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1 Introduction

Although M5-brane is one of the most fundamental objects in M-theory, the physics of

multiple M5-branes still remains mysterious. For a single M5 brane, the low energy effective

world-volume theory is a free theory of an Abelian self-dual 2-form tensor multiplet with

known Lagrangian description. The world-volume theory for N ≥ 2 coincident M5-branes

is called 6d AN−1 (2,0) theory. It has 6d (2, 0) superconformal symmetry whose bosonic

subgroup is SO(2, 6) × SO(5)R. The (2,0) theory is expected to be a kind of non-Abelian

tensor theory, but the attempts to write down a Lagrangian have not yet reached a stage

where all quantum observables of the theory can be computed straightforwardly, at least

in principle, from the Lagrangian. Alternative approaches to study the (2,0) theory invoke

dualities or topologically protected observables. One famous result is the N3 scaling of

the theory’s degrees of freedom, which was argued to be true on the basis of holographic

principle and anomaly calculations [1–4].

Recently much attention have been paid to the lower dimensional theories obtained

by compactifying the 6d (2,0) theory on an internal manifold M with a partial topological
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twisting along M . A large class of 4d superconformal field theories (SCFTs), called theories

of class S [5, 6], have been constructed with M being Riemann surfaces with punctures.

This type of constructions provide new ways to understand many aspects of lower dimen-

sional theories from the geometry of M . In particular, S-dualities among theories of class

S correspond to different pants decompositions of a Riemann surface [6]. The geometric

interpretation of S-dualities also led to the celebrated AGT conjecture [7, 8], which states

that some supersymmetric quantities such as the partition function (ptn) on a squashed

sphere can be identified with the ptn for some bosonic theory on M . Furthermore, new

examples of holographic AdS/CFT duality can be obtained from these constructions. The

gravity duals of 4d theories class of S were first studied in [9].

Another important advantage of this approach is that we can learn something about

the 6d theory by studying the lower dimensional theories. One example is the calculation of

the superconformal index for the 6d theory from 5d maximally supersymmetric Yang-Mills

theory regarded as an S1-reduction of the 6d theory [10–12]. The famous N3 behavior of

the 6d theory can also be understood by calculating such physical quantities as anomaly

coefficients in even dimensions [9, 13] or sphere ptns in odd dimensions [10].

In this paper, we study 3d SCFTs, called TN [M ], constructed by compactifying the 6d

AN−1 (2,0) theory on a 3-manifold M . In the compactification, we perform a topological

twisting along M using an SO(3)R subgroup of the SO(5)R R-symmetry. This twisting

preserves a quarter of the supercharges and the 3d theories at IR fixed point have 3d N = 2

superconformal symmetry. These theories enjoy several dualities. 3d mirror symmetries

can be interpreted as ambiguities in the choice of ideal triangulation of M [14]. The 3d-3d

correspondence identifies supersymmetric ptns of TN [M ] on a curved background B to

certain topological invariants on M . For B being a squashed three sphere S3
b [15], the

details of the correspondence were given in [14, 16]. For B = S2 × S1, they were given

in [17, 18]. In both cases, the topological invariants are CS ptns on M with a complex gauge

group and suitable CS levels which depend on B. Physical derivations of the dualities were

given in [19–21] by studying the compactification of the (2,0) theory on B.

In the large N limit, we can learn more about the 3d SCFTs by considering the

AdS4 gravity duals. Ignoring subtle structures near the boundaries of internal manifold

M , the 3d theory can be engineered by taking the IR fixed point of the world-volume

theory for N coincident M5-branes wrapping the R1,2 ×M subspace of R1,2 × T ∗M × R2

in eleven dimensions, where T ∗M is the cotangent bundle of M . Motivated by the brane

configuration, the gravity duals for the 3d theories were studied in [22] building upon earlier

work [23]. The dual supergravity solution exists only when M is hyperbolic, which might

imply that for non-hyperbolic M , the IR fixed point is a topological theory without any

physical degree of freedom.

Our main goal of the present paper is to combine the holographic duality and the 3d-3d

correspondence to make a strong conjecture for the large N behavior of the perturbative

expansion of the CS theory on M . The statement of the conjecture and some preliminary

evidences were announced earlier by the authors in [24]. In this paper, we give a more de-

tailed account of the reasoning behind the conjecture and present more evidences, analytic

and numerical, supporting the conjecture.
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The AdS/CFT dictionary states that the partition function of the 3d SCFT on S3
b

is equal to the partition function of the gravity on a squashed Euclidean AdS4(b) whose

asymptotic boundary is S3
b . For AdS4/CFT3 arising from multiple M2-branes, the equal-

ity has been extensively verified [25–29]. The large N limit of the CFT corresponds to

the classical limit of the gravity. The free energy, Fb = − log |ZS3
b
|, in this limit is the

holographically renormalized on-shell action on the gravity side. Using the supergravity

solution in [22], the free energy Fgravity will be calculated in section 2. The result is summa-

rized in eq. (2.1). On the SCFT side, instead of computing the free energy from of TN [M ]

directly, we invoke the 3d-3d correspondence which states ZS3
b

(TN [M ]) = ZCS
N [M ; ~], a

PGL(N) CS ptn on M with a coupling constant ~ := 2πib2.

Under two mild assumptions on the topological invariant ZCS
N (M ; ~), stated in (3.7)

and (3.8), we show that the holographic prediction Fgravity = − log |ZCS
N (M ; ~)| implies

an interesting large N behavior of the perturbative invariants of the PGL(N) CS theory

on M . The result, summarized in (3.19), is the main conjecture of this paper. Roughly

speaking, the conjecture claims that the tree, one-loop and two-loop perturbative invariants

(S0, S1, S2) all share the same N3 scaling behavior, whereas all higher loop invariants Sn≥3

are relatively suppressed. An analytic proof of the conjecture for S0 and S1 are given in

section 3.2. In section 4, we give some numerical evidences for higher order invariants for

various knot complements using Dimofte’s state-integral model [30, 31].

The main conjecture has passed all analytic and numerical tests so far, which seems

to suggest that the chain of dualities is consistent and that our assumptions on the CS

invariants are valid. We leave the complete proof of the whole conjecture as a future

problem. We conclude with discussions on future directions in section 5.

2 Supergravity analysis

In this section, we review the gravity dual of TN [M ] and calculate the gravitational free

energy Fgravity in the supergravity approximation. Combining the results from [22, 32],

one concludes that

Fgravity
b =

N3

12π

(
b+

1

b

)2

vol(M) , (2.1)

with subleading corrections in 1/N . This result can be computed from an effective D = 4

gauged supergravity theory relevant to the current setup of M5-branes wrapped on a special

Lagrangian 3-cycle in a Calabi-Yau three-fold. The gravitational free energy is directly

related to the D = 4 gravitational constant [33], which is in turn determined by the

volume of the internal D = 7 space and the overall length scale of the D = 11 metric. The

hyperbolic space M is a part of the internal space, thus a factor of vol(M) in (2.1). The

N3 dependence on the number of M5-branes generically appears when we relate the overall

length scale with N using the four-form flux quantization condition in M-theory.

In fact, however, the solution in [22] cannot be the complete gravity dual of TN [M ]

when 3-manifold M is a knot (or link) complement since there is no tunable parameters in

the solution which parameterize type of defects along knot (or link). When we say the 3d
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theory TN [M ] is associated with a knot complement M = S3\K, we need to specify what

type of defects are placed along the knot. As an analogy, consider the 4d theories of class S

associated with a Riemann surface with punctures. Depending on the type of defects at the

punctures, the corresponding 4d SCFTs are different and have different dual supergravity

geometry [9]. As far as the leading N3-terms of conformal anomaly coefficients a and c

are concerned, however, the detailed structures of the supergravity solution associated to

punctures are irrelevant if all punctures are ‘full’ (or maximal) punctures. The leading N3-

terms only depend on the Euler character of the Riemann surface regardless of existence

of punctures. In the same vein, we expect that, despite the incompleteness of the solution,

the gravity free energy formula (2.1) is reliable even for knot complements M as far as the

N3-term is concerned, if defects along the knots are “full knots”. The full knot defects

can be realized as N M5-branes along the unit co-normal bundle of a knot K in T ∗S3

intersecting with N M5-branes on S3.

2.1 D = 7 maximal supergravity

When one is to look for nontrivial M5-brane backgrounds in the near-horizon limit, it

is convenient to use the D = 7 maximally gauged supergravity first and then uplift the

solution back to D = 11. The D = 7 theory contains, as bosonic degrees of freedom, the

metric tensor, SO(5) gauge fields Aij , 14 scalar fields constituting a symmetric, unimodular

matrix Tij parametrizing the coset SL(5,R)/ SO(5), and 5 three-form tensor fields Si(3). We

use i, j = 1, . . . , 5 to represent SO(5) indices, and subscripts in parentheses (ω(n)) to denote

n-forms. We will follow the notation in [34]. For the original construction, the readers are

referred to [23].

The Lagrangian as a seven-form is written as

L7 = R ∗ 1− 1

4
T−1
ij ∗DTjk ∧ T

−1
kl DTli −

1

4
T−1
ik T

−1
jl ∗ F

ij
(2) ∧ F kl(2)

− 1

2
Tij ∗ Si(3) ∧ S

j
(3) +

1

2g
Si(3) ∧DSi(3) −

1

8g
εij1···j4S

i
(3) ∧ F

j1j2
(2) ∧ F

j3j4
(2)

+
1

g
Ω(7) − V ∗ 1. (2.2)

Here the covariant derivatives are defined as

DTij ≡ dTij + gAik(1)Tkj + gAjk(1)Tik, (2.3)

DSi(3) ≡ dSi(3) + gAij(1) ∧ S
j
(3), (2.4)

F ij(2) ≡ dA
ij
(1) + gAik(1) ∧A

kj
(1). (2.5)

The scalar potential V is given by Tij as follows,

V =
1

2
g2
(
2Tij Tij − (Tii)

2
)
. (2.6)

The seven-form Ω(7) is a quartic Chern-Simons type term built from the SO(5) Yang-Mills

fields and its explicit form will not concern us in this paper.
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It is established that any solution of the above D = 7 system gives rise to a solution of

D = 11 supergravity [35, 36]. Using the notation of [37], the uplifting formula for metric is

ds2
11 = ∆1/3 ds2

7 +
1

g2
∆−2/3 T−1

ij DµiDµj . (2.7)

And for the four-form field,

G(4) =
∆−2

4!g3
εi1···i5

[
− U µi1Dµi2 ∧Dµi3 ∧Dµi4 ∧Dµi5

+4T i1mDT i2n µm µnDµi3 ∧Dµi4 ∧Dµi5 + 6g∆F i1i2(2) ∧Dµi3 ∧Dµi4 T i5j µj
]

− Tij ∗Si(3) µ
j +

1

g
Si(3) ∧Dµi . (2.8)

Here µi, i = 1, . . . , 5 are angular coordinates for S4, i.e.,
∑

i(µ
i)2 = 1, and

U ≡ 2Tij Tjk µ
i µk −∆Tii , ∆ ≡ Tij µi µj , Dµi ≡ dµi + gAij(1) µ

j . (2.9)

It is easily checked that the trivial AdS7 vacuum of (2.2) with vanishing form-fields

and Tij = δij has radius 2/g. Using then the above uplifting formula, in D = 11 we have

ds2
11 =

4

g2
ds2(AdS7) +

1

g2
ds2(S4) , (2.10)

G(4) =
3

g3
vol(S4) . (2.11)

Here both ds2(AdS7) and ds2(S4) are normalized to have unit radius.

The standard convention for D = 11 supergravity is to make the Planck length appear

in the action as follows,

S =
1

(2π)8l9P

∫ (
R ∗ 1− 1

2
G(4) ∧ ∗G(4) −

1

6
C(3) ∧G(4) ∧G(4)

)
. (2.12)

The four-form flux quantization then gives the M5-brane number as

NM5 =
1

(2πlP)3

∫
X4

G(4) , (2.13)

where X4 is a 4-cycle in D = 11 spacetime. Using this relation, we may rewrite (2.10) as

ds2
11 = l2P(πN)2/3

[
4ds2(AdS7) + ds2(S4)

]
, (2.14)

which is for instance the same as eq. (3.2) of [38].

2.2 AdS4 × H3 Solution as wrapped M5-brane

It is known that, in addition to the maximally supersymmetric AdS7 solution, the ac-

tion (2.2) allows a variety of supersymmetric magnetically charged solutions [23]. In terms

of M-theory, such solutions are interpreted as M5-branes wrapped on supersymmetric

cycles [22, 39]. Among many possibilities, we are particularly interested in the case of
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M5-branes wrapped on a special Lagrangian 3-cycle within a Calabi-Yau three-fold. To

preserve supersymmetry, one twists the M5-brane theory by coupling it to a subalgebra of

R-symmetry, which is in this case SO(3) ⊂ SO(5)R. In the D = 7 gauged supergravity,

this procedure is implemented by turning on a SO(3) gauge field to cancel precisely the

contribution of the spin connection on the 3-cycle Σ3. One finds AdS4 × Σ3 fixed point

solutions when Σ3 = H3.

A convenient way of solving the equation of motion, when we adopt the twisting

prescription above, is to consider dimensionally reduced effective Lagrangian [34, 40]. For

metric tensor we introduce

ds2
7 = e−6φds2

4 + e4φds2(Σ3) , (2.15)

where for definiteness we re-size Σ3 here so that its Ricci tensor is lg2 times the metric

tensor, i.e. with radius
√

2/g. Without losing generality, we may rescale l = 1, 0,−1, each

corresponding to S3, T 3, H3, respectively. For the gauge field SO(3) ⊂ SO(5), we set

Aab(1) =
1

g
ω̄ab, a, b = 1, 2, 3. (2.16)

Here on the left hand side the SO(3) indices refer to subalgebra SO(3) ⊂ SO(5)R, and on

the right hand side the three-frame indices of H3. Furthermore, since the scalar fields Tij
should also respect our choice of SO(5)→ SO(3), we set

T = diag(e−4λ, e−4λ, e−4λ, e6λ, e6λ) . (2.17)

Then it is straightforward to show that, when we substitute our ansatz above into the

D = 7 equations derived from the action (2.2) we have a set of D = 4 equations which in

turn can be derived by the following effective action.

1
√
g
L4 = R− 30(∂φ)2 − 30(∂λ)2 − 3g2

[
e−10φ +

1

8
e8λ−14φ − 1

2
e−6φ(e−8λ + 4e2λ)

]
. (2.18)

We also note that it is possible to employ a more general ansatz and obtain the bosonic sec-

tor of N = 2, D = 4 gauged supergravity with a vector multiplet and two hypermultiplets.

For more detail, readers are referred to [34].

Considering the extremal points of the scalar potential above, one finds that there are

two distinct solutions. One is

e−20φ = 2, e10λ = 2, (2.19)

which turns out supersymmetric. On the other hand, the solution with

e−20φ =
486

625
, e10λ = 10 , (2.20)

is not supersymmetric. In this paper we aim to identify the field theory dual of the

supersymmetric solution. It will be very interesting if we can also establish the dual of the

second solution.
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Plugging (2.19) back into (2.18), we find that the curvature radius of the supersym-

metric AdS4 solution is

L2 =
√

2/g2 . (2.21)

Now we make repeated use of the uplifting formulae (2.15) and (2.7) and obtain the fol-

lowing D = 11 metric,

ds2
11 =

22/3(1 + sin2 θ)1/3

g2

[
ds2(AdS4) + ds2(H3) +

1

2

(
dθ2 +

sin2 θ

1 + sin2 θ
dφ2

)

+
cos2 θ

1 + sin2 θ

3∑
a=1

(dµ̃a + ω̄abµ̃
b)2

]
, (2.22)

where µ̃a parametrize S2, i.e.
∑3

a=1(µ̃a)2 = 1. In this expression we scaled both AdS4 and

H3 to have unit radius, and 0 < θ < π/2. The parameter g can be related to the number

of M5-branes N , through the flux quantization condition. The four-form flux, restricted to

the squashed four-sphere X4 parametrized by θ, φ, µ̃a, is

G(4)|X4 = −8π3

g3
d

[
cos3 θ

1 + sin2 θ

]
∧ dφ ∧ vol(S2) . (2.23)

The M5-brane number is determined by integrating the above expression and using (2.13).

N = (πl3Pg
3)−1. (2.24)

The last step in the gravity computation is to use the general formula for holographic

free energy for AdS4 derived in [32]. For the AdS4 dual of any N = 2 superconformal field

theory on S3
b , the free energy is

Fgravity
b =

π

8G4

(
b+

1

b

)2

, (2.25)

where G4 is four-dimensional Gravitational constant. G4 is easily obtained from the volume

of the internal seven-dimensional space in (2.22). The result is

Fgravity
b =

N3

12π

(
b+

1

b

)2

vol(H3) . (2.26)

3 Field theory analysis using 3d-3d correspondence

3.1 3d-3d relation and Chern-Simons theory

The 3d-3d correspondence is a conjecture which relates the supersymmetric ptn for a 3d

TN [M ] theory on a curved background B to topological invariants of the manifold M . The

topological invariants can be obtained by integrating out Kaluza-Klein modes of 6d AN−1

(2,0) theory along B. When B is a general squashed Lens space,

L(0) := S2 × S1 or L(k) := S3/Zk for k ≥ 1 , (3.1)

– 7 –
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the corresponding topological invariants turns out to be a PGL(N) CS theory on the

internal manifold [41]. The complex CS ptn is defined by the following path-integral:

ZCS
N (~, ~̃;M) =

∫
[dA][dA] exp

(
1

2~
CS[A;M ] +

1

2~̃
CS[A;M ]

)
,

with CS[A;M ] :=

∫
M

(
A ∧ dA+

2

3
A3

)
. (3.2)

The holomorphic and anti-holomorphic coupling constants are

4π

~
= k + σ,

4π

~̃
= k − σ , (3.3)

where k is integer and σ is either real or purely imaginary. In the 3d-3d correspondence, the

integer level k is identified as the label k of Lens space L(k) and σ is related to a squashing

parameter. For example, consider the case when the curved manifold is a squashed 3-sphere

S3
b defined by

S3
b =

{
(z, w) ∈ C2 : b2|z|2 +

1

b2
|w|2 = 1

}
. (3.4)

The corresponding topological quantity is PGL(N) CS ptn on M with k = 1 and σ =
1−b2
1+b2

[21].1 In terms of holomorphic and anti-holomorphic coupling, this corresponds to

~ = 2πi(1 + b2) , ~̃ = 2πi(1 + b−2) . (3.5)

This relation looks different from the original 3d-3d relation ~ = 2πib2 and ~̃ := 2πib−2. In

the quantization of CS theory, however, the more relevant parameters are exponentiated

ones q := e~, q̃ := e~̃ and the difference 2πi becomes irrelevant [41]. Thus, the 3d-3d

relation says

ZS3
b
(TN [M ]), supersymmetric partition function of TN [M ] on S3

b

= ZCS
N (M ; ~), PGL(N) CS ptn on M with ~ = 2πib2 and ~̃ = 2πib−2 . (3.6)

We assume the following basic properties for the CS ptn ZCS
N whose correctness seems to

be supported by several previous works [14, 16, 42, 43].

1. In the limit ~ = 2πib2 → 0 with real b, ZCS
N (M ; ~) has the same asymptotic expansion

as the perturbative expansion of PGL(N) CS ptn around a saddle point A(conj).

(3.7)

2. It has the non-perturbative symmetry ~↔ −4π2/~, ZCS
N (~) = ZCS

N (−4π2/~).

(3.8)

The second property follows from the manifest symmetry b↔ b−1 of the squashed 3-sphere.

The path-integral is not well-defined mathematically but its perturbative expansion around

1In [21], σ was given by i 1−b2
1+b2

. Here, following a recent work by Dimofte [41], we “erased the i”.
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a given saddle point is well-defined. For the CS theory, the saddle points are flat connections

satisfying dA + A ∧ A = 0. Around a saddle point A(α), the perturbative CS ptn can be

expanded as

Z
(α)
pert(~;M) = exp

(
1

~
S

(α)
0 − 3

2
log ~ + S

(α)
1 + ~S(α)

2 + · · ·+ ~n−1S(α)
n + · · ·

)
. (3.9)

Each perturbative coefficient {S(α)
n } is a topological invariant of M and can be computed

using standard field theoretic techniques based on Feynmann diagrams. For example,

S
(α)
0 =

1

2
CS[A(α)] , (classical part)

S
(α)
1 =

1

2
log Toradj[M,A(α)] , (one-loop) . (3.10)

Here TorR[M,A(α)] is the Ray-Singer torsion of an associated vector bundle in a represen-

tation R ∈ Hom (G→ GL(VR)) twisted by a flat G-connection A(α),

TorR[M,A(α)] =

[
det′∆0(R,A(α))

]3/2[
det′∆1(R,A(α))

]1/2 . (3.11)

Here ∆n(R,A(α)) is a Laplacian acting on VR-valued n-form twisted by a flat connection

A(α). Both of S0, S1 are mathematically well-defined geometrical quantities which have

independent meaning. Higher order invariants Sn (n ≥ 2) have less obvious geometrical

meaning but they can be rigorously defined using Feynman diagrams [44].

The squashed 3-sphere ptn for a 3d N = 2 theory with a flavor symmetry of rank r

depends on r complex parameters which combine real masses and R-charges. For a knot

complement M = S3\K with a full knot K, the TN [M ] theory has SU(N) flavor symmetry

and the ptn depends on (N−1) parameters. The CS ptn function on knot complements M

also depends on N − 1 parameters which parameterize boundary condition on ∂M = T2,

Holmeridian(A) ∼


eµ1 1 0 0 0 . . .

0 eµ2 1 0 0 . . .

0 0 eµ3 1 0 . . .

0 0 0 eµ4 1 . . .

. . . . . . . . . . . . . . . . . .

 . (3.12)

Here, Holγ(A) denotes a gauge holonomy along a cycle γ of gauge field A. We cannot

impose Dirichlet boundary conditions on holonomies along two cycles simultaneously since

they are canonically conjugate to each other. To study the AdS4/CFT3 for TN [M ] theories,

we focus on the case when the meridian holonomy is parabolic

µi = 0 (parabolic holonomy) (3.13)

which corresponds to undeformed (with zero real mass) conformal TN [M ] theory. There are

only finite number of flat connections {A(α)} satisfying the boundary condition (3.12) for
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given meridian variables {µi}. For N = 2 and hyperbolic knot complement M , there exist

two flat connections A(geom)
N=2 and A(conj)

N=2 which can be constructed from a unique complete

hyperbolic metric on M as follows,

A(geom)
N=2 := ω + ie , A(conj)

N=2 := A(geom)
N=2 = ω − ie . (3.14)

Here ω and e are the spin-connection and the vielbein, respectively. Both of them are

locally SO(3) Lie algebra valued one-forms. For N ≥ 3, the ‘geometrical’ and ‘conjugate’

PGL(N) flat connections are defined by embedding the corresponding connections at N = 2

via the N -dimensional irreducible representation ρN of PGL(2).

A(geom)
N := ρN

(
A(geom)
N=2

)
, A(conj)

N := ρN

(
A(conj)
N=2

)
. (3.15)

The hyperbolic metric for a knot compliment S3\K around the knot can be written as

z2(dx2 + dy2) + dz2

z2 where the knot is located at z = 0 and x, y parametrize the longitude

and meridian direction respectively. Using the metric, one can check check that meridian

holonomies for both of A(geom)
N and A(conj)

N are parabolic at the boundary. One important

characteristic of the geometrical flat connection (its conjugate flat connection) is that it

has the maximum (minimum) value of the imaginary part of the CS functional among all

flat connections with parabolic meridian holonomy at the boundary.

Im
(
CS[A(conj)

N ]
)
≤ Im

(
CS[A(α)

N ]
)
≤ Im

(
CS[A(geom)

N ]
)
. (3.16)

The first (or second) equality only hold for α = conj (or geom). The maximum and

minimum values are

Im
(
CS[A(geom)

N ]
)

= −Im
(
CS[A(conj)

N ]
)

=
1

3
N(N2 − 1) vol(M) , (3.17)

where vol(M) is the hyperbolic volume, the volume measured using the unique complete

hyperbolic metric of the knot complement M . For N = 2, it follows from a direct com-

putation using eq. (3.14). For general N > 2, it follows from a simple group theoretical

fact that

Tr[ρN (h1)ρN (h2)] =
1

6
N(N2 − 1)Tr[h1h2] , (3.18)

where h1 and h2 are elements of the Lie algebra of PGL(2).

3.2 Conjecture on the large N behavior of perturbative invariants

Looking at the formula (2.1) for the gravity free energy carefully, we observe the following

remarkable fact: the gravity free energy has the same expansion in b2 as the perturbative

expansion of CS ptn (3.9) under the identification ~ = 2πib2. Combining the holographic

principle, log |ZS3
b
(TN )| = −Fgravity

b , and the 3d-3d relation, ZS3
b
(TN ) = ZCS

N (~;M), we

obtain following predictions on the large N behavior of perturbative invariants {S(conj)
n }.2

2It could be wrong due to an “order of limits” issue. In AdS/CFT, we take the limit N →∞ with fixed

~. But for CS ptn, we first asymptotically expand around ~ = 0 and then take the limit N → ∞ on each

expansion parameters {Sn}. We assume the uniform convergence of the large N free energy and the issue

does not matter.
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Conjecture. The PGL(N) CS perturbative invariants {S(conj)
n (N)} around the saddle

point A(conj)
N on a hyperbolic 3-manifold M have the following large N behavior.

lim
N→∞

1

N3
Im[S

(conj)
0 ] = −1

6
vol(M) ,

lim
N→∞

1

N3
Re[S

(conj)
1 ] = − 1

6π
vol(M) ,

lim
N→∞

1

N3
Im[S

(conj)
2 ] =

1

24π2
vol(M) ,

lim
N→∞

1

N3
Re[S

(conj)
2j−1 ] = lim

N→∞

1

N3
Im[S

(conj)
2j ] = 0 , j = 2, 3, . . . ,∞ . (3.19)

We use the gravity free energy calculation in eq. (2.1) and one of our assumption on ZCS
N

given in eq. (3.7). For the classical part S
(conj)
0 , its behavior can be easily understood from

eq. (3.10) and (3.17). For the one-loop part S
(conj)
1 , its large N behavior can be derived

using a mathematical theorem found in [45].

lim
m→∞

1

m2
log Torρm [M,A(geom)

N=2 ] = − 1

4π
vol(M) , (3.20)

where ρm is the irreducible m-dimensional representation of PGL(2). Applying the theorem

to S
(conj)
1 = S

(geom)
1 in (3.10) using the branching rule adj = ρ3 ⊕ ρ5 ⊕ . . . ⊕ ρ2N−1, we

arrive at

S
(conj)
1 (N) = − 1

4π
vol(M)

(
32 + 52 + . . .+ (2N − 1)2

)
+ (subleading in 1/N)

= − 1

6π
vol(M)N3 + (subleading) ,

which is compatible with the conjecture. We currently have little analytic understanding

of the loop invariants Sn (n ≥ 2).

Relation to volume conjecture. One motivation for studying complex CS theories

is the volume conjecture (VC), which relates an asymptotic limit of knot invariants of a

knot K to the perturbative invariants of complex CS theories on S3\K. Assuming the

(generalized) volume conjecture is true, our conjecture in (3.19) can be restated in terms

of an asymptotic limit of a knot invariant.

The original volume conjecture [46, 47] is

lim
n=k→∞

2π

k
log

∣∣∣∣∣ Jn(q = e2πi/k;K)

Jn(q = e2πi/k;©)

∣∣∣∣∣ = vol(S3\K) . (3.21)

Here © denotes an unknot. Refer to [48] for review on VC and its generalizations. The

colored Jones polynomial Jn(q;K) := JR=ρn(q;K) is colored by a SU(2) representation R.

The original definition of the polynomial is given in an algebraic and combinatorial way.

Witten gave the following alternative definition based on a path-integral [49].

JR(q;K) =

∫
[dA] exp

(
ikbareCS[A;S3]

)
TrR (HolK(A))∫

[dA] exp (ikbareCS[A;S3])
, q = e2πi/k(k := kbare + 2) .
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Here A is an SU(2) gauge field on S3. Using the path-integral definition of the colored Jones

polynomial, a heuristic physical understanding of the VC can be given [50] and VC can

be generalized to include sub-leading terms in the asymptotic limit [51]. The generalized

VC is

log
Jn(q;K)

Jn(q;©)
∼ 1

~
S

(geom)
0 (N = 2)− 3

2
log ~ + S

(geom)
1 (N = 2) + . . . , (3.22)

in the limit ~ := log q → 0 and n→∞ with fixed n~ = 2πi.

Jones polynomial can also be generalized by replacing the gauge group SU(2)

by SU(N),

JNR (q;K) =

∫
[dA] exp

(
ikbareCS[A;S3]

)
TrR (HolK(A))∫

[dA] exp (ikbareCS[A;S3])
, q = e2πi/k(k := kbare +N) ,

where A is a SU(N) gauge field on S3 and R is a representation of SU(N). Considering

an asymptotic limit of the SU(N) quantum invariant, the VC can be further generalized

as follows [48]

log
JNR (q;K)

JNR (q;©)
∼ 1

~
S

(geom)
0 (N)− 3

2
log ~ + S

(geom)
1 (N) + . . . , (3.23)

in an asymptotic limit ~ := log q → 0 and (δ∗ + λ∗R) → diag(∞,∞, . . . ,∞) with fixed

exp (~(δ∗ + λ∗R)) = IN . δ is half of sums of positive roots of SU(N) and δ∗ is its dual

element. The dual element is defined using the nondegenerate trace form −Tr as an inner

product. λR is the highest weight vector of a representation R. δ∗ and λ∗R are elements of

the Cartan subalgebra of SU(N).

The formula (3.23) says that the asymptotic expansion of the SU(N) invariant is

determined by the perturbative PGL(N) CS invariants {S(geom)
n }. Then, what determine

the asymptotic growth rate of these perturbative CS invariants as N goes to infinity? Our

conjecture (3.19) gives the answer to the question. Using the simple fact S
(geom)
n = S

(conj)
n ,

lim
N→∞

1

N3
Im[S

(geom)
0 ] =

1

6
vol(M) ,

lim
N→∞

1

N3
Re[S

(geom)
1 ] = − 1

6π
vol(M) ,

lim
N→∞

1

N3
Im[S

(geom)
2 ] = − 1

24π2
vol(M) ,

lim
N→∞

1

N3
Re[S

(geom)
2j−1 ] = lim

N→∞

1

N3
Im[S

(geom)
2j ] = 0 , j = 2, 3, . . . ,∞ . (3.24)

According to the conjecture, the leading large N behavior of the perturbative invariants is

determined by the hyperbolic volume.

3.3 Free energy at finite b

So far we have analyzed the free energy,

F(~;M) = − log |ZS3
b
(TN [M ])| = − log |ZCS(~;M)| ,
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in an asymptotic limit b→ 0. What can we say about the free energy at finite b? Consider

the leading N3-coefficient of the free energy

FN3(~;M) := − lim
N→∞

log |ZCS(~;M)|
N3

. (3.25)

If our conjecture (3.19) is true, we have the following asymptotic expansion

FN3(~;M)→ 1

12π
(b−2 + 2 + b2 + 0b4 + . . .+ 0b2n + . . .) vol(M) , (3.26)

when ~ = 2πib2 → 0 goes to zero with real b. Note that the symmetry ~ ↔ −4π2/~
(or equivalently b ↔ b−1) is manifest in the perturbative expansions of FN3 . Although

the symmetry is an expected property of FN3 from (3.8), its appearance in the perturba-

tive expansions is somewhat unexpected. The symmetry is a non-perturbative property

of the free energy and we expect that it can be seen only after taking into account of

all non-perturbative corrections of the form e−
4π2

~ as well as all perturbative corrections.

Actually the symmetry of the full free energy F = − log |ZCS| is not seen in the per-

turbative expansions but only can be seen after taking into account of non-perturbative

corrections together. The existence of the symmetry in the perturbative expansions of FN3

strongly suggest that there is no non-perturbative corrections to FN3 , or equivalently non-

perturbative corrections of F are suppressed by 1/N , and the perturbative expansion (3.26)

is actually a convergent series. Thus,

F(~;M) =
N3

12π
(b+ b−1)2 vol(M) + (subleading in 1/N) , (3.27)

which perfectly matches the gravity calculation (2.1). In the derivation of the above result,

we seriously use our assumptions on ZCS(~;M) (3.7), (3.8) and our conjecture (3.19).

The conjecture for S0 and S1 were proven in section 3.2. In the next section, we will

numerically confirm the conjecture on S2, S3 for various knot complements using Dimofte’s

state-integral model.

4 State-integral model for PGL(N) CS ptn

In this section, we calculate the perturbative CS invariants {S(conj)
n } for various knot com-

plements M using Dimote’s state-integral model [30, 31, 52–54]. From the calculation we

numerically check the conjectures (3.19) up to n = 3. The state-integral model gives finite

dimensional integral expression for the PGL(N) CS ptn ZCS
N [~;M ] using an ideal triangu-

lation T of M . It was verified in [31] that the perturbative expansion of the state-integral

model reproduces the known perturbative invariants S0 and S1 for various knot comple-

ments M . In fact, the integral should be interpreted as a contour integral. Depending on

the choice of contour it will give different topological invariants of M . The state-integral

model for M contains a product of quantum dilogarithm functions and Gaussian factors.

Formally it looks exactly the same as the integral expression for an S3
b -ptn for a 3d N = 2

abelian CS-matter theory obtained by a localization method [15, 55]. The 3d theory is

– 13 –
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identified as the TN [M ] theory in [14]. In the integral from localization, the contour runs

along the real axis since the saddle points are constant modes of real scalars σ in N = 2

vector multiplets. Thus, the state-integral will give the topological invariant ZCS(~;M)

in the 3d-3d correspondence (3.6) if the contour runs along the real axis.3 Using the

contour prescription for the state-integral we can test the our assumption (3.7). For the

self-completeness, we start with reviewing basic ideas of the state-integral model.

4.1 Dimofte’s state integral model

An important ingredient in the study of a CS theory on a 3-manifold M with boundary is

a phase space P(∂M) canonically associated to the boundary ∂M of M [44]. For PGL(N)

CS theory, the phase space is mathematically described as

PN (∂M) = {space of flat PGL(N) connections on ∂M}/(gauge equivalence) . (4.1)

The boundary phase space has a natural symplectic structure,

ω∂M =
1

~

∫
∂M

Tr(δA ∧ δA) , (4.2)

where δA is an infinitesimal variation of the PGL(N) gauge field A restricted on P(∂M).

Those flat PGL(N) connections on ∂M which can be extended over the whole M as flat

connection form a Lagrangian submanifold of P(∂M), denoted by LN (M) ⊂ PN (∂M):

LN (M) = {space of flat PGL(N) connections on M}/(gauge equivalence) . (4.3)

A related problem is to find the Lagrangian LN (M) ⊂ PN (∂M) and to quantize it for

general 3-manifold M . For PGL(2), the problem was systematically studied in [30] using

an ideal triangulation of M ,

M =

(
k⋃
i=1

∆i

)/
(gluing data) . (4.4)

The gluing data dictates which edges from which tetrahedra (∆) should be identified.

In [30], it was demonstrated that P2(∂M), L2(M) and its quantization L̂2(M) can be

constructed by ‘gluing’ the datum of each tetrahedron ∆i. For example, the boundary

phase space P2(∂M) can be constructed by the symplectic reduction,

P2(∂M) =

k∏
i=1

P2(∂∆i)

//
{CI = 0} . (4.5)

For a single tetrahedron ∆i, we assign the following ‘elementary’ phase space,

P2(∂∆i) = {(Z,Z ′i, Z ′′i ) : Zi + Z ′i + Z ′′i = iπ} with symplectic structure

{Z,Z ′} = {Z ′, Z ′′} = {Z ′′, Z} = ~ . (4.6)

3More precisely, the contour should lie slightly above the real axis in order not to touch a singularity at

the origin, X = 0.
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Figure 1. Edge variables (Z,Z ′, Z ′′) assigned to pairs of edges in a tetrahedron.

The variables (Z,Z ′, Z ′′) assigned to each pair of edges in ∆, see figure 1. Upon the

identification (3.14), the imaginary parts of the edge variables geometrically represent the

dihedral angles between the two faces meeting at each edge. The internal edges {CI} can

be expressed as linear sums of these edge variables according to the gluing data.

CI = (sum over all variables for edges meeting at the I-th internal edge)− 2πi . (4.7)

The condition CI = 0 guarantees that there is no conical singularity around each internal

edge. Classically, the Lagrangian L2(M) is the image of the product of the elementary

Lagrangians

L2(∆i) = {eZ′′i + e−Zi − 1 = 0} (4.8)

under the symplectic reduction (4.5). Upon quantization, the edge variables (Zi, Z
′
i, Z
′′
i )

are promoted to operators (Ẑi, Ẑ
′
i, Ẑ
′′
i ) acting on a suitable Hilbert space H(∂∆i). The

quantum counterpart of the symplectic reduction procedure (4.5) produces the quantum

Lagrangian L̂2(M) from its building blocks

L̂2(∆i) = {eẐ′′i + e−Ẑi − 1 ' 0} . (4.9)

An operator equation ‘Â ' 0’ means that there exists some state (ket-vector) |Ψ(M)〉 ∈
H(∂M) such that Â|Ψ(M)〉 = 0 holds.

Instead of reviewing the quantum symplectic reduction for L̂2(M), we will review

the reduction for the wave-function |ΨN=2(M)〉 annihilated by the operators contained in

L̂2(M). In a polarization Π = (χα, ξα)|α=1,..., 1
2

dimP(∂M) of P(∂M), a choice of decomposi-

tion of the coordinates on the phase space into “canonical coordinates” χ and “canonical

momenta” ξ, we define the PGL(2) “CS wave-function” as

ZCS
N=2(M ; Π)(χα) = 〈χα; Π|ΨN=2(M)〉 . (4.10)

Here |χα; Π〉 denote a position basis for the Hilbert-space HN=2(∂M) in the polarization

Π = (χ, ξ). In the path-integral representation of the CS wave-function (3.2), a choice of

polarization determines which components of gauge fields should be fixed at the boundary.

For a single tetrahedron, the CS wave-function in the polarization ΠZ := (Z,Z ′′) is given
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by a quantum dilogarithm function (QDL) [30],

ZCS
N=2(∆; ΠZ)(Z) = ψ~(Z) , where

ψ~(Z) =


∞∏
r=1

1− qre−Z

1− q̃−r+1e−Z̃
|q| < 1

∞∏
r=1

1− q̃re−Z̃

1− q−r+1e−Z
|q| > 1

(4.11)

with

q := e~ , q̃ := e~̃ := e−
4π2

~ , Z̃ =
2πi

~
Z . (4.12)

The QDL enjoys several interesting properties. It has following S-duality

ψ~(Z) = ψ~̃(Z̃) . (4.13)

It satisfies following difference equations

(e~∂Z + e−Z − 1)ψ~(Z) = 0 ,

(e~̃∂Z̃ + e−Z̃ − 1)ψ~(Z) = 0 . (4.14)

This property reflects the fact that the wave-function |ΨN=2(∆)〉 is annihilated by the

quantum Lagrangian in (4.9). The function is a meromorphic function with infinitely

many simple poles and simple zeros located at

simple zeros: 2πiZ>0 + ~Z>0 ,

simple poles: 2πiZ≤0 + ~Z≤0 . (4.15)

For other interesting properties of the QDL, see, e.g., section 3.3 in [44]. Polarizations

ΠZ′ := (Z ′, Z) and ΠZ′′ := (Z ′′, Z ′) are equvalent to ΠZ up to cyclic re-labelling of edge

variables. Therefore,

ZCS
N=2(∆; ΠZ′)(X) = ZCS

N=2(∆; ΠZ′′)(X) = ZCS
N=2(∆; ΠZ)(X) . (4.16)

To obtain the CS wave-function ZCS
N=2(M ; Π)(χα) using the tetrahedral decomposi-

tion (4.4), we first prepare the product of QDL’s for all k tetrahedra,

ZCS
N=2

(
k⋃
i=1

∆i; ΠX∆

)
(Xi) =

k∏
i=1

ψ~(Xi) . (4.17)

Here ΠX∆
denote the collection of the polarisation choice for the boundary phase space

of each tetrahedron ∆i, where the position variable (X∆)i is one of Z,Z ′ and Z ′′ and the

momentum (P∆)i is Z ′′, Z and Z ′, respectively. As a second step, we perform a polarization

transformation from ΠX∆
to a new one Π

X̃
= (X̃, P̃) where

X̃ = {CI , χα} , P̃ = {ΓI , ξα} . (4.18)
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Here {CI} are internal edge variables and {ΓI} are its conjugate momenta. Recall that

{χα} and {ξα} are position and momentum variables in our desired polarization Π. The

index I runs 1, . . . , k− 1
2dimP(∂M) and α = 1, . . . , dimP(∂M). In general, there are more

than k − 1
2dimP(∂M) internal edges but only that number of internal edges are linearly

independent. The polarization change can be accomplished by a combination of Sp(2k,Z)

transformation and affine shifts,

(
X̃

P̃

)
:=


C

~χ

Γ

~ξ

 =

(
A B

C D

)(
X∆

P∆

)
− iπ

(
ν

νp

)
. (4.19)

Here C denotes a vector of size k − 1
2dimP(∂M) whose elements are CI , and ~χ a vector

of size 1
2dimP(∂M) whose elements are χα. Other vectors in the expression are defined

in a similar way. The four k × k matrices A,B,C,D form a Sp(2k,Z) matrix. Under the

polarization transformation, the CS wave-function transforms as (see appendix C in [31]

for the derivation)

ZCS
N=2

(
k⋃
i=1

∆i; Π
X̃

)
(X̃)

=
1√

detB

∫
dkX

(2πi~)k/2
exp

[
−1

~
X̃ ·

(
iπ +

~
2

)
νp

+
1

2~

((
X̃+

(
iπ+

~
2

)
ν

)
·DB−1

(
X̃+

(
iπ+

~
2
ν

))
−2X ·B−1

(
X̃+

(
iπ+

~
2

)
ν

)

+ X ·B−1AX

)]
ZCS
N=2

(
k⋃
i=1

∆i; ΠX∆

)
(X) . (4.20)

Finally, applying the symplectic reduction {CI = 0} to the wave-function, we obtain the

CS wave-function for M ,

ZCS
N=2(M ; Π)(~χ) = ZCS

N=2

(
k⋃
i=1

∆i; Π
X̃

)
(C = 0; ~χ) . (4.21)

This formula is subject to some ambiguities, such as the arbitrariness for the choice of X∆

and the choice of C appearing in X̃. As a consequence, the CS wave-function is defined up

to an overall pre-factor of the following form (see appendix C.5 in [31])

exp

(
π2

6~
l +

iπ

4
m+

~
24
n

)
, l,m, n ∈ Z . (4.22)

Note that this factor is a pure phase when ~ = 2πib2 with real b. Since we will compare

the absolute value of ZCS with the gravity free energy, this ambiguity can be ignored.

For general PGL(N), we can still use the tetrahedral decomposition (4.4). But,

PN (∂∆) and LN (∆) are not so simple as in P2(∂∆) and L2(∆) (4.6). To construct PN (∂∆)

and LN (∆), we decompose a single tetrahedron ∆ into a pyramid of 1
6N(N2−1) octahedra

♦, as illustrated in figure 2. This is a 3d uplift of Fock and Goncharov’s construction [56]
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Figure 2. 1
6N(N2− 1) = 1 + (1 + 2) + (1 + 2 + 3) + . . .+ (1 + . . .+N − 1) octahedra form a single

PGL(N)-tetrahedron. The octahedra ♦(a,b,c,d) are labelled by four non-negative integers (a, b, c, d)

with a+ b+ c+ d = max := N − 2. The labeling rule can be understood from the figure.

on a Riemann surface and called N -decomposition (or octahedral decomposition) in [54].

Fock-Goncharov (FG) coordinates parameterize PGL(N) flat connection moduli space on

a Riemann surface using a tessellation for each triangle in a triangulation of the surface.

Quantization of the moduli space with a suitable symplectic form defines a cluster algebra

where the FG coordinates serve as so-called y-variables. An ideal tetrahedron is generated

by acting a flip in a 2d triangulation. In terms of the cluster algebra, a single flip corre-

sponds to sequence of 1
6N(N2− 1) mutations and each mutation corresponds to octahedra

in the N -decomposition. A single octahedron has the same basic (quantum) geometrical

data as a single PGL(2) tetrahedron.

P(∂♦) = PN=2(∂∆) , L(♦) = LN=2(∆) , L̂(♦) = L̂N=2(∆) . (4.23)

A difference is that the boundary phase space coordinates {Z,Z ′, Z ′′} are associated to

pairs of vertices of an octahedron as shown in figure 2. The 1
6N(N2 − 1) octahedra in a

PGL(N) tetrahedron are labelled by four non-negative integers (a, b, c, d) whose total sum

is N − 2. The labeling rule can be understood from figure 2. We can also read off the

‘internal vertices’ {Ca,b,c,d}a+b+c+d=N−2
a−1,b,c,d−1≥0 , where the vertices of several octahedra meet:

Ca,b,c,d = Za,b,c,d + Za−1,b+1,c+1,d−1 + Z ′a−1,b,c+1,d

+ Z ′a,b+1,c,d−1 + Z ′′a,b,c+1,d−1 + Z ′′a−1,b+1,c,d − 2πi . (4.24)
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In total, there are 1
6(N − 3)(N − 2)(N − 1) linearly independent internal vertices. Using

the N -decomposition, the PGL(N) boundary phase space PN (∂∆) can be constructed as

PN (∂∆) =

 ∏
(a,b,c,d)

P(∂♦(a,b,c,d))

//
{Ca,b,c,d = 0} . (4.25)

The dimension of the phase space is 2 × (1
6N(N2 − 1) − 1

6(N − 3)(N − 2)(N − 1)) =

2(N − 1)2. For a 3-manifold M composed of k tetrahedra, we need k
6N(N2− 1) octahedra

to construct PN (∂M).

PN (∂M) =

 k∏
i=1

∏
(a,b,c,d)

P(∂♦(i)
(a,b,c,d))

//
{C∗ = 0} . (4.26)

The octahedral gluing structure (including the internal edges {C∗}) can be read off by

carefully drawing the decomposition of M using k
6N(N2 − 1) octahedra. The Lagrangian

LN (∆ or M) can be constructed as the image of a product of octahedron Lagrangian

L(♦) = {eZ′′ + e−Z − 1 = 0} under the corresponding symplectic reduction. In sec-

tion 4.3.1, we will illustrate the idea with the figure-eight knot complement as an ex-

ample. Since the basic quantum geometrical structure of an octahedron is equivalent to

that of a PGL(2) tetrahedron, the PGL(N) CS ptn on M can be computed using the

recipe (4.17), (4.20), (4.21) for the PGL(2) CS ptn except that we replace the k tetrahedra

by k
6N(N2 − 1) octahedra accompanied by the gluing rules.

Let’s focus on the case when M is a hyperbolic knot complement. When the knot

complement can be decomposed into k tetrahedra, k
6N(N2 − 1) octahedra are necessary

for the N -decomposition and there are same number of internal edges in the octahedral

decomposition. Among these internal edges, N − 1 of them are not linearly independent.

The remaining N − 1 correspond to the boundary phase space of M whose dimension

is 2(N − 1) parametrized by PGL(N) holomonies around the two cycles, longitude and

meridian, at the boundary.

PN (∂M) =

 k∏
i=1

∏
(a,b,c,d)

P(∂♦(i)
(a,b,c,d))

//
{C∗ = 0}

= {m := Holmeridian(A), l := Hollongitude(A)}/PGL(N) . (4.27)

Classically, the matrices m and l commute. For quantization, we choose a polarization

of the boundary phase space such that meridian variables are positions and longitudinal

variables are momenta. In this polarization, the PGL(N) CS ptn depends on N−1 meridian

variables {µi} which parametrize m as in the eq. (3.12). Using (4.17), (4.20), (4.21), the

PGL(N) CS ptn at parabolic meridian (µi = 0) can be written as (MN := k
6N(N2 − 1))

ZCS
N (M)(µi = 0)

=
e

1
2~(iπ+ ~

2)
2
fNB

−1
N νN

√
detBN

∫ ∏k
i=1

∏
(a,b,c,d) dX

(i)
a,b,c,d

(2πi~)MN/2

× exp

[
−1

~

(
iπ +

~
2

)
X ·B−1

N νN +
1

2~
X ·B−1

N AN ·X
] k∏

i=1

∏
(a,b,c,d)

ψ~(X
(i)
a,b,c,d)

 .

(4.28)
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This is the main formula for the state-integral model which will be used rest part of this

paper. By re-scaling the integral variables X to bX, the symmetry b ↔ b−1 becomes

manifest using the S-duality property of the QDL (4.13). For later use, we write down the

integral using ‘combinatorial flattenings’ (f, f ′, f ′′)N . They are three integers associated

to each octahedron satisfying

AN · fN +BN · f ′′N = νN and (fN )
(i)
a,b,c,d + (f ′N )

(i)
a,b,c,d + (f ′′N )

(i)
a,b,c,d = 1 . (4.29)

These equations do not uniquely determine the flattenings but the ambiguity only affects a

pre-factor in the state-integral of the form (4.22) which is irrelevant in our discussion. To

write down the state-integral model we need to know the square-matrices (AN , BN ) of size

MN and an MN -column νN . In section 4.3.1, these datum will be explicitly constructed

for figure-eight knot complement M . For more knot (or link) complements, the PGL(N)

gluing datum is available in a recent version of SnapPy [57] up to N = 15.

4.2 Perturbative CS invariants from the state-integral model

Using the method of steepest descent, the asymptotic expansion of the state-integral (4.28)

in the small ~ limit can be studied. We use the following asymptotic expansion of the

QDL (4.11),4

logψ~(X) =

∞∑
n=0

Bn~n−1

n!
L̃i2−n(e−X) , as ~→ 0 , (4.30)

where Bn is n-th Bernoulli’s number (B0 = 1, B1 = 1
2 , . . .). The functions L̃ik with non-

negative k are defined by polylogarithm functions Lik

L̃ik(e
−X) = Lik(e

−X) , k = 0,−1,−2, . . . (4.31)

which are entire functions on X. The functions L̃ik=1,2(X) are equal to Lik=1,2(e−X) with

the standard choice of branch-cuts when 0 < Im(X) < 2π or Re(X) > 0. For Re(X),

L̃ik=1,2 are obtained from Lik=1,2(e−X) by aligning the branch-cuts along the imaginary

axis. The branch-cuts are illustrated in figure 9 of [31]. For practical purposes, one use the

following relations to evaluate L̃ik=1,2:

L̃i1(e−X)− Li1(e−X) =

{
2πi

[
Im(X)
(2π)

]
− 2π2

[
Im(X)
(2π)

] ([
Im(X)
(2π)

]
+ 1
)
, if Re(X) < 0 ,

0, if Re(X) > 0 .

L̃i2(e−X)− Li2(e−X) =

{
−2πiX

[
Im(X)
(2π)

]
, if Re(X) < 0 ,

0, if Re(X) > 0 .
(4.32)

Here [x] denotes the floor of x, e.g. [3/2] = 1. Physically, the branch-cut for L̃i1,2(e−X)

comes from colliding poles and zeros of the QDL (4.15) when ~ = 2πib2 → 0 with real b.

In the limit ~→ 0, the saddle point equations for the state-integral are

AN ·X +BN ·X′′ = iπνN . (4.33)

4The notation L̃ik(e−X) is misleading. They are really functions of X rather than of e−X [31].
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where X ′′ := −L̃i1(X). Restricted on 0 < Im(X) < π, the equations are equivalent to the

gluing equations for the vertex variables of the octahedra in the N -decomposition:

internal vertex conditions: C∗({Z,Z ′, Z ′′}) = 0 ,

meridian conditions: µi({Z,Z ′, Z ′′}) = 0 ,

with Z + Z ′ + Z ′′ = iπ and eZ
′′

+ e−Z − 1 = 0 .

(4.34)

The vertex variables {Z,Z ′, Z ′′} satisfying the gluing equations can be mapped to a saddle

point X as follows (X ′ := iπ −X −X ′′)

(X,X ′, X ′′)γ = (Z,Z ′, Z ′′)γ if (X♦, P♦)γ = (Z,Z ′′)γ ,

(X,X ′, X ′′)γ = (Z ′, Z ′′, Z)γ if (X♦, P♦)γ = (Z ′, Z)γ ,

(X,X ′, X ′′)γ = (Z ′′, Z, Z ′)γ if (X♦, P♦)γ = (Z ′′, Z ′)γ . (4.35)

The index γ = 1, . . . ,MN labels MN octahedra ♦(i)
(a,b,c,d) in the N -decomposition. The

perturbative expansion of the state-integral can be written as

ZCS
N (M ;α) ' 1

~3/2
exp

(
1

~
S

(α)
0 + S

(α)
1 + . . . ~n−1S(α)

n + . . .

)
, as ~→ 0 . (4.36)

Here ZCS
N (M ;α) is the state-integral (4.28) along the Lefschetz thimble Jα associated to a

saddle point X(α). Schematically, the state-integral is of the form∫
dMNX eI(X) . (4.37)

We denote the real part of I(X) by h(X) and consider the downward flow equations,

dX

dt
= − ∂h

∂X
,

dX

dt
= − ∂h

∂X
. (4.38)

Similarly, upward flow equations can be defined by reversing the signs in the above. Along

the downward (upward) flow, the real part h always decreases (increases) while the imagi-

nary part Im(I) remains constant. The Jα is a set of points in CMN that can be reached at

any t by a downward flow starting from X(α) at t = −∞. It defines a middle dimensional

contour in CMN satisfying the two conditions:

1. The phase of the integrand stays constant along Jα,

2. X(α) ∈ Jα maximizes the absolute value of the integrand along Jα. (4.39)

The integration along Lefschetz thimbles Jα are always convergent and they provide a

basis of convergent contour. For any convergent contour C,

C =
∑
α

mαJα , which means

∫
C
dX eI =

∑
α

mα

∫
Jα
dX eI . (4.40)
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The coefficients mα can be determined by counting upward flows that start from X(α) to

C [58]. The perturbative expansion coefficients {S(α)
n } can be computed using a saddle

point approximation [31]

S
(α)
0 = −1

2
(X− iπfN ) · (X′′ + iπf ′′N ) +

M∑
i=1

Li2(e−Xi)

∣∣∣∣∣
X=X(α)

,

S
(α)
1 = −1

2
log

((∏
γ

x
f ′′γ
γ (x′′γ)−fγ

)
det(AN ·∆x′′ +BN ·∆x−1)

)∣∣∣∣∣
X=X(α)

,

S
(α)
2 =

1

8
Γ(4)
γ (Πγγ)2 +

1

8
ΠγγΓ(3)

γ ΠγδΓ
(3)
δ Πδδ +

1

12
Γ(3)
γ (Πγδ)

3Γ
(3)
δ +

1

2
Γ(1)
γ ΠγδΓ

(3)
δ Πδδ

+
1

2
Γ(2)Πγγ +

1

2
Γ(1)
γ ΠγδΓ

(1)
δ + Γ(0)

∣∣∣∣
X=X(α)

,

S
(α)
3 = (see figure 2 and 3 of [31]). (4.41)

Here ∆x′′ := diag{x′′1, x′′2, . . . , x′′MN
} and ∆x−1 := diag{x−1

1 , . . . , x−1
MN
} with x := eX , x′ :=

eX
′

= (1 − x)−1 and x′′ := eX
′′

= (1 − x−1). Summation over repeated indices (β, γ) are

assumed. Propagator and interaction vertices from the state-integral (4.28) are

Π := (−B−1
N ·AN + ∆x′)

−1 , (propagator)

Γ(0) =
1

8
fTNB

−1
N ANfN −

1

12

∑
γ

x′γ , Γ(1)
γ :=

x′γ − (B−1
N νN )γ

2
, Γ(2)

γ :=
1

2
xγ(x′γ)2 ,

Γ(3)
γ := −xγ(x′γ)2 , Γ(4)

γ := −xγ(1 + xγ)(x′γ)3 , (vertices) . (4.42)

Higher invariants {S(α)
n }n≥3 can also be expressed in terms of generalized Neunmann-Zagier

datum {AN , BN ,X(α), fN , f
′
N , f

′′
N} using the Feynman rules in [31]. For example, we need

to consider 40 Feynmann diagrams depicted in figure 1, 2 and 3 in [31] to compute the

3-loop invariant S3. In general, there are several saddle points X(α) satisfying (4.33) and

from the saddle points X(α), PGL(N) flat connections A(α) can be constructed [52–54].

Under the identification (4.35), a saddle point X(conj) corresponding to A(conj) (3.15) is

characterized by two properties:

1. Vertex variables (Z,Z ′, Z ′′) are constant on octahedra in each tetrahedron, i.e.

Z
(i)
(a,b,c,d) = Z

(j)
(a′,b′,c′,d′) if i = j.

2. 0 < Im(Zγ), Im(Z ′γ), Im(Z ′′γ ) < π, for all γ. (4.43)

The first property is true for every saddle points X(α) whose corresponding PGL(N) flat

connections A(α) can be constructed by embedding a PGL(2) flat connection through the

N -dimensional irreducible representation of PGL(2). By imposing these two conditions,

the saddle point equations are reduced to the gluing equations (4.34) for N = 2. A solution

to the these gluing equations for N = 2 is called positive angle structure and known to give
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a complete hyperbolic structure on a knot complement M .5 Mostow’s rigidity theorem

guarantee the uniqueness of the positive angle structure for hyperbolic knot complements

M if it exists. Existence of the structure depends on the ideal triangulation of the 3-

manifold and we will always use a triangulation T which admits the structure. Among

saddle points, the saddle point X(conj) minimizes the imaginary part of S0.

Im[S
(conj)
0 ] ≤ Im[S

(α)
0 ] , for any (α) . (4.44)

To prove the assumption (3.7) using the state-integral model, it is necessary and sufficient

to show that

mα 6= 0 if and only if (α) = (conj) , where CR =
∑
α

mαJα . (4.45)

For some simplest cases, the upward flow from X(conj) to CR can be explicitly constructed

and it can be shown that mα = 0 for (α) 6= (conj). See appendix A. If a upward flow

connecting A(conj) to CR for N = 2 is constructed, then upward flow for general N can

be constructed as (Z,Z ′, Z ′′)
(i)
(a,b,c,d)(t) = (Z,Z ′, Z ′′)

(i)
N=2(t). The upward flow analysis gets

much harder as the number of integral variables increases and we leave the proof of (4.45)

for general cases as future problem.

4.3 Numerical checks for the conjecture (3.19)

4.3.1 Figure-eight knot complement

The figure-eight knot complement, M = S3\41, can be decomposed into two ideal tetrahe-

dra as depicted in figure 3. Decomposing each tetrahedron into a pyramid of 1
6N(N2 − 1)

octahedra, we obtain the N -decomposition of M . The vertex variables of the octahe-

dra in the first tetrahedron are denoted by Z
(1)
(a,b,c,d) = Y(a,b,c,d) and the other one by

Z
(2)
(a,b,c,d) := Z(a,b,c,d). For N = 4, the octahedral decomposition is depicted in figure 3. In

general there are three types of internal vertices:

• “Edge” type: located on edges of tetrahedra,

• “Face” type: located on faces of tetrahedra,

• “Interior” type: located inside tetrahedra.

Internal vertices of edge and face type depend on the gluing data (4.4) of tetrahedra while

internal vertices of interior type do not.

5The gluing equations describe how to glue ideal tetrahedra without any conical singularity by tuning

the shape (edge variable Z,Z′, Z′′) of each tetrahedron to form the 3-manifold M . The conditions 0 <

Im(Z,Z′, Z′′) < π,Z + Z′ + Z′′ = iπ and eZ
′′

+ e−Z − 1 = 0 are necessary for an ideal tetrahedron to be

embedded in the hyperbolic space H3. Since each ideal tetrahedron in H3 has a hyperbolic structure, a

solution to the gluing equations defines a smooth hyperbolic structure on M . Additional meridian condition

guarantees the completeness of the hyperbolic metric.
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Figure 3. N -decomposition of figure-eight knot complement when N = 4. Three slices of the

torus boundary are drawn. In each slice, horizontal and vertical directions are periodic. From the

diagram, internal vertices and meridian variables {µi}3i=1 can be read. For example, the internal

vertex in red color at the 3rd slice is C◦ = Z ′′0,0,2,0+Z ′0,1,1,0+Z0,0,1,1+Y ′1,0,0,1+Y0,0,1,1+Y ′′0,0,0,2−2πi.

For N = 2, there are two internal vertices

C1 = Y0,0,0,0 + 2Y ′0,0,0,0 + Z0,0,0,0 + 2Z ′0,0,0,0 − 2πi ,

C2 = Y0,0,0,0 + 2Y ′′0,0,0,0 + Z0,0,0,0 + 2Z ′′0,0,0,0 − 2πi .

Both of them are of edge type and there is no internal vertices of face or interior type. The

two vertices are linearly dependent, C1 + C2 = 0. The single meridian variable is

µ = Z ′0,0,0,0 − Y ′′0,0,0,0 .

We choose the position variables X̃ in (4.19) to be X̃ = {C2, µ} and the polarization of

each octahedron to be ΠX♦ = (X♦ = {Y ′0,0,0,, Z0,0,0,0},P♦ = {Y0,0,0,, Z
′′
0,0,0,0}). Then the

data A,B and ν in (4.19) are

AN=2 =

(
−2 1

1 −1

)
, BN=2 =

(
−1 2

1 −1

)
, νN=2 =

(
0

0

)
. (4.46)
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For N = 3, the octahedral gluing equations are studied in sec 7.4. of [14]. There are

8 internal vertices (no interior type)

Edge type: Y0,0,0,1 + Y ′0,0,0,1 + Y ′0,1,0,0 + Z0,0,1,0 + Z ′0,0,1,0 + Z ′1,0,0,0 − 2πi ,

Y1,0,0,0 + Y ′0,0,1,0 + Y ′1,0,0,0 + Z0,1,0,0 + Z ′0,0,0,1 + Z ′0,1,0,0 − 2πi ,

Y0,1,0,0 + Y ′′0,1,0,0 + Y ′′1,0,0,0 + Z0,0,0,1 + Z ′′0,0,0,1 + Z ′′0,0,1,0 − 2πi ,

Y0,0,1,0 + Y ′′0,0,0,1 + Y ′′0,0,1,0 + Z1,0,0,0 + Z ′′0,1,0,0 + Z ′′1,0,0,0 − 2πi . (4.47)

Face type: Y0,0,1,0 + Y ′1,0,0,0 + Y ′′0,0,0,1 + Z0,0,0,1 + Z ′0,1,0,0 + Z ′′0,0,1,0 − 2πi ,

Y0,1,0,0 + Y ′0,0,0,1 + Y ′′1,0,0,0 + Z1,0,0,0 + Z ′0,0,1,0 + Z ′′0,1,0,0 − 2πi ,

Y1,0,0,0 + Y ′0,0,1,0 + Y ′′0,1,0,0 + Z0,0,1,0 + Z ′1,0,0,0 + Z ′′0,0,0,1 − 2πi ,

Y0,0,0,1 + Y ′0,1,0,0 + Y ′′0,0,1,0 + Z0,1,0,0 + Z ′0,0,0,1 + Z ′′1,0,0,0 − 2πi . (4.48)

The two meridian variables are

µ1 = −Y ′′0,0,0,1 + Z ′1,0,0,0 ,

µ2 = −Y ′′0,1,0,0 + Z ′0,0,0,1 + Z ′0,0,1,0 − Z ′1,0,0,0 . (4.49)

We choose the position variables X̃ in (4.19) as follows

X̃ = {all internal vertices of edge type except the 1st one

all internal vertices of face type except the 1st one ,

meridian variables µ1 and µ2} . (4.50)

One can see that all elements of X̃ are linearly independent. In this choice, (A3, B3, ν3)

in (4.19) are ν3 = ~0 and

A3 =



0 1 0 1 0 0 −1 0

−1 0 0 −1 0 0 1 0

0 −1 −1 0 0 0 0 1

0 0 1 −1 0 −1 0 1

−1 1 0 0 0 1 0 −1

1 −1 0 0 1 0 −1 0

0 0 1 0 0 0 0 −1

1 0 0 0 0 −1 −1 1


, B3 =



0 0 0 1 −1 0 −1 0

0 0 0 −1 0 1 1 0

0 0 −1 0 1 0 0 1

1 0 0 −1 1 −1 0 0

−1 0 0 1 0 0 1 −1

0 −1 1 0 0 0 −1 1

0 0 1 0 0 0 0 −1

1 0 0 0 0 −1 −1 1


.

(4.51)

Here, we choose X♦ = {Y ′0,1,0,0, Y ′0,0,1,0, Y ′0,0,0,1, Y ′1,0,0,0, Z0,1,0,0, Z0,0,1,0, Z0,0,0,1, Z1,0,0,0} and

P♦ = {Y0,1,0,0, Y0,0,1,0, Y0,0,0,1, Y1,0,0,0, Z
′′
0,1,0,0, Z

′′
0,0,1,0, Z

′′
0,0,0,1, Z

′′
1,0,0,0}.

For N = 4, there are 20 internal vertices.

Edge type: Y0,0,0,2 + Y ′0,0,0,2 + Y ′0,2,0,0 + Z0,0,2,0 + Z ′0,0,2,0 + Z ′2,0,0,0 − 2πi ,

Y1,0,0,1 + Y ′0,0,1,1 + Y ′1,1,0,0 + Z0,1,1,0 + Z ′0,0,1,1 + Z ′1,1,0,0 − 2πi ,

Y2,0,0,0 + Y ′0,0,2,0 + Y ′2,0,0,0 + Z0,2,0,0 + Z ′0,0,0,2 + Z ′0,2,0,0 − 2πi ,
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Y0,2,0,0 + Y ′′0,2,0,0 + Y ′′2,0,0,0 + Z0,0,0,2 + Z ′′0,0,0,2 + Z ′′0,0,2,0 − 2πi ,

Y0,1,1,0 + Y ′′0,1,0,1 + Y ′′1,0,1,0 + Z1,0,0,1 + Z ′′0,1,0,1 + Z ′′1,0,1,0 − 2πi ,

Y0,0,2,0 + Y ′′0,0,0,2 + Y ′′0,0,2,0 + Z2,0,0,0 + Z ′′0,2,0,0 + Z ′′2,0,0,0 − 2πi . (4.52)

Interior type: Z0,1,1,0 + Z1,0,0,1 + Z ′0,0,1,1 + Z ′1,1,0,0 + Z ′′0,1,0,1 + Z ′′1,0,1,0 − 2πi ,

Y0,1,1,0 + Y1,0,0,1 + Y ′0,0,1,1 + Y ′1,1,0,0 + Y ′′0,1,0,1 + Y ′′1,0,1,0 − 2πi . (4.53)

Face type: Y0,0,1,1 + Y ′1,0,0,1 + Y ′′0,0,0,2 + Z0,0,1,1 + Z ′0,1,1,0 + Z ′′0,0,2,0 − 2πi ,

Y1,0,1,0 + Y ′2,0,0,0 + Y ′′1,0,0,1 + Z0,0,0,2 + Z ′0,1,0,1 + Z ′′0,0,1,1 − 2πi ,

Y0,0,2,0 + Y ′1,0,1,0 + Y ′′0,0,1,1 + Z0,1,0,1 + Z ′0,2,0,0 + Z ′′0,1,1,0 − 2πi ,

Y0,2,0,0 + Y ′0,1,0,1 + Y ′′1,1,0,0 + Z1,0,1,0 + Z ′0,0,2,0 + Z ′′0,1,1,0 − 2πi ,

Y1,1,0,0 + Y ′1,0,0,1 + Y ′′2,0,0,0 + Z1,1,0,0 + Z ′0,1,1,0 + Z ′′0,2,0,0 − 2πi ,

Y0,1,0,1 + Y ′0,0,0,2 + Y ′′1,0,0,1 + Z2,0,0,0 + Z ′1,0,1,0 + Z ′′1,1,0,0 − 2πi ,

Y1,0,1,0 + Y ′0,0,2,0 + Y ′′0,1,1,0 + Z1,0,1,0 + Z ′2,0,0,0 + Z ′′1,0,0,1 − 2πi ,

Y1,1,0,0 + Y ′0,1,1,0 + Y ′′0,2,0,0 + Z0,0,2,0 + Z ′1,0,1,0 + Z ′′0,0,1,1 − 2πi ,

Y2,0,0,0 + Y ′1,0,1,0 + Y ′′1,1,0,0 + Z0,0,1,1 + Z ′1,0,0,1 + Z ′′0,0,0,2 − 2πi ,

Y0,0,1,1 + Y ′0,1,1,0 + Y ′′0,0,2,0 + Z0,2,0,0 + Z ′0,1,0,1 + Z ′′1,1,0,0 − 2πi ,

Y0,0,0,2 + Y ′0,1,0,1 + Y ′′0,0,1,1 + Z1,1,0,0 + Z ′1,0,0,1 + Z ′′2,0,0,0 − 2πi ,

Y0,1,0,1 + Y ′0,2,0,0 + Y ′′0,1,1,0 + Z0,1,0,1 + Z ′0,0,0,2 + Z ′′1,0,0,1 − 2πi . (4.54)

The three meridian variables are (see figure 3)

µ1 = −Y ′′0,0,0,2 + Z ′2,0,0,0 , µ2 = −Y ′′0,1,0,1 + Z ′1,0,0,1 + Z ′1,0,1,0 − Z ′2,0,0,0
µ3 = −Y ′′0,2,0,0 + Z ′0,0,0,2 + Z ′0,0,1,1 + Z ′0,0,2,0 − Z ′1,0,0,1 − Z ′1,0,1,0 . (4.55)

We choose the position variables X̃ in (4.19) as follows

X̃ = {all internal vertices of edge type except the 1st and 2nd,

all internal vertices of face type except the 1st,

all internal vertices of interior type,

meridian variables µ1, µ2 and µ3}. (4.56)

One can check that the elements of X̃ are linearly independent. The 20 × 20 matrices

(A4, B4) and the vector ν4 can be straightforwardly obtained with a proper choice of ΠX♦ =

(X♦,P♦).

For general N , there are 1
3N(N2 − 1) internal vertices in the N -decomposition of

figure-eight knot complement.

Edge type: a = 0, 1, . . . ,max := N − 2

Z0,a,max−a,0 + Z ′0,0,max−a,a + Z ′max−a,a,0,0 + Y ′a,max−a,0,0 + Y ′0,0,a,max−a + Ya,0,0,max−a − 2πi,

Z ′′a,0,max−a,0 + Z ′′0,a,0,max−a + Za,0,0,max−a + Y ′′max−a,0,a,0 + Y ′′0,max−a,0,a + Y0,max−a,a,0 − 2πi .
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Face type: a, b ≥ 0, a+ b ≤ max− 1

Z0,a,max−1−a−b,1+b + Z ′0,1+a,max−1−a−b,b + Z ′′0,a,max−a−b,b

+ Yb,0,1+a,max−1−a−b + Y ′1+b,0,a,max−1−a−b + Y ′′b,0,a,max−a−b − 2πi ,

Z1+a,b,max−1−a−b,0 + Z ′′a,1+b,max−1−a−b,0 + Z ′a,b,max−a−b,0

+ Yb,max−a−b,0,a + Y ′b,max−1−a−b,0,1+a + Y ′′1+b,max−1−a−b,0,a − 2πi ,

Zmax−1−a−b,0,1+b,a + Z ′max−a−b,0,b,a + Z ′′max−1−a−b,0,b,1+a

+ Y1+a,b,max−1−a−b,0 + Y ′′a,1+b,max−1−a−b,0 + Y ′a,b,max−a−b,0 − 2πi ,

Zb,max−a−b,0,a + Z ′b,max−1−a−b,0,1+a + Z ′′1+b,max−1−a−b,0,a

+ Y0,a,max−1−a−b,1+b + Y ′0,1+a,max−1−a−b,b + Y ′′0,a,max−a−b,b − 2πi .

Interior type: a− 1, b, c, d− 1 ≥ 0, a+ b+ c+ d = max

Za,b,c,d + Za−1,b+1,c+1,d−1 + Z ′a−1,b,c+1,d + Z ′a,b+1,c,d−1 + Z ′′a,b,c+1,d−1 + Z ′′a−1,b+1,c,d − 2πi ,

Ya,b,c,d + Ya−1,b+1,c+1,d−1 + Y ′a−1,b,c+1,d + Y ′a,b+1,c,d−1 + Y ′′a,b,c+1,d−1 + Y ′′a−1,b+1,c,d − 2πi .

There are N − 1 meridian variables {µi}N−1
i=1

µi =

i−1∑
k=0

Z ′N−1−i,0,i−1−k,k −
i−2∑
k=0

Z ′N−i,0,i−k−2,k − Y ′′0,i−1,0,N−1−i . (4.57)

We choose the position variables X̃ in (4.19) as follows

X̃ = {all internal vertices of edge type except [N/2] entries,

all internal vertices of face type except [(N − 1)/2] entries,

all internal vertices of interior type,

all meridian variables}.

Here [x] denote the floor of x, e.g. [3
2 ] = 1. We need to carefully decide which internal

vertices should be abandoned in order to make the set X̃ linearly independent. With a

choice of octahedron’s polarization ΠX♦ = (X♦,P♦), the datum (AN , BN , νN ) in (4.19)

can be straightforwardly calculated. One subtle thing is that BN is not invertible for a

general choice of ΠX♦ . The state-integral in (4.28) make sense only when the matrix BN
is invertible. We need to carefully choose the octahedron’s polarization ΠX♦ such that BN
is non-degenerate, which is always possible as shown in [31].

The saddle point X(conj) satisfying the two conditions in (4.43) and the flattenings

(f, f ′, f ′′)N (4.29) are given by (under the identification (4.35))

Ya,b,c,d = Y ′a,b,c,d = Y ′′a,b,c,d = Za,b,c,d = Z ′a,b,c,d = Z ′′a,b,c,d = iπ/3 ,

(f, f ′, f ′′)
(Y )
(a,b,c,d) =


(0, 0, 1) if (X♦, P♦)

(Y )
(a,b,c,d) = (Y, Y ′′)(a,b,c,d)

(0, 1, 0) if (X♦, P♦)
(Y )
(a,b,c,d) = (Y ′, Y )(a,b,c,d)

(1, 0, 0) if (X♦, P♦)
(Y )
(a,b,c,d) = (Y ′′, Y ′)(a,b,c,d)

,
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(f, f ′, f ′′)
(Z)
(a,b,c,d) =


(0, 1, 0) if (X♦, P♦)

(Z)
(a,b,c,d) = (Z,Z ′′)(a,b,c,d)

(1, 0, 0) if (X♦, P♦)
(Z)
(a,b,c,d) = (Z ′, Z)(a,b,c,d)

(0, 0, 1) if (X♦, P♦)
(Z)
(a,b,c,d) = (Z ′′, Z ′)(a,b,c,d)

. (4.58)

From the Neunmann-Zagier datum {AN , BN ,X(conj), fN , f
′
N , f

′′
N} for the N -decomposition,

it is straightforward to compute the perturbative invariants {S(conj)
n (N)} for the figure-eight

knot complement using the formula in eq. (4.41). The classical part yields

Im[S
(conj)
0 (N)] = Im

[MN∑
i=1

Li2(e−Xi)

]

= Im

[
1

3
N(N2 − 1)Li2(e−iπ/3)

]
= −1

6
N(N2 − 1) vol(S3\41) , (4.59)

where we used the fact that vol(S3\41) = −2 Im(Li2(e−iπ/3)). This is compatible

with (3.17). The one-loop invariants are

Re[S
(conj)
1 (N)] := Re

[
−1

2
log det

(
eiπ/3AN + e−iπ/3BN

)]
for N = 2, . . . , 30

= {−0.274653,−1.52226,−4.68107,−10.4071,−19.338,−32.13,−49.4353,

−71.902,−100.178,−134.909,−176.745,−226.33,−284.312,−351.337,

−428.0517,−515.10336,−613.1371,−722.7996,−844.7372,−979.5963,

−1128.023,−1290.6635,−1468.1641,−1661.171,−1870.3305,

−2096.2886,−2339.6916,−2601.1856,−2881.4169} .

Their third-difference sequence Re[S
′′′
1 (N)] is6

Re[S
′′′
1 (N)] for N = 2, . . . , 27

= {−0.655958,−0.637856,−0.655893,−0.652562,−0.647830,−0.647560,−0.647428,

− 0.647022,−0.646783,−0.646649,−0.646543,−0.646462,−0.646402,−0.646356,

− 0.646319,−0.646291,−0.646267,−0.646248,−0.646233,−0.646220,−0.646209,

− 0.646200,−0.646192,−0.646186,−0.646180,−0.646174} .

Note that the sequence rapidly converges to a constant value −0.6461 . . . which is very

close to − 1
π vol(S3\41) = −0.646132 . . ., as depicted in figure 4. From this analysis, we

numerically confirm that

Re[S1(N)] = −N
3

6π
vol(S3\41) + (sub-leading in 1/N) as N →∞ . (4.60)

6S
′′′
1 (N) := S

′′
1 (N+1)−S

′′
1 (N), S

′′
1 (N) := S

′
(N+1)−S

′
(N) and S

′
1(N) := S

(conj)
1 (N+1)−S(conj)

1 (N).
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y = vol IS3 \41M

-ΠReAS1 ' ' ' HNLE

4 Π
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Figure 4. As N grows, both −πRe[S
′′′

1 (N)] and 4π2Im[S
′′′

2 (N)] quickly approach vol(S3\41) ≈
2.02988. This gives a numerical evidence for the conjecture (3.19) for M = S3\41 when n = 1, 2.

The two-loop invariants S
(conj)
2 (N) are

Im[S
(conj)
2 (N)] for N = 2, . . . 20

= {0.0882063, 0.289984, 0.618779, 1.13059, 1.89451, 2.96776, 4.40130, 6.24658,

8.55519, 11.3786, 14.7680, 18.7749, 23.4506, 28.8465, 35.0139, 42.0042, 49.8689,

58.6593, 68.4268} .

and their third-difference sequence is

Im[S
′′′
2 (N)] for N = 2, . . . 17

= {0.0560005, 0.0690888, 0.0572193, 0.0509708, 0.0514399, 0.0516042, 0.0513983,

0.0513494, 0.0513577, 0.0513623, 0.0513673, 0.0513741, 0.0513805, 0.0513860,

0.0513907, 0.0513947} .

The sequence rapidly approaches the value 0.0514 . . . which is very close to the number
1

(2π)2 vol(S3\41) = 0.0514175 . . ., see figure 4. Thus we numerically confirm that

Im[S
(conj)
2 (N)] =

N3

24π2
vol(S3\41) + (sub-leading in 1/N) as N →∞ . (4.61)

The three-loop invariants are

S
(conj)
3 (N) for N = 2, . . . 9

= {−0.0185185,−0.0362503,−0.0425853,−0.0396434,−0.0348546,−0.0312819,

− 0.0284423,−0.0260191} .

The first term equals −1/54 and matches the result in [31]. Although it is difficult to figure

out the leading behavior of S3 at large N from this data, it seems very likely that

lim
N→∞

S
(conj)
3 (N)

N3
= 0 . (4.62)

The results (4.59), (4.60), (4.61), (4.62) together confirm the conjecture (3.19) for M =

S3\41 up to n = 3.
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Figure 5. As N grows, −πRe[S
′′′

1 (N)] and 4π2Im[S
′′′

2 (N)] for various knot complements M = S3\K
quickly approach vol(M) (dashed line). This phenomenon serves as a numerical evidence for the

conjecture (3.19) at n = 1, 2 for K = 52, 61, 62, 63, 73.

4.3.2 Other knot complements

Explicit expressions for internal vertices and meridian variables in the N -decomposition of

various knot complements in terms of the octahedra’s vertex variables are available in the

recent version of SnapPy up to N = 15. From these information, it is straightforward to

obtain generalized Neunmann-Zagier datum {AN , BN , X(conj)fN , f
′
N , f

′′
N} and calculate the

perturbative invariants S
(conj)
n (N). For five examples of knot complements (M = S3\K,

K = 52, 61, 62, 63, 73), we have computed S
(conj)
1,2 (N) up to N = 12 ∼ 15. To read off the

leading N3-term of these invariants, we plot its third difference sequences in N ; see figure 5.

5 Discussion

We have studied the large N behavior of 3d TN [M ] theory by computing the free energy

on a squashed 3-sphere S3
b . The computation has been done indirectly either by using

holography (section 2) or by using the 3d-3d correspondence (section 3). We have ob-

tained strong evidences, partly analytic and partly numerical, for perfect agreement of

the two results. However, both calculations come with some caveats. In the holographic

computation, the supergravity solution in [22] is strictly valid when M is compact, and

should be modified when M is a knot (or link) complement. We assumed that the subtle

modification due to the cusp boundary of M would not affect the leading N3-term of the

free energy. In a related context, the leading N -dependence of the theory of class S was

shown to be insensitive to punctures on Riemann surfaces [9]. In the computation using the

3d-3d correspondence, on the other hand, we relied on two non-trivial assumptions, (3.7)

and (3.8), to arrive at our main conjecture (3.19) on the perturbative expansion of the

PGL(N) CS theory. Although we have given strong evidences using the state-integral, it

would be desirable to find alternative, independent ways to verify these assumptions and

the main conjecture.

Our analysis can be extended by adding defects into the system as studied in [59]. One

can consider an M2 brane wrapped on AdS2×γ, where γ is a one-cycle in M . These defects
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correspond to line defects in the TN [M ] theory. There are two types of supersymmetric

line operators W and W̃ for generic b, located along the curves at z = 0 and w = 0 in

S3
b (3.4). In the 3d-3d correspondence, these line operators might correspond to Wilson loop

operators along γ in PGL(N) CS theory on M . Wilson loops constructed from holomorphic

gauge field A and anti-holomorphic gauge field Ā correspond to line operators W and W̃,

respectively. Using the gravity solution in section 2, one can holographically determine the

dependence of the Wilson loop expectation values on N and γ at large N ,

log |〈W(γ;N)〉b| ∝ N × `(γ)× (1 + b2) ,

log |〈W̃(γ;N)〉b| ∝ N × `(γ)× (1 + b−2) , (5.1)

where `(γ) denotes the hyperbolic length of γ. The b-dependence was studied in [60].

Again, the dependence on ~ := 2πb2 is interesting; it predicts that at large N the Wilson

loop expectation values in PGL(N) CS theory are captured by classical and one-loop

calculations. The dependence N × `(γ) in the classical (~0) term can be easily understood

in terms of PGL(N) CS theory. The classical part is nothing but the the Wilson loops

evaluated at the saddle point A(conj), which give

〈W(γ;N)〉~0 = Tr Holγ(A(conj)) = Tr ρN

(
diag(e`(γ)/2+iδ(γ), e−`(γ)/2−iδ(γ))

)
,

= exp ((N − 1)(`/2 + iδ)) + . . .+ exp (−(N − 1)(`/2 + iδ)) . (5.2)

Here eiδ(γ) is a phase factor. The imaginary part of A(conj)
N=2 is constructed using vielbein

e and integration of the flat connection along γ gives a holomony whose eigenvalues are

e±
1
2
`(γ) up to a phase factor. The first term is dominant at large N and it explains the

N × `(γ) behavior in the ~0 order. It would be nice if one can check the N × `(γ) behavior

in the ~1 order from a direct one-loop computation of Wilson loop expectation values in

PGL(N) CS theory.
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A Upward flows in state-integral

When M is the figure-eight knot complement (S3\41) and N = 2, the state-integral is

ZCS
N=2(~;M) =

∫
CR

dXdY

2πi~
exp

(
−1

~
XY

)
ψ~(X)ψ~(Y ) . (A.1)

– 31 –



J
H
E
P
0
4
(
2
0
1
5
)
0
9
1

ææ

xx

-0.2 0.0 0.2 0.4 0.6

0.0

0.5

1.0

1.5

Figure 6. An upward flow (red line) from a saddle point (X(conj), Y (conj)) (black dot) to CR (blue

line). The flow (X(t), Y (t)) is located on the hyperplane X = Y and the figure shows the curve

X(t) on a complex plane C. The zigzag line represents the branch cut for L̃i1(e−X).

In the limit ~ = 2πib2 → 0 with real b, the logarithm of the integrand is

I(X,Y ) ' 1

2πib2

(
−XY + L̃i2(e−X) + L̃i2(e−Y )

)
+ o(b0)

:=
1

2πib2
W̃(X,Y ) + o(b0) . (A.2)

There is only one ‘classical’ saddle point (X(conj), Y (conj)) satisfying ∂XW̃ = ∂Y W̃ = 0,

X(conj) = Y (conj) = iπ/3 . (A.3)

There exists an upward flow from the saddle point to CR as shown in the figure 6.

When M is S3\52, the 3-manifold can be triangulated using three tetrahedra. For

N = 2, the twisted potential is

W̃ =− iπ(X + Y + Z) +
1

2

(
X2 + Y 2 + Z2 + 2XY + 2Y Z

)
+ L̃i2(e−X) + L̃i2(e−Y ) + L̃i2(e−Z) . (A.4)

There are two classes of classical saddle points,

(X,Y, Z)
(conj)
k = (−0.1406 + 0.703858i, 0.421799 + 1.03002i,−0.1406 + 0.703858i)

+ 2πi(k, 0,−k) , k ∈ Z

(X,Y, Z)
(geom)
k = (X,Y , Z)(conj) . (A.5)

Perturbative invariants Sn around each saddle points does not depend on k. There is

no upward flow starting from (X,Y, Z)(geom) to CR since Re[I(X(conj), Y (conj), Z(conj)]) =

2.82812 = vol(S3\52) is greater than Sup(X,Y,Z)∈CRRe[I(X,Y, Z)] = 0. Recall that Re[I]

never decreases along the upward flow. On the other hand, there is an upward flow from

(X,Y, Z)
(conj)
k=0 to CR, which is depicted in figure 7.
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Figure 7. An upward flow (red line) from a saddle point (X
(conj)
k=0 , Y

(conj)
k=0 , Z

(conj)
k=0 ) (black dot) to

CR (blue line). The flow (X(t), Y (t), Z(t)) are located on the hyperplane X = Z and the left graph

and right graph show X(t) = Z(t) and Z(t), respectively on a complex plane C.
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