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1 Introduction

The appearance of integrability in planar AdS/CFT [1] is a rather unexpected occurrence

and has led to many remarkable results [2] (see also references therein) and even ulti-

mately to the exact solution of planar N = 4 supersymmetric Yang-Mills (SYM) theory.

The anomalous dimensions of single-trace operators of N = 4 SYM are given by the eigen-

values of certain integrable closed spin chain Hamiltonians [2, 3]. Then it was shown [4, 5]

that the computing of the anomalous dimensions of determinant-like operators of N = 4

SYM can be mapped to the eigenvalue problem of certain integrable open spin chain (

spin chain with boundary condition specified by reflection K-matrices or boundary scat-

tering matrices) Hamiltonians [2, 6, 7], while by AdS/CFT the K-matrices of the open

chain correspond to open strings attached to maximal giant gravitons [5, 8]. Therefore

spin chain model has played an important role in understanding the physical contents of

planar N = 4 SYM theory and planar AdS/CFT. Moreover, it has already provided valu-

able insight into the important universality class of boundary quantum physical systems

in condensed matter physics [9]. Motivated by the above great applications, in this paper,
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we develop the nested off-diagonal Bethe ansatz method, a generalization of the method

proposed in [10–13], to solve the eigenvalue problem of multi-component spin chains with

the most general integrable boundary terms.

So far, there have been several well-known methods for deriving the Bethe ansatz (BA)

solutions of quantum integrable models: the coordinate BA [14–16], the T-Q approach [17–

21], the algebraic BA [22–27], the analytic BA [28], the functional BA [29, 30] or the

separation of variables method [31–34] and many others [35–55]. However, there exists a

quite unusual class of integrable models which do not possess the U(1) symmetry (whose

transfer matrices contain not only the diagonal elements but also some off-diagonal elements

of the monodromy matrix and the usual U(1) symmetry is broken, i.e., the total spin is

no longer conserved). Normally, most of the conventional methods do not work for these

models even though their integrability has been proven for many years [25].

Recently, a systematic method [10–13] for dealing with such kind of models associated

with su(2) algebra was proposed by the present authors, which had been shown success-

fully to construct the exact solutions of the open Heisenberg spin chain with unparallel

boundary fields, the XXZ spin torus, the closed XYZ chain with odd site number and

other models with general boundary terms [56, 57]. With the help of the Hirota equation,

Nepomechie [58] generalized the results of [10–13] to the arbitrary spin XXX open chain

with general boundary terms. An expression for the corresponding eigenvectors was also

proposed recently in [59].

The central idea of the method in [10–13] is to construct a proper T−Q ansatz with an

extra off-diagonal term (comparing with the ordinary ones [20]) based on the functional re-

lations between the transfer matrix (the trace of the monodromy matrix) and the quantum

determinant ∆q(u), at some special points of the spectral parameter u = θj , i.e.,
1

t(θj)t(θj − η) ∼ ∆q(θj). (1.1)

In this paper, we generalize the off-diagonal Bethe ansatz method to the multi-component

integrable models (integrable spin chains associated with higher rank algebras). This gener-

alization allows us to construct the nested T −Q relations based on the recursive operator

product identities and the asymptotic behavior of the transfer matrices for the systems

with both periodic and arbitrary integrable open boundary conditions. We elucidate our

method with the su(n) spin chain (both periodic and open) model as an example. Our

method might be used to the integrable systems associated with Bn, Cn and Dn algebras.

The paper is organized as follows. Section 2 serves as an introduction of our notations

and some basic ingredients. We briefly describe the inhomogeneous su(n)-invariant spin

chain with periodic boundary condition. Based on some operator product relations for

the antisymmetric fused transfer matrices and their asymptotic behaviors, the nested T −

Q ansatz of their eigenvalues and the corresponding Bethe ansatz equations (BAEs) are

constructed. In section 3, we study the su(n)-invariant open spin chains with general

1These kind relations for the eigenvalues of the transfer matrices were previously obtained by the sep-

aration of variables method for the open XXX spin chain [31], for the XXZ spin chain with antiperiodic

boundary condition and were used to determine the eigenvalues [32, 33]. Then this idea was generalized to

the open XXZ chain with one general non-diagonal and one diagonal or triangular boundary K-matrices [34].
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open boundary integrable conditions. Based on some properties of the R-matrix and K-

matrices, we obtain the important operator product identities among the fused transfer

matrices of the open chains and their asymptotic behaviors when u −→ ∞. In section

4, we focus on the su(3)-invariant open spin chain with the most general non-diagonal

boundary terms. The nested Bethe ansatz solution for the eigenvalues of the transfer

matrix and the corresponding Bethe ansatz equations (BAEs) are given in detail based on

the operator product identities of the transfer matrix and their asymptotic behaviors and

values of the transfer matrices at some special points. The results for the su(n)-invariant

case is given in section 5. We summarize our results and give some discussions in section

6. Some detailed technical proof is given in appendices A and B.

2 su(n)-invariant spin chain with periodic boundary conditions

2.1 Transfer matrix

Let V denote an n-dimensional linear space. The Hamiltonian of su(n)-invariant quantum

spin system with periodic boundary condition is given by [60, 61]

H =
N
∑

j=1

Pj,j+1, (2.1)

where N is the number of sites, Pj,j+1 is permutation operator, P bd
ac = δadδbc with a, b, c, d =

1, · · · , n. The integrability of the system (2.1) is guaranteed by the su(n)-invariant R-

matrix R(u) ∈ End(V ⊗V) [62, 63]

R12(u) = u+ ηP1,2, (2.2)

where u is the spectral parameter and η is the crossing parameter. The R-matrix satisfies

the quantum Yang-Baxter equation (QYBE)

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2), (2.3)

and possesses the following properties:

Initial condition: R12(0) = ηP1,2, (2.4)

Unitarity: R12(u)R21(−u) = ρ1(u) id, ρ1(u) = −(u+η)(u−η), (2.5)

Crossing-unitarity: Rt1
12(u)R

t1
21(−u−nη) = ρ2(u) id, ρ2(u) = −u(u+ nη), (2.6)

Fusion conditions: R12(−η) = −2ηP
(−)
1,2 , R12(η) = 2ηP

(+)
1,2 . (2.7)

Here R21(u) = P1,2R12(u)P1,2, P
(∓)
1,2 = 1

2{1 ∓ P1,2} is anti-symmetric (symmetric) project

operator in the tensor product space V ⊗V, and ti denotes the transposition in the i-th

space. Here and below we adopt the standard notation: for any matrix A ∈ End(V), Aj is

an embedding operator in the tensor spaceV⊗V⊗· · · , which acts asA on the j-th space and

as an identity on the other factor spaces; Rij(u) is an embedding operator of R-matrix in the

tensor space, which acts as an identity on the factor spaces except for the i-th and j-th ones.
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Let us introduce the “row-to-row” (or one-row ) monodromy matrix T (u), which is an

n× n matrix with operator-valued elements acting on V⊗N ,

T0(u) = R0N (u− θN )R0N−1(u− θN−1) · · ·R01(u− θ1). (2.8)

Here {θj |j = 1, · · · , N} are arbitrary free complex parameters which are usually called as

inhomogeneous parameters.

The transfer matrix t(p)(u) of the spin chain with periodic boundary condition (or

closed chain) is given by [24]

t(p)(u) = tr0T0(u). (2.9)

The QYBE implies that one-row monodromy matrix T (u) satisfies the following relation

R00′(u− v)T0(u)T0′(v) = T0′(v)T0(u)R00′(u− v). (2.10)

The above equation leads to the fact that the transfer matrices with different spectral

parameters commute with each other: [t(p)(u), t(p)(v)] = 0. Then t(p)(u) serves as the gen-

erating functional of the conserved quantities, which ensures the integrability of the closed

spin chain. The Hamiltonian (2.1) can be obtained from the transfer matrix as following

H = η
∂ ln t(u)

∂u
|u=0,θj=0. (2.11)

2.2 Operator product identities

Our main tool is the so-called fusion technique [65–69]. We shall only consider the anti-

symmetric fusion procedure which leads to the desired operator identities to determine the

spectrum of the transfer matrix t(p)(u) given by (2.9).

For this purpose, let us introduce the anti-symmetric projectors which are determined

by the following induction relations

P
(−)
1,2,··· ,m+1 =

1

m+ 1
(1− P1,2 − P1,3 − . . .− P1,m+1)P

(−)
2,3,··· ,m+1, m = 1, . . . , n− 1.

We introduce further the fused one-row monodromy matrices T〈1,...,m〉(u) (cf. (2.8))

T〈1,...,m〉(u) = P
(−)
1,2,...,m T1(u)T2(u− η) . . . Tm(u− (m− 1)η)P

(−)
1,2,...,m, (2.12)

and the associated fused transfer matrices t
(p)
m (u)

t(p)m (u) = tr12···m{T〈1,...,m〉(u)}, m = 1, · · · , n, (2.13)

which includes the fundamental transfer matrix t(p)(u) given by (2.9) as the first one, i.e.,

t(p)(u) = t
(p)
1 (u). It follows from the fusion of the R-matrix [65–69] that the fused transfer

matrices constitute commutative families

[t
(p)
i (u), t

(p)
j (v)] = 0, i, j = 1, . . . , n. (2.14)
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We note that t
(p)
n (u) is the quantum determinant (proportional to the identity operator for

generic u and {θj}),

t(p)n (u) = ∆(p)
q (u)× id =

N
∏

l=1

(u− θl + η)
N
∏

j=1

n−1
∏

k=1

(u− θj − kη) × id. (2.15)

Let us evaluate the product of the fundamental transfer matrix and the fused ones at some

special points θj and θj − η. According to the definition (2.13), we thus have the following

functional relations among the transfer matrices

t(p)(θj)t
(p)
m (θj − η) = t

(p)
m+1(θj), m = 1, . . . , n− 1, j = 1, · · · , N. (2.16)

The initial condition (2.4), the properties (2.7) of the R-matrix (e.g, Rij(η)Rij(−η) = 0)

and the properties (A.7) (see below) imply that the fused monodromy matrices T〈1,...,m〉(u)

given by (2.12) vanishes at some special points,

T〈1,...,m〉(θj + kη) = 0, for k = 1, . . .m− 1, j = 1, . . . , N. (2.17)

This fact allows us to introduce some commutative operators {τ
(p)
m (u)} associated with the

fused transfer matrices {t
(p)
m (u)}

t(p)m (u) =
N
∏

l=1

m−1
∏

k=1

(u− θl − kη)τ (p)m (u), [τ
(p)
l (u), τ (p)m (v)] = 0, l,m = 1, . . . , n. (2.18)

We use the convention: τ (p)(u) = τ
(p)
1 (u). From the above equations and the defini-

tions (2.13) of the fused transfer matrices, we conclude that the operators {τ
(p)
m (u)}, as

functions of u, are polynomials of degree N with the following asymptotic behaviors

τ (p)m (u) =
n!

m!(n−m)!
uN + . . . , u → ∞. (2.19)

The operator identities (2.16) implies that these operators satisfy the following functional

relations

τ (p)(θj)τ
(p)
m (θj − η) =

N
∏

l=1

(θj − θl − η)τ
(p)
m+1(θj), j = 1, . . . , N, m = 1, . . . , n− 1. (2.20)

2.3 Nested T-Q relation

The explicit expression (2.15) of the quantum determinant, the asymptotic behaviors (2.19)

and the functional relations (2.20) allow one to determine the eigenvalues of all the oper-

ators {τ
(p)
m (u)} and consequently those of {t

(p)
m (u)} completely with the help of the rela-

tion (2.18) as follows. The commutativity of the transfer matrices with different spectral

parameters implies that they have common eigenstates. Let |Ψ〉 be a common eigenstate

of {t
(p)
m (u)}, which does not depend upon u, with the eigenvalue Λ

(p)
m (u), i.e.,

t(p)m (u)|Ψ〉 = Λ(p)
m (u)|Ψ〉, m = 1, . . . n.
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The analyticity of the R-matrix implies that the eigenvalues Λ
(p)
m (u) are polynomials of

u with a degree of mN . The relations (2.18)–(2.20) give rise to some similar relations of

{Λ
(p)
m (u)} which allow us to determine {Λ

(p)
m (u)} completely. Here we give the final result.

The proof can be obtained by simple checking the solution satisfying the resulting relations.

Let us introduce n functions {z
(l)
p (u)|l = 1, . . . , n},

z(l)p (u) = Q(0)
p (u)

Q
(l−1)
p (u+ η)Q

(l)
p (u− η)

Q
(l−1)
p (u)Q

(l)
p (u)

, l = 1, . . . n, (2.21)

where the functions Q
(l)
p (u) are given by

Q(0)
p (u) =

N
∏

j=1

(u− θj), (2.22)

Q(r)
p (u) =

Lr
∏

l=1

(u− λ
(r)
l ), r = 1, . . . , n− 1, (2.23)

Q(n)
p (u) = 1, (2.24)

where {Lr|r = 1, . . . n − 1} are some non-negative integers and the parameters {λ
(r)
l |l =

1, . . . Lr, r = 1, . . . n − 1} will be determined by the Bethe ansatz equations (2.26) (see

below). The eigenvalues Λ
(p)
m (u) of the m-th fused transfer matrix t

(p)
m (u) is then given by

Λ(p)
m (u) =

∑

1≤i1<i2<...<im≤n

z(i1)p (u)z(i2)p (u−η) . . . z(im)
p (u−(m−1)η), m = 1, . . . , n. (2.25)

The regular property of Λ(p)(u) implies that the residues of Λ(p)(u) at each apparent simple

pole λ
(r)
l have to vanish. This leads to the associated BAEs,

Lr
∏

j=1,6=l

λ
(r)
l − λ

(r)
j − η

λ
(r)
l − λ

(r)
j + η

=

Lr−1
∏

k=1

λ
(r)
l − λ

(r−1)
k

λ
(r)
l − λ

(r−1)
k + η

Lr+1
∏

m=1

λ
(r)
l − λ

(r+1)
m − η

λ
(r)
l − λ

(r+1)
m

, (2.26)

l = 1, . . . Lr, r = 1, 2, . . . , n− 1, L0 = N, LN = 0, λ
(0)
l = θl.

By taking the limit θj = 0, the above BAEs are readily reduced to those previously obtained

by other Bethe ansatz methods [62–64].

3 su(n)-invariant spin chain with general open boundary conditions

3.1 Transfer matrix

Integrable open chain can be constructed as follows [15, 25]. Let us introduce a pair of

K-matrices K−(u) and K+(u). The former satisfies the reflection equation (RE)

R12(u1 − u2)K
−
1 (u1)R21(u1 + u2)K

−
2 (u2)

= K−
2 (u2)R12(u1 + u2)K

−
1 (u1)R21(u1 − u2), (3.1)

– 6 –
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and the latter satisfies the dual RE

R12(u2 − u1)K
+
1 (u1)R21(−u1 − u2 − nη)K+

2 (u2)

= K+
2 (u2)R12(−u1 − u2 − nη)K+

1 (u1)R21(u2 − u1). (3.2)

For open spin-chains, instead of the standard “row-to-row” monodromy matrix T (u) (2.8),

one needs to consider the “double-row” monodromy matrix J (u)

J0(u) = T0(u)K
−
0 (u)T̂0(u), (3.3)

T̂0(u) = R01(u+ θ1)R02(u+ θ2) . . . R0N (u+ θN ). (3.4)

Then the double-row transfer matrix t(u) of the open spin chain is given by

t(u) = tr0{K
+
0 (u)J0(u)}. (3.5)

From the QYBE and the (dual) RE, one may check that the transfer matrices with different

spectral parameters commute with each other: [t(u), t(v)] = 0. Thus t(u) serves as the gen-

erating functional of the conserved quantities, which ensures the integrability of the system.

In this paper, we consider a generic solution K−(u) to the RE associated with the

R-matrix (2.2) [70–74]

K−(u) = ξ + uM, M2 = 1, (3.6)

where ξ is a boundary parameter and M is an n × n constant matrix (only depends on

boundary parameters). Besides the RE, the K-matrix satisfies the following properties

K−(0) = ξ, K−(u) = uM + . . . , u → ∞. (3.7)

Since the second power of M becomes the n×n identity matrix, the eigenvalues of M must

be ±1. Suppose that there are p positive eigenvalues and q negative eigenvalues, then we

have p+ q = n and trM = p− q. At the same time, we introduce the corresponding dual

K-matrix K+(u) which is a generic solution of the dual RE (3.2)

K+(u) = ξ̄ −

(

u+
n

2
η

)

M̄, M̄2 = 1, (3.8)

where ξ̄ is a boundary parameter and M̄ is an n×n boundary parameter dependent matrix,

whose eigenvalues are ±1. Again, we suppose that there are p̄ positive eigenvalues and q̄

negative eigenvalues, then we have p̄+ q̄ = n and trM̄ = p̄− q̄. Besides the dual RE, the

K-matrix also satisfies the following properties

K+

(

−
n

2
η

)

= ξ̄, K+(u) = −u M̄ + . . . , u → ∞. (3.9)

The Hamiltonian of the open spin chain specified by the K-matrices K±(u) (3.6)

and (3.8) can be expressed in terms of the transfer matrix (3.5) as

H = η
∂ ln t(u)

∂u
|u=0,θj=0

= 2
N−1
∑

j=1

Pj,j+1 + η
tr0K

+
0
′
(0)

tr0K
+
0 (0)

+ 2
tr0K

+
0 (0)P0N

tr0K
+
0 (0)

+ η
1

ξ
K−

1
′
(0). (3.10)
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3.2 Operator product identities

Similar to the closed spin chain case in the previous section, we apply the fusion technique

to study the open spin chain. In this case, we need to use the fusion techniques both for

R-matrices [65–69] and for K-matrices [75, 76]. We only consider the antisymmetric fusion

procedure which leads to the desired operator identities to determine the spectrum of the

transfer matrix t(u) given by (3.5).

Following [75, 76], let us introduce the fused K-matrices and double-row monodromy

matrices by the following recursive relations

K+
1,...,m(u) = K+

〈2,...,m〉(u− η)R1m(−2u− nη + (m− 1)η) . . .

×R12(−2u− nη + η)K+
1 (u), (3.11)

K+
〈1,...,m〉(u) = P

(−)
1,...,mK+

1,...,m(u)P
(−)
1,...,m, (3.12)

K−
1,...,m(u) = K−

1 (u)R21(2u− η) . . . Rm1(2u− (m− 1)η)K−
〈2,...,m〉(u− η), (3.13)

K−
〈1,...,m〉(u) = P

(−)
1,...,mK−

1,...,m(u)P
(−)
1,...,m, (3.14)

J1,...,m(u) = J1(u)R21(2u− η) . . . Rm1(2u− (m− 1)η)J〈2,...,m〉(u− η), (3.15)

J〈1,...,m〉(u) = P
(−)
1,...,mJ1,...,m(u)P

(−)
1,...,m = T〈1,...,m〉(u)K

−
〈1,...,m〉(u)T̂〈1,...,m〉(u), (3.16)

where the fused one-row monodromy matrix T〈1,...,m〉(u) is given by (2.12) and

T̂〈1,...,m〉(u) = P
(−)
1,2,...,m T̂1(u)T̂2(u− η) . . . T̂m(u− (m− 1)η)P

(−)
1,2,...,m. (3.17)

For the open spin chain, the m-th fused transfer matrix tm(u) constructed by the antisym-

metric fusion procedure is given by

tm(u) = tr1,...,m{K+
〈1,...,m〉(u)J〈1,...,m〉(u)}, m = 1, . . . , n, (3.18)

which includes the fundamental transfer matrix t(u) given by (3.5) as the first one, i.e.,

t(u) = t1(u). The relation (3.16) allows us to rewrite the transfer matric tm(u) in terms of

the fused K-matrices and one-row monodromy matrices

tm(u) = tr1,...,m

{

K+
〈1,...,m〉(u)T〈1,...,m〉(u)K

−
〈1,...,m〉(u) T̂〈1,...,m〉(u)

}

. (3.19)

It follows from the fusion of the R-matrix [65–69] and that of the K-matrices [75, 76] that

the fused transfer matrices constitute commutative families, namely,

[ti(u), tj(v)] = 0, i, j = 1, . . . , n. (3.20)

Moreover, we remark that tn(u) is the so-called quantum determinant and that for generic

u and {θj} it is proportional to the identity operator, namely,

tn(u) = ∆q(u)× id, (3.21)

∆q(u) = ∆q{T (u)}∆q{T̂ (u)}∆q{K
+(u)}∆q{K

−(u)}

=
N
∏

l=1

(u− θl + η)(u+ θl + η)
N
∏

l=1

n−1
∏

k=1

(u− θl − kη)(u+ θl − kη)
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×
n−1
∏

i=1

i
∏

j=1

(2u− (i+ j)η)(−2u+ (n− 2− i− j)η)

×(−1)q+q̄

q̄−1
∏

k=0

(

− u+
n− 2

2
η − ξ̄ − kη

) p̄−1
∏

k=0

(

− u+
n− 2

2
η + ξ̄ − kη

)

×

q−1
∏

k=0

(u− ξ − kη)

p−1
∏

k=0

(u+ ξ − kη). (3.22)

(2.3) and (3.2) allow us to rewrite the fused K-matrix in another form

K+
〈1,...,m〉(u) = P

(−)
1,...,mK+

m(u− (m− 1)η)Rmm−1(−2u− nη + (2m− 3)η) . . .

×Rm 1(−2u− nη + (m− 1)η)K+
〈1,...,m−1〉(u)P

(−)
1,...,m. (3.23)

The above equation, (3.13)–(3.14), (2.5)–(2.7) and the degenerate properties of the R-

matrix and the K-matrices:

R12(0) = ηP1,2, K−(0) = ξ, K+

(

−
n

2
η

)

= ξ̄, (3.24)

implies that at the following 2m special points

0,
η

2
, . . . ,

m−1

2
η, and −

n

2
η+(m−1)η,−

n

2
η+(m−1)η−

η

2
, . . . ,−

n

2
η+

m−1

2
η, (3.25)

the transfer matrix tm(u) may be written in terms of {tl(u)|l = m−1, . . . , 0} (we have used

the convention t0(u) = id), for examples (4.8)–(4.13) for the su(3)-case and (B.1)–(B.12)

for the su(4)-case. The commutativity of the transfer matrices with different spectral

parameters implies that they have common eigenstates. Let |Ψ〉 be a common eigenstate

of {tm(u)}, which does not depend upon u, with the eigenvalue Λm(u), i.e.,

tm(u)|Ψ〉 = Λm(u)|Ψ〉, m = 1, . . . n. (3.26)

Now let us evaluate the product of the fundamental transfer matrix and the fused ones

at some special points

t(±θj)tm(±θj − η) = tr1...m+1

{

J t1
1 (±θj)K

+
1 (±θj)

t1

×J〈2,...,m+1〉(±θj − η)K+
〈2,...m+1〉(±θj − η)

}

(2.6)
=

m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

J t1
1 (±θj)K

+
1 (±θj)

t1

×R
t1
12(∓2θj + η − nη) . . . Rt1

1m+1(∓2θj +mη − nη)

×R
t1
1m+1(±2θj −mη) . . . Rt1

12(±2θj − η)

× J〈2,...,m+1〉(±θj − η)K+
〈2,...m+1〉(±θj − η)

}

=

m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1 {

×R1m+1(∓2θj +mη − nη) . . . R12(∓2θj + η − nη)K+
1 (±θj)

× J1,...,m+1(±θj)K
+
〈2,...,m+1〉(±θj − η)

}

– 9 –



J
H
E
P
0
4
(
2
0
1
4
)
1
4
3

=
m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

K
+
〈2,...,m+1〉(±θj − η)

×R1m+1(∓2θj +mη − nη) . . . R12(∓2θj + η − nη)K+
1 (±θj)

× J1,...,m+1(±θj)}

=
m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

K
+
1,...,m+1(±θj)J1,...,m+1(±θj)

}

(A.2)
=

m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

K
+
1,...,m+1(±θj)P

(−)
1,...,m+1J1,...,m+1(±θj)

}

(A.11)
=

m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

K
+
〈1,...,m+1〉(±θj)J1,...,m+1(±θj)P

(−)
1,...,m+1

}

(A.10)
=

m
∏

k=1

ρ
−1
2 (±2θj − kη)× tr1...m+1

{

K
+
〈1,...,m+1〉(±θj)J〈1,...,m+1〉(±θj)

}

.

According to the definition (3.18), we thus have the following functional relations among

the transfer matrices

t(±θj)tm(±θj − η) = tm+1(±θj)
m
∏

k=1

ρ−1
2 (±2θj − kη), (3.27)

j = 1, . . . , N ; m = 1, . . . , n− 1.

In terms of the corresponding eigenvalues, the above relations become

Λ(±θj)Λm(±θj − η) = Λm+1(±θj)

m
∏

k=1

ρ−1
2 (±2θj − kη), (3.28)

j = 1, . . . , N ; m = 1, . . . , n− 1.

Using the similar method that we have derived the zero points (2.17) of the fused mon-

odromy matrix T〈1,...,m〉(u), we can figure out the zero points of the fused monodromy

matrix T̂〈1,...,m〉(u) and those of the fused K-matrices K±
〈1,...,m〉(u) respectively. Thanks to

the alternative expression (3.19) of the fused transfer matrix tm(u), we know that these

zero points all together constitute the zero points of the transfer matrix, which allows us

to rewrite the transfer matrix as

tm(u) =
m−1
∏

i=1

i
∏

j=1

(2u− iη − jη)(−2u+ (2m− 2− n)η − iη − jη)

×
N
∏

l=1

m−1
∏

k=1

(u− θl − kη)(u+ θl − kη) τm(u). (3.29)

Since the operator τm(u) is proportional to the transfer matrix tm(u) by c-number coeffi-

cient, the corresponding eigenvalue Λ̄m(u) has the following relation with Λm(u)

Λm(u) =

m−1
∏

i=1

i
∏

j=1

(2u− iη − jη)(−2u+ (2m− 2− n)η − iη − jη)

×
N
∏

l=1

m−1
∏

k=1

(u− θl − kη)(u+ θl − kη)Λ̄m(u). (3.30)
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It follows from the definitions of the fused transfer matrices (3.18) that the eigenvalue

Λ̄m(u) of the resulting commutative operator τm(u), as a function of u, is a polynomial of

degree 2N + 2m. The functional relations (3.27) give rise to that the eigenvalue Λ̄m(u) of

τm(u) satisfies the following relations

Λ̄(±θj)Λ̄m(±θj − η) = Λ̄m+1(±θj)

m
∏

k=1

ρ−1
2 (±2θj − kη)ρ0(±θj), (3.31)

m = 1, . . . , n− 1, j = 1, . . . , N,

where the function ρ0(u) is given by

ρ0(u) =
N
∏

l=1

(u− θl − η)(u+ θl − η)
m+1
∏

k=2

(2u− kη)(−2u− kη + (n− 2)η).

Then τn(u) is proportional to identity operator with a known coefficient Λ̄n(u)

Λ̄n(u)=

N
∏

l=1

(u− θl + η)(u+ θl + η)

q̄−1
∏

k=0

(

− u+
n− 2

2
η − ξ̄ − kη

)

×(−1)q+q̄

p̄−1
∏

k=0

(

− u+
n−2

2
η+ξ̄−kη

) q−1
∏

k=0

(u−ξ−kη)

p−1
∏

k=0

(u+ξ−kη). (3.32)

3.3 Asymptotic behaviors of the transfer matrices

The definitions (3.11)–(3.18) of the fused K-matrices, the fused monodromy matrices and

the fused transfer matrices and the asymptotic behaviors (3.7) and (3.9) imply that the

asymptotic behaviors of the operators {τm(u)} given by (3.29) is completely fixed by the

eigenvalues of the product matrix M̄M (see (3.36) below). Firstly let us give some prop-

erties of the eigenvalues of M̄M . Suppose {λl|l = 1, . . . , n} be the eigenvalues. The fact

that M2 = M̄2 = 1 allows one to derive the following relations among the eigenvalues,

n
∑

l=1

λk
l = tr{(M̄M)k} = tr{(MM̄)k} = tr{(M̄M)−k} =

n
∑

l=1

λ−k
l , ∀k. (3.33)

Meanwhile we know that

Det|M̄M | = λ1 . . . λn = (−1)q+q̄. (3.34)

This implies that the eigenvalues of MM̄ should take the following form

{λ1, . . . , λn} = {1, . . . , 1,−1, . . . ,−1, e−iϑ1 , eiϑ1 , . . . , e−iϑr , eiϑr}, (3.35)

where ϑj are some continuous free parameters which are related to boundary interaction

terms (e.g., the boundary magnetic fields). The maximum number of the continuous pa-

rameters is n/2 if n is even and is (n− 1)/2 if n is odd.

Some remarks are in order. When M and M̄ commute with each other and thus can be

diagonalized simultaneously by some gauge transformation, the corresponding open spin
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chain can be diagonalized by the algebraic Bethe ansatz method after a global gauge trans-

formation [71]. In case of the boundary parameters (which are related to the matrices M

and M̄) have some constraints so that a proper “local vacuum state” exists, the generalized

algebraic Bethe ansatz method [41, 77, 78] can be used to obtain the Bethe ansatz solutions

of the associated open spin chains [79–81]. However, the results in [10–13] strongly suggest

that for generic M and M̄ such a simple “local vacuum state” do not exist even for the

su(2) case.

The asymptotic behaviors (3.7) and (3.9) enable us to derive that the eigenvalue Λ̄m(u)

of the operators {τm(u)} given by (3.29) have the following asymptotic behaviors

Λ̄m(u) = (−1)mδm u2N+2m + . . . , m = 1, . . . , n, u → ∞, (3.36)

where

δm =
∑

1≤i1<i2...<im≤n

λi1 . . . λim , m = 1, . . . , n.

Keeping the fact that Λ̄n(u) has been already fixed (3.32) in the mind, we need to deter-

mine the eigenvalues of the other n − 1 transfer matrices {τm(u)|m = 1, . . . , n − 1}. It is

also known from (3.29) that Λ̄m(u) , as a function of u, is a polynomial of degree 2N +2m.

Thanks to the very functional relations (3.31) and the asymptotic behaviors (3.36), one

can completely determine the eigenvalues of the transfer matrix and the other higher fused

transfer matrices by providing some other values of the eigenvalue functions at
∑n−1

m=1 2m

special points (3.25) (e.g. see (4.8)–(4.13) for the su(3)-case and (B.1)–(B.12) for the su(4)-

case). The method has been proven in [10–13] to be successful in solving the open spin

chains related to su(2) algebra. In the following section, we shall apply the method to

solve the open spin chains associated with su(n) algebra.

For this purpose, let us first factorize out the contributions of K-matrices which are

relevant to the quantum determinant Λ̄n(u) (3.32) by introducing n functions {K(l)(u)|l =

1, . . . , n} which are polynomials of u with a degree 2. The functions depend only on the

boundary parameters ξ and ξ̄ and satisfy the following relations

n
∏

l=1

K(l)(u− (l − 1)η) = (−1)q+q̄

q̄−1
∏

k=0

(

− u+
n− 2

2
η − ξ̄ − kη

)

×

p̄−1
∏

k=0

(

− u+
n− 2

2
η + ξ̄ − kη

) q−1
∏

k=0

(u− ξ − kη)

p−1
∏

k=0

(u+ ξ − kη), (3.37)

K(l)(u)K(l)(−u− lη) = K(l+1)(u)K(l+1)(−u− lη), l = 1, · · · , n− 1. (3.38)

From the solution to the above equations, one can construct a nested T-Q ansatz for the

eigenvalues Λm(u). It is remarked that there are some different solutions to the above

equations. However, it was shown in [10–13, 58] that for the su(2) open spin chain any

choice of the above equation leads to a complete set of solutions of the the corresponding

model. It is believed that different choices of the solution might only give rise to different

parameterizations of the eigenvalues.
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Before closing this section, let us give a summary of the set of properties which char-

acterize the eigenvalue of the transfer matrix tm(u):

• explicit expression of tn(u) or the quantum determinant (3.22).

• Analytical property and asymptotical behaviors (3.36) of the transfer matrices.

• Functional relations (3.27) for the fused transfer matrices.

• The values of the transfer matrices at the special points (3.25) (for examples (4.8)–

(4.13) for the su(3)-case and (B.1)–(B.12) for the su(4)-case).

The above condition are believed to determine the eigenvalues of the transfer matrices

tm(u).

4 su(3)-invariant spin chain with non-diagonal boundary term

In this section, we use the method outlined in the previous section to give the Bethe ansatz

solution of the su(3)-invariant spin chain with generic boundary terms. Without loss of

generality, we take the corresponding M and M̄ with p = p̄ = 1 and the eigenvalues of

M̄M being

(λ1, λ2, λ3) = (1, e−iϑ, eiϑ), (4.1)

as an example to demonstrate our method in detail.

Let us introduce 3 functions {K(l)|l = 1, 2, 3} as follows

K(1)(u) =

(

ξ̄ +
1

2
η − u

)

(ξ + u), (4.2)

K(2)(u) =

(

ξ̄ +
3

2
η + u

)

(ξ − u− η), (4.3)

K(3)(u) =

(

ξ̄ +
3

2
η + u

)

(ξ − u− η), (4.4)

which satisfy (3.37) and (3.38) for n = 3. From the definitions (3.18) of the fused transfer

matrices tm(u) and the asymptotic behaviors of the K-matrices K±(u), we have that the

eigenvalues of the transfer matrices have the following asymptotic behaviors

Λ̄(u)|u→∞ = −tr(M̄M)u2N+2 + . . . = −
3

∑

i=1

λiu
2N+2 + . . .

= −(1 + 2 cosϑ)u2N+2 + . . . ., (4.5)

Λ̄2(u)|u→∞ = tr12

{

P
(−)
1,2 (M̄M)1(M̄M)2P

(−)
1,2

}

u2N+4 + . . .

=
∑

1≤i1<i2≤3

λi1λi2u
2N+4 + . . .

= (2 cosϑ+ 1)u2N+4 + . . . . (4.6)
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The explicit expressions of the K-matrices (3.6) and (3.8) imply the following identities

K−(u)K−(−u) = (ξ2 − u2), K+

(

u+
n

2
η

)

K+

(

− u+
n

2
η

)

= (ξ̄2 − u2). (4.7)

The above relations and some degenerated properties (3.24) of the R-matrix and the K-

matrices allow us to derive that the fused transfer matrices satisfy the following properties

at some special points (3.25), namely, 0, −3
2η; 0,

η
2 , −

η
2 , −η for the su(3)-case:

t(0) = (−1)Nξ
N
∏

l=1

(θl + η)(θl − η)tr{K+(0)} × id, (4.8)

t

(

−
3

2
η

)

= (−1)N ξ̄

N
∏

l=1

(

θl +
3

2
η

)(

θl −
3

2
η

)

tr

{

K−

(

−
3

2
η

)}

× id, (4.9)

t2

(

η

2

)

= tr12

{

P−
12K

+
2

(

−
η

2

)

R12(−3η)K+
1

(

η

2

)

P−
12

}(

η2

4
− ξ2

)

η

×
N
∏

l=1

(

θl +
3

2
η

)(

θl −
3

2
η

)(

θl +
η

2

)(

θl −
η

2

)

× id, (4.10)

t2(−η) = tr12
{

P−
12K

−
1 (−η)R21(−3η)K−

2 (−2η)P−
12

}

(

η2

4
− ξ̄2

)

η

×
N
∏

l=1

(θl + η)(θl − η)(θl + 2η)(θl − 2η) × id, (4.11)

t2(0) = (−1)N2ξη2
N
∏

l=1

(θl + η)(θl − η)tr{K+(0)} t(−η), (4.12)

t2

(

−
η

2

)

= (−1)N2ξ̄η2
N
∏

l=1

(

θl +
3

2
η

)(

θl −
3

2
η

)

tr

{

K−

(

−
3

2
η

)}

t

(

−
η

2

)

, (4.13)

These relations allow us to derive similar relations of the eigenvalues {Λ̄m(u)}. Then

the resulting relations (total number of the conditions is equal to 2 + 4 = 6), the very

relations (3.31) for n = 3 and the asymptotic behaviors (4.5)–(4.6) allow us to determine

the eigenvalues Λ̄m(u) (also Λm(u) via the relations (3.30)).

Let us define the corresponding Q(r)(u) for the open spin chains

Q(0)(u) =
N
∏

j=1

(u− θj)(u+ θj), (4.14)

Q(r)(u) =

Lr
∏

l=1

(u− λ
(r)
l )(u+ λ

(r)
l + rη), r = 1, . . . , n− 1, (4.15)

Q(n)(u) = 1, (4.16)

where {Lr|r = 1, . . . , n − 1} are some non-negative integers. In the following part of the

paper, we adopt the convention

a(u) = Q(0)(u+ η), d(u) = Q(0)(u). (4.17)
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In order to construct the solution of the open su(3) spin chain, we introduce three functions

z̃1(u) = z1(u) + x1(u), z̃2(u) = z2(u), z̃3(u) = z3(u). (4.18)

Here zm(u) is given by the following relations

zm(u) =
u(u+ 3

2η)

(u+ (m−1)
2 η)(u+ m

2 η)
K(m)(u)d(u)

Q(m−1)(u+ η)Q(m)(u− η)

Q(m−1)(u)Q(m)(u)
,

m = 1, 2, 3, (4.19)

with {K(m)(u)|m = 1, 2, 3} are given by (4.2)–(4.4) (here we have assumed Q(3)(u) = 1

since that the su(3)-case is considered) and x1(u) is defined as

x1(u) = u

(

u+
3

2
η

)

a(u)d(u)
F1(u)

Q(1)(u)
. (4.20)

The nested functional T-Q ansatz is expressed as

Λ(u) =

3
∑

i1=1

z̃i1(u) =

3
∑

i1=1

zi1(u) + u

(

u+
3

2
η

)

a(u)d(u)
F1(u)

Q(1)(u)
, (4.21)

Λ2(u) = ρ2(2u− η)







∑

1≤i1<i2≤3

z̃i1(u)z̃i2(u− η)− x1(u)z2(u− η)







. (4.22)

We remark that the extra term x1(u) in (4.18) given by (4.20) does not violate the very

functional relation (3.28) with n = 3 due to the fact a(±θj − η) = d(±θj) = 0, but it

does change the form of the resulting BAEs (see (4.29) below). The function x1(u) can be

determined by regularity of Λ(u) and Λ2(u) given by (4.21) and (4.22) and their asymptotic

behaviors as follows. The vanishing of the residues of Λ(u) at λ
(1)
j and −λ

(1)
j − η requires

F1(u) = f1(u)Q
(2)(−u− η), (4.23)

with

f1(u) = f1(−u− η). (4.24)

In order not to violate the relations (4.8)–(4.13), let all terms with x1(u) in Λm(u) be zero

at all the degenerate points considered in (4.8)–(4.13), then the function f1(u) is given by

f1(u) = c u

(

u+
1

2
η

)2

(u+ η). (4.25)

The asymptotic behaviors of Λ(u) and Λ2(u) then fix the constant c,

c = 2(cosϑ− 1), (4.26)

where ϑ is specified by the eigenvalues of the matrix M̄M (4.1). It is remarked that F1(u)

is a polynomial of degree 2L1−2N . Then the above relations lead to the constraint among

the non-negative integers L1 and L2

L1 = N + L2 + 2. (4.27)
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(4.23)–(4.27) and the relations (3.30) between Λ̄m(u) and Λm(u) lead to that the asymptotic

behaviors (4.5)–(4.6) of the eigenvalues Λ̄m(u) are automatically satisfied. Keeping the

following identities in mind,

a(±θj − η) = d(±θj) = 0, j = 1, . . . , N, (4.28)

with the help of (3.22), by putting u = ±θj ,±θj−η in (4.21) and (4.22) we can easily show

that the ansatz (4.21)–(4.22) make the very functional relations (3.28) with n = 3 fulfilled.

The regular property of Λ(u) and Λ2(u) leads to the associated Bethe ansatz equations,

1 +
λ
(1)
l

λ
(1)
l + η

K(2)(λ
(1)
l )d(λ

(1)
l )

K(1)(λ
(1)
l )a(λ

(1)
l )

Q(1)(λ
(1)
l + η)Q(2)(λ

(1)
l − η)

Q(1)(λ
(1)
l − η)Q(2)(λ

(1)
l )

= −c
(λ

(1)
l )2(λ

(1)
l + 1

2η)
3(λ(1) + η)d(λ

(1)
l )Q(2)(λ

(1)
l − η)

K(1)(λ
(1)
l )Q(1)(λ

(1)
l − η)

, l = 1, . . . , L1, (4.29)

λ
(2)
l + 3

2η

λ
(2)
l + 1

2η

K(2)(λ
(2)
l )

K(3)(λ
(2)
l )

Q(1)(λ
(2)
l + η)Q(2)(λ

(2)
l − η)

Q(1)(λ
(2)
l )Q(2)(λ

(2)
l + η)

= −1, l = 1, . . . L2. (4.30)

The eigenvalue of the Hamiltonian (3.10) in the case of n = 3 is given by

E =

L1
∑

l=1

2η2

λ
(1)
l (λ

(1)
l + η)

+ 2(N − 1) + η
ξ̄ + 3

2η − p̄η − ξ

ξ(ξ̄ + 3
2η − p̄η)

+
2

3
, (4.31)

where the parameters {λ
(1)
l } are the roots of the BAEs (4.29)–(4.30) in the homogeneous

limit θj = 0.

5 Exact solution of su(n)-invariant spin chain with general open bound-

aries

The analogs of (4.8)–(4.13) for arbitrary n at the special points listed in (3.25) can also

be constructed with the properties of (3.24) and (4.7). To show the procedure clearly, we

construct those relations for n = 4 in appendix B. In fact, those relations are ensured for the

diagonal case as already demonstrated by the algebraic Bethe ansatz. For the non-diagonal

case, since we put xi(u) to be zero for u at those degenerate points, the relations must also

hold no matter how their exact forms are. By following the same procedure as the previous

section, we may derive the solutions of the su(n)-invariant quantum spin chain with general

open boundary conditions. Here we present the final result. The functions zm(u) now read

zm(u) =
2u(2u+ nη)

(2u+ (m− 1)η)(2u+mη)
K(m)(u)Q(0)(u)

Q(m−1)(u+ η)Q(m)(u− η)

Q(m−1)(u)Q(m)(u)
, (5.1)

m = 1, . . . , n,

where {K(l)(u)|l = 1, . . . , n} satisfy (3.37)–(3.38) and {Q(m)(u)|m = 0, 1, . . . , n} are given

by (4.14)–(4.16). In principle, K(l)(u) could be any decomposition of (3.37). For simplicity,
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we parameterize them satisfying the following relations

K(l)(u) = K(l+1)(−u− lη), l = 1, · · · , n− 1. (5.2)

Similarly as (4.18), let us introduce the functions {z̃i(u)|i = 1, . . . , n} by

z̃i(u) = zi(u) + xi(u), i = 1, . . . , n, (5.3)

where the functions xi(u) are

{

x2l−1(u) = u(u+ n
2 η)a(u)d(u)

F2l−1(u)

Q(2l−1)(u)

x2l(u) = 0
, (5.4)

and l = 1, 2, . . . , n2 if n is even, l = 1, 2, . . . , n−1
2 . The functions {F2l−1(u)} are given by

F1(u) = f1(u)Q
(2)(−u− η), (5.5)

F2l−1(u) = f2l−1(u)Q
(2l−2)(−u− (2l − 1)η)Q(2l)(−u− (2l − 1)η)a(−u− (2l − 1)η), (5.6)

where l = 2, . . . , n2 if n is even and l = 2, . . . , n−1
2 if n is odd, and

f2l−1(u) = c2l−1

n−1
∏

k=1

(

u+
k

2
η

)(

u+ (2l − 1)η −
k

2
η

)

, l = 1, 2, · · · . (5.7)

The functions f2l−1(u) has the following crossing symmetry relation

f2l−1(u) = f2l−1(−u− (2l − 1)η). (5.8)

Here the parameters {c2l−1} are determined, with helps of the asymptotic behaviors of the

eigenvalues of the transfer matrices, by the following relations

∑

1≤i1<i2<...<im≤n

c̃i1 c̃i2 . . . c̃im +

m1
∑

k=1

m2
∑

l=k

∑

1≤i1<i2<...<i2k−2≤2l−2

c̃i1 c̃i2 . . . c̃i2k−2
c̃2l−1

×
∑

2l+1≤i2k+1<i2k+2<...<im≤n

c̃i2k+1
c̃i2k+2

. . . c̃im +

m3
∑

k=2

m4
∑

l=k

∑

1≤i1<i2<...<i2k−3≤2l−2

c̃i1

×c̃i2 . . . c̃i2k−3
c̃2l−1

∑

2l+1≤i2k<i2k+1<...<im≤n

c̃i2k c̃i2k+1
. . . c̃im

= (−1)m
∑

1≤i1<i2<...<im≤n

λi1λi2 . . . λim , (5.9)

where

c̃i =











−1 + c2l−1, i = 2l − 1,

−1, i = 2l,

−1, i = n,

and

(i). m1 = m3 =
m

2
, m2 = m4 =

n−m− 2k

2
, if m is even and n is even; (5.10)
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(ii). m1 =
m− 1

2
, m2 = m4 =

n−m− 2k − 1

2
, m3 =

m+ 1

2
,

if m is odd and n is even, (5.11)

(iii). m1 = m3 =
m

2
, m2 = m4 =

n−m− 2k − 1

2
,

if m is even and n is odd, (5.12)

(iv). m1 =
m− 1

2
, m2 =

n−m− 2k

2
, m3 =

m+ 1

2
, m4 =

n−m− 2k − 2

2
,

if m is odd and n is odd. (5.13)

The constants {λi|i = 1, . . . , n} are the eigenvalues of the matrix M̄M given by (3.35),

while the matrices M̄ and M are related to the K-matrices K±(u). Then the nested T-Q

ansatz of the eigenvalues Λ(u) of the transfer matrix t(u) is

Λ(u) =
n
∑

i=1

z̃i(u), (5.14)

where the functions {z̃i(u)} are given by (5.3). The other eigenvalues Λm(u) of the fused

transfer matrix tm(u) are given by

Λm(u) =
m−1
∏

l=1

l
∏

k=1

ρ2(2u− kη − lη + η)

×







∑

1≤i1<i2<...<im≤n

z̃i1(u)z̃i2(u− η) . . . z̃im(u− (m− 1)η)

−
m1
∑

k=1

m2
∑

l=k

∑

1≤i1<i2<...<i2k−2≤2l−2

z̃i1(u)z̃i2(u− η) . . . z̃i2k−2
(u− (2k − 3)η)

×f2l−1(u− (2k − 2)η)z̃2l(u− (2k − 1)η)
∑

2l+1≤i2k+1<i2k+2<...<im≤n

×z̃i2k+1
(u− 2kη)z̃i2k+2

(u− (2k + 1)η) . . . z̃im(u− (m− 1)η)

−
m3
∑

k=2

m4
∑

l=k

∑

1≤i1<i2<...<i2k−3≤2l−2

z̃i1(u)z̃i2(u− η) . . . z̃i2k−3
(u− (2k − 4)η)

×f2l−1(u− (2k − 3)η)z̃2l(u− (2k − 2)η)
∑

2l+1≤i2k<i2k+1<...<im≤n

×z̃i2k(u− (2k − 1)η)z̃i2k+1
(u− 2kη) . . . z̃im(u− (m− 1)η)

}

, (5.15)

where the m1, m2, m3 and m4 are the same as those in the equations (5.10)–(5.13). The

parameters {λ
(r)
l } satisfy the associated Bethe ansatz equations

K(1)(λ
(1)
j )a(λ

(1)
j )Q(1)(λ

(1)
j − η) +

λ
(1)
j

λ
(1)
j + η

K(2)(λ
(1)
j )d(λ

(1)
j )Q(1)(λ

(1)
j + η)

Q(2)(λ
(1)
j − η)

Q(2)(λ
(1)
j )

+λ
(1)
j

(

λ
(1)
j +

η

2

)

a(λ
(1)
j )d(λ

(1)
j )F1(λ

(1)
j ) = 0, j = 1, . . . , L1. (5.16)
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2λ
(2l)
k +(2l+1)η

2λ
(2l)
k +(2l−1)η

K(2l)(λ
(2l)
k )

K(2l+1)(λ
(2l)
k )

Q(2l−1)(λ
(2l)
k +η)Q(2l+1)(λ

(2l)
k )

Q(2l−1)(λ
(2l)
k )Q(2l+1)(λ

(2l)
k −η)

=−
Q(2l)(λ

(2l)
k +η)

Q(2l)(λ
(2l)
k −η)

,

k = 1, . . . , L2l, (5.17)

K(2s+1)(λ
(2s+1)
j )Q(2s+1)(λ

(2s+1)
j − η) +

λ
(2s+1)
j + sη

λ
(2s+1)
j + (s+ 1)η

K(2s+2)(λ
(2s+1)
j )

×Q(2s+1)(λ
(2s+1)
j + η)

Q(2s)(λ
(2s+1)
j )Q(2s+2)(λ

(2s+1)
j − η)

Q(2s)(λ
(2s+1)
j + η)Q(2s)(λ

(2s+1)
j )

+ (λ
(2s+1)
j + sη)

×

(

λ
(2s+1)
j +

2s+ 1

2
η

)

a(λ
(2s+1)
j )

Q(2s)(λ
(2s+1)
j )

Q(2s)(λ
(2s+1)
j + η)

F2s+1(λ
(2s+1)
j ) = 0, (5.18)

j = 1, . . . , L2s+1,

where l = s = 1, . . . , n2 − 1 if n is even, l = 1, . . . , n−1
2 and s = 1, . . . , n−1

2 − 1 if n is odd.

The rule for constructing {xi(u)|i = 1, . . . , n} is the following: (1)they must vanish for

u at all special points appeared in the operator identities (3.28) and in (3.25) and therefore

their existence does not affect the operator identities and the analogs of (4.8)–(4.13); (2)the

denominators must not generate new poles and therefore should be Qi(u) or part of them;

(3)the functions Fi(u) must satisfy the corresponding crossing symmetry properties to

keep the self-consistency of the BAEs. The explicit expressions (5.4)–(5.7) of the functions

{xi(u)|i = 1, . . . , n} and the nested T-Q ansatz (5.14)–(5.15) of the eigenvalues Λi(u) imply

that the nested T-Q ansatz does satisfy the very function relations (3.28) due to the fact

a(±θj − η) = d(±θj) = 0. Since that these functions {xi(u)|i = 1, . . . , n} also vanish at the

degenerated points (3.25), hence they do not violate the relations (for examples (4.8)–(4.13)

for the su(3)-case and (B.1)–(B.12) for the su(4)-case) of the transfer matrices at these

degenerated points. Moreover, the special choice of these functions (5.4)–(5.7) also assures

that the regularity of the all eigenvalues {Λi(u)|i = 1, . . . , n} of the transfer matrices can

be guaranteed consistently by the resulting BAEs (5.16)–(5.18). The asymptotic behav-

iors (3.36) of the eigenvalues of the transfer matrices lead to the equations (5.9)–(5.13),

which fixes the constants {ci} in (5.7).

Some remarks about the existence of solutions of (5.9) are in order. Due to the con-

struction rule (5.15) for Λm(u), the asymptotic behaviors of Λm(u) and Λn−m(u) give the

same condition in (5.9), namely, the total number of the independent equations in (5.9) is

n/2 if n is even and is (n − 1)/2 if n is odd. Thus, the equations (5.9)–(5.13) will fix the

constants {ci} in (5.7). We have checked that for n = 3 there exists an unique solution

to (5.9)–(5.13) (e.g. (4.26)) and that for n > 4 there are more solutions (actually there are

two solutions for n = 4) to (5.9)–(5.13). For an example, the independent equations for

n = 4 and p = p̄ = 2 are

{

−4 + c1 + c3 = −2 cosϑ1 − 2 cosϑ2

4− 2c1 − 2c3 + c1c3 = 4 cosϑ1 cosϑ2
. (5.19)
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However, the different solutions only give different parameterizations of Λi(u) in the T-

Q-type. It has been shown in [10–13] that even for the open chains related to the su(2)

case there indeed exist different T-Q ansatz for the eigenvalue of the transfer matrix. The

numerical check [10–13, 58] for the small sites of lattice shows that any of them gives the

complete set of eigenvalues.

The eigenvalue of the Hamiltonian (3.10) is

E =

L1
∑

l=1

2η2

λ
(1)
l (λ

(1)
l + η)

+ 2(N − 1) + η
[K(1)(u)]′

K(1)(u)
|u→0 +

2

n
, (5.20)

where the parameters {λ
(1)
l } are the roots of the BAEs (5.16)–(5.18) with θj = 0.

When two K-matrices K+(u) and K−(u) are both diagonal matrices, or they can be

diagonalized simultaneously by some gauge transformation, all the parameters c2l−1 vanish,

leading to F2l−1(u) = 0. The eigenvalue Λ(u) of the transfer matrix t(u) and the BAEs

recover those obtained by the other Bethe ansatz methods [77, 78, 82–88].

6 Conclusions

In this paper, we propose the nested off-diagonal Bethe ansatz method for solving the

multi-component integrable models with generic integrable boundaries, a generalization of

the method proposed in [10–13] (related to su(2) algebra) for integrable models associated

with higher rank algebras. In the method some functional relations (for the su(n) case such

as (2.16) for the closed chain or (3.27) for the open chain) among the antisymmetric fused

transfer matrices play a very important role. Taking the su(n)-invariant spin chain model

with both periodic and non-diagonal boundaries as examples, we elucidate how the method

works for constructing the Bethe ansatz solutions of the model. For the su(n)-invariant

closed chain, we re-derive the results obtained previously by other methods [62–64], but

with a simplified process. For the open boundary case specified by the most general K-

matrices (3.6) and (3.8), the very functional relations (3.27) are derived only via some

properties of the R-matrix and K-matrices. Based on these relations, the asymptotic be-

haviors (3.36) and the values of the eigenvalue functions (for examples, (4.8)–(4.13) for the

su(3)-case and (B.1)–(B.12) for the su(4)-case) at
∑n−1

m=1 2m special points (3.25), we ob-

tain the eigenvalues of the transfer matrix. When the K-matrices are both diagonal ones,

our results can be reduced to those obtained by the conventional Bethe ansatz methods.

Therefore, our method provides an unified procedure for approaching the integrable models

both with and without U(1) symmetry. We remark that this method might also be applied

to other quantum integrable models defined in other algebras.
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A Proofs of the operator identities

In this appendix, we give the detailed proof of the following identities which are crucial to

obtain the functional relations (2.16) and (3.27):

T1(θj)T〈2,3,...,m〉(θj − η) = P
(−)
1,2,...,mT1(θj)T2(θj − η) . . . Tm(θj − (m− 1)η)P

(−)
2,...,m, (A.1)

J1,...,m(±θj) = P
(−)
1,2,...,mJ1,...,m(±θj). (A.2)

The exchange relation (2.10) of the one row monodromy matrix T (u) implies

R2̄1̄(−η)T2̄(u− η)T1̄(u) = T1̄(u)T2̄(u− η)R2̄1̄(−η).

The above relation and the fusion condition (2.7) allow one to derive the following identity

P
(−)

1̄,2̄
T1̄(u)T2̄(u− η)R1̄2̄(−η) = T1̄(u)T2̄(u− η)R1̄2̄(−η). (A.3)

Let us evaluate the product of the operators T1̄(θj) and T2̄(θj − η)

T1̄(θj)T2̄(θj−η) =R1̄N (θj−θN ) . . . R1̄ j+1(θj−θj+1)R1̄j(0)R1̄ j−1(θj−θj−1) . . . R1̄ 1(θj−θ1)

×R2̄N (θj − θN − η) . . . R2̄ j+1(θj − θj+1 − η)R2̄j(−η)

×R2̄ j−1(θj − θj−1 − η) . . . R2̄ 1(θj − θ1 − η)

=Rj j−1(θj − θj−1) . . . Rj 1(θj − θ1)

×R1̄N (θj − θN ) . . . R1̄j+1(θj − θj+1)

×R2̄N (θj − θN − η) . . . R2̄j+1(θj − θj+1 − η)R2̄1̄(−η)

×R1̄j(0)R2̄ j−1(θj − θj−1− η) . . . R2̄ 1(θj − θ1− η)

(A.3)
=Rj j−1(θj − θj−1) . . . Rj 1(θj − θ1)P

(−)

1̄,2̄

×R1̄N (θj − θN ) . . . R1̄j+1(θj − θj+1)

×R2̄N (θj − θN − η) . . . R2̄j+1(θj − θj+1 − η)R2̄1̄(−η)

×R1̄j(0)R2̄ j−1(θj − θj−1− η) . . . R2̄ 1(θj − θ1− η)

=P
(−)

1̄,2̄
T1̄(θj)T2̄(θj − η),

namely, we have

T1(θj)T2(θj − η) = P
(−)
1,2 T1(θj)T2(θj − η), j = 1, . . . , N. (A.4)

Similarly, we have

T̂1(−θj)T̂2(−θj − η) = P
(−)
1,2 T̂1(−θj)T̂2(−θj − η), j = 1, . . . , N. (A.5)
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Due to the fact that R12(−η) is proportional to the antisymmetric projector (2.7), the

relation (A.3) also implies

T〈1,2〉(u) = P
(−)
1,2 T1(u)T2(u− η)P

(−)
1,2 = T1(u)T2(u− η)P

(−)
1,2 . (A.6)

Using similar method to derive the above relation and following the procedure [65–69], we

can derive the following relations

T〈1,2,...,m〉(u) = P
(−)
1,2,...,mT1(u)T2(u− η) . . . Tm(u− (m− 1)η)P

(−)
1,2,...,m

= T1(u)T2(u− η) . . . Tm(u− (m− 1)η)P
(−)
1,2,...,m. (A.7)

Combining the above relation with (A.4), we can show that

Pl,l+1 T1(θj)T〈2,3,...,m〉(θj − η) = −T1(θj)T〈2,3,...,m〉(θj − η), l = 1, . . . ,m− 1. (A.8)

Then we can conclude that T1(θj)T〈2,3,...,m〉(θj − η) satisfy the relation (A.1).

With the similar method used to prove (A.4) and the reflection equation (3.1), we can

obtain the following relations:

J1(±θj)R21(±2θj − η)J2(±θj − η) = P
(−)
1,2 J1(±θj)R21(±2θj − η)J2(±θj − η),

j = 1, . . . , N. (A.9)

J〈1,...,m〉(u) = J1,...,m(u)P
(−)
1,...,m, m = 1, . . . n, (A.10)

K+
〈1,...,m〉(u) = K+

1,...,m(u)P
(−)
1,...,m, m = 1, . . . n. (A.11)

Using the relations (A.9) and (A.10), we can derive that

Pl,l+1 J1,...,m(±θj) = −J1,...,m(±θj), l = 1, . . . ,m− 1. (A.12)

(A.2) is a consequence of the above relations. Hence we complete the proof of (A.2).

B Higher rank analogs of (4.8)–(4.13)

The explicit expressions of theK-matrices (3.6) and (3.8) imply some identities (4.7) among

them. These identities and some degenerated properties (3.24) of the R-matrix and the

K-matrices allow one to derive that the fused transfer matrices satisfy certain relations

at some special points (3.25). For the su(3)-case they are given by (4.8)–(4.13). Here we

present their analogs for the su(4)-case:

t(0) = (−1)Nξ
N
∏

l=1

(θl + η)(θl − η)tr{K+(0)} × id, (B.1)

t(−2η) = (−1)N ξ̄
N
∏

l=1

(

θl +
3

2
η

)

(θl − 2η)tr{K−(−2η)} × id, (B.2)

t2(0) = 3(−1)Nξη2
N
∏

l=1

(θl + η)(θl − η)tr{K+(0)} t1(−η), (B.3)
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t2

(

η

2

)

= tr12

{

K+
〈12〉

(

η

2

)}

η

(

η2

4
− ξ2

)

×
N
∏

l=1

(

θl −
η

2

)(

θl +
η

2

)(

θl −
3

2
η

)(

θl +
3

2
η

)

× id, (B.4)

t2

(

−
3

2
η

)

= η

(

η2

4
− ξ̄2

) N
∏

l=1

(

θl −
5

2
η

)(

θl +
5

2
η

)(

θl −
3

2
η

)(

θl +
3

2
η

)

×tr12

{

K−
〈12〉

(

−
3

2
η

)}

× id, (B.5)

t2(−η) = 3(−1)N ξ̄η2
N
∏

l=1

(θl + 2η)(θl − 2η)tr{K−(2η)} t1(−η), (B.6)

and

t3(0) = 12(−1)Nξη4
N
∏

l=1

(θl + η)(θl − η)tr{K+(0)} t2(−η), (B.7)

t3(0) = 12(−1)N ξ̄η4
N
∏

l=1

(θl + 2η)(θl − 2η)tr{K−(−2η)} t2(0), (B.8)

t3

(

η

2

)

= 12tr12

{

K+
〈12〉

(

η

2

)}

η5
(

η2

4
− ξ2

)

t1

(

−
3

2
η

)

×
N
∏

l=1

(

θl −
η

2

)(

θl +
η

2

)(

θl −
3

2
η

)(

θl +
3

2
η

)

, (B.9)

t3

(

−
η

2

)

= 12η5
(

η2

4
− ξ̄2

)

tr23

{

K−
〈23〉

(

−
3

2
η

)}

t1

(

−
η

2

)

×
N
∏

l=1

(

θl −
5

2
η

)(

θl +
5

2
η

)(

θl −
3

2
η

)(

θl +
3

2
η

)

, (B.10)

∂

∂u
t3(u) |u=η = 4ξη2(ξ2 − η2)(−1)N tr123{K

+
〈123〉(η)}

×
N
∏

l=1

θ2l (θl − η)(θl + η)(θl − 2η)(θl + 2η) × id, (B.11)

∂

∂u
t3(u) |u=−η = 4ξ̄η2(η2 − ξ̄2)(−1)N tr123{K

−
〈123〉(−η)}

×
N
∏

l=1

(θl−η)(θl+η)(θl−2η)(θl+2η)(θl−3η)(θl+3η) × id. (B.12)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

– 23 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
4
(
2
0
1
4
)
1
4
3

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv.

Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200]

[INSPIRE].

[2] N. Beisert et al., Review of AdS/CFT integrability: an overview,

Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

[3] J.A. Minahan and K. Zarembo, The Bethe ansatz for N = 4 super Yang-Mills,

JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].

[4] D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons,

JHEP 06 (2005) 059 [hep-th/0501078] [INSPIRE].

[5] D.M. Hofman and J.M. Maldacena, Reflecting magnons, JHEP 11 (2007) 063

[arXiv:0708.2272] [INSPIRE].

[6] R. Murgan and R.I. Nepomechie, Open-chain transfer matrices for AdS/CFT,

JHEP 09 (2008) 085 [arXiv:0808.2629] [INSPIRE].

[7] R.I. Nepomechie, Revisiting the Y = 0 open spin chain at one loop, JHEP 11 (2011) 069

[arXiv:1109.4366] [INSPIRE].

[8] J. McGreevy, L. Susskind and N. Toumbas, Invasion of the giant gravitons from

anti-de Sitter space, JHEP 06 (2000) 008 [hep-th/0003075] [INSPIRE].

[9] J. Dukelsky, S. Pittel and G. Sierra, Colloquium: exactly solvable Richardson-Gaudin models

for many-body quantum systems, Rev. Mod. Phys. 76 (2004) 643 [nucl-th/0405011]

[INSPIRE].

[10] J. Cao, W. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz and exact solution of a

topological spin ring, Phys. Rev. Lett. 111 (2013) 137201 [arXiv:1305.7328] [INSPIRE].

[11] J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solution of the XXX

spin-chain with arbitrary boundary conditions, Nucl. Phys. B 875 (2013) 152

[arXiv:1306.1742] [INSPIRE].

[12] J. Cao, W.-L. Yang, K.-J. Shi and Y. Wang, Spin-1/2 XYZ model revisit: general solutions

via off-diagonal Bethe ansatz, arXiv:1307.0280 [INSPIRE].

[13] J. Cao, W.-L. Yang, K. Shi and Y. Wang, Off-diagonal Bethe ansatz solutions of the

anisotropic spin-1/2 chains with arbitrary boundary fields, Nucl. Phys. B 877 (2013) 152

[arXiv:1307.2023] [INSPIRE].

[14] H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic

chain, Z. Phys. 71 (1931) 205 [INSPIRE].

[15] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, R.J. Baxter and G.R.W. Quispel, Surface

exponents of the quantum XXZ, Ashkin-Teller and Potts models, J. Phys. A 20 (1987) 6397

[INSPIRE].
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