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1 Introduction and summary

The dilaton-based proof [2, 3] of the four-dimensional a-theorem has provided new insights

into the behavior of quantum field theories under renormalization group (RG) flows, for

example in studies of conformal versus scale invariance [4–6]. The arguments in [2–4]

exploit that the structure of the effective action for the dilaton — introduced as a conformal

compensator or as the Goldstone boson for spontaneously broken conformal symmetry —

is determined by symmetries up to and including four-derivative terms. This is used to

extract the change in the Euler central charge ∆a = aUV − aIR in an RG flow between UV

and IR CFTs. The form of the dilaton action shows that the low-energy expansion of the

scattering process of four dilatons is proportional to ∆a and a sum rule then allowed the

authors of [2] to argue that ∆a > 0, thus proving the a-theorem.

It is worth exploring if this argument can be affected by the presence of other massless

modes in the low-energy theory, such as Goldstone bosons arising from the spontaneous

breaking of other continuous global symmetries. This situation arises in N = 1 supersym-

metric theories, because the stress tensor is in the same supermultiplet as the R-current,

so the Goldstone boson β for the broken U(1) R-symmetry accompanies the dilaton τ . In

the low-energy effective action, there are couplings between τ and β, even in the flat-space

limit, so one may wonder if this affects the proof of the a-theorem.

Since the Goldstone boson β is a pseudo-scalar (an axion), we are quickly relieved of

our worries: its presence cannot change the scattering of four scalars (the dilatons) through
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single-axion exchanges, which would be the only option in the low-energy effective action.

But precisely how this works is less trivial, since the “naive” dilaton field τ is non-linearly

coupled to the axion β, and to identify the physical modes one must disentangle the fields

via a field redefinition. The result of course still holds true: the axion does not spoil the

proof of the four-dimensional a-theorem presented in [2].

In this note, we consider in detail the form of the bosonic terms in the N = 1 su-

persymmetric extension of the four-dimensional dilaton effective action in order to fully

illuminate the above questions and to clarify results in the previous work [1].1 Our focus

is four-dimensional N = 1 superconformal theories in which the conformal symmetry is

broken by a relevant operator that preserves the N = 1 supersymmetry. We assume that

the induced flow terminates in another N = 1 superconformal theory in the deep IR. The

fields τ and β form a complex scalar field which is the lowest component of a chiral Gold-

stone superfield Φ = (τ + iβ) + . . . . We are interested in writing down the most general

low-energy effective action for τ and β in a general rigid four-dimensional curved space

with background metric gµν and background U(1) R-symmetry gauge potential Aµ. Such

an action has been studied previously by Schwimmer and Theisen using a superspace ap-

proach [1]. One of our goals is to derive the action in component form from basic symmetry

principles and use this to clarify the structure of the result presented in [1].

The fundamental ideas we use to determine the effective action S[τ, β] are diffeomor-

phism invariance and the following three properties:

1. Weyl variation (δσgµν = 2σgµν and δστ = σ) produces the trace anomaly, i.e.

δσS =

∫
d4x

√−g σ 〈Tµ
µ〉 . (1.1)

The expectation value of the trace of the stress tensor, 〈Tµ
µ〉, is a functional of the

background fields, namely the metric gµν and the U(1)R gauge field Aµ. It does not

depend on τ or β. The full trace anomaly for an N = 1 SCFT with central charges

a and c is2

〈Tµ
µ〉 = cW 2 − aE4 + b′�R− 6 c (Fµν)

2 . (1.2)

The coefficient of �R is non-physical as it can be removed by adding a local coun-

terterm in the UV theory. Thus it is not an anomaly and we drop it henceforth.

2. Gauge transformations (δαAµ = ∇µα and δαβ = α) generate the gauge anomaly:

δαS =

∫
d4x

√−g α
(
2 (5a− 3c)Fµν F̃

µν + (c− a)Rµνρσ R̃
µνρσ

)
, (1.3)

where the tilde denotes Hodge dualization with respect to the curved metric gµν ,

R̃µνρσ ≡ 1

2
ǫµνλδR

λδ
ρσ , F̃µν ≡ 1

2
ǫµνρσF

ρσ . (1.4)

1See also [7] for important early work on the subject as well as [8] for a discussion of the dilaton effective

action in four-dimensional theories with N = 2 supersymmetry.
2In appendix A we discuss why no other terms involving the gauge field are allowed.
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The second line of (1.3) gives the gauge anomaly3 for the case of an N = 1 super-

conformal theory; it was derived in [9] with slightly different normalization of a and

c (see also [1, 10, 11]).

3. The low-energy effective action must be invariant under N = 1 supersymmetry.

Throughout this note we mostly ignore the fermionic degrees of freedom and focus

entirely on the bosonic part of the action.

The first and second properties allow us to split the action into two parts S = SWZ +

Sinv where Weyl and gauge variations of SWZ produce the trace and gauge anomalies,

respectively, while Sinv is gauge and Weyl invariant. The general form of Sinv is a linear

combination of all possible gauge and Weyl invariant operators and the principles 1 and

2 above do not allow us to constrain the constant coefficients in this linear combination.

However, the third property (supersymmetry) does fix certain relationships between the

two parts of the action: some of the coefficients in Sinv are determined in terms of the central

charges a and c. This still leaves the possible freedom of having gauge and Weyl invariant

operators that are independently supersymmetric. We will show that no such operators

contribute to the flat-space scattering process of four-particle dilaton and Goldstone modes

at the four-derivative order. This means that such independently supersymmetric terms in

the dilaton effective action (if they exist) cannot affect the proof of the a-theorem.

It is not easy to check whether a given four-derivative operator is supersymmetrizable.

Thankfully the power of supersymmetry Ward identities allow us to test this question in-

directly and to the extent we need it. As we show in section 2, the supersymmetry Ward

identities require that the scattering process of four dilatons is identical to the scattering

process of the four associated R-symmetry Goldstone modes. This means that if an oper-

ator contributes only to one of these processes, it cannot possibly be supersymmetrizable

on its own. We use this to exclude contributions from Weyl and gauge invariant oper-

ators that could otherwise affect the proof of the a-theorem in four-dimensional N = 1

supersymmetric theories.4

Our work suggests several natural avenues for further exploration. First it will be

interesting to analyze the effective actions for conformal field theories (not neccessarily

supersymmetric) with larger continuous global symmetry groups. For superconformal

theories with N = 1 supersymmetry and more than one Abelian global symmetry one

may hope that such an effective action will offer a new perspective on the principle of

a-maximization [10]. Second, it will be of great interest to construct the dilation effective

action for four-dimensional SCFTs with extended supersymmetry, in particular for N = 4

SYM. In this context, one may be able to establish a more precise connection between the

dilation effective action and the Dirac-Born-Infeld action for SCFTs with holographic duals.

Finally, one can also study the supersymmetric dilation effective action for SCFTs in two

3This is the ’t Hooft anomaly for the global U(1)R symmetry present in any N = 1 SCFT. With slight

abuse of notation we will refer to it as the gauge anomaly.
4Very similar arguments were developed in [12] to test supersymmetrization of candidate counterterms

in N = 8 supergravity.
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and six dimensions.5 The methods of this paper should extend readily to two-dimensional

SCFTs with (0, 2) or (2, 2) supersymmetry since these theories have Abelian R-symmetry.

The extension to six-dimensional (1, 0) or (2, 0) SCFTs may prove more subtle, although

in the latter case holography should provide useful insights.

Before delving into the construction of the dilaton effective action, we start by deriving

supersymmetry Ward identities for on-shell scattering amplitudes in section 2. In section 3

we derive the most general form of the dilaton effective action for N = 1 SCFTs up to

four-derivative terms. We compare this action to the results of Schwimmer-Theisen in

section 4 to clarify the structure of their superspace-based result. In section 5, we show

that the Ward identities from section 2 confirm the supersymmetry of our result for the

action in the flat-space limit. The resulting dilaton-axion effective action gives an explicit

verification that the dilaton-based proof is not affected by β. Furthermore, we show that

supersymmetry is actually not needed to reach this conclusion: the Goldstone mode of any

broken global U(1) symmetry cannot spoil the proof of the a-theorem. Finally, we note

that supersymmetry requires that the 2 → 2 axion scattering amplitude must equal the

2 → 2 dilaton amplitude, and this allows for a proof of the a-theorem based on the axion

scattering for N = 1 SCFTs. In appendix A, we present a way to derive the conformal

anomaly for four-dimensional CFTs from basic principles.

2 Scattering constraints from supersymmetry

Scattering amplitudes in supersymmetric theories obey supersymmetry Ward identi-

ties [13, 14]. We consider here an N = 1 chiral model with a complex scalar ζ and its

fermionic superpartner λ. In section 5, the chiral scalar will be related to the physical

dilaton and U(1)R Goldstone modes. As a result of the supersymmetry transformations of

the free fields, it can be shown [15] that the supersymmetry generators Q and Q† act on

the states as6

[Q, ζ] = [p|λ , [Q†, λ] = |p〉 ζ ,

[Q, λ] = 0 , [Q†, ζ] = 0 ,

[Q, ζ] = 0 , [Q†, λ] = 0 ,

[Q, λ] = [p| ζ , [Q†, ζ] = |p〉λ ,

(2.1)

where the (anti)commutators are graded Lie brackets. The two-component spinors |p〉 and
[p| represent components of the particle momentum in the spinor-helicity formalism.7 More

precisely, the on-shell four-momentum pµ for a massless particle can be written in terms of

a pair of two-component spinors |p〉ȧ and [p|b as

pµ (σ
µ)ȧb = −|p〉ȧ[p|b , and pµ (σ

µ)aḃ = −|p]a〈p|ḃ . (2.2)

5There are no SCFTs in dimension greater than six and there are no conformal anomalies in odd

dimensions. Thus dimensions two, four, and six are the cases of primary interest.
6We are abusing notation by using the same symbols to represent the fields and their corresponding

creation and annihilation operators. Hopefully it is clear enough from context what we mean.
7See the reviews [15, 16] for more details about the spinor-helicity formalism and supersymmetry Ward

identities.
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For two light-like four-vectors, pµ and qµ, angle- and square-brackets are defined as

[pq] = [p|a|q]a , and 〈pq〉 = 〈p|ȧ|q〉ȧ . (2.3)

These brackets are antisymmetric, [pq] = −[qp] and 〈pq〉 = −〈qp〉, because spinor indices

are raised and lowered with the two-index Levi-Civita symbol.

Now assuming the vacuum is supersymmetric, i.e.Q|0〉 = Q†|0〉 = 0, we can derive

supersymmetry Ward identities for the amplitudes. For example (treating λ and ζ as

creation operators),8

0 = 〈0|
[
Q†, λ ζ ζ ζ

]
|0〉 = 〈0|

[
Q†, λ

]
ζ ζ ζ |0〉 = |p1〉 〈0| ζ ζ ζ ζ |0〉 , (2.4)

where we have used thatQ† annihilates ζ. The free-field commutators (2.1) can be used here

because the supercharges are acting on the asymptotic states. This is simply the statement

that at any loop-order, the on-shell four-scalar amplitude A4(ζ ζ ζ ζ) must vanish (where

now we mean the particles created by the field ζ). Similarly, A4(ζ ζ ζ ζ) = 0.

The four-scalar amplitudes with three ζ and one ζ also vanish. To see this, we write

0 = 〈0|
[
Q†, ζ λ ζ ζ

]
|0〉 = |p1〉 〈0|λλ ζ ζ |0〉+ |p2〉 〈0| ζ ζ ζ ζ

]
|0〉 . (2.5)

Now dot in 〈p1| and use the antisymmetry of the angle bracket to eliminate the first term

on the right hand side in (2.5). For generic momenta, this leads to the statement that

A4( ζ ζ ζ ζ ) = 0.

A similar story applies to scalar amplitudes with three ζ’s. Altogether, supersymmetry

requires the following amplitudes to vanish:

A4(ζ ζ ζ ζ) = A4(ζ ζ ζ ζ) = 0 ,

A4(ζ ζ ζ ζ) = A4(ζ ζ ζ ζ) = . . . = A4(ζ ζ ζ ζ) = 0 .
(2.6)

The second line includes all four-point amplitudes with an odd number of ζ’s. Amplitudes

with two ζ’s and two ζ’s, such as A4(ζ ζ ζ ζ), are permitted to be non-vanishing by su-

persymmetry. The reader may be puzzled: surely a supersymmetric Lagrangian can have

interactions terms of the form ζ4+ζ
4
, so how can that be compatible with our claim above

that for massless scalars A4(ζ ζ ζ ζ) = 0? To see this in an example, consider an N = 1

theory with a canonical kinetic term Φ†Φ and a superpotential W = fΦ+ 1
5Φ

5. The scalar

potential V = |dW/dζ|2 = |f |2 + fζ4 + f̄ ζ
4
+ ζ4ζ

4
has exactly the four-scalar interaction

terms that our supersymmetry Ward identity argument appears to be incompatible with.

However, the origin ζ = ζ = 0 is obviously not a supersymmetric vacuum, so the Ward

identity — which used Q†|0〉 = 0 — is not valid. If we expand around another vacuum,

we generate mass-terms and we are only interested in the case of massless particles. This

resolves the puzzle.

Now suppose we decompose the complex scalar field ζ into its real and imaginary

parts, ζ = ϕ + iξ and denote the corresponding scalar, ϕ, and pseudo-scalar, ξ, states

8We are not including explicit momentum labels, but assume that the first state in the list has momentum

p
µ
1
, the next pµ

2
etc.
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by the same symbols. Expanding the supersymmetry constraints (2.6) then leads to the

following non-trivial constraints on the amplitudes:9

A4(ϕϕϕϕ) = A4(ξ ξ ξ ξ) , (2.7)

A4(ϕϕϕϕ) = A4(ϕϕ ξ ξ) + A4(ϕ ξ ϕ ξ) + A4(ϕ ξ ξ ϕ) . (2.8)

These linear relations between amplitudes will be very valuable in the analysis of the

N = 1 low-energy effective action for the dilaton. In this context, ϕ will be associated with

the physical dilaton and ξ with the R-symmetry Goldstone mode. Thus, without knowing

any details of the form of the N = 1 supersymmetric dilaton effective action, we have

already learned from the first identity (2.7) that the four-dilaton amplitude must be equal

to the four-axion amplitude. The second identity (2.8) is important for testing that the

explicit action we derive in section 5 is supersymmetric.

The identities in (2.7)–(2.8) can also be used to test if a given candidate Weyl and

gauge invariant operator is compatible with supersymmetry. If the on-shell four-point

amplitudes resulting from the operator do not satisfy (2.7)–(2.8), then the operator cannot

be supersymmetrized. On the other hand, if the resulting amplitudes are compatible

with (2.7)–(2.8), then the operator has a supersymmetric extension at the level of four

fields (though not necessarily beyond that order).

3 Dilaton effective action

We turn now to the construction of an N = 1 supersymmetric effective action for the

dilaton and axion fields τ and β in the presence of a curved background metric gµν and

background gauge field Aµ. As noted in the introduction, the dilaton effective action can

be split into two parts

S = SWZ + Sinv , (3.1)

depending on whether gauge and Weyl transformations act non-trivially.

3.1 Wess-Zumino action

The Wess-Zumino part of the action is defined such that its gauge variation produces the

anomaly for the U(1)R symmetry and its Weyl variation results in the conformal anomaly.

It can be obtained either by iteratively applying transformations and adding terms to

cancel extra variations, or by integrating the anomalies directly [17]. The result is the

four-dimensional Wess-Zumino action for the dilaton and axion:

SWZ =

∫
d4x

√−g

[
∆c τ W 2 − ∆a τ E4 − 6 ∆c τ F 2 (3.2)

+ β
(
2 (5∆a − 3∆c )FF̃ + (∆c − ∆a )RR̃

)

− ∆a

(
4
(
Rµν − 1

2
Rgµν

)
∇µτ ∇ντ − 2 (∇τ)2

(
2✷τ − (∇τ)2

))]
.

9The Ward identities also imply certain relationships between the four-point amplitudes containing only

one ϕ or one ξ, e.g. A4(ϕϕϕξ) = −A4(ξξξϕ). These relations are independent from those in (2.7)–(2.8).

However, they are trivially satisfied for our application because any amplitude with an odd number of

pseudo-scalars ξ vanishes in a parity-invariant theory.
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Here F = dA is the flux for the background U(1)R gauge field. Under a Weyl transforma-

tion, the variation of τ on the first line produces the conformal anomaly, while the Weyl

tensor and field strength terms are inert. However, E4 is not inert, but the Weyl variation

of the third line cancels the contributions from τ δσ(
√−gE4). The second line is Weyl

invariant. Gauge transformations shift β → β + α, hence the second line in (3.2) produces

the U(1)R anomaly. When the flux and the axion vanish, one recovers the WZ action for

the dilaton [1–3]. The coefficients ∆a = aUV − aIR and ∆c = cUV − cIR are the difference

between the corresponding central charges of the UV and IR SCFTs, as required by the

anomaly matching conditions [1, 2].

3.2 Gauge and Weyl invariants

Since SWZ is determined by its variation, it is only specified up to terms whose gauge and

Weyl variations vanish. We define Sinv to be the sum of all independent gauge and Weyl

invariant combinations of τ , β, gµν , and Aµ. To facilitate the analysis, we define a Weyl

invariant metric ĝµν = e−2τgµν , so that any curvature terms computed in terms of ĝµν will

be invariant. This procedure appeared in the analysis in [2] (see also [18–20] for analogues

in higher dimensions) where there were three possible four-derivative Weyl invariants with

independent coefficients:
√−ĝŴ 2,

√−ĝR̂2, and
√−ĝÊ4. (The Euler density Ê4 is total

derivative in four dimensions so it can be dropped.) In the present context, there are

additional fields that can be used to construct invariants. Specifically, the combination

(A − ∇β)µ is both gauge and Weyl invariant. This combination also suggests that we

should treat Aµ on the same footing as a derivative in the low-energy effective action.

With these building blocks we find the most general Ansatz for Sinv including terms with

at most four derivatives:

Sinv =

∫
d4x

√
−ĝ

[
− f2

2

(
R̂

6
+ ĝµν (A−∇β)µ (A−∇β)ν

)
+

9∑

i=1

γiWi +O(∇6)

]
, (3.3)

where we have dropped total derivatives such as
√−ĝÊ4. The hatted two-derivative gauge-

Weyl invariants produce the kinetic terms for the scalars when expanded in terms of the

unhatted metric and the dilaton. The real constants γ1, . . . , γ9 are arbitrary coefficients of

the independent four-derivative gauge and Weyl invariant terms,
√−ĝWi, defined by

W1 ≡ Ŵ 2 , W2 ≡ R̂2 ,

W3 ≡ (A−∇β)µ ∇̂µR̂ , W4 ≡
(
∇̂µ(A−∇β)µ

)2
,

W5 ≡ ĝµν (A−∇β)µ �̂ (A−∇β)ν , W6 ≡ R̂µν (A−∇β)µ (A−∇β)ν ,

W7 ≡ R̂ ĝµν (A−∇β)µ (A−∇β)ν , W8 ≡
(
ĝµν (A−∇β)µ (A−∇β)ν

)2
,

W9 ≡ ĝµν (A−∇β)µ (A−∇β)ν ∇̂λ(A−∇β)λ . (3.4)

All other invariants can be written as linear combination of the Wi and total derivatives,

e.g. the Bianchi identity implies R̂µν ∇̂µ(A−∇β)ν = ∇̂µ

(
R̂µν (A−∇β)ν

)
− 1

2W3.
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This is the most general possible action written in terms of natural gauge and Weyl

invariant objects constructed from the basic fields. So far, we have not imposed any

supersymmetry on the Weyl+gauge invariant action Sinv. As we will see in the following

sections, the constraints implied by N = 1 supersymmetry and the consequences for the

a-theorem are easily expressed and understood in terms of the Wi and their coefficients.

4 Matching to superspace calculation

The bosonic terms in the N = 1 supersymmetric version of the Wess-Zumino action were

derived earlier by Schwimmer and Theisen [1]. They started with the Weyl anomaly in

superspace and integrated it directly using the Wess-Zumino method [17]. This gives a

superspace form of the Wess-Zumino action which was then expanded in component fields;

the result is given in equation (3.23) of [1]. In that expression, it is easy to pick out the

terms that match SWZ in (3.2). The two-derivative terms in (3.3) are also easily recognized.

However, it is not a priori clear how to interpret the rest of the 4-derivative terms in (3.23)

of [1]. Indeed, at first sight it may seem almost miraculous that these additional terms

would not contribute to the anomaly under a gauge/Weyl transformation.

The correct interpretation of the rest of the terms in (3.23) of [1] is that they are a

combination of gauge and Weyl invariants required for the supersymmetric completion of

SWZ in (3.2). Thus, the extra terms in (3.23) of [1] are a particular linear combination

of the operators Wi from (3.4): there is a unique choice of γi in Sinv (3.3) such that our

action S = SWZ + Sinv agrees with (3.23) in [1].10 This choice is to set

γ6 = −6 γ7 = 2 γ8 = −4∆a (4.1)

and drop the other Wi’s. This yields the following action:

S0 =

∫
d4x

{
− f2

√
−ĝ

[
1

12
R̂+

1

2

(
ĝµν (A−∇β)µ (A−∇β)ν

)]

+
√−g

[
∆c τ W 2 − ∆a τ E4 − 6 ∆c τ F 2

+ β
(
2 (5∆a − 3∆c )FF̃ + (∆c − ∆a )RR̃

)

− ∆a

(
4

(
Rµν − 1

2
Rgµν

)
∇µτ ∇ντ − 2 (∇τ)2

(
2✷τ − (∇τ)2

))]

− 4∆a
√
−ĝ

[(
R̂µν − 1

6
R̂ ĝµν

)
(A−∇β)µ (A−∇β)ν

+
1

2

(
ĝµν (A−∇β)µ (A−∇β)ν

)2
]
+O(∇6)

}
.

(4.2)

The first line contains the kinetic terms. The second through fourth lines are the WZ

action, (3.2), whose Weyl and gauge variations respectively produce the conformal and

10Our sign conventions differ from those of [1]. We use the curvature convention [∇µ,∇ν ]V
ρ = Rµν

ρ
σ V σ.

All equations shown here can be translated into the conventions of [1] by flipping the signs of the curvature

tensors. We use a different normalization for f and Aµ, namely f2

here = 2f2

ST and Ahere =
2

3
AST. Also, our

result (4.3) fixes minor typos in [1].
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U(1)R anomaly. The last two lines are gauge and Weyl invariant and can be viewed as the

supersymmetric completion of the Wess-Zumino action.

Although the other γi and Wi do not appear in (4.2), this should not be interpreted

as setting them equal to zero. Rather, the remaining γi do not contribute to (4.2) because

the superspace calculation in [1] derived only the terms related to the anomaly in a general

N = 1 theory. At present, the rest of the γi are not fixed. We will see later that the

supersymmetry Ward identities imply additional constraints.

One can now expand (4.2) to facilitate comparison with equation (3.23) in [1]:

S0 = −f2

∫
d4x

√−g e−2τ

(
1

2
(∇τ)2 +

1

12
R+

1

2

(
∇β −A

)2
)

(4.3)

+

∫
d4x

√−g
[
∆c τ W 2 − ∆a τ E4 − 6∆c τ (Fµν)

2

+ β
(
2 (5∆a − 3∆c )Fµν F̃µν + (∆c − ∆a )Rµνρσ R̃µνρσ

)]

+ 8∆a

∫
d4x

√−g

([
RµνAν −

1

6
RAµ +A2Aµ

]
∇µβ −AµAν ∇µ∇ντ

)

+ 2∆a

∫
d4x

√−g

{[(
R+ 2A2

)
gµν − 2

(
Rµν + 2AµAν

)]
∇µτ ∇ντ

+

[(
1

3
R− 2A2

)
gµν − 2

(
Rµν + 2AµAν

)]
∇µβ∇νβ + 8Aν∇µβ∇ν∇µτ

}
+ . . . .

Here the dots denote terms with either no β’s and τ ’s, or more than two of them. Higher-

derivative terms are also suppressed.

The comparison between our dilaton effective action and the result in [1] uniquely

selects the three gauge-Weyl invariants W6, W7, and W8 and fixes their coefficients as

in (4.1). If there are any other gauge-Weyl invariants in the low-energy dilaton-axion

effective action, then their linear combination must be independently supersymmetrizable.

We analyze this in the next section.

5 Dilaton and axion scattering in flat space

For the purposes of testing supersymmetry and investigating the a-theorem, we now take

the theory on a flat background with vanishing gauge field. Then τ and β will be the

only fields involved. For the moment, we continue to ignore the other Wi that did not

contribute to (4.2). We will explain in section 5.3 why this is justified. The action (4.2)

encodes the familiar dilaton interactions, as well as new couplings to the axion β. These

new interactions are present even in the flat-space limit with no background gauge field.

Up to total derivatives, we find

S0 =

∫
d4x

{
− f2

2
e−2τ

[
(∂τ)2 + (∂β)2

]
+ 2∆a

[
2✷τ

(
(∂τ)2 − (∂β)2

)
+ 4✷β (∂τ · ∂β)

− 4 (∂τ · ∂β)2 −
(
(∂τ)2 − (∂β)2

)2 ]
+O(∂6)

}
. (5.1)
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The fields τ and β are coupled already at the two-derivative level through e−2τ (∂β)2, so

the equations of motion mix τ and β:

�τ = (∂τ)2 − (∂β)2 , and �β = 2(∂τ · ∂β) . (5.2)

5.1 Field redefinition

To facilitate the calculation of scattering amplitudes, we make a field redefinition to de-

couple the kinetic terms. This is easiest when we identify the complex scalar field Z that

produces the kinetic terms

Z ≡ e−(τ+i β) ⇒ |∂Z|2 = e−2τ
(
(∂τ)2 + (∂β)2

)
. (5.3)

The action (5.1) can be rewritten in terms of Z and its complex conjugate Z and takes a

very simple form

S0 =

∫
d4x

{
− f2

2

∣∣∣∂Z
∣∣∣
2
+ 2∆a

[
−
(
∂Z

Z

)2
✷Z

Z
−
(
∂Z

Z

)2
✷Z

Z
+

∣∣∣∣
∂Z

Z

∣∣∣∣
4]

+O(∂6)

}
. (5.4)

Note that when the Goldstone mode β vanishes we have a real scalar Z → e−τ ≡ Ω and

the action (5.4) reduces to the familiar form for the dilaton effective action in the flat space

limit (see, for example, equation (2.8) in [4]).

The field Z is the compensator we introduce to restore the broken symmetries. We

can expand about its constant vev11 f with the fluctuating field ζ,

Z = 1− ζ

f
, ζ = ϕ+ i ξ , (5.5)

where ϕ and ξ are real scalar fields. Plugging this into the action (5.4) and expanding up

to fourth order in the fields, we find

S0 →
∫
d4x

{
− 1

2

(
(∂ϕ)2 + (∂ξ)2

)
+

4∆a

f3

(
�ϕ

(
(∂ϕ)2 − (∂ξ)2

)
+ 2�ξ (∂ϕ · ∂ξ)

)

+
2∆a

f4

[
2�ϕ

(
3ϕ

(
(∂ϕ)2 − (∂ξ)2

)
− 2 ξ (∂ϕ · ∂ξ)

)

+ 2�ξ
(
ξ
(
(∂ϕ)2 − (∂ξ)2

)
+ 6ϕ (∂ϕ · ∂ξ)

)

+
(
(∂ϕ)2 − (∂ξ)2

)2
+ 4 (∂ϕ · ∂ξ)2

]
+O(∂6)

}
.

(5.6)

This parameterization decouples the equations of motion into those of free massless scalars

�ϕ = 0 , �ξ = 0 . (5.7)

As an effective action with a derivative expansion, we only include the two-derivative

quadratic terms in the equations of motion. All other terms in the action involve three or

more fields and give rise to interaction terms in the quantized theory. In (5.6), all such

interactions involve at least four derivatives, so the amplitudes have no local contributions

from pole diagrams until at least O(p6).

11Note that one can always choose the vev of Z to be real using the global U(1) symmetry in the

action (5.4).
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5.2 Amplitudes

We are interested in the four-point amplitudes. From the action (5.6), we see that the

low-energy expansion starts at O(p4). The equations of motion (5.7) make it easy to read

off the amplitudes from the contact terms in the last line of (5.6), which yield at O(p4):

A4(ϕϕϕϕ) =
4∆a

f4
(s2 + t2 + u2) ,

A4(ξ ξ ξ ξ) =
4∆a

f4
(s2 + t2 + u2) ,

A4(ϕϕ ξ ξ) =
4∆a

f4
(−s2 + t2 + u2) ,

A4(ϕ ξ ϕ ξ) =
4∆a

f4
(s2 − t2 + u2) ,

A4(ϕ ξ ξ ϕ) =
4∆a

f4
(s2 + t2 − u2) .

(5.8)

We can now use these results to check if the action (5.4) is compatible with supersym-

metry. Combining the corresponding results from (5.8), we see that indeed the con-

straints (2.7)–(2.8) from the supersymmetry Ward identities are obeyed.

All three Weyl invariants, W6,7,8, contributed to the amplitudes (5.8) in a non-trivial

way that ensures that the supersymmetry Ward identities are satisfied. Hence, this tests

the supersymmetry of (4.2). The combination of Weyl invariantsWi in (4.2)–(4.3) was fixed

via comparison with the superspace form given by Schwimmer and Theisen [1]. The match

was obtained by comparing the last three lines of (4.3) with the corresponding expressions

in [1]. Note that all the terms used explicitly in the match vanish in the flat-space limit

with the background gauge potential turned off. However, as we have seen, W6,7,8 also have

flat-space contributions, so supersymmetry could also be tested via the Ward identities.

Thus, in that limit, we have tested that our completion of the Schwimmer-Theisen terms

does obey the supersymmetry constraints.

5.3 Supersymmetry and the other Weyl invariants

So far we have considered only the part of the action that matched the superspace derivation

of the Wess-Zumino action, fixing the values of γ6, γ7, and γ8. The full dilaton effective

action may have contributions from the other invariants Wi as well. This is important

because their flat-space limits could include additional dilaton and axion scattering beyond

what we have considered so far, with potentially dangerous consequences for the a-theorem.

With that in mind, let us return to the list of gauge-Weyl invariants (3.4) and evaluate

them in the flat background. Applying the equations of motion (5.7), we find:

W1 → 0 , W2 → 36
f4 (∂ξ)

4 ,

W3 → 0 , W4 → 0 ,

W5 → − 2
f4

(
(∂ξ)4 + (∂ϕ · ∂ξ)2

)
, W6 → − 2

f4

(
(∂ξ)4 + (∂ϕ · ∂ξ)2

)
,

W7 → − 6

f4 (∂ξ)
4 , W8 → 1

f4 (∂ξ)
4 ,

W9 → 0 ,

(5.9)

where the three expressions in boldface are those already included in (4.2).
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The first key feature to notice is that none of the invariants contain a (∂ϕ)4 interaction.

Hence the four-scalar amplitude, A4(ϕϕϕϕ) in (5.8), receives contributions only from the

dilaton part of the Wess-Zumino action. It is completely blind to the presence of the

axion. Thus it is not surprising that the resulting amplitude in (5.8) matches exactly

the one found in [2]. Moreover, this implies that the proof of the a-theorem using the

four-dilaton amplitude is unaffected by the presence of the axion.

The second key feature is that any gauge+Weyl+supersymmetry invariant four-

derivative term has to be a linear combination of the Wi’s, say W =
∑9

i=1 biWi. Since (5.9)

tells us that the four-dilaton amplitude has zero contribution from W, the supersymmetry

Ward identity (2.8) requires b5+b6 = 0, and consequently (2.7) enforces b2−6b7+36b8 = 0.

There are no constraints on the other bi’s from four-particle supersymmetry Ward identi-

ties, but they vanish in flat space anyway. In conclusion, any gauge+Weyl+supersymmetry

invariant four-derivative operator (if it exists) does not contribute at all to the four-particle

scattering processes, so from that point of view we can completely neglect it.

Using general principles, we have shown that — up to four-derivative terms — the

dilaton-axion effective action for N = 1 SCFTs takes the form S = SWZ + Sinv, with

SWZ and Sinv given by (3.2) and (3.3) respectively. The results of [1] fix the coefficients

γi as in (4.1) to complete the Wess-Zumino action to an N = 1 supersymmetric form.

The supersymmetry Ward identities can be applied in the flat-space limit to see that no

supersymmetric linear combination of the Wi’s contribute to any four-particle process.

However, we cannot eliminate the possibility of such supersymmetric combinations; we

can only say that in the flat-space limit their four-field terms must be proportional to

total derivatives and the EOM. It would be curious to know if such fully supersymmetric

operators do exists, although we have established that for the proof of the a-theorem in

four dimensions they do not matter.

We have demonstrated that the four-point axion scattering amplitude is given by the

second line in (5.8). One can now use the same positivity arguments as in [2, 3] to show

that for N = 1 SCFTs ∆a = aUV − aIR > 0. This can be regarded as an alternative route

to the a-theorem for four-dimensional SCFTs with N = 1 supersymmetry.

5.4 No supersymmetry

Suppose we do not assume N = 1 supersymmetry. Then the coefficients in the gauge

anomaly (1.3) are no longer fixed in terms of the trace anomalies a and c. This affects only

the second line of the WZ action (3.2), now with β interpreted as the Goldstone mode of

some broken U(1) symmetry. Nothing else changes in the WZ action. The general form of

the Weyl and gauge invariant action (3.3) is unchanged in the flat-space limit with Aµ = 0.

(The relative normalization between Aµ and β may change, but we do not have to worry

about this when Aµ = 0.) Of course, there is no supersymmetry or other principle to fix

the coefficients γi. However, that is not important for the Komargodski-Schwimmer proof

of the a-theorem because (5.9) shows that none of the Weyl+gauge invariants Wi affect

the 2 → 2 scattering amplitude of the physical dilaton at order p4. Hence we conclude
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that even in the absence of supersymmetry the proof of the a-theorem is unaffected by the

presence of Goldstone bosons for Abelian global symmetries.12
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A Conformal anomaly

The conformal anomaly in four-dimensional CFTs in the presence of background metric and

gauge field is well-known (see, for example, [23] for a summary). The goal here is to show

how this result arises from imposing the WZ consistency condition [17] and compatibility

with the anomaly for the global U(1) symmetry associated with the background gauge field.

The trace anomaly 〈Tµ
µ〉 should be a function only of the background fields gµν , Aµ,

and their derivatives. Since the gauge symmetry is broken, it is conceivable that one could

have new gauge-noninvariant contributions to the trace anomaly in addition to the standard

W 2, E4, (Fµν)
2, and �R terms.13 The possible new quantities should be constructed out

of the following list with various choices of the coefficients di:

d1∇µ(R)Aµ + d2R∇µA
µ + d3∇µ�Aµ + d4R

µν ∇µAν + d5R (Aµ)
2 + d6RµνA

µAν

+ d7∇µ(A
µ)∇ν(A

ν) + d8∇µ(A
ν)∇ν(A

µ) + d9∇µ(Aν)∇µ(Aν) + d10Aµ∇ν∇νAµ

+ d11A
ν∇µ∇νA

µ + d12(Aµ)
2∇νA

ν + d13A
µAν ∇µAν + d14 (Aµ)

4 . (A.1)

We will find, however, that none of these possibilities are allowed in the trace anomaly.

WZ consistency conditions. The full action S should satisfy the Wess-Zumino con-

sistency conditions [17] (see also [24] for further discussion). In particular, since the Weyl

variation of S is the trace anomaly, the WZ conditions amount to the requirement
∫

d4x
(
σ2δσ1

− σ1δσ2

)√−g 〈Tµ
µ〉 = 0 . (A.2)

12The fact that the presence of extra Goldstone bosons will not affect the 2 → 2 dilaton scattering was

also mentioned in [21] as well as in section 3.5.1 of [22].
13The �R “anomaly” is non-physical because it can be removed by a local counterterm, but we include

it here for completeness.
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The usual anomalies, W 2, E4, (Fµν)
2, and �R, satisfy that constraint, but it remains to

check whether any combination of the terms in (A.1) might also work. In fact, one can

verify that each of the following independently satisfies the constraint:

K1 = ∇µ

(
3Rµν Aν −RAµ + 3�Aµ

)
,

K2 = ∇µ

(
Aν ∇νA

µ
)
,

K3 = ∇µ

(
Aµ∇νA

ν
)
,

K4 = Aµ∇ν(F
µν) ,

K5 = ∇µ

(
Aµ (Aν)

2
)
,

K6 = (Aµ)
4 .

(A.3)

Therefore based on the WZ consistency conditions alone, the trace anomaly can take

the form

cW 2 − aE4 + b′�R+ κ0(Fµν)
2 + κ1K1 + κ2K2 + κ3K3 + κ4K4 + κ5K5 + κ6K6 , (A.4)

where the first four terms are the standard conformal anomalies in the presence of a back-

ground gauge field and curved background metric for a theory with central charges c and

a [23]. The coefficient of (Fµν)
2 is generally an independent physical quantity, although for

N = 1 theories it is fixed in terms of c and a.

Constraints on 〈Tµ
µ〉 from the gauge anomaly. Just as the Weyl anomaly does

not depend on either τ or β, the gauge anomaly (1.3) should also be a function of just

the background fields. Thus there cannot be gauge dependent fields in (A.4); under a

gauge variation those terms generate τ -dependent contributions to the gauge anomaly. To

illustrate this point, let us consider an example. Suppose κ6 6= 0, so 〈Tµ
µ〉 includes an

(A)4 anomaly. Since
√−g(A)4 is Weyl invariant, the action whose variation produces this

anomaly is simply

SWZ,A4 = κ6

∫
d4x

√−g τ (A)4 . (A.5)

Now consider a gauge variation of this action, which should produce the gauge anomaly

as in (1.3)

δαSWZ,A4 ∼ κ6

∫
d4x

√−g τ (A)3∇α , (A.6)

which is τ -dependent. The other new quantities have similar issues; in fact, no linear

combination of K1, . . . ,K6 in (A.3) is gauge invariant. This forces us to set κ1 = κ2 =

. . . = κ6 = 0 so that the trace anomaly is gauge invariant.

Since none of the new possibilities can contribute, we find that the trace anomaly for

any N = 1 superconformal theory is

〈Tµ
µ〉 = cW 2 − aE4 + b′�R− 6 c (Fµν)

2 , (A.7)

where the coefficient κ0 = −6c of the last term is fixed by supersymmetry as in [1, 9, 11]

(though with different normalization for the gauge field).
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