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1 Introduction

Maximal supergravity theories in various dimensions are known to possess intruiging du-
ality symmetries which can optionally be broken by non-abelian gauge interactions. Many
of these theories can be described as truncations from eleven-dimensional supergravity or
from ten-dimensional IIB supergravity in the context of dimensional compactification on
an internal manifold of appropriate dimensionality. Already at an early stage this raised
the question whether the higher-dimensional supergravities might somehow reflect the ex-
ceptional duality symmetries that are present in their lower-dimensional ‘descendants’.
This question has a long history and is also relevant for proving the existence of consistent
truncations to maximal supergravities, implying that any solution of the lower-dimensional
maximal supergravity can be uplifted to the higher-dimensional one.

An early attempt to answer this question was based on a reformulation of the full
eleven-dimensional supergravity obtained by performing a suitable Kaluza-Klein decom-
position to four dimensions while retaining the full dependence on the seven internal co-
ordinates [1]. The key element here was to ensure that the resulting theory was invariant
under the four-dimensional R-symmetry group SU(8). This symmetry was locally real-
ized with respect to all the eleven coordinates, and it was introduced by a gauge equivalent
re-assembling of the original Spin(10, 1) tangent space. The resulting supersymmetry trans-
formation rules then took a form that was almost identical to the four-dimensional ones,
which do indeed exhibit the typical characteristics of the E7(7) dualities, but now with



fields that still depend on all eleven space-time coordinates. Eventually this set-up made
it possible to establish the consistency of the S” truncation, meaning that the whole field
configuration of four-dimensional SO(8) gauged supergravity can be uplifted as a subman-
ifold in the full eleven-dimensional theory by specifying the dependence of the fields on the
seven internal coordinates [2, 3] .

Recently this approach was substantially extended by including the supersymmetry
transformations of dual fields, which opened a new window to accessing the Er () duality
properties of the full eleven-dimensional supergravity [4-7]. Given these recent insights,
it is a natural question whether similar structures can be derived for IIB supergravity
in the context of a 5 + 5 split of the coordinates. In the present paper we confirm that
this is indeed the case and we present a detailed analysis to support this. Qualitatively
the results turn out to be rather similar to the case of eleven-dimensional supergravity,
but many new features arise. In this case the tangent space is re-assembled such that the
theory is manifestly invariant under local USp(8). This group contains the USp(4) subgroup
of the 10D tangent space group and the explicit U(1) of IIB supergravity as subgroups.
Obviously the SU(1,1) = SL(2) subgroup of Eg) is manifestly realized from the start.
Another interesting aspect is that the five-dimensional gauged supergravity theories, when
described in terms of the embedding tensor formalism [8], involve 27 vector and 27 two-rank
tensor fields which constitute the beginning of an intricate vector-tensor hierarchy [9, 10].
As we will discover in this paper, these features are also present when one retains the
dependence on the extra internal coordinates for IIB supergravity, so that this vector-
tensor hierarchy does emerge in a ten-dimensional context. This is undoubtedly related to
the fact that in the recent work on an Eg(g) exceptional geometry that incorporates both 11-
dimensional and 10-dimensional IIB supergravity, the vector-tensor hierarchy also plays a
key role [11]. Irrespective of these issues, the analysis presented in this paper has to address
a number of subtle technical complications that are absent in the corresponding analysis
of eleven-dimensional supergravity. Many of those are caused by the fact that the field
representation of IIB supergravity is more reducible than that of the eleven-dimensional
one, while the supersymmetry is an extended one (i.e. N = 2).

While it is clearly significant that the approach initiated in [1] can be applied suc-
cessfully to IIB supergravity, we should also point out that a wider variety of alternative
approaches has been developed meanwhile. These approaches are also aimed at understand-
ing and/or exploiting the duality symmetries in the context of M-theory and string theory,
and sometimes involve substantial extensions of the conventional supergravity framework.
Some of them make use of additional space-time coordinates and extended geometrical
structures or duality groups. One such approach is based on generalized geometry [12, 13],
where one considers an extended tangent space that captures all the bosonic degrees of
freedom, sometimes related to double field theory (see e.g. [14-21] and references quoted
therein). There exists also a variety of extended duality groups that have been proposed
in combination with a choice of an exceptional space-time, such as in [22-25]. The work
in [11, 26-28] is based on extending the number of space-time coordinates subject to an ‘ex-
ceptional geometry’ so that the higher-dimensional theory is manifestly duality invariant.

It is worth stressing that the work described in this paper is exclusively based on the on-
shell formulation of IIB supergravity, as originally constructed in [29-31]. As is well known



the compactification of ten-dimensional type-IIB supergravity on a five-dimensional torus
leads to five-dimensional maximal supergravity [32] with a non-linearly realized Eg(6) sym-
metry, whose maximal compact subgroup USp(8) coincides with the R-symmetry group.
Compactification on a curved internal manifold, such as the sphere S°, will necessarily
break some of the symmetries mentioned above. In the case of S° one expects to obtain
the SO(6) gauging of maximal supergravity upon truncating the massive modes, because
the isometry group of S° equals SO(6) [33]. Various results on the consistency of this
truncation have already been reported in the literature (see, e.g. [21, 34]). From the five-
dimensional viewpoint, the breaking of the Eg(g) symmetry is understood as a result of the
non-abelian gauge interactions, because the SO(6) gauge group is embedded into Eg6)-

As we discussed above, it is possible to reformulate the higher-dimensional theory upon
splitting the coordinates into 5 space-time and 5 internal coordinates, while retaining the
full dependence on the two sets of coordinates. To ensure that the theory takes the form
of the lower-dimensional theory with fields that depend in addition on the five internal
coordinates, one adopts a gauge-equivalent version of the tangent space such that the
tangent space group will be restricted to the product group SO(4,1) x SO(5). Subsequently
one combines the group SO(5) associated with the internal five-dimensional tangent space
with the manifest local U(1) group of IIB supergravity. The crucial step is then to extend
this product group to USp(8), which is the R-symmetry group for five-dimensional maximal
supergravity. Hence we envisage

Spin(9, 1) x U(1) — Spin(4,1) x [USp(4) x U(1)]
— Spin(4, 1) x USp(8), (1.1)

where we now refer to the universal covering groups which are relevant for the fermions.
Initially only the USp(4) x U(1) subgroup is realized as a local invariance that involves all
ten coordinates. In order to realize the full local USp(8) invariance, it suffices to introduce
a compensating USp(8)/[USp(4) x U(1)] phase factor.

The ensuing analysis will be more subtle for IIB supergravity than for 11D super-
gravity. The latter contains a single fermion field corresponding to the gravitino that de-
composes directly into 4D gravitini transforming in the 8 representation and 4D spin-1/2
fermions transforming in the 48 + 8 representation of Spin(7). As was first demonstrated
in [35], these fields can be reassembled upon extending the group Spin(7) to chiral SU(8),
so that the gravitini transform in the 8 & 8 representation and the spin-1/2 fields in the
56 @ 56 representation of chiral SU(8). The IIB fermion representation, on the other hand,
is already reducible in 10 dimensions and consists of a complex gravitino and a complex
dilatino field. The USp(4) tangent-space group can in principle be generalized for each
of these fields to SU(4) = SO(6). Furthermore, the fermions of the IIB theory transform
under a locally realized U(1). Therefore, the R-symmetry group of the 5D fermions is ex-
tended from SU(4) to SU(4) x U(1). For the gravitini this group can be directly extended
to the expected USp(8) R-symmetry group, under which the gravitini will transform in
the 8 representation. However, for the spin-1/2 fermions one must combine the gravitino
associated with the internal space, comprising 40 symplectic Majorana spinors, with the di-
latino, comprising 8 such spinors, into an irreducible 48 representation of the group USp(8).



It is clear that assembling the different IIB fermions into a single irreducible spinor that
transforms covariantly under USp(8), is a subtle task.

Therefore our strategy is to first identify the vector and tensor gauge fields and their
supersymmetry transformations, subject to the vector-tensor hierarchy that is known from
the embedding tensor formulation of 5D maximal supergravity [8]. Unlike in the case of
11-dimensional supergravity one must also include the tensor fields in the analysis, because
in five dimensions the dynamical degrees of freedom for generic gaugings are always carried
by a mixture of vector and tensor fields. Hence the vector-tensor hierarchy plays a key
role here at a much earlier stage of the analysis and it is not sufficient to rely exclusively
on a proper preparation of the target space as indicated in (1.1). As it turns out, five
of the tensor fields are still unaccounted for, but even without these missing tensors we
have sufficient information to determine the generalized vielbeine, the USp(8) covariant
spinor fields, and the supersymmetry transformations of the generalized vielbeine. Using
the vector-tensor hierarchy as a guide, one can incorporate the missing five tensor fields
which turn out to transform in a representation that coincides precisely with that of a
descendant of the 10D dual graviton [36-38]. Hence the dual graviton emerges in the form
of tensor fields, unlike in the 11-dimensional situation [6] where the dual graviton resides
in the vector sector. We present a basis for the vector and tensor fields which is manifestly
in agreement with the Eg) assignments known from the 5D theory, which involves the
invariant three-rank symmetric tensor of that group.

In spite of many subtle differences, the gross features of the present analysis are in
agreement with those of 11-dimensional supergravity, implying that the approach that has
been adopted is sufficiently robust to be applied to more complicated situations. The super-
symmetry transformations of the fields are covariant under local USp(8) transformations.
The results opens the way to study many other detailed questions, such as the consistency
of the truncation to the SO(6) gauging of maximal five-dimensional supergravity or other
consistent truncations along the lines followed in [39]. Also the precise relation with the
consistent Kaluza-Klein truncations using exceptional field theory [40] is worth pursuing,
as well as many other issues that have recently emerged.

This paper is organized as follows. In section 2 the relevant properties of IIB super-
gravity are summarized and the conventions are defined. Subsequently, in section 3, the
Kaluza-Klein decompositions are carried out to ensure that the fields transform covariantly
from the viewpoint of the 5D space-time. Also the conversion to 5D spinors and gamma
matrices is discussed as well as the proper definitions of the 5D vector and tensor fields
that emerge directly from the 10D boson fields. As it turns out, further redefinitions on
the vector and tensor fields are required such that they transform under supersymmetry
in a way that is consistent with the vector-tensor hierarchy. In section 4 the dual vector
and tensor fields are introduced. Again their proper identification is based on covariance
in the 5D space-time and on the vector-tensor hierarchy. As it turns out there are only
22 tensor fields at this stage. It is then demonstrated how the missing fields can emerge
from a component of the 10D dual graviton. This enables one to obtain the symmetric
Eg () tensor that appears in the transformation rules of the tensor fields. At this point the
supersymmetry transformations of the bosonic vector and tensor fields clearly resemble the



transformation rules encountered in the pure 5D theory as presented in [8], including those
related to the vector-tensor hierarchy. By direct comparison between the supersymmetry
transformations of the vector fields arising from ten dimensions and the five-dimensional
ones, explicit expressions for the generalized vielbeine are derived in section 5. In addition
the USp(8) covariant definitions of the spinor fields are obtained, as well as the supersym-
metry transformations of the generalized vielbeine. A similar strategy is then applied to
the tensor fields, which leads to a corresponding set of generalized vielbeine. Upon adopt-
ing suitable normalizations of the vector and tensor fields one can show that this new set
of vielbeine constitutes the inverse of the generalized vielbeine determined in the vector
sector. In section 6 the supersymmetry transformations of the fermions are considered and
it is shown that they take a USp(8) covariant form. Finally, in section 7 the question of the
consistent truncation to SO(6) gauged maximal 5D supergravity is adressed. We include
two appendices, A and B, dealing with the definition and decomposition of gamma ma-
trices and the spinor and R-symmetry representations associated with the various groups
emerging upon decomposing the tangent-space into two separate 5D subspaces.

2  Summary of IIB supergravity

Here we summarize the relevant results for IIB supergravity in ten space-time dimen-
sions [29-31]. The theory is described in terms of a zehnbein Ejy;4, a gravitino field ¥y, a
spinor field A, a complex three-rank tensor field strength, Gysnp, a five-rank field strength
Frunpor subject to a duality constraint, a complex vector Py and a U(1) gauge field Q.
The fermions are complex and have opposite chirality,

Tyt = Yo, T d =), (2.1)

where fll = iflf‘g . "1:10, with T' 4 denoting the 10-dimensional gamma matrices. The
fermions transform under local phase transformations according to

U — M2 A — eBIN2 ) (2.2)

The zehnbein Ej* and the field strength F MNPQR are invariant under U(1), unlike the
other quantities, which transform as follows,

GMNp%eiAGMNp, PM—>621APM, QM—>QM+8MA (2.3)

The vectors Py; and @)y satisfy the Maurer-Cartan equations associated with the coset
space SU(1,1)/U(1), which is parametrized by the scalar fields of the theory,

Om@nN) = =Py Py D Py =0. (2.4)

In this section the derivative Dy is covariant with respect to local Lorentz and local U(1)
transformations.
The coset representative can be expressed in terms of an SU(1,1) doublet ¢%, (o =
1,2), transforming under U(1) as
o — e g (2.5)



and subject to the SU(1,1) invariant constraint,
o2 —1¢*)* = 1. (2.6)

In what follows we use the convenient notation ¢, = naﬁ(gbﬁ )*, with nes = diag(+1, —1),
so that the above constraint reads ¢,¢® = 1. In this convention the vector fields take the
following form,

Qm = — iga O 9~ ,

Py =eap ¢ Do,

Py = —e ¢ Dy, (2.7)
where the Levi-Civita symbol is normalized by €12 = ¢'? = 1. Note that 770455571775 = —€45-

We note the following useful identities,
¢a D™ =0, baPrt = s Dud” ¢ Py = —eP Dy . (2.8)

Let us now turn to the tensor field strengths. The theory contains two tensor fields
A%y transforming under SU(1, 1) = SL(2). Here we use a pseudoreal basis with A%y =
e*B(Ann) 3, where the convention for lowering and raising of indices is the same as for ¢“.
Their field strengths are defined as follows,

30 A Np =6 Gunpe +Pds Gunp,
Gunp = —3cap " O APNpy
GuNP =3 ¢a OrAN Py - (2.9)

The tensor fields are subject to rigid SU(1,1) transformations, just as the scalar fields ¢,
and to tensor gauge transformations. The latter read

§AMN = 20 E . (2.10)

Furthermore we have a 4-rank antisymmetric gauge potential Aj;ypg, which transforms
under two types of gauge transformations

SAMNPQ = 40 ANpg) + Zi €as E% ONAPpq) - (2.11)
The corresponding 5-form field strength is defined by
Farnpor = 5 0arAnpor) — %i% A%y Op Ay (2.12)
The 3- and 5-rank field strengths satisfy the following Bianchi identities,

DiGnrg = P Gupg) s

o . =
O Enrers) = — 151Gmne Gors) - (2.13)



In addition there is a constraint on the 5-index field strength which involves the dual field

strength,
1. 1, - vige o
120  CABCDEFGHIJ FFCHLT — By popr — 3! O TMT 4 poppTMiy
1 .-
+ 1g AlapcpE . (2.14)

From the chirality of the fermion fields it follows that the fermionic bilinears in (2.14) are
anti-selfdual, which is obviously required because otherwise (2.14) would decompose into
two independent constraints that would overconstrain the system. Originally (2.14) was
derived in superspace [31]. Suppressing the fermionic terms would imply that the bosonic
field strength should be self-dual. Note that the constraint (2.14) is supersymmetric and
it must transform into the fermionic field equations. Upon combining it with the Bianchi
identity (2.13), one obtains the field equations for Aynpg.

Let us now turn to the fermions ; and A. The supersymmetry transformations for
the spinor fields are as follows,

1. y y 1 L y y
Stoar =Dase — @WNPQRS [NPRRS ) e — %GNPQ(FM TNPQ Lo TN, e,

9 1 o
6\ = —PMFMEC—QGMNPFMNPE, (2.15)

where the quantities I'MN- denote anti-symmetrized products of 10D gamma matrices,
and Djse contains the spin-connection field wyA? and the U(1) connection Qyy,

1 } 1
Dyre = (aM - ZWMABFAB - 21QM>6. (2.16)

Here € is the space-time dependent spinor parameter of supersymmetry. In (2.16) we have
introduced the Majorana conjugate of a 10D spinor v, which is defined by

Yo =CriyT, ¢ =CrleT. (2.17)

Here Cy denotes the charge conjugation matrix in 10 space-time dimensions which can
be either symmetric or anti-symmetric. The gamma matrix conventions are discussed in
detail in appendix A, but for the convenience of the reader we note

Cil 07t =447, LT =+Cy, Cif=0C1t. (2.18)
We also note the following equation for spinor bilinears with strings of gamma matrices,
XTa, - Ta,p=—(£)"Ty, - Ta x°. (2.19)

For type-1IB supergravity we have chiral spinors comprising 16 complex components.
One can show that ¢ and ¥° have the same chirality (see appendix A for details) and since
the spinors are complex (so that ¢ # 1)) one can adopt a pseudo-real representation by
combining ¢ and ¥ into a 32-component chiral spinor ¥ = (1, 1°), subject to

U =0, CH0T, (2.20)



where o1 denotes the standard 2 x 2 Pauli spin matrix. We need also the supersymmetry

transformations for the bosons,
1, . o
OEN" =5 (€04 + & T445)

1

S = §ga%5 €N,

a 1 a(y T —T [ 1 af — T 7 CcT

AN = — §¢ (AFMNE — 46F[M¢N] ) + 58 ¢ﬁ (EFMNA + 4¢[M FN]G) ,
1._+ 1.- & 3. o
0Amnpq =5l NpPYg + Wl npge + gicap AN 5A%pq . (2.21)

The above transformation rules (2.15) and (2.21) have been derived by imposing the

supersymmetry algebra,
[6(e1) ,d(e2)] = €M Dag + 0= (E°w) + da(Anwp) + -+, (222)
where
M 1_ M 1_ cpM _c
£ 25621_‘ €1+§€2F €1,

% = — ¢a €21‘4M€1c — 6a6¢5 Egchel R (2.23)
1., ¢ - 3. _ ¥ _ o
Aynp = gl(flrMNPQ —&lynper) + El(Eaﬁéf)aA[ﬂMN el pjel® + ¢aAfyy ETpjer)

and where € D), denotes a fully covariantized space-time diffeomorphism.
For future use we also present the supersymmetry transformation rules for the Majo-
rana conjugate spinors,

1. g y 1 - o o L NPO &
(51/)MC :DMGC + @1FNPQRS FNPQRS FMEC - %GNPQ (FM FNPQ + 2FNPQ 11M)57

Y 1 = v
SN = iPMPMeiﬂGMNpPMNPeC. (2.24)
To understand the various field equations it is convenient to first consider the following

10D Lagrangian of IIB supergravity up to terms of fourth-order in the fermion fields,
ignoring for the moment the constraint (2.14),

L=— %ER — By TMNEDyopp — %E NPA — E|Pyl* - 2*14E |Gunpl?
— %E (Fynpgr)? + i eMNPQRSTUVW o o On Anpor Ast® 0y Avw®
LB G0 EVEA By + AEMEV g Py
T %OiE P TMPABCDEPNLy, o Fypepr
+ 4718E [dn [IMPABC PNLy ¢ Gape + 0 TIMTABC TNy Gasc]
+ L B[ F45€ 191G ype — AV £450y,, GABC)

1 — .
— @iEAFABCDE AFapepe + -+ . (2.25)



We have refrained from imposing the supersymmetric constraint (2.14) so that it makes
sense to include a term proportional to (Farnpg R)Q, and furthermore we have included
a Chern-Simons term that is invariant under tensor gauge transformations up to a total
derivative. It is then straightforward to show that the field equation for the 4-form field
that follows from this Lagrangian is consistent with the constraint (2.14) upon using the
second Bianchi identity (2.13). Here we should remind the reader that there are extensive
discussions in the literature about manifestly covariant Lagrangians that imply self-duality
constraints for tensor fields (see, for instance, [41], where also the Chern-Simons terms is
presented, and references cited therein). However, these features are not relevant for our
purpose. We also recall that the field equations are already encoded in the supersymmetry
transformations, as supersymmetry is only realized on-shell, so that one can determine
most terms in (2.25) by imposing super-covariance of the field equations, just as was done
in [30]. Our results are also consistent with [31] where an on-shell superspace treatment of
IIB supergravity was presented.
For further convenience we list some of the field equations,

1
DMPM + ﬁGMNP GMNP — 0,
_ 2
DMGynp + PM Guynp — glFNPQRS GO =0,

_ 1, = 1 1
Ryn + QP(M PN) + Z(GPQ(M GPQN) — EQMN ‘GPQRP) + 6FMPQRS Fnpgrs =0,

Caroa 1 o
FMDMA + %IFNPQRSA FNPQRS =0,

g — 1une 1. o _
MNP D p F 5FQPMACPQ — @FQRSFM)\ Gors =0,
(2.26)

where D\ denotes the supercovariant derivative of the spinor A and Dm\f} the super-
covariant curl of the gravitino. Here we suppressed higher-order fermion terms.

However, in section 4, we will need the field equations for the two-form fields including
the terms quadratic in the fermions. They follow directly from the Lagrangian (2.25) and
can be written as follows,

ImENPQRsTU]a =0, (2.27)
where the seven-rank anti-symmetric tensors FsnpQrsT o are equal to
1.
Fy MNPQRST = — ?1E5MNPQRSTUVW (eay @78 + €8y 07 00) ovAVW

. 1.
— 1201 Eap A[MNB [apAQRST] — SlENs APQ7 8RAST5}

8
1 o 5 .
+ ;Eamﬁ [ TUT v porsT TV v + ATY Tarnpors U]
1 Y 5 . 5
+ 7% (o TV T v porsT TV 0y — o TainporsTTY A - (2.28)



Note that the normalization of this tensor is arbitrary but the phase is dictated by the fact
that its pseudo-reality condition is in line with that of the other pseudo-real fields.

3 Kaluza-Klein decompositions and additional field redefinitions

The strategy in this paper is to describe IIB supergravity as a field theory in a five-
dimensional space-time, while still retaining the dependence on the five additional coordi-
nates that describe an internal space. Hence the 10D coordinates are decomposed according

to oM

— (x#,y"), where z* are regarded as the space-time coordinates and y™ as the co-
ordinates of the internal manifold. Eventually, in a given background, the fields may be
decomposed in terms of a complete basis of functions of the internal coordinates. For the
T5 background this is rather straightforward; the spectrum of the tower of Kaluza-Klein
supermultiplets for S° has been studied in [42, 43]. However, at this stage we will not
be assuming any particular space-time background and neither will we be truncating the
theory in any way. We are only reformulating the theory in a form that emphasizes the
five-dimensional space-time.

A crucial ingredient in this reformulation is provided by a change of the tangent-space
group, which we have already indicated in (1.1). First we impose a gauge choice, reducing
the 10D local Lorentz group to the product group SO(4, 1) x SO(5), whose universal cover-
ing group equals Spin(4, 1) x USp(4). The fermions then transform according to the product
representation of this group, so that from a five-dimensional space-time perspective we are
dealing with four complex Spin(4, 1) spinors, each carrying four components. The fermions
are subject to an extra local U(1) group, and the product group USp(4) x U(1) must be
contained in the 5D R-symmetry group. Obviously we have to convert the 10D gamma
matrices to those appropriate for five space-time dimensions, equiped with two sets of mu-
tually commuting gamma matrices, one associated with space-time and the other one with
the internal space. In due course we will also have to recombine the spin-1/2 fermion fields
into an irreducible representation of the group USp(8), which is the R-symmetry group for
eight symplectic Majorana supercharges in a 5D space-time. This last redefinition will be
considered in section 5.

The next step is to redefine the fields such that they transform covariantly under the
5D space-time diffeomorphisms. These Kaluza-Klein decompositions were systematically
discussed in the context of the T reduction of 11D supergravity to 4D supergravity [35].
Furthermore, we will find that the vector and tensor fields require additional redefinitions
beyond the Kaluza-Klein ones in order to generate transformations that reflect the vector-
tensor hierarchy [8].

The standard Kaluza-Klein decompositions start with the vielbein field and its inverse,
which we write in triangular form by exploiting the 10D local Lorentz transformations,

A—l/Seua B#m em® A1/36au _Al/?:eaVBym
Byt = , EM = . (3.1)

0 em® 0 e

~10 -



Here we used tangent-space indices «, 3, ... associated with the 5D space-time and a, b, . . .
associated with the 5D internal space.! The scalar factor A is defined by,

_ det[e,*(z,y)]
87 detlent )]

where é€,,% is some reference frame for the internal space parametrized by the coordinates
y". The rescaling of the fiinfbein is such that the gravitational coupling constants in
10D and 5D are related by ™ 2[1op = £ 2|5p [ d°y det[é,,%], so that we are in the 5D
Einstein frame.

(3.2)

An important feature of the gauge choice made in (3.1) is that it must be preserved
under supersymmetry. This requires to add to the 10D supersymmetry transformations a
uniform field-dependent Lorentz transformation with a parameter equal to

1 g o
e _ oo _§eam (Epawm + gcfawmc) , (3.3)

where 1, = e, ¥,. The supersymmetry transformation of e, is not affected by the
compensating Lorentz transformations, so that we have

SA = %A(gf%pa + e D,°) . (3.4)

One can now determine the supersymmetry variation of the fiinfbein e,®, taking into
account the compensating Lorentz transformation (3.3) and the effect of the factor A.
Insisting on the fact that e,* transforms into the 5D gravitino field in the same way as
before, one then derives a modified gravitino field,

1. o Ta
K = AV [y, — B, ] + gA Ve, T T, , (3.5)

and likewise for 1,°. This field transforms covariantly under 5D space-time diffeomor-
phisms by virtue of the presence of the field B,™. Accordingly we also perform field-
dependent scale transformations on the supersymmetry parameter, the gravitino compo-
nents 1, and the dilatino,

EKK — A1/66, Q,Z)QKK — A—I/G ea™ U, )\KK — A_1/6>\. (36)

Subsequently we must convert to different gamma matrices that decompose into two
commuting Clifford algebras corresponding to the 5-dimensional space-time and the 5-
dimensional internal space, which must both commute with I'11 so that they will be con-
sistent with the 10D chirality restriction on the original spinors. As mentioned previously
every 10D spinor decomposes into four complex Spin(4, 1) spinors. The gamma matrix con-
version is discussed in detail in appendix A and the results can be summarized as follows.
The 32 x 32 gamma matrices I'4 can be written as

9 ~

To=—i(5aT),  Tass=—i(T07), (3.7)

Note that we are also using indices «, 3. .. for the SU(1,1) indices on the scalar doublet and the tensor

fields. This should not cause any confusion.

- 11 -



where I'y; = iAT with 4 and T’ mutually anti-commuting hermitian matrices that square to
1I32. The tangent space indices in the 5 + 5 split were already defined below (3.1).2 Both
A% and ['% anti-commute with 5 and T (and therefore commute with I'1; as insisted on
before). They generate two commuting five-dimensional Clifford algebras. Furthermore,
we will insist on the Majorana condition C"HET = ¢ for all the 5D spinor fields, where C
is defined in terms of the 10D charge conjugation matrix in (A.13). For the gravitino fields
and the supersymmetry parameters this leads to the following relations between 10D and
5D fields,

Yhop =Ylspr  lop =¥lsps Plhop = —10[5p1 (3.8)

where i denotes either ¥, or e.

For the dilatino field A the situation is somewhat different in view of the fact that we
wish to change its chirality by absorbing the matrix I'. This conversion is of course no
longer consistent with 10D Lorentz invariance, but it is convenient to define all the spinor
fields with the same (positive) chirality.

=T, X5, =F0x

10D (3.9)

)\|10D |5D’ )\|10D 71/\‘5D’

Once these modifications have been performed, one can simply restrict oneself to the 16-
dimensional subspace corresponding to the eigenspace of I'1; with eigenvalue +1. After this
one drops the carets on ~, and I'; and thus obtains a description in term of 16-component
complex spinors, with two mutually commuting sets of gamma matrices 7, and I';. Note
that this is consistent with using the charge conjugation matrix C , which was introduced
as a 32-dimensional matrix but which commutes with the chirality operator (i.e. charge-
conjugated fields carry the same chirality). With these conversions the relation (3.5) for
the 10D gravitino field ¥ with M = 1 in terms of the 5D fields reads

1.
iy, T, KK - AVB B My, KK (3.10)

Al/ﬁwu — QZ)MKK o .

Observe that here and henceforth v, = ¢,% v, and I';, = €,,% ', where the vielbein fields
e,® and ep, are defined in (3.1).

In this way one finds the following transformation rules for the 5D fields emerging
from Epr* as defined in (3.5) and (3.6),

dep® =5 (€7, + &y,
SB,™ = ;A 1/3¢,m [ (ET%, + e T%,5)
+ &7, <6“b + ;rm,) WP+, <5“b + ;F“m) WC] ,
Sem® = %i [ET% Yy + € Ty, (3.11)

2We employed Pauli-K&llén conventions where 2 equals iz® for @ = 1, so that all gamma matrices are
hermitian.
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up to an infinitesimal 5D local Lorentz transformation with a parameter proportional to
I'",,. Since we will be suppressing terms of higher orders in the spinor fields, these
transformations will not play a role when evaluating the fermion transformation rules later
in this section. Here and in the following we are exclusively considering the 5D fields, so
that we have dropped the additional labels.

We also evaluate the supersymmetry variations of the scalars and the dilatini,

5™ = — %iea%ﬂ €N,
SN =AT3] —iPy® + P,I?] €
+ iA—” 3 [Gabe T = 31 Gapa T + 3 Gaap T — 1 Gapy 7v*7]e,
ON = ATV —iPyy™ + PT]e
+ iA—l/‘? [Gabe T — 31 Gopa Ty + 3 Gaap T —iGapy 7™, (3.12)

where the tensors P and G refer to the components of P4 and Gapc, which are defined
with 10D tangent-space indices.

Subsequently we derive the expressions for the supersymmetry variation of the grav-
itino fields up to terms of higher order in the fermion fields, which will now also involve
the components of the field strength Fapcpr and the spin-connection fields written with
10D tangent-space indices. We first list the gravitino fields that carry a 5D space-time
vector index,

1

1 1 1.
0y = [BM - gé)u InA — A_l/?’e,f‘ (Zlc«)oéﬁ7 Yy + §1waﬂa I 1

W™ Loy + 1iQa>} €
2
m 1
- B, {&n — 68mlnA]e

o iiA_l/S Eabcde
240
1

= 5627 [ = iGrea Ty + 3Giea T (37 + 27 u)

[i Fabcde - 5F,8abcd7ﬁre — 5i F,B'yabcfyﬂ’yrde] Yu€

+3iGrag I (17" = 297 ) + Gapy (W™ +2977,) ] €€
1
+ giA_l/GV,u Fa(w)a 5
1 1 1 1 1
5wuc _ 8M _ 68/1 InA — Afl/?’eua <4wa57 Ygy + iiwaﬂa Larvg + zwaab Pap — 21Qo¢>:| €
1
~ By [0 — 0nIn A€

+ ﬁiﬁ_l/ Sgabede [i Fobede — 5Fpabeay’Te — 51 Fgpaper” 7Fdej| Ve
- %A_l/g [ = 1Gpea T + 3 Goea TP (17 +29%,)
+ 3iGhap I (17 = 29 3) + Gagy (1uy ™™ +29%7) | €
+ %iA*l/%u T81),C . (3.13)
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where we made use of the self-duality condition on the field strength (2.14) and the gamma
matrices defined in appendix A, and in particular of (A.17), to simplify the terms involving
the various components of the field strength Fapcpr-

The transformation rules for the gravitini that carry a vector index of the internal 5D
space are given by

0P, = A71/3eam Om — iwmo‘ﬁ YaB — %iwma“ Tava — %wm“b T — %iQm - é@m InAle
+ %Oiﬁfl/%b“lef [Fhedes + 51 FabedeV" T f — 5 Fagbedy™ Tep] Tae
— %A‘V 3[Grea (Tl + 27T, ) — 3iGieq v (Tl — 21T,
+ 3Ghap VP (Lol 4+ 2T°T,) +1Gap, 1T, ] €,
5t = A"V 3e, ™| 0, — iwmaﬁ YaB — %iwmo‘a Fove — %wmab Loy + %iQm - é@m InAje
— ﬁiﬁ_l/gébw’ef [Fhedes + 51 Fapede V" T 5 — 5 Fogpeay™ T Toe
— %A‘l/ 3[Grea (Tal* + 2T, ) — 3iGeq v (Tl — 21T,
+ 3Ghap Y (Tl + 2T°T,) +1Gap, v T, ] €. (3.14)

The next topic concerns the rank-2 tensor fields A%,n, which decompose into twenty
scalars A%, ten 5D vectors A%, and two 5D 2-rank tensors A%,,. Their consistent
Kaluza-Klein definitions are as follows,

AamnKK = Aamn ’
Aap,mKK :Aa,u,m _ Bﬂp Aapmv
A% = A% + 2 B A%, + BP B1AY,. (3.15)

Their supersymmetry variations take the form,

«@ 1- a=c C — [¢ 1- «@ — —c
SA%,, = — 510 [T A — 4 €T 1,] — Si€ Pps[eTmnA — 4E Tiby]
@ 1 —-1/3 ja|9: = c = n 1 n c | =C c
0A%ym = — §A o |21 el Y, —2€vy,( 0m" — gFmP Yy + € Ipyu
1 1
- QA—l/?’ga%ﬁ {2150 Tty — 2€, <5m" - 3FmF”> Yn + Ermyﬂx]

— 5B, A%,
o 1 —2/3 1o = c 4. m,, C | :=C c
0A%, = — §A | —devy© + glefyu,,I’ Y +1EVWA
1 —2/3 _ap = 4. e m s =
— iA g | — A€y + 3i€ Y L 1€y A
+2 5B[Mp Aa,,]p s (3.16)

where we have suppressed the KK-label on both sides of the equations.
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Subsequently we consider the 4-rank tensor Ap;npg which decomposes into five 5D
scalars Ayunpq, ten 5D vectors A, mnp, ten 5D 2-rank tensors Ay, five 5D 3-rank tensors
Apvpp and one 5D 4-rank tensor A, .. Their consistent definition is

KK
Amnpq = Amnpq ;
KK
Apmnp = Apmnp — Bu? Agmnp »

A,uumnKK = A,ul/mn +2 B[/Lq Au]qmn + B,U«p B,1 qumn )

Ao = Ao + 3 B Ay + 3 Bl Bo® Ay — Bu B By Apgrn
KK
AMVPU = A/ng +4 B[Mp Aupa]p +6 B[Mp B, Apa]pq +4 B[Mp B, Bpr Aa}pqr
+ B,? B, B, By® Apgrs - (3.17)

The supersymmetry variations for these fields then take the following form,
1 c 1 —C C 3 . @ B
5Amnpq = — 56 F[mnp%] + 56 F[mnp¢q} + él €Q5A [mn 0A pq) >
L 13, _ 1
Fymny = G AT {6 L & 31€9: <5p1q R Fq) #’q]
1 - —C C + —C ]_ c
+ AT [ — ETonpt — 319, (5p]q - gpp]pq) wq}
3. o N .
+ 161608 [Aupm 04 ) — 0A g A%y — 0BT A g, Ay

16 plm
— 6B, Agmnp

1, _ . _ 1
(5Auymn = EA 2/3 |:16 an’y[”ﬂ)y} — € 'Y/U/F[m (5nf’ — gl"n] FP) wp:|
1 - 1 2C C —C 1 c
+ EA 2/3 [ — 1€ Linn Y] + €Yl <5n]P — 3Fn]PP) ¢p]
e [ A% A+ A 64, — 4 A0 A%,

16
1
—+ gié’faﬁ (SB[MP [Aay]p Aﬁmn -2 Aay} [m Aﬁn}p]

+ 2 5B[Hp Ay}pmn R
Ty, .
5Auupm = gA ! [3 € ley[,ulﬂbp} +1€ VMVP(émp - Fmrp)wp]

L _ — c_ =< c
+ gA ! [ —3¢€ Fm’}/[,uywp} — 1€ ’Y;wp((smp - Fmrp)q/}p ]

3 . 6] (6%
T 1gices (A% 0A = A%, AP

3. a o

+ EMO‘B 0B [up [A vp] AIBJW +24%m A’Bp}p]

+36B” Aypimp
1, 4. 1_

6A,uupa = iA 4/3 |:16 ’Y[,uzzpd}a] =+ gf ’Yw/parpwp:|

1, _ - —C c 1 — c
+ §A 4/3 |: — 1€ ’Y[,uupl(/)o] - ge Vuuparpwp]
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3. s 3. a
+ gi€as A% 0A 0 — Jieap OB A% Ay,
+ 468" Aypop (3.18)

where again we suppressed the KK-label on both sides of these equations.

Let us review the various fields that we have obtained and compare them with the
fields that are generically contained in maximal 5D supergravity. First of all we have the
fiinfbein field e, and the eight independent gravitini fields consisting of the fields (v, 1,°).
Furthermore there are 48 spin-1/2 fields consisting of (14, 14"), and (A, A9).

Then there are 42 scalar fields, consisting of e,,%, ¢%, A%, and A,,pnpe. The field e,,®
corresponds to 15 scalars and the fields ¢ to 2 scalars upon subtracting the degrees of
freedom associated with tangent space transformations of the internal space and local U(1)
transformations. The fields A%, and A,,yp, describe 20 and 5 scalars, respectively. The
total number of scalars is thus equal to the dimension of the Egg) /USp(8) coset space that
parametrizes the scalars in 5D maximal supergravity.

To appreciate the systematics of the vector and tensor fields we introduce the following
(re)definitions. The 25 vector fields that we have obtained at this stage will be denoted by

m __ m
c,"=B,",

« a KK
C,um:A,um )

Chomnp = Apmnp s — %isaﬁA%[mKK AP, (3.19)
where the extra term in the definition of C),,,,p has been included such that its super-
symmetry variation will not contain the vector field. Observe also that in the above result
we have suppressed the KK-label for the scalar field Aﬁnp; henceforth we will do this con-
sistently for both A'Bnp and Ap,ppg. The fields €, and C);ypnp can be combined into the
15-dimensional anti-symmetric representation of SL(6). The remaining vector fields C,%;,
transform as five doublets under SU(1,1) = SL(2). As compared to the vector fields of 5D
maximal supergravity, we should expect six such doublets. As we will show in the next
section, the extra doublet will emerge from a dual tensor field, A%/npors, which leads
to the fields A%unnpgr- In view of the self-duality constraint (2.14), we do not expect any
tensor fields dual to Ay npg.
The 25 vector fields (3.19) transform as follows,

1
0C,™ =A™ e, [i(erwu +&Ty,)
= a 1 a b, = a 1 a be
+év 5b+§F Ty Jo° + € 5b+§F Ly 7,
a 1 —1/3 o | o: = c = n 1 n c | =C c
0C, % = —§A ¢* |21 €l ) — 2€y,( Om —gfmf‘ Y+ € Tipyu

]. _ e « —C —C n 1 n =
_ §A 1/35 ﬂ(bﬁ |:21€ meﬂ—QE 7#(677% — gFmF )wn—l-ef‘m’yu)\]
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1. — o - —C C
+ ilA 1/3 4 mp[efpwu + € pru]

1 1 1
+ iAfl/?’Aamp [efyu(eap + gfpfa)z/za + e yuled + BFPI‘a)w“C] ,
L —1/3|; e g_1 q
5Canp = gA eanpwu + 31 ewl“[mn 5}7] — §FP]F ¢q
1 — —C ¢ : =C 1 C
+ gA 1/3 { — & Crnpthy’ — 31 €7l <5p}q — QPP]PQ> wq}
3 A — o P c - n 1 n c | =C c
— 1—61A 1/35aﬁA [mn¢ﬂ |:216Fp]wu —2€, <(Sp] — §FP]F )’l,/}n +€ Fp]"y#)\ :|
BYNS P e ey (6" — S0 ,Tm el 7\
+ 16" mn @ | 21€ Tpthy — 2y, { 0" — 317 Yn + €Ly

1 3
+ ii Afl/S [Amnpq + EigaﬁAa[mn Aﬁp]q:| [Erqlﬁu + €° Fql/luc]

1, 3. o
+ iA 1/3 [Amnpq + ElfaﬁA [mn Aﬁp}q:|
1 1
X [Ew <€bq + 3F‘1Fb> W+ &, <€bq + 3qub> ﬂ}bc} : (3.20)

Furthermore we have identified 12 two-rank tensor fields, which we define by
« a KK «
Cw® =A% = C P Cy%,
1
KK . a KK
C/,u/mn - Auumn - T61€QBA 112 Aﬁmn - O[“p Cz/]pmn . (321)
The supersymmetry transformations of these tensors are expressed by
0C,," + C[Mp 5Cl,]ap + C[Map 50,,]]0
1 4
= =5 A0 [ —4eytn” + giEru T + ie‘myﬂ
1 —2/3 _ap —C 4, —C m s =
_iA € ¢ﬁ _46'7[,uwu}+§16 V;WF wm‘i‘le%ux)\ >
1
0Cuwmn + C1p’ 0Cu pmn + Clupmn 0C,) + Ji€ap Clulm 0C, [
L o3]._ _ 1

1 -2/3 - c = 1 P ¢
+ EA —i€" I 7[;”#1/} +€ Vuur[m 6n]p - grn}r wp

L. -2/3 @ 8 = c 4._ m,;, C | :=C c
— EIA €af A%mn @7 | — 467[/“%] + gle'yWF Y F1EYWA

L. -2/3 qa — 4, —c m -
+ EIA A% da | — 4E ’y“ﬂ/},,] + gle VL Fi€ymA| - (3.22)

These transformation rules are in line with what is known from the vector-tensor hierarchy
that appears in the context of the embedding tensor formalism [8, 10]. We have actually
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verified that also the variation of the three-rank tensor fields, A, <X listed in (3.17) will
exhibit the same structure upon introducing a suitable modification. Since we will not be
considering tensors of rank higer than two, we refrain from giving further details.

At this point the number of tensor fields is less than the 27 fields that one expects on
the basis of 5D maximal supergravity in the context of the embedding tensor formalism.
Ten extra 2-rank tensors A%, mnpq Will be provided by the dual field, A“/npqQrs, which
will bring the total of 2-rank tensors to 22. The dual vectors and tensors are evaluated in
the next section.

4 Dual fields and the vector-tensor hierarchy

In (2.27) we presented the field equation for the tensor fields A%y written as a Bianchi
identity of the seven-rank field strength Fi, prnvpQrst defined in (2.28). The field equa-
tion thus implies that this field strength can be written in terms of a dual six-form field
Aq MNPQRs according to

Fo MnPQRsT = 600 Ao NPQRST] - (4.1)

It is not possible to derive an expression for A, prnvpPors in closed form, but it is possible
to determine how this field transforms under supersymmetry. Obviously, the Bianchi iden-
tity (2.27) should transform under supersymmetry into fermionic equations which are of
at most first order in derivatives. Therefore one expects that F, yynporsT transforms into
fermionic field equations and into terms that carry explicit space-time derivatives such that
they can be identified as the result of the supersymmetry variation of the dual six-form.
Because the field equations are supercovariant all the contributions of the variation of the
six-form can be identified from the terms that are proportional to the derivative of the
supersymmetry parameters. The consistency of this approach can easily be verified and it
leads to the following result,

1-. o
0 Ao MNPQRS = Eapd” <6/\ I'nvnpQrse + 2 GF[MNPQR¢S]C)
1 o -
— Pa <6€FMNPQRS>\ =29 I'npgRs) 6)
. 1,
— 20i eaﬂAﬁ[MN (5APQRS] - gl 575A’YPQ 5A6Rs]> . (42)
In particular we note the dual fields A%, nnpgr and A%, mnpg, Which constitute two 5D
vector fields and twelve 5D tensor fields transforming under SU(1, 1). We first consider the
transformation rule of the vector field A%,npqr, Which takes the following form,
5Aa wmnpqr —

1., _ _ L 1 1,
— gl A 1/35,15@%)5 [e Connpgrby’ + i€y, (F[mnmér]s — 15FT]F3> s + 516{ ’Y;J,anpq’r‘)\c:|
T

Lo — s —C s 1 s L.
_ glA 1/3¢a [6 mnpgrPpu + 51 € ’y“F[mnpq <5r] — 1—5FT]F )ws + 516 ’y“anpq,,)\}
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2
— ?Oisaﬁ (AP, 0 A

5
- 68043 Ey6 (2 A(ﬁ

— 247,64

npqr] pqr]u)

5 B
u[mAW)np 0A qr] — Aﬁ[mnAWPq 0A r]u)

+ %igaﬁ 0B, AP ym <qur]8 —~ %61575/1;(1 Af]s> : (4.3)
where on the right-hand side all the fields have been subject to Kaluza-Klein redefinitions.
The field Aq pymnpgr already transforms consistently as a vector in the 5D space-time be-
cause tensors anti-symmetric in more than five internal-space indices must vanish. The
consistency of the above result is confirmed by the fact that no terms are generated pro-
portional to the Kaluza-Klein vector field B, simply because the corresponding terms
are fully anti-symmetric in six internal-space indices and therefore vanish.

However, from the perspective of the vector-tensor hierarchy further redefinitions are
required, as the supersymmetry variations should not contain any vector fields, but at most
variations of vector fields. A preliminary analysis suggests to add modifications that are
quadratic and cubic terms in the four- and two-form fields but here we have to make sure
that also the modification itself transforms consistently as a vector in the 5D space-time.
This leads us to the following redefinition,

20 5 s
Cuamnpgr = Aa pmnpgr + 31 €ap Cuﬁ[m Appgr] — 65045 Eyo Aﬁ[mn G pA qr]» (4.4)

where C,%,, is a proper vector field defined in (3.19). Under supersymmetry the field
Cliamnpgr transforms in the required way,

L. _ _ . 1
50# amnpqr = gl A 1/35115(;56 |:€ anpqrw,uc + 5i€yy, (F[mnpqér]s - 15Fr]rs> Vs

L.
+ 5166 fYMFmTLPQT’ )\C:|

1. . 1
_ §1 A 1/3¢a [EC Lonnpgriby + 5i €€ ’yMF[mnpq <6T]S _ 15FT]FS) Vs

1.
+ 516 ’Vu]:‘mnpqr )\:|

20, s
+5icag [0C,.° b Anpar) = 2Cupmnp Aqr) = 2 5Cu° Agfynnp Al

1
+ gaaﬁ Evs [5@7[7” Ay APy + 300" A, AP, A‘Lr]] : (4.5)

where, for conciseness, we refrained from substituting the explicit expressions for C,",
0C, %y, and dC); ynp in the right-hand of the last equation.

Subsequently we consider the tensor field A yumnpg- To ensure that this field trans-
forms as a proper 5D tensor one performs the standard Kaluza-Klein redefinition,

Aa ;uzmnquK = Aa prmnpq + 2B[“r Aau]mnpqr . (46)
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This modified tensor field transforms as

5Aoc prmnpq —

1

1
B .

2 - . o .
- 3187 g0’ [“anmm%} = 2% Lmnp (5‘1] 1

2, . _ _ S SN 1_
— 1A 2/3¢a |:1€C anpq’Y[M¢y] — 2EC’7/WF[mnp <5q] — 6Fq]F >¢r — 16 ’yuyanpq)\]

3
4

= 31208 [ A% 0 Amnpg = 8 Allypm 3 Ay g + 6 Al 6 Apg
1

B 656!5 €vs (2 A(BW AV)[mn 5A5pq] + Aﬁ[mn A’qu] 5A6MV)
2 é 6

+ 3208 €96 (Auim AT 04%g) + 2 A AV 54%1))

16, ,
+ 5180 0B (245 pm Aupgpr + 3 Ajrimn Apg))

1 r 5 5
+ 3 20 590 OB (1A ATy Algye -+ Aly)y A A7)

+2 5B[,ur Aau]mnpq'r ) (47)

where we again dropped KK-label on both sides of the equation.
Again this result is not consistent with regard to the vector-tensor hierarchy so that
further redefinitions of the tensor field are required. As it turns out, they take the follow-

ing form,

4,
C,Lw amnpq — A,uu amnpq + gl Eap Aﬁw/ Amnpq

1
- 65 aB €yd [AWW Aﬂ[mn Aépq} -8 C[uﬂ[m CV]Wn Aépq]]

16

- ? €ap C[uﬂ[m Cy}npq} - C[,u,rcu} amnpqr (48)

where on the the right-hand side the KK-labels have again been suppressed. The transfor-
mation rule of Cy amnpq takes the form

16,
OCuw amnpg = = 1€ap [Clufm ICupnpa + Clufnpg 0Cu)m]

+ O 0C,) amnpgr + Cluamnpar 0C,)"

1

2. i c = r r c
= —glA 2/3ga6¢5 |:|:16 Pmnpq’)/[ul/}u] - 25'7,ul/r[mnp <5q] - él“q]F >T/J7»

1 4. .
- ZEC ’Y;wrmnquC:| + Amnpq [ —4 E’Y[;[‘ﬂuf + §1€ Vuurmwmc +1 ECV#V/\C:|:|
2. —2/3 e —C r 1 r 1
- glA ba | |1€ anpqq/[p,d}u] —2€ FVMVF[mTLp 5q] - EI‘q]F Yy — ZE ’Yuurmnqu
4, .
— Apinpg [ — 4,0, + 3! Y Ty, + 1 67,“,)\”

o i ] o1
—21A 2/3 Eaf A/B[mn |:|:16 qu]ﬁ)/[;ﬂpu} — G’ym,rp <5q] — gfq]l“ )wr]
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i=C c__ =C r 1 r c
- [16 Lpg) Y] — € ulp <5q] - grq]F >¢T”

A — s = c 1_ T,/ C 1 eC ¢
— 1A Aﬁ[mn [575 Al ¢’ [167[M¢V} + §6%‘”P r F 4 VoA ]

. 1. .1
— Al O [16 Vuthv) + 3 EVu "y + 467‘“” . (4.9)

To conclude this section let us summarize the situation regarding the vector and tensor
fields. We have identified precisely 27 vector fields, namely,

CNM = {Cﬂm’ Cﬂmnpv C,uama C,uamnpqr} . (4.10)

For the tensor fields the situation is somewhat different. First of all, we expect 27 tensor
fields whereas previously we found only 22 fields. Secondly, we note that the tensor fields,
which we will denote by C,,, g, carry different indices. The vector-tensor hierarchy implies
that there must be 5 additional tensor fields and furthermore requires the existence of a
constant tensor dg sy, symmetric in (M, N), in order to obtain the characteristic term
do,mN C[MM (5CV]N in 6C,,, ¢. Assuming that the overall covariance of this expression must
be preserved and that precisely five additional fields are needed, one deduces that these
five fields can be precisely represented by new fields C\y m:npqrs, Where the array [npgrs]| is
fully antisymmetric. Hence the decomposition of the 27 tensors takes the following form,
in direct analogy with (4.10),

CMVQ = {C;wm;npqr87 C,mena C,Lw amnpq » Cuua} . (4-11)

The new field C,, m;npers indeed has the representation that is expected from the dualiza-
tion of 10D gravity [36, 37] (although this dualization can not be fully understood at the
non-linear level in 10D [38]).

The systematics of the vector and tensor fields can be improved upon converting to dual
representations by extracting the anti-symmetric tensors € epnpgr and/or e,5. Note that
the first tensor depends only on the reference background of the internal space, because of
the definition é(y) = det[é,,*(y)], and not on the space-time coordinates z*. Hence these
conversions have no bearing on the supersymmetry transformations nor the vector and
tensor gauge transformations. Now consider the following redefinitions for the vector fields,

1 .
C,me = C,LLm ) C,u mnp — m\/g € Emnpgr C,uqr )
: (4.12)
C,u,am = igaﬁ C,u Bm C/L amnpqr — _6\/5é Emnpgr Cp,oc .
For the tensor fields the corresponding redefinitions are
C;w minpgrs X éenpqrs C;wm ) C/J,z/ mn — Cuvmn,
1 (4.13)
C,u,z/ amnpq — 6\/5160 Emnpqr Eaf C,ul/ﬁr ) C,ul,a = C,uya .

Now the vector and tensor fields can be written as C’MM and C,, v, respectively, where
the indices M decompose according to M = {m, M s a} and p; = {m, mn, &, a},
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respectively. Here we observe that the normalization of the vector and tensor fields is at this
point completely arbitrary. Nevertheless, identifying the (upper) index M on CMM with
the 27 representation of Eg(g) and the (lower) index M on C,as as the 27 representation,
then the decompositions (4.12) and (4.13) correspond to the branchings

—— SL(2)xSL(6) . — SL(2)x30(5)

27 TSN (1,15) + (2,6) (1,5) + (1,10) + (2,5) + (2, 1),

SL(2)xSL(6) SL(2)xSO(5)

27 (1,15) + (2,6) ~ 2577 (1,5) + (1,10) + (2,5) + (2,1).  (4.14)

At this point it makes sense to compare our results for variations of the tensor fields to
the corresponding expressions known from maximal 5D supergravity [8]. In the latter case
these variations are encoded in the symmetric three-rank Eg(6) invariant tensor dynp,

6Cunr — 2dunp CpN 6C, 7 (4.15)

Expressions such as these are characteristic for the vector-tensor hierarchy. Obviously the
tensor dpsnp decomposes into three SL(2) x SO(5) invariant components,

d(mn|ap|ﬁq) = §pnPeeP |

dyNp X d(mn|pq‘7‘) = égmnpqrv (416)

d(1n|*"1%) = 6™ e,

where normalization factors are not specified because they can be changed by rescaling the
normalization of the vector and tensor fields. Nevertheless the fact that a single symmetric
tensor djsyp must encode the variations above for all the fields does pose certain restric-
tions on the relative normalizations of vectors and tensor fields, especially because the
product of the normalization of a tensor and its corresponding dual vector is constrained,
just as in the maximal 5D theory [8]. We return to this issue in the next section, but note
that this normalization condition has been incorporated when adopting the rescalings of
the vector and tensor fields in (4.12) and (4.13), repectively. It then turns out that the
following expressions for the independent components of the combined variations (4.15)
must be equivalent to the following,

1
OCuw ™™ = i e [Cllupn 0C,)™ + C1, ™™ 6C,) g ] — 1P [CL™ 6Cy15 + Clup 6C™ ]
0Cw™ + i [C[um 0Cy) m + Clupm 5cu}m] ’

1 o T T 1' a
6C s mn + 1—28\/5 & Emmpar [Cu? 5C) T + C1, 7 5C, 7] — L€ B Cluafm 0Cn) »

5Cumm — 1 [Clyam 0Cu) 5 — Clua 0Cy) gm) + %\/ﬁé Emnpar Cp" 6C 7", (4.17)

where the last line is not derived directly from the 10D supergravity as the tensor field
Clwm is associated with the elusive dual graviton. Nethertheless it is remarkable that one
can also derive the coefficients in the variation of C),» by comparing to the 5D vector-
tensor hierarchy.
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5 Generalized vielbeine and USp(8) covariant spinors

The spinor fields 1, 1., ¥q, ¥q’, A and X°, which were defined in section 3, obviously trans-
form under the Spin(4,1) x USp(4) subgroup of the 10D tangent space group Spin(9,1).
Hence every 10D spinor consists of four complex Spin(4, 1) spinors which rotate among each
other under USp(4) transformations. In the following we will not consider the Spin(4,1)
aspects but concentrate on the extension of the USp(4) transformations to the full auto-
morphism group of the 5D space-time Clifford algebra. This so-called R-symmetry group
contains also the U(1) group of IIB supergravity (which can be regarded as the 10D R-
symmetry group) and it can be further extended by realizing that the spinors can actually
transform under SU(4) = SO(6) (for instance, by regarding them as chiral spinors of
SO(6)). It is then convenient to introduce corresponding SO(6) gamma matrices as well,
which requires to combine the spinors with their charge conjugates, i.e. v, with 1, and
likewise, 1), with 1", and A with A°. This is described in detail in appendix B. The SO(6)
gamma matrices will be denoted by I';, with a = 1,...,6, and act on the eight-component
pseudo-real spinors. We may then introduce the chirality operator I'y = il'1I's - - - T'g, which
decomposes as I'y = 14 ® o3, so that the SO(6) chirality of the charge conjugate fermions
is opposite to the original ones. Here we are using a basis where the positive-chirality
(negative-chirality) components carry positive (negative) U(1) charge. In this section and
henceforth we will be using these 8-component spinor arrays whenever possible (labeled by
indices A = 1,...,8) and they will simply be denoted by qu, ¥ and M. Each of these
spinors are then 5D symplectic Majorana spinors, i.e.,

C'pa" = Qupy”, (5.1)

where C' is the charge conjugation matrix in five space-time dimensions and € is the anti-
symmetric USp(8) invariant tensor.

The appearance of €2 indicates that the full R-symmetry group is equal to USp(8), as
is to be expected for 5D spinors. Indeed, the gravitini w“A transform consistently in the
8 representation of this extended R-symmetry group. However, the fields 1, and A cannot
possibly transform in the 8 representation, in view of the fact that the U(1) charges of the
fields 1} and A\ are equal to +1 /2 and £3/2, respectively. Therefore those fields must
transform in a different representation of the USp(8) group. In view of the values for the
U(1) charges and the fact that 1;* and A\ define precisely 48 5D symplectic Majorana
spinors, these fields must combine into the 48 representation of the group USp(8). At
this point we should recall that only the USp(4) x U(1) subgroup is realized as a local
gauge invariance, as they originate from the symmetries of 10D IIB supergravity that were
already realized as local ones. As we have stressed in the introduction, the full USp(8)
R-symmetry group can be realized locally upon introducing a compensating phase factor
belonging to USp(8)/[USp(4) x U(1)]. We will postpone the introduction of this phase
factor till later, so that the present calculations will describe the results subject to a gauge
condition that sets the compensating phase factor equal to unity. However, it is important
to realize that the local transformations depend on both sets of coordinates, x* and y™.
This is the reason why we adopted the indices A, B, ... for the spinors in this case, while in
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the maximal 5D supergravity, the spinors will carry indices i, j, . .. with local R-symmetry
transformations that depend only on the space-time coordinates z#. This issue will be
important in section 7, when considering the truncation of 10D supergravity to 5D,

In the previous section we have identified 27 vector fields C,™ as listed in (4.12), which
transform under supersymmetry into the symplectic Majorana spinors qu, gt and A,
As it turns out the supersymmetry variations of these fields can be written in the same
way as the variations of the vector fields in 5D maximal supergravity [8],

sCM =2 [i0% o, P + ec1ux B VasY (5.2)

except that, as explained above, we changed the USp(8) indices from 4,7,... to A, B,....
Here Q4P is the symplectic USp(8) invariant tensor introduced aboved and the Vap™
depend on the 42 scalar fields. All these fields depend on coordinates x* and y™.
In the pure 5D theory the corresponding quantities VijM are defined in terms of the
Eg(6)/USp(8) coset representative. The transformations (5.2) are consistent with the

C

USp(8) R-symmetry group and the anti-symmetric traceless spinors y45¢ are symplec-

tic Majorana spinors, satisfying
C™'Xapc™ = Qap Qe Qer xPPF, (5.3)

in direct correspondence with the 5D theory [8]. Because of the anti-symmetry in [ABC]

and the condition Q4p XAB ¢

xABC should be linearly related to the spinors 1,* and A\*. Indeed, as we demonstrate
in appendix B (cf. (B.4)) the branching of the 8 and 48 USp(8) representations of the
fermions with respect to the SU(4) x U(1) subgroup accounts precisely for the fermion
fields qu, gt and M including their U(1) charge assignments.

The supersymmetry transformation rules for the vector fields C’MM in terms of the

spinors Q/JMA, &4, M based on IIB supergravity follow from (3.20) and (4.5) upon taking

= 0, this representation is irreducible. Hence the spinor

into account the redefinitions (4.12). By comparing these expressions to (5.2) we obtain
explicit representations of the so-called generalized vielbeine Vg™, which depend on all
10D coordinates. Furthermore we can deduce the explicit relation between the USp(8)
covariant spinor field y42¢ and the fields ¥ and M. In the same fashion one can
evaluate the supersymmetry transformations of the tensor fields, a topic that will be dealt
with at the end of this section.

Matrices in spinor space can be decomposed into direct products of the 5D gamma
matrices v* and the SO(6) gamma matrices. The latter products can be conveniently de-
composed into 28 anti-symmetric matrices 2, Q T's, QI';I'7 and QT';;T'7, and 36 symmetric
matrices Q2 T'7, QT ; and QT ;.. The latter are proportional to the anti-hermitian genera-
tors of USp(8) (note that the matrices IT',; are the generators of the group SU(4) = SO(6)).
Before obtaining a representation of the generalized vielbeine Vg™ we note that the
USp(8) transformations of the spinors qu and e have been defined in appendix B, and
they imply that the bilinears QAC Eci/JMB transform in the 27 representation of USp(8).
Since the vector fields are not subject to the R-symmetry, it follows that the generalized
vielbeine Vg™ transform in the same representation, so that they can be expanded in the
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corresponding gamma matrix combinations,
VM =y,M (Q Fa)AB + VGM(Q F6)AB + VM (Q F“F7)AB + VM (Q F6F7) AB
+ VM (ATT7) ap + 2 Vas™ (QT*T'7) a5, (5.4)

which defines the branching of the 27 representation of USp(8) with respect to SO(5)
(which directly follows via the branching with respect to SO(6)),

27 9 646+15 2% 145414541045, (5.5)

The generalized vielbeine can now be directly determined from the supersymmetry trans-
formations of the vector fields, which leads to

1
Vas" = — i ATV e,m (BTQTHOT; @) 4,
4
Vap™ = g\@ A3 (TQI™ T, @) 4
4
+ 5\/5 E e A VAR ar

32 3
T+ VBe e [qum — Zieap A% AP | Vag®

16
L
Vapam = 14712 [(qba —2as”) (87T ®) a5 + (fa +capd”) (2TQT I @)AB]
+ iEa,BAﬁmn VABn )

VABa = 1%\/51 A3 |:(¢a —e0p0”) (2TQT6 @) up + (¢ + capd’) (2TQT6I; ‘I’)AB]

1.
+ TﬁlgaﬁAﬁm” Vg™

1 o .
- T5\/5 e~ temmnpar [Amnpq VABar + 2i Eap A/an qu'rs VABS]
1 . 1.
_ Zo‘/gi Eap & 1P [Aﬁmn Alpg Vapr = Zieys Alom A, AP, VABS} . (5.6)

In the above equations we have now included the compensating phase factors ®“g that were
discussed earlier, which enable the USp(8) R-symmetry group to be realized locally. The
phase factors are simply generated by a redefinition of the fermion fields, as ® € USp(8) is
assumed to transform under the action of USp(8) from the right and under USp(4) x U(1)
from the left, so that fermion fields ®'¥, where U denotes the original fields in a proper
basis, transform indeed under this local group. Previously we have assumed the gauge
condition ® = 1 which suffices to carry out most of the various calculations. In fact, we
will continue to use this gauge condition in most of what follows. The phase factors can
always be introduced later to elevate the R-symmetry group to a local invariance group,
just as what was done long ago for 11D supergravity [1].

The next task is to establish the relation between the USp(8) covariant spinors x45¢
and the spinors originating from 10D, 1% and \4. Comparing the terms proportional to
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these fields in the supersymmetry variations of the vector fields, one finds the following set
of equations,

) 1

[(1£T7)Te]p AP = £1[QTG(1£T7)] 5, (1£T7) p xPBY,

+i
(1£T7)p AP = £1(QT6(1£ 7)) . (1£T7)4p x5,

1 1
[(F[ab(dc}dl - 9Fc]rd> F7:| AD wdD = - ggabcde (Q Fder7)BC XABC )

(T, (1+£T7)]pe (17 T7)'p xPPC = +2i {(1 T T7)T (5;1 - ;rarbﬂ o”,

[(A£T)T) D v” = F zi [QT6(1F+T7)|pe (1£T7)p xPPC . (5.7)

These are the relations that determine the (linear) relation between the spinors ¢! and A4

and the USp(8) covariant spinors YABC . Just as in 11D supergravity, where the expression

for the 4D spinors yA5¢

as first given in [35] is only unique up to Fierz reordering, there are
various different ways to express the solution for x*2¢. One solution follows by substituting
the SO(6) covariant parametrization derived in appendix B into (5.7), which then leads

ABC is not unique, one might wonder

to (B.21). However, given that the ansatz for y
whether there exists an alternative version of this solution that may be even more concise.

Indeed we have found such a solution taking the form

ABC

XA = — Si[(Te Q)MB (T70) 9 + (1716 Q) B X

=] wWoo| w

i (DoT6T7 Q) A8 4,9 — iiQ[AB (T6T7T %)) (5.8)

which also satisfies (5.7). Its equivalence to (B.21) has been confirmed by demonstrating
that both solutions are related by Fierz reordering to a single expression that involves
eight different structures. This result satisfies the reality condition (5.3) and vanishes
upon contraction with € 45. Note also that the above expression should in principle have
been contracted with three different phase factors ®f as was discussed above. For clarity
of the presentation we have set ® = 1.

Subsequently we derive a formula for the supersymmetry transformations of the gen-
eralized vielbeine V4p?. For maximal 5D supergravity [8] there exists the following ex-
pression (with indices i, 7, ... replaced again by A, B,...),

Vap™ = —i[4Q¢1a Xop) €€ + 3 Qap Xepjg €] QOFQPF v

=i1Q4c0BD [4 QG[C (el XDEF} +3 Q[CD €q XEF]G] VEFM . (5.9)

This result is expected to be identical to the result that one obtains by calculating the
variations of the generalized vielbeine (5.6) induced by the supersymmetry transformations
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of the scalar fields,
1
dem * = §emb EFGGF'ﬂM) >
1
S = — isa%g eTs(1+T7)\,

1
0o = — Jeapd” €Ts(1-T7)A,

1
SAY — e em” en (0 +e*Ppg) €(Taph — 4T u1hy)

1
+gien’ en (0% — e’ pg) € (TpT7 A — AT |, Trtly)

1. _ 3.
5Amnpq = — B em’ enb epc eqd € FGF[abcwd] + gli?aﬁAa[mn 5A5pq} . (5.10)
Based on the similar construction for 11D supergravity [1], we expect the supersymme-
try transformations of the vielbeine induced by the variations (5.10) to coincide with (5.9)
up to a uniform USp(8) transformation. By very laborious calculations we have been able
to demonstrate that this expectation is correct so that (5.9) can be regarded as the su-

persymmetry transformation rule for the vielbeine. More precisely, the results induced
by (5.10) take the form

SVas" = 0Vag" A% Vg M (5.11)

}(5.9) -

where A4p is the field-dependent infinitesimal USp(8) transformation given by

1
AMp = - Egﬁ[rab)\ + 4T 1y ] (T*0) 4

1
+ 478€F7[Fab06)\ + 2 I‘abcdﬁwd} (Fabc)AB

1_ 1
+ € T7lact (T76) 45 + 16 D7 Toaty (1) 4. (5.12)

We now proceed with the supersymmetry transformations of the tensor fields Cp mn,
C,*™ and C),,* that were defined in (4.11), following the same approach as for the vector
fields. Their supersymmetry transformations follow upon substituting the results specified
in (3.22) and (4.9). Subsequently we compare them to the five-dimensional transformation
rules for the tensor fields [8] with the indices adjusted as before,

6Cyu i —2dynp CYN 6C,°
4 - .
B 5\/5 Vai'? [240,4 1€ Qpe — iXanc Ve’
4 . _
= - g\/5VMAB [2Quc eVt +iQapQBE ec VuwxPEC] . (5.13)

In 5D maximal gauged supergravity the tensor fields constitute a 27 representation of
Eg(s)- From IIB supergravity we have initially identified only 22 different tensor fields.
The missing five tensors C),, ., have been identified as originating from a component of
the 10D dual graviton. The second term on the left-hand side of (5.13) has already been
specified in (4.17).
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From the terms in (5.13) proportional to wuc one can directly obtain the following
expressions for the 22 components of V3%, by making use of the supersymmetry transfor-
mations of the corresponding tensors derived in the previous sections,

1 ~ 1
VA8 = — ﬁﬁiAd/Sema@nb(@T T I7Q @)4F + gigaﬁ A VPAB
1 o o
yamAB _ _ ZiAl/?) ea™ [(¢a _ 5aﬁ¢ﬁ) (Q)T e @)AB _ (¢o¢ + gaﬁ(bﬁ) (@TF6F7Q q))AB]
1 —1_mnpqr o 3. a @
+ 175\/56’ 15 Pa Anpqr v A8 T §1A ”PABCIT 5/371}7 4B _ 6A "PV‘ITAB )

YoAB _ _ %\/gm—w?s[(qsafga%ﬁ) (2TT6Q @) 4P — (6> +e"P¢3) (2T TeI'72 @) 7],
(5.14)

where we have again included the phase factors ®. Before discussing how to obtain the
missing components of V)P that are associated with the dual graviton, we first consider
the contractions of the form Vy/A2 V4" making use of the expressions (5.6) and (5.14).
As it turns out the only non-zero contractions are given by

anAB VAB PT =2 6mnpq )
P AB VABB — 5045 ’
VomABY g =0% 0™, (5.15)

suggesting that
AP VAN =0 (5.16)

This condition is actually identical to the one that holds in 5D maximal gauged supergrav-
ity. In the same spirit as before, we may assume that (5.16) holds in this case as well, and
this then enables us to also determine the five missing components V,; A5,

1 -
VB = — 5iAl/?’ema(cpT T,T703)""

16 3, i
+ B\@ & Lenpars [Amqm - mleaﬁAaqrABsm] Vip® — 1A% 0 VI AB

1 1
- B\/Si e PIS ¢ g {AHW AP, — 81575A5npA7q7«A55m] yaiB, (5.17)

Note that the conditions (5.16) implies that also the supersymmetry transformations of
the V)AP are determined and take the same form as the corresponding supersymmetry
transformations in 5D maximal supergravity. Needless to say, the results obtained from

ABC can be verified also from the perpective of

the vector fields on the covariant spinors y
the transformations of the tensor fields. The results turn out to be mutually consistent.
This completes the evaluation of the bosons and their supersymmetry transformations.
We have succeeded in identifying these fields from IIB supergravity such that the results
resemble as closely as possible the structure of the 5D maximal gauged supergravities [8]
while retaining the full dependence on all ten coordinates. For the fields associated with

the dual graviton, we obtained their supersymmetry transformations by requiring them
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to be consistent with the global structure exhibited for the other fields. In this way the
results exhibit covariance with respect to the duality group Eg), although the IIB theory
is not in any way invariant under this group. This is further confirmed by the fact that
the following representation of the invariant tensor dy;nyp which was noted for maximal
5D supergravity [8],

2
dynp = g\/EVMAB VMCD VMEF Qo QpeQra ’ (5'18)

is also satisfied here, as this expression precisely reproduces the tensor dy;nyp as specified
in (4.17).

As a final comment we note that the generalized vielbeine are pseudo-real. This prop-
erty is inherited form the (pseudo-)reality of the tensors and the fermionic bilinears. We
remind the reader that taking complex conjugates of vielbeine that carry the SU(1,1) re-
quires the contraction with a two-dimensional metric 7, = diag(+1, —1) in order to obtain
a covariant quantity (see section 2).

6 The fermion transformation rules

In the previous sections we concentrated mostly on the supersymmetry transformations
of the vector and tensor fields. Their supersymmetry transformations take the form of
USp(8) invariant contractions between covariant spinor bilinears with the generalized viel-
beine. This is consistent with the fact that the vector and tensor fields are invariant under
the R-symmetry. Also the space-time fiinfbein is invariant under USp(8), and so is its su-
persymmetry transformations. The scalar fields do not transform covariantly (cf. (5.10)),
but indirectly they do respect the USp(8) symmetry as their supersymmetry transforma-
tions induce covariant variations on the generalized vielbeine. In view of the above it is
therefore of interest to consider the supersymmetry transformations of the fermion fields,
@ZJMA and x4BC to verify whether they will also take a USp(8) covariant form. These re-
sults will not only complement the previous results, but they will enable one to properly
identify various bosonic USp(8) tensors. Here we follow the same strategy as was applied to
11D supergravity [1]. As it will turn out, the global structure of the results of the ensuing
analysis is rather similar.

The analysis starts with the fermionic transformation rules given in (3.12)-(3.14),
but now written with eight-component symplectic Majorana spinors and SO(6) gamma
matrices. We start by presenting the spin-1/2 fields, ¢* and A4, which transform as
follows under supersymmetry (up to terms of higher order in the fermions),

1 1
Sihe = A~ V3e,m [am - Zwmaﬁ Yo — O In A] ¢

1. 1 .
- iA 1/3 |:Waab YaT'peI'7 + iwabcrbc + lQaF7:| €

1 _
+ %A 1/3bedel [ By et Tag — 57" Fapeae D Tal'7 — 57 FagpeaLefTas) €

— %m—l/ *[(GpeaP+ — GpeaP-) (LT + 27T )T
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— 39%(Gpeals + GheaP_) (LT — 2TT,) e

1 _
- %m*/wﬁ [3(Ga5b}P’+ — GoppP_) (T’ +2T°T, )T

1

- 5501/3757-(61767—}1)4_ + GWSTP_)I‘G:| €,

SA=A"1/3 [ya(Pa P, — P,P_)Tg+ (P Py + P, ]P’_)I‘“} €

1. 1, . A
+ gA 1/3 [ — gl(Gabc Py — Gape P)TPD —in¥(G oy Py 4 Gogp P )T

— 17 (Gupa Py — Gopa P_)T°

1 _
+ éwaﬂeaﬁw(m‘” Py + G717 IP_)] €, (6.1)

where we employed the SO(6) chiral projection operators Py = %(]l + I‘7). To verify

that these results are consistent with USp(8) R-symmetry is subtle and requires us to first

combine the two equations (6.1) into the covariant tri-spinor variation dx4Z¢. For this

one makes use of (5.8). Since this is rather involved, let us first proceed to the gravitino

variation and return to the spin-1/2 variations at the end of the section.

The supersymmetry transformations of the gravitino fields w#A take the following form,

where we have ordered the various terms in a particular way in view of what will follow,

Sy, = [au — B, 0 — %(au — B,"0p) In A

1

_ 2
— AT e, (waﬁ”% + 37078 wa"” )] ¢

1 . 1 1
— §A 1/3€Ma |:1Qa:[‘7 + iwaabrab - EeadeeFabcdeI‘aﬁ

1 _
+ zi(GaabP—i- — Gaabp—)rab6:| €

1 . )
+ ﬂA 3¢, (7”7 — 464°77) [1(GBWIP>+ + G P )T

1 _
+ 6156767A(G6T>\P+ _ GET)\IPL)F6

1
—2 Wa By ]_-\a61-\7 — 3€ab0deF57abcrdeF7:| €

1 1 1 1
+ gA_l/?’e#O"ya rmer, [am — gam InA — §ier7 — Zwmbcrbc

1
+ —— el By e Tome —

1, ~
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1 1
+ §A /3¢, [(waw — Waap)Y? T, + gfmﬁ Wa gb r“b] €, (6.2)
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where we haved used the same notation as in (6.1) and have suppressed terms of higher-
order in the fermion fields. It is worth noting at this point that some terms already
combine into representations of USp(8). In particular, the terms in the second bracket
span the 36 and thus take values in usp(8) and those in the third bracket span the 27
representation of USp(8). The structure of the last two brackets is more subtle and will be
discussed momentarily.

Following [1], the next step is to expand the components of the 10D spin connection
about the reference background of the internal 5D space characterized by the fiinfbein
ém®(y). To this purpose, we write the spin connection in terms of the anholonomity
coefficients, which depend on the zehnbein and its derivatives,

“(

1
WMAB = 5EM Qapc —Qpca — Qcar)

Q¢ =2E,MEg"N 0 ENC . (6.3)
Writing the internal fiinfbein as
em®(@,y) = ém"(y) S (z,y),  €alw,y) = S\ (@, y) EM(y) (6.4)

such that A = det[S,%], one can evaluate the components of Q45° making use of (3.1),
Qo =2 A3 |ebes? Dyes? — wernh 657 Dy In A
ag! = ela’'eg)” Duer” — gea! Og) Dyln A,
Qo€ =2 A2/3e[a“e,3]” ém?Sp° D,B,™,
1
Qaﬁ'y :Silab ey {65” mey] — 3557 Om In A:| ,

Qab’y =0 )
Qagc = Al/gs_lab 6/3‘“ [ébménd SdcﬁmBun — DquC] + A1/3€BuBum Wma,
Qap® = — 287, 87" €™ Dy Sa® — 260m (e Sy  éa™ - (6.5)

Here we have defined D,, = 0, — Bumlo)m, where Dm is the derivative that is covariant
with respect to tangent-space transformations of the background. Hence it contains the

spin connection ,,®(y),

Winab = %émc(éabc - cha - Qcab) > 502abc =2 é[améb]n Omén” (66)
and possibly the corresponding Christoffel connection, depending on the tensor it acts on.
These results exhibit, up to dimension dependent coefficients, the same structure as in the
11D case and we refer to [1] for further details.

After substitution of the expressions (6.5) into (6.2) and some rearrangements, one
obtains the following result,

1, - " 1.
§1p, = D, — E(DmCH )ed + i ("7 — 4e,Py ) H AP Qpe e
4

_ 2 _
- i QA Vo™ Do (v €5) — giQACDm (vu Vep™)e?, (6.7)
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where we have now written the field B,” as C,™, as the above expression is the final
result. Here D, and D,, denote the full Spin(4,1) x USp(8) covariant derivatives with
USp(8) connections Q,, and Q,,, such that
1.
D/JEA :D/_LGA - Zwyaﬁpya,ﬁeA - QMAB GB )

D = Dpe? — 0,5 €8 . (6.8)

Here the modified spin connection d}uo‘ﬁ is defined by
2 o
@0, = w, ™ + 3 DmB." e el (6.9)

where wuaﬂ is the regular torsion-free spin connection expressed in terms of the fiinfbein
eu®. The two USp(8) connections, Q#A p and 9, g, are equal to

1 :
Qi'p =757 84" &M e DBy — (ST'D,8)" | (2'Tap®)

1
+ §iA_1/3eH°‘Qa (2'T, @)

I
. ﬂA 1/3€Ho¢5abcdeFaade ((I)Treﬁq))AB

+ %iA‘l/ 3¢,% (Gaab (PTPLT05P) 45 — Gy (DTP_T00) )

- (‘I)T 8M(I))AB )
Qui'p = — i(s*bmsyb (2T )5 + %iQm (2'T70) 5
+ ii(Gmbc (DTPLTP0®) 45 — Grppe (DTP_TP0D)45)
— ﬁeabcdeFabcde (®TT16®) 5 — (@7 0, @) 5. (6.10)

The field strength HQBAB spans the 27 of USp(8) and reads
Hap™P =IATV3(STH 6 e Omeyg — AP el eq” ém® Sy" Dy By™

x (®TT6T7Q0) 4P

— GAT (G (BT, TU0B) A 4 G (1P T°03) 17
AT e (G0 (21P,D08) P - 0 (TP T608) 1)
— éiA‘1/35“deeFaﬁabc(<I>TI‘d6I‘7Q<f>)AB , (6.11)

Finally we have used the identity

o 1
D Vap™ = = [(S71DpS) @ e,™ e, + S0n A Vap". (6.12)
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With these definitions the local USp(8) covariance of the gravitino supersymmetry varia-
tions has been established.
Now we return to the supersymmetry transformations of the spin-1/2 fields. Upon

ABC

combining the results (6.1) into the covariant form dy , one obtains, after some rear-

rangements similar to those used in 51,&“‘4,
1
(SXABC — §i7uPHABCD QDE €E

B 1% B [Haﬂ[AB K %Q[ABHQBC]DQDE 6E:|

— 3P [QBiE VpE™ Dy — %QBC] Vg™ DmeE]

_ _ 1~
o gQD[A |:QB|E D, Vpe™ GC] - §QBC} D, Vpp™ €E:|

— 2P, ABCD Y el (6.13)

In this expression two new tensors appear, PMAB CD and P,,ABCP  which transform in the
42 representation of USp(8). These tensors also appear in the so-called vielbein postulates,

DuVag™ =2 QnC (4 V1™ + Qac Qpp PP Vipp™ =0,
1 o o
D,U,VABm + §Dn0un VABm + DnC,um VABn
-2 Q“C[A VB}Cm + Qac Qp 'PuCDEF Ver™ =0. (6.14)

Note that these expressions are similar to the corresponding postulates in 11D [1]. Such
equations will apply to all the generalized vielbeine, but we refrain from presenting further
results. Note that we have again written B, as C,,".

Both the supersymmetry transformations (6.7) and (6.13) thus take a manifestly

ABCD ABCD

USp(8) covariant form. The two new tensors, and , are defined by (in

the gauge where the phase factor @ is set to unity)

,PMABCD _ éA_l/g(Pu +P,) [(I\GQ)[AB(FaQ)CD} + (F6Q)[AB(F6Q)CD} + 2Q[ABQCD]}
1 _ _ _ _ _
- SATVAB, = B) (L MP (D7) + (L) (T 7))
3 -1 m_ cr n
- E ((S DMS)(ab) - 5c(aeb) €n DmBu )
x [(r“nQ)V‘B (T, 170)°P 4 (ToTsT,Q) A8 (Fbrﬁnﬂ)CD]}

3

o _ _ 10 - _
- (au InA — DmBMm> [(rcrﬁrm)[AB (T L7000 — 30 Q[ABQCD]}
1 — « cde O) ®
— 33 A 1/36M Facdefga d f(rabF7Q)[AB(FbF6F7Q)CD]
o 3%A—1/3e“a€abcde(Gade + G«ade)(Far7Q)[AB(rbcr7Q)CD]
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+ T161A—1/3eua(aaab — Goap)
X [(rabn(z)[“B(rﬁnQ)CD] +2(FQF7Q)[AB(1“Z’1“61“7Q)CD}] . (6.15)
and
P, ABCD _ é(Pm + By [(FaQ)[AB(FaQ)CD] + (FGQ)[AB(FGQ)CD] + QQ[ABQCD]}

— (P = Po) [(a0) (D007 4 (0047 (0P|

3 4
- 7(8 1Dms)(ab)
X [(I‘“I‘7Q)[AB (T, T0)CP) 4+ (DoTeT,0) A8 (rbre,r?(z)CD]}

— %am In A [(FCF6I‘7Q)[AB (D TP — ? QV‘BQCDl]

1 _ _

— % emachefggcdefg (I‘abF7Q) [AB (FbF6F7Q)CD}
1 _ _ _

_ %emfgabcde(Gdef + Gdef) (FaF7Q) [AB (I\bcI\7Q)CD}
1. . .

+ 4781 €m (Gabc - Gabc)

X (raan)MB(rGr?Q)CD]+2(1““1“7(2)[143(1“”1“61“7(2)0171}. (6.16)

Note that the above formulae (6.15) and (6.16) are unique up to Fierz reordering.

7 On the consistent truncation to 5D SO(6) gauged supergravity

The results of this paper can be used to establish the full consistency of the truncation
of 1IB supergravity compactified on the sphere S° to 5D SO(6) gauged supergravity [33],
along the same lines that were followed originally for the truncation of 11D supergravity
compactified on the sphere S7 to 4D SO(8) gauged supergravity [2-4, 44-46]. For IIB
supergravity some partial results have already appeared in the literature [21, 34] and they
will be confirmed below from the results of this paper. It is clear that additional results
can be obtained by a more complete analysis, but a full treatment is outside the scope of
this paper. The same holds for a study of more general truncations along the lines pursued
in [39] for 11D supergravity.

It is worth stressing that this concept of a consistent truncation goes beyond proving
that solutions of 5D maximal SO(6) gauged supergravity can be uplifted to the IIB theory.
Rather, starting from the fully supersymmetric solution with AdSs x S°, one sweeps out
the full field configuration space of 5D maximal supergravity in the ten-dimensional field
configuration space. This is done by writing the 10D fields as functions of the 5D fields,
involving y-dependent functions, mostly constructed from the S° Killing spinors, in such a,
way that the 10D supersymmetry transformations remain consistent upon extracting these
y-dependent factors. In the case at hand these eight independent, pseudo-real, Killing
spinors, 7 (y), satisfy

. 1
(Dm + §m5 e I‘a6>n(y) =0. (7.1)
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Here ms denotes the inverse S° radius which is related to the background value of the field
strength Fi,pper by ms = %0 éam””q"ﬁmnmr. Furthermore Dm equals the S° background
covariant derivative and é,2 is the globally defined fiinfbein on S°. The Killing spinor
equation (7.1) is motivated by the fact that it characterizes the supersymmetry of the
AdSs x S® solution of IIB supergravity. Note that all Killing spinors in this section will
be commuting.

In view of what follows it is useful to first discuss these Killing spinors in more detail.
Since (7.1) is a first-order differential equation it allows for eight independent solutions.
However, in five Euclidean dimensions, the Clifford algebra associated with the SO(5)
gamma matrices has an automorphism group equal to Sp(1) = SU(2). Consequently one
can choose six independent spinors that are not related by the action of the automorphism
group, so that the orbit that is then swept out under the action of the SU(2) automorphism
group will yield the two remaining independent spinors. Bilinears constructed from the
Killing spinors that involve only the original SO(5) gamma matrices will necessarily be
invariant under the automorphism group and therefore the number of independent spinor
bilinears of this type will constitute 6 ® 6 independent bilinears which decompose into 15
anti-symmetric and 21 symmetric components. This argument, which incidentally also
plays a role when analyzing the number of degrees of freedom of the generalized vielbeine
in section 5, explains why the bilinears produce precisely 15 independent Killing vectors.
More specifically it follows that

" m(y) T’ (y) = > CP K™ i (y), (7.2)
[ab]
where n'2 are two possible Killing spinors (with 77 = ') and the indices a,b, ... denote

the components of the defining representation of the SO(6); in this background this SO(6)
corresponds to the isometry group of the sphere S5. The fifteen Killing vectors are labeled
with anti-symmetric pairs [ab], and the C% are constants. To prove this relation one can
write the gamma matrices in terms of the original SO(5) gamma matrices and/or one
can prove directly that the left-hand side of (7.2) satisfies the Killing equation by virtue
of (7.1).

Taking the derivative of the Killing vectors one finds another tensor that is also
anti-symmetric in [ab] (note that indices are lowered/raised with the S% metric gy, and
its inverse),

DK

nab

= My Kmn&f) . (73)
In five dimensions this tensor is known as a Killing tensor. It satisfies the equation
DmKnp ab = —2 ms gm[n Kp] ab* (74)

From the previous results one then derives

m® e M) T D7 n?(y) = > CP K, o(y). (7.5)
0l

— 35 —



After these observations we turn to the consistent truncation ansétze for the 10D fields.
We start from eight independent Killing spinors, now labeled by indices 4, j,... =1,2,...,8,
such that these spinors form an orthonormal basis in the USp(8) spinor space and are
subject to a pseudo-reality condition,

TWniy) =65,  0'a=0YQpn?, (7.6)

where Q9 and Q4p are the symplectic matrices used before. The truncation for the
fermions, the supersymmetry parameters and the space-time vielbein e,* are then assumed
to take the form,?

(@, y) =v,' () 0 (y)
ez, y) =€ (@) n(y),
XA @, y) = X7 (@) () n () mE ()
e, (z,y) =e, (). (7.7)

Making this assumption will obviously restrict the USp(8) R-symmetry transformations to

U(x,y) = U'j(z) ni (y) P (y) (7.8)

and leaves the group structure intact by virtue of the conditions (7.6). Observe that the
supersymmetry transformations for e,* are consistent under this truncation. However, for
the other bosons the truncation ansatz is more subtle.

To derive the truncation ansétze for the remaining bosons one first considers their
supersymmetry variations into the fermions, defined according to (7.7). For instance,
consider (5.2), which will now take the form,

0CM (2, y) = 2 |10" & (2) i (2) + &n(x) vux 7 (2) | Vi (2,9) (7.9)

where
Vi (x,y) = 0 (v) 0 () Vas™ (2, y) . (7.10)

The consistency of the truncation now requires that the y-dependence of CMM and VUM
will match.

Before deriving some of the additional truncation results, let us first compare the
situation regarding the compactification on the torus 7° and the sphere S°. In the torus
truncation all the fields C’uM will appear and will be independent of the torus coordinates
y". Consequently the generalized vielbeine VijM will also be y-independent and they will
be precisely equal to the corresponding quantities UijM (z) that are a representative of
the Eg()/USp(8) coset space.* The tensor fields Cyw v can be gauged away in the torus
truncation where they carry no additional information and they are simply dual to the
vector fields.

3The phase factor ® is only implicit in the formulae below, but it actually plays a crucial role to ensure
that consistency is achieved (see e.g. [45]).
“Here we deviate from the notation used in [8] where the U;; (z) are denoted also by V;;™.

— 36 —



The situation for the S° compactification is different, as in this case the various ‘phys-
ical’ fields reside in both the C,™ and C,w M [33]. More precisely, in this case there are
fifteen vector fields transforming in the adjoint representation of the SO(6) subgroup of
Eg(6) and twelve tensor fields transforming as a direct product of the vector representa-
tion of the same SO(6) subgroup and the doublet represention of the SU(1,1) subgroup
of Eg). The remaining vector and tensor fields in the sphere truncation are the duals of
these 15 @ 12 fields, which can be gauged away in the embedding tensor approach. This
decomposition in terms of the expected vector and tensor fields must be reflected in the
truncation ansétze for the vectors and tensors.

It is important to realize that the fields CMM and C),  are gauge fields, which ex-
cludes field-dependent multiplicative redefinitions. Given that the y-dependence should be
extracted in the form of the geometric quantities associated with the sphere, it is rather ob-
vious what the truncation ansétze should be. Let us first demonstrate this for the SU(1,1)
invariant vector and tensor fields, C,"*, C,"™", C,m and Cumn, each of which can be
decomposed into the fifteen Killing vectors or tensors according to

Cu™(,y) = K™ 5 (y) A (x),
Cu (x,y) = K™ (y) A,2(x) |
Crm(,9) = Km™(y) B, 15(x)
Crarmn (2,9) = Kmn®™(y) B, 15() - (7.11)

However, as explained above, in 5D one has only fifteen vector and fifteen tensor fields in the
SU(1,1) invariant sector, so that one must assume that 4,%(z) and A,%(x) are identical
Wdi)(ac) and

B;w 2i(7). However, here and in the following we will not be concerned about numerical

up to a possible multiplicative constant; the same holds for the tensor fields B

factors, also in view of the fact that we have not adopted specific normalizations for the
Killing vectors and tensors.

A similar decomposition applies to the generalized vielbeine V;;™, V;;™", V,," and
Vimn which appear in the variation of the above fields,

Vi (x,y) = Ui (z) K™ (y),
Vi (@, y) = Uif(a) K ),
Vi (2,9) = Uy (2) K™ (1)
Vi (2,9) = Ups (@) K™ () (7.12)

where, as we have explained above, Uij&i’(az) and U,;"(z) are the (unique) components of
the Eg(5)/USp(8) coset space satisfying

U, () Upfhw) = 20,4 (7.13)

Note that the combined equations (7.11) and (7.12) ensure that the corresponding super-

symmetry transformations are consistent under the truncation.
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Subsequently we consider the following identities that follow from direct calculation
using the generalized vielbeine presented in section 5, after converting the USp(8) indices
according to (7.10),

_. _. 1. -

Vzkm ijn + Vzkn ijm - _ Zazj Vklm Vklna
L 1
sz le Vijm Vi = §A—2/3gmn ,

32 3 -
TEVBETIE | Ay + ieag A% Al | VIV, (T14)

where ¢™" is the full (inverse) internal metric, which depends on the scalar fields. It is

Qik le Vijm Vklnp —

therefore different from the S° inverse metric §™"(y), unless the scalar fields take their
background values. We remind the reader that the generalized vielbeine are pseudo-real so
that the complex conjugate equals V¥™ = (Vijm)* = Ok WUk VY™, Hence it follows that

AT g () = 2% VU (@) Up () K™ 33(y) K" 14(y) (7.15)

with A% = det[g(x,y)]/ det[g(y)]. This result is rather generic and was first found for
11D supergravity compactified on S7 [46] with the prefactor A~!. For IIB supergravity
compactified on S® the above result was established in [21, 34].

The next step is to study the consequences of the third identity (7.14). Substitution
of the generalized vielbeine leads to the equation

- 3. o 1 ik 3l 77 ab éd
A 2/3 Amnpq + 1761506’8 A [mnAﬁp}q = a\/gﬁ F Q]l Uij b(x) Ukl d(x) gqr(l‘a y)
X é €mnptuKT@1}(y) Ktu@j(y) : (716)

This identity has been derived in the context of generalized geometry [21] where the cor-
responding reduction manifold admits a generalized parallelization. The derivation above
follows the same approach as the one followed in the context of 11D supergravity [4], where
it gave rise to the non-linear ansatz of the internal tensor A,,,,. One term on the left-hand
side should be modified in view of the fact that there is a non-zero background four-form
potential /imnpq because the five-form field strength is non-vanishing in this background.
The term A,,p,q on the left-hand side should therefore be replaced by A.unpg — fimnpq.

Subsequently we continue to the twelve vector and twelve tensor fields that transform
under SU(1,1), namely Cy o, Cyuam, Cw® and Cp,*™, which should be decomposed into
the twelve vector and and twelve tensor fields that one expects in 5D. However, in view of
their number, it is not possible to expand these fields in terms of Killing vectors or tensors.
Therefore we introduce the SO(6) vector fields Y(y) that satisfy Y%(y) Ys(y) = 1, whose
parametrization in terms of the y" is based on the same SO(6)/SO(5) coset representative
as all other geometric quantities of S°, such as the metric and the Killing vectors and
tensors (see, e.g. [46]). In that case one can parametrize the remaining vector and tensor
fields in terms of the twelve expected 5D fields,

Cpalr,y) :Y&(y) Auad(x)v
Cuam(xa y) = 8myd(y) Ayad(m) )
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Cou®(2,y) = Yaly) B **(2),
C,uuam (:Ea y) = émn anY&(y) B,uzlaa (13) . (717)

A similar decomposition now applies to the generalized vielbeine Vija, Vijam, V¢ 4 and
Yemij which appear in the variation of the above fields,

) =Uijaa(e) Y(y),

) =Uijaa(2) 0mY*(y),
) =U"(2) Ya(y),
) = U3 (2) §™ 0, Ya(y) (7.18)

where Uyjqq (@) and U () are again related to specific components of the Eg(5)/USp(8)
coset space that appear in the 5D theory. They satisfy

U (2) Uy, gy () = 6% 6% . (7.19)

Now we consider the following identities that can be derived for the generalized
vielbeine,

O*F V'V Vigan = i€agAlp VI Vi
g 5
Eary i Qi VI VM = ZA*4/3 (6.7 — 2 000") . (7.20)

From these identities we can derive the following results upon substituting the above trun-
cation ansatze,

A_Q/g Aamn =2 5a6 Qlk Qﬂ Uij&b(x) Ukl Bé(x) Kp@(}(y) Ipim (l’, y) an] Yé(y) )

AT (5,7 2000) = £ Qa2 U7 () UPH (1) Yaly) Vi), (7.21)

The first result has recently been derived based on generalized geometry [21], while the
second result has been obtained long ago (under some mild assumptions) in [34] by using
the same strategy as in this section.

It is clear that so far we have probed only part of the possible identities that can be
derived based on the results of this paper. At the same time, the mutual consistency of
the various implications should also be carefully investigated, in the same way as this was
done for 11D supergravity. It should be interesting to pursue these questions further.
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A Decomposition of gamma matrices and spinors

We start from 32 x 32 hermitian gamma matrices I A, where A =1,2,...10, satisfying the
Clifford algebra anti-commutation relation, {f A, f‘B} = 26 4p 132, and proceed in a way
that is independent of a specific representation for these gamma matrices. The hermitian
chirality operator, fll, is defined by

Ty =il Ty-- T, (A.1)
and satisfies
1% = 139, {Ta,T11}=0. (A.2)
Moreover we note the identity,
o 1 o o
[ABCDE _ _* . ABCDEFGHIJ {: i A3
120 reaIT 11 (A.3)

When considering compactifications from ten- to five-dimensional space-times, the 10D
tangent space is decomposed accordingly into a direct product of two five-dimensional
spaces, one corresponding to a five-dimensional space-time and one corresponding to a five-
dimensional internal space. Since we are dealing with spinor fields, it is then important
to identify the gamma matrices appropriate to this product space in terms of the original
10D gamma matrices.

To do so one first decomposes the gamma matrices into two sets, 'y with a = 1,2,...,5
and fa+5 with a =1,2,...,5.% Subsequently one introduces hermitian matrices associated
with the two five-dimensional sectors,

STy PyfyTuls, I =TglslsTol. (A4)
which satisfy the following properties,
32 =13y, T?=13, {3, T}=0, T'y=i3l. (A.5)

Subsequently one defines two sets of mutually commuting hermitian gamma matrices,
Ao =iTal, To=ilars7, (A.6)

so that {4,958} = 2dapla2, {fa,f‘b} = 204132, and [%é,fa] = 0. The matrices 9, will
refer to the five-dimensional space-time (to account for the signature one may write one
of the five gamma matrices, say 4! as i) and the matrices ', to the five-dimensional
internal space. The matrices 4, and ', commute with I'11, as one can easily verify from
the above equations. It is important to note that

[a’?ﬁfy’yﬁ/(?;yﬂ-] = EapyéT INT

gl
f[afbfcfdfe] = — €abede I'11, (A.7)

5At this stage there is no difference between upper and lower indices, so that we are dealing with a
positive Euclidean metric.
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where 12345 = +1. Obviously, by choosing an explicit representation for the 10D gamma
matrices, one obtains explicit expressions for the various matrices that we have defined
above which will reflect their properties.

Let us now consider the charge conjugation matrix. In ten dimensions there exist two
possible options for the charge conjugation matrix, denoted by Cy, satisfying

CoTaCrt =404, LT ==+Cy, Cit =01t (A.8)
which lead to the following results,
CilCit = -7, CuAcit =437, Curcit =417, (A.9)
From the first equation (A.9), it follows that C'y satisfy
(Cel)T =TT CT = (Ce 1), (A.10)

so that the two options for the charge conjugation matrix can simply be related by mul-
tiplication with I'1;. Furthermore we note that both Cv'if and Cv’i’y are symmetric and
unitary matrices. Up to a phase factor, these can act as the charge conjugation matrices
in the 5D context, as is demonstrated by

(Cu':l:f)?yoa(é:l:f)il = ’A)/oaT ) (C:tr)f‘a(c:tr)il = 1i‘aT . (A‘ll)

Similar relations hold for (C+7).

To appreciate the significance of this result, let us consider the definition of the Dirac
conjugate in the 5D context, defined by ¥Ti4", where 4" was related to 4' as explained
below (A.6). From these relations it follows straightforwardly that the 5D Dirac conjugate
&‘SD is related to the 10D conjugate according to

zZ}51:) :imme' (A.12)

Consequently, identifying the Majorana conjugate defined in (2.17) in the 10D context
with the one in the 5D context, one concludes that the charge conjugation matrix in the
5D context equals

C=il"Cy = +iCL T, (A.13)
so that C’_l[qﬂlg,D]T = ¢, and likewise ¥T = ¢°sp C1. As a consequence the two
commuting sets of 32 x 32 gamma matrices, 9, and I'y, satisfy the relations known from
five dimensions,

CiCt =41, cr,ct=1,", CO'=C, Ci=C7". (A.14)
This leads to the rearrangement formula,

xIy = -9 C T C e, (A.15)

where I' denotes any matrix in the spinor space, which in all cases of interest takes the
form a product of gamma matrices I'* and 4,. Observe that the new charge conjugation
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matrix is not anti-symmetric, as one might expect on the basis of a single irreducible 5D
Clifford algebra representation. We return to this issue shortly.

In this paper we discuss the type-IIB theory where the spinor fields are chiral and
complex. Therefore the above formulae have to be projected on an eigenspace of I'1; and
the effective 5D gamma matrices defined in (A.6) are consistent with the 10D chirality
constraint on the spinor fields, because they are proportional to an even number of the
original 10D gamma matrices. However, it is important to realize that IIB supergravity
contains independent spinor fields of opposite chirality, namely 1y, and A. This leads to a
subtlety in view of (A.7), which indicates that different chirality spinors involve inequiv-
alent gamma matrix representations in 5. However, one has to keep in mind that the
chirality assignment can easily be changed in the 5D context by redefining the spinors by
multiplication with one of the matrices (A.4).

Let us now assume that we are starting from 10D with fermion fields of positive chiral-
ity. Hence we can choose a Weyl basis where INTRE diagonal and make use of the fact that
it commutes with the mutually commuting gamma matrices 4, and I',. Hence we write

Vo = 03 @ Yo ® 1y, 1Aja:(73@]14@:[‘(1» (A16)
where I'1; = 03 @ 134 and Yo and T’y are 4 x 4 matrices. It then follows from (A.7) that
they define irreducible representations of the respective Clifford algebras, as

VaYBYVYV8V+] = Eapror la, Palplelal'e) = —€abede 14 - (A.17)

The 10D chiral spinors thus transform under the direct product group Spin(1,4) x USp(4),
whose generators are provided by the anti-symmetrized products of gamma matrices, vn3
and [y, respectively. Correspondingly the charge conjugation matrix C can be written
(adjusting possible phase factors) as the direct product of the two 5D anti-symmetric
charge conjugation matrices,

where C' denotes the anti-symmetric charge conjugation matrix for a 5D space-time spinor
and ()4 is the symplectic matrix that is invariant under the USp(4) R-symmetry. In this
case we may write (A.14) as

CrC 1 =7,T, Q) FaQ(jS =T,7T. (A.19)

However, the chiral spinors are complex which implies that the fields (1, °), which
constitute the 32-component spinor ¥, can again be rearranged in a pseudo-real form as
in (2.20). The doubling of field components enables one to realize the extension of the
R-symmetry group from USp(4) x U(1) to USp(8). It then follows from (2.20) that the
extended USp(8) invariant tensor must take the form

Q= Q(4) Koy . (A.20)
Consequently, (2.20) and (A.18) imply the symplectic Majorana condition,

c T =9w, (A.21)
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where ) is an 8 x 8 anti-symmetric matrix. Both matrices C' and () are anti-symmetric
and unitary.

We close this appendix with some additional definitions that will be useful in the next
appendix B. First of all we write the anti-symmetric tensor €4 as (2(4)7; and its complex
conjugate as Q(4)U, so that Qrs 9(4)‘]K = —6;%, where I,J, K =1,...,4. The gamma
matrices I'y are then written as I'y! 7, so that

Q' =-Qu, Quld"=-QuwTa), (Qulw)" = (QuTlaw), (A.22)

with similar relations for (T Q4))’” and (TapQ4))’/. The six matrices Qy7; and
() Ta)rs form a complete set of 4 x 4 anti-symmetric matrices, and the ten ma-
trices (Q(4)Tap)1s a complete set of 4 x 4 symmetric matrices This leads to the

completeness relations

Qayrs Q™ + (ay Ta)1s (07 Q) = 40 0,41,
() Tap) 1 (T Q) =86 6, (A.23)

B The R-symmetry group and the fermion representations

In the previous appendix we considered a 10D chiral spinor and described its properties
in the context of a product of a five-dimensional space-time and a five-dimensional inter-
nal space. The gamma matrices and the charge conjugation matrices were decomposed
accordingly. The 10D spinors then transform under a subgroup of the original Spin(1,9)
transformations consisting of the Spin(1,4) group associated with the 5D space-time and
the group USp(4) associated with the internal space.

However, USp(4) is not the full automorphism group (or R-symmetry group) of the
eight symplectic Majorana spinors. This group is actually equal to USp(8), which consists
of the unitary transformations that leave the symplectic and unitary tensor €2, invariant.
The generators of this group can be easily identified in terms of direct products of the
4 x 4 gamma matrices I'y, defined in (A.16), their anti-symmetrized products Iy, and the
unit matrix 1y, and the 2 x 2 matrices (13,071,09,03). As a result one derives all the 36
generators of the Lie algebra usp(8) = su(8) Nsp(8,R), by constructing the complete set of
traceless and anti-hermitian matrices that preserve the symplectic form (2,

T=ily ® o3, T, =il'y ® o3,
Top’ =Tap @ 1, Ta' =T ® 01, T’ =T ®0s. (B.1)

As expected these matrices close under commutation,
[T, Twp'] = —2Tw”, [T, Tw’) = 2T, [T, To) = —2Tw",
[Taa Tbco] =4 5a[b Tc}) [Ta, Tbcl] = Eabcde Tde 25 [Ta7 Tbc2] = —Eabcde Tde 17

[T, T = =86, Ty, [Ta”, T = =80, Ty ™M, [T®, T°'% = 861, Ty,
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[Tab17TCd1] — _8 5[(1[0 Tb}d}o’ [Tab2,TCd2] — _8 6[a[c Tb}d}o’

[Tab1> TCdQ] = —2Eabede TC. (B2)

Observe that the generators are anti-hermitian and the structure constants are real, in
agreement with usp(8) being a real form. The T,;" are the generators of the group USp(4) =
SO(5). When extended with the generators T, one obtains the group SU(4) = SO(6) which
obviously commutes with the generator T. As we will exhibit later, T' corresponds to the
SO(6) chirality operator. The latter commutes with the U(1) transformations of the original
10D theory. Clearly SU(4) x U(1) is a maximal subgroup of USp(8).

A chiral 10D spinor ¥ can be decomposed into eight 5D symplectic Majorana spinors
Y, where A = 1,...,8. Note that from now on we employ indices A, B, ... to label the
symplectic Majorana spinors. The same indices were previously used in the 10D theory
(in particular in section 2 and appendix A) to denote the 10D tangent-space components.
This should not give rise to confusion in view of the fact that the 10D tangent space will
no longer play a role in what follows. In view of the direct-product structure indicated
in (B.1) the indices A can be written as index pairs A = (I«v), where [ =1,...,4 are USp(4)
indices and a = 4, —. Here a = + (a = —) indicates that we are dealing with a chiral (anti-
chiral) SO(6) spinor with positive (negative) U(1) charge.®. Based on this direct-product
structure the eight 5D gravitini wﬂA transform under the USp(8) R-symmetry group with
generators that can be read off directly from (B.1). It is thus clear that that each of the
qu decomposes into two components of opposite SO(6) chirality which therefore carry
opposite values of the U(1) charge. This fact enables us to unambiguously identify the
various chiral fermionic components on the basis of this charge. Furthermore we note that
the symplectic Majorana constraint (A.21) relates fermion fields of opposite U(1) charges,
which is consistent with the form of the symplectic matrix €2 defined in (A.20). For instance,
for the gravitini we have

C YW’ = Q) v’ (B.3)

where C denotes the charge conjugation matrix associated with the five-dimensional
space-time.

Let us now turn to the spin-1/2 fermions which originate from the fields (14, 14°) and
A, A® and constitute 48 independent 5D symplectic Majorana spinors. From 5D maximal
supergravity we know that these spinors can be written as a symplectic traceless, fully
anti-symmetric three-rank USp(8) tensor x“Z¢. This is consistent with the fact that the
spin-1/2 fields carry U(1) charges £1/2 and +3/2. We intend to determine the (linear)
relation between the components of xyA2¢ and the fields 1,4 and A\* by making use of
the fact that these fields do all transform consistently under the action of the maximal
subgroup SU(4) x U(1) of USp(8). To see how this works let us present the branching of

5We ignore the various redefinitions of the spinors that are considered in section 3. These redefinitions
should be performed before making the decompositions described in this appendix, but their precise details
are not relevant here.
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P, and x4 under the SU(4) x U(1) subgroup,
g Sv@xv@ (4 1y (g 1Y
2 2
-3 3 1 — 1
48 SU@OXUM) (4, 2) @ (4,—2> @ <20, 2) @ (20, —2> . (B.4)

The chiral representations on the right-hand side are now unambiguously identified by the
corresponding U(1) charge, so that they must correspond to the fields 1, 1,°, and A, A€,
¥, and 1., respectively.” To determine the precise relation, we again write the indices
of the symplectic Majorana field y*B¢ by employing the direct-product representation
introduced before, with A = I, B = J and C' = K~. Since «, 3, take only two possible
index values, at least two of them must always be equal. Hence we may distinguish the fields
Y EJIEEE which must be fully anti-symmetric in the indices I, J, K, and thus correspond
to 4 + 4 symplectic Majorana fields, and the fields x/*7/* KT which are anti-symmetric in
the indices I, .J, and thus define 24 + 24 fields. The remaining fields x'*7# X7 follow then
from imposing the overall anti-symmetry. However, unlike the fields x/*7/# X% the fields
Y EJEET are not manifestly traceless with respect to contractions with the symplectic
matrix (2. This implies that one must impose the additional condition

NETER S (Qua))sx =0, (B.5)

which reduces the number of independent spinors in this sector to 20 + 20, as it should.
Let us first analyze the correspondence for the spinors x4P¢ with positive U(1)
charge —I—%, which must be linearly related to the 10D spinor A\. The former must be

I+ J+ K+
)

given by x which must necessarily be fully anti-symmetric in USp(4) indices.

From (A.22) one then concludes that x/* 7% %+ can be decomposed into two terms, namely
(9(4))[1‘] ()Xl and (I‘“Q(4))[U(Fa)\c )K]. However, the first completeness relation (A.23)
leads to

(TQa)" (Tap)™ = =4 (Qa)) T 9p”l = Q)™ 5, (B.6)

for an arbitrary USp(4) spinor 9, so that the two terms are in fact related. Hence we may
adopt the following ansatz,

XI+ J+ K+ _ C3/2 (Q(4))[IJ AK] , (B.7)

where c3/5 is a complex proportionality factor which is undetermined at this stage. The
fields with charge —% are then defined through the symplectic Majorana condition,

X = = Q) Q)M Q)N CT Xy v vt
=372 (00 (1. B8

The relation between the spinors x/™7/* £~ and 1, with U(1) charge +% is more subtle.
First consider the following ansatz,

XEIHET = ey (D) ($0) — ()™ (T 4a) <] (B.9)

"A vector-spinor in odd dimension d can consistently transform under SO(d + 1) by describing it as an

irreducible chiral vector-spinor in d + 1 dimensions.
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where @a = g + a T,y with o an undetermined parameter, so that we are now dealing
with two new parameters, c¢; /o and a. The linear combination in (B.9) is chosen such that
the USp(8) constraint (B.5) is satisfied. An alternative version of (B.9), which is the one
that we will actually use, is

(Qay) 5 (T0) 71, (B.10)

but also this expression can be rewritten by making use of the identity
(T Q)" (a) ¥ = —( Q) (1 )™ (B.11)
As before we define the spinor components with U(1) charge —% by
I E = (0(4))@ (Q(4))JM (Q(4))KN C ' o nT
=12 [(T*Q) ™ ()™ = (Quay) ™ (T %) "]
+gn [@@) 9+ 2 @)U (| (B1)

Hence we have obtained the linear relation between x4Z¢ and the original 10D spinors, de-
pending on three unknown complex constants, c3/s, ¢1/2 ci /2. Their values are determined
in section 5, as we will be discussing at the end of this appendix.

We will now merge the chiral and anti-chiral spinors with opposite U(1) charges into
eight-component symplectic Majorana spinors. In that case it is convenient to introduce
SO(6) gamma matrices and chiral projection operators. The 8 x 8 gamma matrices ('),
where @ = 1,...,6, are defined in terms of direct products of 4 x 4 and 2 x 2 matrices, just
as in (B.1),

I'.=T,®o01, I'e=13®o0,. (Blg)

These (hermitian) gamma matrices satisfy the Clifford property
{Ta,T} =20,;1s. (B.14)

and satisfy the following charge-conjugation properties,

Qr,Q ' =r,7, with Q" =-Q, Q'=-Q, (B.15)

where the anti-symmetric charge conjugation matrix Q45 was defined in (A.20). The
chirality operator I'y is obtained in the standard way,

F[& I‘B .- I';, where I'y =14 ®03. (Blﬁ)

A = Tabedef

Observe that I'; is hermitian and behaves under charge conjugation as QIT'; Q™1 = —T'; T,
Furthermore I'; coincides with the U(1) charge that was already present in the original
10D theory.
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The gamma matrices T'; and their multiple anti-symmetrized products define a com-
plete basis for matrices in the 8-dimensional spinor space. They can conveniently be de-
composed into 28 anti-symmetric matrices {2, Q';, Q37 and QT ;T'7, and 36 symmetric
matrices 'z, QT .7 and QT ;.. The latter are related to the anti-hermitian generators of
USp(8) that were already defined in (B.1),

1
: 1 d
T = 1F77 Ta = ]-_‘a67 T(zb = ~Eabedeb re 67

6 (B.17)
Tabo = I‘ab’ Tab2 = Fab6 .

We have now obtained a parametrization of the relation between the fields y42¢ and
the fields A\, X\, 1, and 1, originating from the 10D theory in terms of (anti-)chiral
components. This relation is in accordance with the SU(4) x U(1) branching of the
spinor fields presented in (B.4). The resulting expressions for given charges were given
in (B.7), (B.8), (B.10), (B.12), which can be converted in terms of the SO(6) gamma ma-
trices I'y. Since we have established this relation for chiral and anti-chiral components
separately, it is convenient to introduce chiral projection operators

Py = %(]1 +T7). (B.18)

The spinor B¢ is subsequently decomposed in tri-spinors with all possible chiralities,

xABC = PBY 4 ABC 4 B 4\ ABY 4 \ABC 1\ ABY 1 \ABC L\ ABC L (B.19)

For the spinors with U(1) charge equal to +3/2 and +1/2 we derive, respectively,

ABC f] [DE

X*PC (g =icspPyp P PP % [T Q)77 AT,

XABC(++—) =icyy Py PP P [T Q] bE (T7Lgva)" — [T7T6 Q] bE (re %)F]
Fich Py PP | [T 0] (D) — 2 01 [rore0y,) 7|
(B.20)

where the spinors A and v, are now 8-component spinors consisting of (A, A°) and (¢q, ).
The labels (+++4) and (++—) on the left-hand side indicate how the indices are contracted
with the chiral projectors. Note that the combinations (+ — +) and (— + +) are related
upon interchanging the indices A, B, C' correspondingly. The corresponding spinors with
charges —3/2 and —1/2 read the same with ¢35, ¢1 /5 and i /2 replaced by their complex
conjugates and with opposite projectors.

Confronting the above decompositons to the equations (5.7) uniquely determines the

three constants to ¢35 = —%, C1/0 = —i and ¢} J2 = —%. The corresponding expression for
YABC equals
KB = = Sl 0) 7 () (07 )7 )
3- a O a O
- il )" (0rTew,) ! — (071 ©) ()]

47 —



w

— S )7 (r2,) D - (06 )7 (07T 4,) ]

Qo

— %iQ[AB (T7T6T %) . (B.21)

Here we shoud stress that this form of the solution is not unique as it can be rewritten by
Fierz reordering. In section 5 we have presented an equivalent but shorter expression.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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