (5.6) to determine

the Fourier transforms of R(m%)“ Rﬁ as given by (5.4) for d = 4,6. Under analytic con-

(5.6)

tinuation from Euclidean to Minkowski space kq — —iko and the absorptive part for k? < 0
is given by ImIn(k? — ie) = —7 6(—k?). Applied to (5.3) this requires positivity of G7;.

For free scalar theories (47)3(2¢%(z) £¢%(0)) = 1/(67%(2?)%) so that in (5.3) we may
take Gy; = 675/(67°%). Using (5.5) gr7 = 677/(3 x 6!) in agreement with (4.10). For
two-forms, from (3.1), (3.2),

2
(B (@) Bapl0) = 43 6050 5. -
, 5.
((dB)" (2) dB) o (0)) = 1i§ T ()17 (2) 1%, () (;)3,
where .
I,uy(x) = 6#1/ -2 ;21/ (58)

is the inversion tensor. In this case for O = Tg(dB)“”w(dB)Ww then 7G1; — 904¢* so
that gr; — %g‘l. This is in agreement with (3.16).

These considerations may also be applied to the energy momentum tensor defined by
functional differentiation with respect to the metric. For the two point function only the
Weyl anomaly proportional to ¢ in (2.8) contributes to the corresponding equation to (5.2)
when d = 4; for d = 6 just the term W"W}‘V2WPW A, contained in I3 and proportional to

3, in (2.13) is relevant. Thus

) 4¢ Dyep 64 () ) (47) d=4,
N87<TMV(:E) TUP(0)>|8g=O,’yuu=5uu - { . 26 3 (5.9)
H 6¢3 Dyvop 0°6°(x)/(4Am)°, d=6,
where, for general d,
1 1 9
Dyvop = 3 (SWSVP + SWSW) — a1 SuwSops Sy = 0,0, — 06,,0". (5.10)
For conformal theories
1
<T!W($) TUP(0)>|8g=O,'yW=6W =Cr R<($2)dI/WUP($)> ) (5.11)
with the inversion tensor for symmetric traceless rank two tensors
1 1
Lywop = §(IMUIVP + IMJIW) T4 Ol - (5.12)
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Since

1 1
DWPW =4(d —2)%d(d + 1) WIW,)@) , (5.13)
then in (5.11) we may define
1 1 1
R<($2)4 Ip,yo'p([ﬂ)) = _44 ><75 ,Duygp 82 (xQ In /_1,21‘2) s d — 47
— 212 2.2 _
R(($2)6 IHVUP(‘T)) - _mDHVUP (8 ) <($2)2 IHN € > 3 d=6.
Hence 3
(27?)?Cr = 160c, d=4, 0y = = % Tles, d=6. (5.15)

The relation between Cp and ¢ for d = 4 was obtained in [35] and the connection between
Cr and c3 for d = 6 in [20]. For d = 6 the results in (2.16) are in agreement with calculations
of Cr for scalars, fermions in [35] and also two-form gauge fields in [36]. The results (5.6)
suffice to determine the Fourier transforms of (5.14). Under continuation to Minkowski
space we must take Ty; — —iTp;, i = 1,...,d—1, Tgq — —Tpo, so that in (5.11) 0, — 1.
It follows directly that unitarity requires Cr > 0.

Positivity conditions for conserved vector currents V,,, may be obtained in a similar
fashion. Correlation functions containing V;, are defined by functional differentiation of
W with respect to a background gauge field A,,. Then, from (2.8) and (2.15), taking
L§ — —7 Kap Fd V2 Fy

0 —Fgp Sy 04 () /(4m)? d=4,
ua—<Va#(x) Vor(00) | 5g—0.5 =80 = SR \ (5.16)
p , Sy 209(2)/(47)*, d =6
For conformal theories the vector two point function has the form
1
<Va#(l‘) %V(O)>’8920,’7Mu=6uu = CVab R<(qj2)d_1 I“V(IE)> . (517)
In this case 1 1
Spw——=-2(d—2)(d—-1) ——— Lu(z), (5.18)
e (32)d-2 (x2)d-1 "
so that in (5.17) we may take
1 1 o 1 2.2
R(WIW(:U)> :@SW({) <x2 ln,ux>, d=14, o)
1 1 1 ‘
R( 5= L = -——5,,(0%)? Inp?z? ), d=6.
(s @) = 552 S @ (G ns?).
Hence (5.16) requires
22 3 6 15
(271’ ) CVabzi'%aba d:4, s CVab:?Haby d=6. (5.20)

The results for £ in (2.16) agree with Cy calculated for free scalars and fermions in [35].
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There are further positivity constraints on the energy momentum tensor three point
function which arise by requiring that the energy flux in light-like directions must be
positive [21]. For d = 6 the conditions take the form [37]

1 2 1 2 1
ClEl—*tQ—fblZO, 0251—*t2—7t4+*t220,

=1——-tg— —t —(t ty) >0
Cs st2 354+5(2+4)_ :

with t9,%4 corresponding to the possible angular dependencies of the energy flux at null
infinity. to,%4 depend on the three possible structures for the conformal energy momen-
tum tensor three point function after factoring Cr as determining the overall normalisa-
tion. In six dimensions these are determined by the coefficients ¢y, ¢z, c3 in the conformal
anomaly (2.13) (unlike in four dimensions a is irrelevant as far as the energy momentum
tensor three point function is concerned). It is sufficient to use the results for free fields
in [37] and (2.16) which give in general

_ 15(23 ¢y —4d e + 144 c3)
a 16 5 '

t4 _ 105(61 -2 co + 603) ' (5'22)

t
2 203

Then from (5.21) we may obtain, since ¢z > 0,

1904
—21lcyp +36c2 —128¢c3 >0, 101c¢y — 196 co +
2432

63207

(5.23)
—139¢y + 284 ¢o —

6320.

The inequalities (5.21) define a triangular region in which the three free theory results
correspond to the vertices where in each case two different inequalities become equalities.

For free scalars Cy = Cs = 0. It is then non trivial that any conformal perturbation
of a scalar theory should satisfy the inequalities (5.21). If we use the results for ¢, co,c3
provided by (4.8) and (4.9) for ¢ theory with (5.22) we get

7 7
— Mo \es Cy = —
216 ijkNigk 5 2 36

so that the perturbative corrections respect the inequalities even though this theory remains

Cq AijkAijk s (5.24)

potentially sick.

6 Discussion

The calculations in this paper show that there are significant differences between six and
four dimensions and also two for which Zamolodchikov first derived the c-theorem. In two
dimensions the result for the response to a Weyl rescaling in (2.1) becomes simply

1
=—c
6

In this case the consistency conditions away from a conformal fixed point essentially imply

1
Loy R-— 5917 "g' 0,97 . (6.1)

1
3 dre = grip’, (6.2)
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which implies irreversibility of RG flow, a strong version of the c-theorem, if gy is positive
definite. In this case positivity holds since g;; can be related directly to the two-point
function for the operators O; coupled to g’. In four dimensions away from a fixed point
there is no longer a single rank two tensor; in (2.8) the corresponding contributions become
% aryV2g'V%g7 — G4" g1 8Hgl&,g‘] —Rf1s Gﬂglaug‘]. In this case consistency conditions
require

1
1 dra = gr;B” . (6.3)

Only in the neighourhood of a conformal fixed point, when a;; = fr; = g7, does positivity
of the two-point function, linked to ayy, imply positivity of gy ;.

In six dimensions the results obtained in (2.25) show already that even at a conformal
fixed point there are three two-index tensors. Away from a fixed point the RG flow equation
becomes

1 J
A4
1 ora = g1,178" , (6.4)

involving g1 77, which away from the conformal point corresponds the contribution involving
GH? ~ WHAPWTV Apw> Tather than g7y which is related to the positive two point function.
Hence, there are no straightforward positivity restrictions on g1 77 even near a fixed point.
As shown by (4.10) g1 1 is negative for ¢® theory, which reproduces the challenge to a
six dimensional a-theorem observed in [17]. In contrast, the calculations for the two-form
case in (3.16) give a positive result g1 ;7. However, we should note that there is at present
no argument implying that a > 0 in six dimensions, unlike that given in [21] for the four
dimensional a. In six dimensions a is related to the energy momentum tensor four point
function whose analysis is much harder than the three point function considered in [21].
Of course with supersymmetry there may be further relations between tensor structures
which might link 91,17,92,1J with gr;.

In this paper we have focussed on solutions of the Weyl consistency conditions of the
form given by (2.1), (2.2). Additional contributions to é, W may be obtained by considering
variations such that

(4%)% 0 W = /ddz\/—’y Ouo Yg!', (6.5)

where, if Y is a total derivative, then it can generally be cancelled by local contributions
to W. Alternative solutions of the consistency conditions may be obtained if Y # satisfies

oY +do Yot = yd“*” Vpa)\d +V, (yd“)‘p (9>\O') + gd,uA oo,

Vi =~y Eq' = EM (66)

Of course contributions to £;#* of the form of X4** as in (2.2) may be discarded. In two
and four dimensions examples are given by
Yol = —wy dtg’, Vit = =2 G4* wr 9,97 + 20w otqg'v2g7 (6.7)

where w;dg’ is a one-form and in the four-dimensional case we make use of (A.16). In this
case Yy = (PN — VA ;10,97 €44 = 0. In (6.7) the normalisations have been
chosen to agree with previous conventions.
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In six dimensions it is sufficient to take
Y5 = G wr dy9"
) 10 uApy o 1 ) J
+ 0w _EW b9 V20,9

+ 6 PH 8ngVZ,8pg‘] + 6 PP 8ngV“8,,gJ —3P" 9,9 V?g’

(6.8)
. 3 3
— 6RO ¢'VHD,q7 — B VoY glo, Vg7 + 1 V2g18“v29‘]>
1
+ 3K8[1wj]<4VZgKV2918“gJ—V”(?pgKV,,E)ng@“gJ—2V“8”9KV”8,,g18ng> .
This satisfies (6.6) with
V' = =2 Hg"* w19, g" + 6w N glo,q7
1
EM = -3 Ojrw g (2 A2l 0,97 + 8(“V2918’\)g‘]> (6.9)
+ 20K 0wy (V“Aal’gKVp&,g]@pg‘]+3pgKV(“8pgla)‘)g‘]+3V(“8pgK8ng<9A)g‘]) ,
where HgH*" is defined by (A.18) for d = 6. We note that
1
YH = wiry <4 VigEviglorg! — v 9rg" V0,9 0" g7
(6.10)
+ VH g NP0, 9" 0,97 — 2 V”@VgKV’@VgI@ng)
satisfies
S Y + 60 YiH = EF 0z (6.11)
for A K AT J A K I J
G = ’LUK]J(2 IgrVHI g 0,97 — A0V VPOvg O,y (6.12)
+40 g5V, 0N g" — 200 TN oy 0,97 '
g L9 Vg g 9'0,97)
so long as wiry = —wgJyr, wrjx + wykr + wgry; = 0. This gives rise to an ambiguity in

the last line of (6.8) and correspondingly the last line of & in (6.9). In (6.7) and (6.8) if
wy = Oru for any scalar u defined on the conformal manifold then the variation (6.5) can
be removed by a local contribution to W. To obtain a monotonic RG flow away from a
critical point it is necessary to add a term linear in w;3’ to ¢,a when d = 2, 4.

Despite the differences between six and two or four dimensions it is of course possible
that further assumptions may lead to relations between the rank two tensors on the con-
formal manifold which could ensure that gy 7 is positive, at least in the neighbourhood of
a fixed point, and that there is then a potential perturbative a-theorem. In particular this
might be the case in supersymmetric theories but also when a non trivial six dimensional
CF'T has a holographic dual. In such cases there are arguments for an a-theorem which ap-
pear to be valid in any dimension [38-40]. Such arguments depend on positivity conditions
for the bulk energy momentum tensor which are doubtless vitiated in any correspondence
for ¢> theories. In any event, simple holographic duals may not be sensitive to the additional
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two index tensors revealed by our general discussion in six dimensions. Other arguments
for a ¢, or a, theorem in six dimensions are given in [41]. This relates the variation of the
free energy on a sphere as the radius varies to the metric defined by the two point function.
A rather similar argument, restricted to four dimensions, is given in [42]. The relation to
our analysis is not clear but the calculation is quite sensitive to the details of regularisation.
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A Conformal tensors, invariants and operators

The anomalous terms in Weyl scaling identities are, for type B [19], expressed in terms
of conformal scalars. These are in turn formed from conformal tensors which transform
homogeneously, without any derivatives of 0. Concise expressions for these may be obtained
by first defining a modified scalar curvature and the Schouten tensor

. 1 1 . . R
R=——R, Po,=——(Ruw—7uR), "wpP.,=R, P, =0,R, (A1l
2d—1)"" w d—2( v — Y R) A VYP, W (A1)

which have the crucial properties
boR=-20R—-V%, 0,Pu=-V,0,0. (A.2)
The Weyl tensor is then given in terms of the Riemann tensor by
Wipuw = Bppr — Y Pov + You Prv + Yw Pop — Yov Py - (A.3)

To discuss tensors which transform homogeneously under Weyl rescaling it is necessary to
consider the Cotton tensor defined by

CMV)\ = v/\P;w - VVPM)\ ) <A4)
and also the Bach tensor given by

B = V*Cpun — PWy (A5)
= 2 PWy i — A PP, + v PP + V2P, — V.V, R. '

These have the properties
C;uz)\ = _CMAV ) Cuu)\ + C)\uu + CV)\M = O, VHVC;UJ/\ = 07 VMCMV)\ = 07

N (A.6)
By, = By, Y B, =0, VB, = (d—4) PC)y,y, .
The Bianchi identity for the Weyl tensor becomes
vwWAp,u,y + quApuw + VVWpr,u (A7)

= Vu pry + You C/\Vw + Y Cpuw + Yov C/\wu + Vaw Cpl/,u + Vpw C)\/w )
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from which VAW, = —(d — 3) Cppn. Under Weyl scalings 9o W, = 20 Wi,y and
65Cn = =00 W 8By = =20 By, + (d —4) 0 (Cor + Cupin) - (A.8)

Since the Weyl tensor vanishes when d = 3 the Cotton tensor is then a conformal tensor,
as is the Bach tensor when d = 4.
In terms of these expressions

Ey =6 Ry, R, M =Wy W, — 4(d — 2)(d — 3)(P* P, — R?), (A.9)
which is the Euler density in four dimensions, and also

Eg = 90 Ry, Ry, " R, "]
=811 + 41 +6(d — 5) (RW,"" Wy, — 4 Py WHY&@WY )

\ (A.10)
—24(d — 4)(d — 5) Py Py, WH*"
+8(d —3)(d — 4)(d — 5)(R* — 3R P"P,, + 2 P" P,\P*,),
for I, Is conformal scalars
I = W) WHETY WP I = W, Wy, W M (A.11)
These satisfy
0o By +40E, = 8(d — 3) VN(G4NV8VU) s (A 12)
8, Eg +60Eg = 24(d — 5) V,.(G"9,0) , ‘
for 1
G4 = (d—2)(P* — A R) = RM — 57‘”’}2, (A.13)
the Einstein tensor, and
GeH? = WHNTWY o+ 2(d — 4) WHWY Py, — 2(d — 3)(d — 4)(P* PY) — P* R)
1o s . (A.14)
- 17M (W Ap W‘r)\pw - 4(d - 3)(d - 4)(P>\pp)\p - RQ)) )

where V,G4" = V,G"” = 0 and Gg"” = 0 for d = 3,4. For completeness we note that
Ey =R, doBo +20Ey =2(d— 1)V, (G2'0,0), for Gt = —A". (A.15)
It is useful to note that
0oGat +40 Gy = —(d — 2) Hi " V30p0,  HyM" = APy — a7 - (A.16)

and
5,Ge!” + 60 G = —2(d — 4) Hg""" V0,0 , (A.17)

for

Hﬁ,u)\plf — W,u)\pu
— (d—3) (PPN =y P PHY — ¥ PAP oM PHP _ RPN k)Y (A1)

where VpHﬁ")‘p” =0, ’YApHﬁu/\pV = (d — 3) G4".

— 20 —



Besides I, I3 in (A.11) there is an additional conformal scalar of dimension six. For
general d it may be succinctly expressed as

1
Q=2(10—d) (WPHANZW i + 4(d — 2) CH2C0)
) . (A.19)

+ (@ =2 V2 — AR WA

Alternative forms [22, 43, 44], equivalent to (A.22) up to contributions linear in I3, I, can
be obtained with the aid of the relations from (A.7)

415 — I = WPW/\V2WPW/\ —2(d—2) P WPk W x — 2 RWWV}\WPW}‘
+2(d = 2)(d — 3) CPChupp + 2(d — 2) Vo (W Cpp) (A.20)

(d — AV (WHAC,,0) = =V V(WY ) + i V2(WHANT 3 o) -
The form used in [20] is given by
= (d—3)0 — %(10—@(411 1), (A.21)
so that, for d = 6,
Iy = WPHA2W, 0 4 16 Py WS WY 3, — 8 RWPHA W,

\ 1, \ (A.22)
+ 8V, V, (WHYPCWY 3 ) — 3 VAWPHAW pn) -
The I, all satisfy
Sl + 601, = 0. (A.23)
Besides (A.20) we may also note the derivative relation
V.V (PMPYy — 2 PP R) + V2R? = P, Py, W'Y 4+ d P" P,\P*, — RP"P,,
(A.24)

1 P
-5 CMYCy\y + VAPHN 3Py — O*RO\R.

If a connection A,, with corresponding field strength F),,, is present, then there are
further conformal scalars. Analogous to (A.19) there is a similar dimension six conformal
scalar formed from F),,, which as given in [43] has the form

L1 1
0= 1(10 —d) (4(d — 4) (F""D?F,,, + D*F" E,,)) + D, F" D”FVA)

, (A.25)
—(d— _ 2 _ D\ v
+ 16(d 4)((d - 4)D* — 24 R)F" F),,, ,

for D,, the appropriate covariant derivative, DyF),, = O\F, + [A), F),]. Corresponding
to (A.20), using the Bianchi identity for F},,,

1
DDy (FIF ) = 5 D*(F" F)
1 .
=D, F'D"F,, — 3 DAFM DyF,, — (d — 4) P, FMF”\ — RF"F,,  (A.206)

1
+ 5 Wi FMEAN — 2 FWE\FX, .

— 21 —



The terms in the last line are conformal scalars. Using (A.26) an expression similar
to (A.22) can be obtained which is more convenient for our purposes. For d = 6 this
becomes

~ 1 .
I= §(F’“’D2FW +D*FM™ F,,) — 4 RFM™F,, + (2D,D, + 4 P,)(F'F%),  (A.27)

which corresponds to the form given in (2.15).
In addition to conformal tensors there are also conformally covariant differential oper-
ators® which play a crucial role. The conformal Laplacian, or Yamabe operator,

Ay =-V*+4 %(d -2)R, (A.28)

acts on scalars of dimension (d—2), §,A2 = 2(d—2) Ayo — 1(d+2) o Ay. For d = 10 the
conformal scalar © in (A.19) is just —Ay WP#A W, ,\. The corresponding fourth order
Paneitz operator [45] was for d = 4 found first by Fradkin and Tseytlin [46-48] and also
rederived by Riegert [49],

Ay =VV? £ VH4P,, —27,R)D, (A.29)

acting on dimensionless scalars such that 0,Ay = —40 A4. This expression is equivalent
to the result for L4 in (2.8). There is a corresponding extension in six dimensions, given
by Branson [50], which can be written as

Ag = —V?*V2V2 —8V?P,, VI —8VHVYP,, V2 4 6 V2R V>
~ V*(8 By + 8V, V,R+48 P,\P,* — 32 P, R) 9" (A.30)
+ VH(8 PP —8R? +4V?R),,

so that 6,A¢ = —60 Ag. This operator is equivalent to the contributions S7 + So + S3 as
given by (2.17), (2.20), (2.24).

Besides acting on scalars there are also conformal differential operators for tensors with
various symmetries. For our purposes we need only consider operators acting on symmetric
traceless tensors of rank two. Adapting results from [52, 53] to this special case

8
Aog hyy = Doy + i V.V oy +4 P by s
A.31

1 8
- g Yuv (M vvahp)\ + Pp)\h)\p>
so that d,Ag 7 = %(d—ﬁ) Ao U—%(d—Q) o Ag 7. The operators Ay and Ag 7 are implicitly
determined by the ja,j1 contributions in T} + 7% given by (2.26), (2.29).

The calculations for ¢° theory are based on using the heat kernel expansion for e *2,
with A = —D? + 1(d — 2)R+Y in terms of the Seeley-DeWitt coefficients a,(z,y). A is a

3 An overview and some useful expressions can be found in [51].
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conformal differential operator if we assume 6,Y = —20Y. If A,,Y =0 then A = Ay as
in (A.28). For the diagonal coefficients a,|, when y = =, we have

180 ag| = WPHYWy 0 + 15 F¥ Fpy, + 60 Y2 + 30 AY
, 1 R ) .
—(d—6) <(d — 2)P* Py, — 5 (5d — 16)R? 4+ 3V2R — 15RY> (A.32)

3 1 )
=5 WAP’“’WAW,,—E Ey+15 F" F,,+90Y?+6 V2 R—30D*Y if d=4,

and from [54] for A,,Y =0,

80 44
7!@3’ :_EII—F?IQ—FGQ
16

3 14 -~
+ (d—8) ( -3 VWP W pn — 3 Py WOHAWS o\ — 0 RWPHAW, 5
8
+ 5(d+2) PPy, WHA 1 8(d — 2) C*Cypn

+(d—2)(2V*P"™V\P,, — AV*(P" P,,) — 4V ,V,(P"R))
— (5d — 22) *RO\R + (9d — 32) V2(R?) — 6 V2VR

8 2 R
- §(d2 —4d +12) P""P,\P*, + g(7d2 — 40d + 36) R P*" P,
1 .
— §(35d2 — 266d + 456) R3> : (A.33)
Ford =16
L5 28 5 . v s » \
Tas| = 5 s — 311+§12+213+14(31+5WW,,F FY — 8 FME,\FA,)

1 1 1
—7 =Y + = YAY + — WPHAW, Y
<12 12 T 180 phizr >

1 1
- —=(F*F,Y+YFYEF,, — F"YF,
(30( 13 + H)+60 / )

— V.V, (12 WP, + 16 PP PYy — 64 PHVR) (A.34)

v <Z WYy + 32 PRV P, — 60 RQ) +12ViV2R

— 56 D, D, (FI\FY)) + 49 D?(FM F,,)
1 1 1
— 7 —=D,D,(G4"Y) — —D*YV? + —D*D?Y ).
(90 WD (G ) = o5 T 50
This gives the results in (3.11) and (4.7). The results in (A.32), (A.33) and (A.34) reflect
the theorems of Parker and Rosenberg [43]* that a,| for d = 2n + 2 is a conformal scalar
and for d = 2n, [ d®"z/—7 a,| is a conformal invariant, and suggest the slight extension,
that for d = 2n, a,| is a linear combination of conformal scalars and the Euler density Fs,

up to terms with two derivatives.

*As noted in [20] their results contain some errors which are hopefully corrected in (A.33), (A.34).
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B Expansion of six dimensional dilaton action

In six dimensions Lg(o) in (2.5) may be obtained by using (2.6). Starting from (2.14) we
may straightforwardly use (A.2) successively in (2.6) to determine Xé:fr“ Yforr=1,2,3,4
and hence obtain

LE(o)=0Ll —12a G¢'"" 0,00,0
+ 16 a(W")‘p" V0,0 0,00,0 — 6 P* V)‘aﬂa 0,00\0
+3P" V%6V ,0,0 + 3PV ,0,0 0*00r\00\0
+3RVH o 0,00,0 — 3RV?c 8)‘0@\0) (B.1)

—24a (g R(0*00x0)? + VHD" 0V ,0,0 D adyo — (V20)? 8)‘08)@)
+36a V20 (0*00x0)? + 24 a (0 0dro)? ,

which matches [12]. For the contributions arising from L given by (2.25) and X" given
by (2.23)

Li(o)=0cLi+ %ngauaaya
+29150"9'0" 9" (6 V00 0,0050 + V,,0,0 9 00zo = 2V?0 0,00,0 (.9
—40,00,0 (9)‘0@0)
— 910" 0\g” (6 V0" 0 0,00,0 + V6 00,0 — (0#00,0)?) .

The remaining contributions from (2.30) with (2.31) and (2.32) are then

1

Lhlo)=o Ly~

Xg o000, LE(o) =0 L¥. (B.3)

C Fermions

For completeness we extend the results in [20] to include background gauge fields coupled
to fermion conserved currents ¢y*t,e. In this case the one loop action is determined by
an operator A = —ZDQ, with D, including the spinor and gauge connections. This can be
reduced to the form (3.9) where

1 1 1
ij—) ZRuuApfy)\’Vp"i‘Fuy ls, Y — §R13_§FMV7#7V7 (Cl)
with 1g the spinor identity. For fermions then
LE+LE = —tr(ans|) + VWV 2, (C.2)
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where the trace is over both spinorial and gauge indices. In the formula (3.11) for tr(aa 3|)
we may use (C.1) to obtain in six dimensions, using tr(lg) = 8,

A 1 .
tr(1) = 5 (41— Tr—413)+20 P, WHM6STY L —6 RWHAPTY,0

—~20RV?R — 112 PP\ P*,, + 56 R P"P,,, + 16 R®
+8tr(I),
tr(FM FzF?,) — — I} — 3 Py, WHNYCWY ) — 6 Py, Py, WHMY
— 20 P"P,\P*, + 18 RP"' Py, + 2 R®
+8tr(FIF 2 F,),
Woap tr(FP FAP) — — I — 8 Py WHNSWY o, 4 8 Py, Py, WHY
+ 8 W tr(FH FAP)
1, R R
(P V) = = o (R WH2PW 0 + 16 R PP P, + 4 R?)
+ AW, tr(FH FAP) 416 Py, tr(FFFY ) +4 Rtr(FPF,,)
tr(YV3) — R® — 8tr(FME,\F,) — 6 Rtr(FM'F,,),
tr(YV2Y) = 2RV?R — 4tr(I) + 16 P, tr(FFAEY ) — 16 Rtr(FMF,,),
where on the right hand side the trace is only over gauge indices. To calculate the result
for tr(1) it is necessary to use (A.20) and (A.24) to eliminate P2 P, with

A~ ~ 1 N
16(P"'V?P,,—RV’R) — — S(4h—I—1I3)—8 P WHANSTY 42 RWHAPTY, 0,
+ 16 Py P ,WH" 496 P P, PX, — 16 RP*' P,,, (C.4)

discarding two derivative terms. The traces in (C.3) give, for n,, fermions, using from (A.10)

3

1 R
6 Py WHNWY, oy =211 + Iy — — Eg + = RW)\ "W, — 12 P, Py, WHY

4 27 ) (C.5)
+24 P*P,yP*, — 36 RP" P, + 12 R?,
the result from (C.2)
1 1 191
L§Zn¢w<— g14 X 641 — 321544015 + 9E6> ,
' C.6
G —w(tiviw tr(FH M) — 52 g, A .
6 15 g e 45 AL )

D Two-forms

We here summarise some of the results necessary in the calculation of aa 3| for two-forms
in (3.14).

N

1 ~
trmn(]) = ztrg(z) (1)
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— —I3 — 16P* V2P, — ARV*R + 12P,,WF WY, — ARWH W 0,
+ 16P,,, P\, WH — 16 P* P,y PX, + 40RP* P, + 16 R®,

1
trom) (F' F,FA,) = 1o (FMF,\F*,)
= I} — 3P, WHY“WY oy — 6P, Py ,WHY — 20P" P\ P*, + 18RP*" P, + 2>,

Wspttoa (FH FM) = iWMV)\ptI‘Q(Q)(FIWFAp)
= Iy — 8P, WHWY 4 8P, Py, WH¥,
trom (F* F Y1) = —4P, WHNYSWY L+ RWHAYT, 0, + 16 P, Py, WH»Y
—16P*" P,\P*, — 8RP"'P,, + 4R>
— U WHNSWY oy — UWHAPY 3 4 AU, Py, WHAY
—4PYPPUS — 2P PMUY + 8U) — 4RP/US — 4R?U,
troe (F' FlYs) = —Iy — 12P,, WHN“WY o — 2RWHAPT 0, + 24P, Py, WHAY
— 16P" P,y P*, — 56 RP" P, — 8R®
= 2U, WHANOWY oy — (U + AU)YWHAW 0 + 8U L Py, WHAPY
— 8P/PLUS— PP/ (20U +64U)—8RP,Y UM —4R* (U +4U),
trow (Yo) = —2R+ U, trgu) (Y1) = —2R+6U + UL, troe (Ya) = 10R + 15U + 5U %,
troo (Y¢') = (2R - U)?,
trow (Yi2) = 16P* P, — 2R* + 8PU} — 2RU} — ARU + U YU + 2UU} + 6U?,
(YZ) = WHAYW,,5, + 16P* Py, + 4R* + 16 P/ U/ + 4RU}* + 20RU
+4U, UM + UFUS + 10UU M + 1502,
troo (Y¢) = —(2R - U)?,
trom) (Y1?) = 64P* P\ P, — 48RP" P,,, + 6 R
+48(P/PLUS + PYPHU) — 24RPYUS + 3R*US — 6R*U
+12P/ULUS + 24P USU — 3RU, U — 6R(USU + U?)
+ULULUS +3UUSU + 3UU? + 6U3,
troe (Vo)) = —Ip + 12, WY + 24P, Py ,WH + 16 P* P\ P*,, + 24RP"' P,
+ 6U, WHANSTY oy + BUWHAPT 0, + 24U, Pr,WHAPY 46U, Uy, WHMY
+ 24PV PLUM + 12PY PMUY + 4U) + 24RPYUS + 12R?U
+12PYULUM +12PUMUSL + 4U) + 6RUL UM + 12RU#U + 30RU>
+ 22U ULUS + 3ULUMUSL + 4U) + 3UULU 4+ 15U4U? + 1503,
troo (YoV?Yo) = (2R — U)V?(2R - U),
trom) (Y1V2Y1) = 16P* V2P, — 2RV*R
+4(P*VU,, + URV2P,,) — UFVER — RVAUS — 2(UVER + RVU)
+UM'N?U,, + U VU + UVAU S + 6UV?U,

trQ(z)
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troe (YaV2Ya) — I3 + 16 P*'V? P, + 4RV?R — 16 P, WY, + SRWH2PTV,,,»
+8(P"'V?Uy, + UMV Py)
+2(UV2R + RVAUM) +10(UV2R + RV?U)
+4UMN?U,, + UFN?UY +5(UFVPU + UV?UM) + 15U VUL

Combining terms as in (3.11) and using (C.4), (C.5) we find

troe (aa@ sl) — 2troa (aam sl) + 3troo (aam 3l)
— Lé%
G [T 11 HUUAD !
) 72 % w W[,LV)\,D U

32 . 2 o .
+ (3 PP, —12 RQ) U + =(V2RU' + RV
3 (D.1)

7 13 .
— U Uy, W 12 Py, UL — 2 P*U,, Uf — 3 RUM U + 5 RUL U
1 1
+ - (U™ VU, — = Ut VUY
6 4
, 1 , - 1
- (U” U = 3 U U > U —4RU"? - 3 U'NU —U",
where LE is given in (3.15) and
1
U=U+ 3 Ut (D.2)

From (3.13) U' = iv“vu, U = -V, = V,0,Ing?. Since Ge"* U, =V, V(G In g?)
this term may be neglected and (D.1) leads to (3.16) using

1
V0, Vv, WHA 5 <2 WHAPTYY sy — 4 Py WHAPY — 3BW> VU

1 )
=— (2 WHACTY |y — B 412 PFAP,Y —2 V2 PHY 42 V“@”R) Uy
+2 PMPy vt

RVHyY Vv, — Rv,w“ Vv, 0¥ — (4RP’“’ + V”(?”R) Uy — (RQ — V2R) vy, ,
N 1 A
PN A Vyuy — PPV 0, Vot — <4 PMAPY + R PM — 3 VipH 4 wa”R) VU
1 2 ~ I
+ 3 V°R vy, ,
VHY V2V 0, — V,oH V2V 07 4 12 PPV 0, Vot + 3 RV 0t V0"
+ (= WMWYy, — 60 PRAPY — 20 R PH

+6VIP — 20 VH9 R) v,
+ (2PPy, — 2R* + 9V2R) vt (D.3)

discarding total derivatives.
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