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1 Introduction

The bottom quark mass mb is a fundamental parameter of the Standard Model of particle

interactions. It is an essential input parameter for the analysis of the B-meson decays and

CKM quark mixing matrix as well as the Higgs boson decay rates and branching ratios. The

precise value of the bottom quark mass is also crucial for testing possible extensions of the

Standard Model such as grand unified theories. Thus determination of the bottom quark

mass with the best possible precision is an important problem of particle phenomenol-

ogy. A unique tool for such a determination is given by the analysis of the family of Υ

resonances within quantum chromodynamics. Direct application of perturbative QCD to

the description of the heavy-quarkonium properties such as the resonance mass and width

suffers from sizable long-distance nonperturbative effects [1, 2] resulting in large uncer-

tainties even if high-order approximation is available [3–7]. The sum rules approach [8, 9]

suggests an elegant solution of the problem. It relates the moments of the spectral density

saturated with the contribution of Υ resonances to the derivatives of the heavy quark vac-

uum polarization function in a deep Euclidean region, which can be reliably computed in

perturbation theory. Thus the approach provides a model independent determination of

the bottom quark mass entirely based on the first principles of QCD. The low-moment or

“relativistic” and the high-moment or “nonrelativistic” sum rules require essentially differ-

ent experimental and theoretical input and can be considered as complimentary methods.

Both methods have been extensively applied to the bottom quark mass determination.

The most recent analysis of the low-moment sum rules includes the third-order corrections
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in the strong coupling constant αs to the leading-order result [10–12]. At the same time

the high-moment sum rules have been evaluated only through the next-to-next-to-leading

order (NNLO) [13–21] though the effect of higher order logarithmically enhanced terms

have been considered [22, 23]. In this paper we present the complete O(α3
s) corrections

to the heavy quarkonium parameters required for the N3LO analysis of the nonrelativistic

Υ sum rules and apply the result to the determination of the bottom quark mass. In the

next section we outline the main concept of the nonrelativistic Υ sum rules and describe

the perturbative approximation. The numerical analysis is given in section 3. In section 4

our new estimate of the bottom quark mass is compared to the existing high-order results.

2 Υ sum rules

We consider the vacuum polarization function Π(q2) defined through the two-point vacuum

correlator of the heavy-quark electromagnetic current jµ = b̄γµb

(

qµqν − gµνq
2
)

Π(q2) = i

∫

ddx eiqx 〈0|Tjµ(x)jν(0)|0〉 . (2.1)

Its nth moment is given by the normalized derivative

Mn =
12π2

n!
(4m2

b)
n d

n

dsn
Π(s)

∣

∣

∣

∣

s=0

= (4m2
b)

n

∫ ∞

0

R(s)ds

sn+1
, (2.2)

where s = q2 and R(s) = 12πImΠ(s + iǫ) is the spectral density. The long-distance

nonperturbative contribution to eq. (2.2) is parametrically suppressed as Λ4
QCD/m

4
b and

the moments can be reliably computed in perturbative QCD [9]. On the other hand the

optical theorem relates the spectral density to the experimentally measured cross section

of bb̄ hadron production in electron-positron annihilation

Rexp(s) =
1

Q2
b

σ(e+e− → bb̄)

σ(e+e− → µ+µ−)
, (2.3)

where Qb = −1/3 is the bottom quark electric charge. The moments of experimental

spectral density (2.3) get dominant contribution from the Υ(nS) resonances

Mexp
n = (4m2

b)
n 9π

Q2
bα

2(2mb)

(

∑

m

ΓΥ(mS)→l+l−

M2n+1
Υ(mS)

+ . . .

)

, (2.4)

where α(2mb) is the running QED coupling constant, MΥ(mS) (ΓΥ(mS)→l+l−) is the reso-

nance mass (leptonic width), and ellipsis stand for the nonresonant contribution. The sum

rules then read

Mexp
n = Mth

n , (2.5)

where the theoretical moment Mth
n is evaluated with the perturbative QCD approximation

for the spectral density. For small n the moments get sizable contribution from relativis-

tic region above bb̄ pair threshold where the uncertainty of the measured cross section is

relatively large. For large n the experimental moments are saturated with the contribu-

tion of the lowest Υ resonances measured with very high accuracy. Moreover for large n
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the moments (2.4) are very sensitive to the value of mb, which significantly reduces the

uncertainty of the extracted bottom quark mass. The number of a phenomenologically

relevant moment is limited only by the magnitude of nonperturbative contribution which

grows as n3 and becomes sizable for n>∼20 [14]. The perturbative description of the high

moments, however, is nontrivial. For large n the theoretical moments are saturated with

the nonrelativistic threshold region where the heavy quark velocity v is of order 1/
√
n [13].

This results in enhancement of the Coulomb effects which are characterized by the expan-

sion parameter αs/v ∼ √
nαs rather then αs. For n>∼1/α2

s ∼ 10 the Coulomb terms are

not suppressed and have to be resummed to all orders. Thus for high moments the QCD

perturbation theory should be build up about the nonrelativistic Coulomb solution instead

of the free heavy-quark approximation used for analysis of the low moments. In the next

section we outline how this can be done systematically within the nonrelativistic effective

field theory framework.

2.1 Effective theory approach to nonrelativistic sum rules

In the threshold region the heavy-quark velocity v is a small parameter. An expansion

in v may be performed directly in the QCD Lagrangian by using the concept of effective

field theory [24]. The relevant modes are characterized by the hard (k0,k ∼ mq), the

soft (k0,k ∼ mqv), the potential (k0 ∼ mqv
2, k ∼ mqv), and the ultrasoft (k0,k ∼

mqv
2) scaling of energy k0 and three-momentum k in respect to the heavy-quark mass mq.

Integrating out the hard modes matches QCD onto non-relativistic QCD (NRQCD) [25].

By subsequent integrating out the soft modes and potential gluons one obtains the effective

theory of potential NRQCD (pNRQCD) [26–29], which contains potential heavy quarks and

ultrasoft gluons as dynamical fields relevant for the description of the heavy-quark threshold

dynamics. In this theory the propagation of a color-singlet quark-antiquark pair is described

by the Green function Gs(r, r′;E). In the leading-order Coulomb approximation the Green

function satisfies the Schrödinger equation

(HC − E)Gs
C(r, r

′;E) = δ(3)(r − r′) , (2.6)

with the Hamiltonian

HC = − ∂2

mq
− αsCF

r
, (2.7)

where r = |r|, mq the heavy-quark pole mass, and CF = (N2
c − 1)/(2Nc), Nc = 3. The

leading-order Green function gets corrections due to the high-order terms in the nonrel-

ativistic and perturbative expansion of the effective Hamiltonian as well as due to the

multipole interaction of the potential quarks to the ultrasoft gluons. In the effective the-

ory the electromagnetic current is represented by a series of operators composed of the

nonrelativistic quark and antiquark two-component Pauli spinor fields ψ and χ

j = cvψ
†σχ+

dv
6m2

q

ψ†σD2χ+ . . . , (2.8)
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where the matching coefficients cv = 1 + O(αs) and dv = 1 + O(αs) are the series in αs.

The threshold behaviour of the heavy-quark polarization function is given by the following

pNRQCD expression

Π(q2) =
Nc

2m2
q

(

cv −
E

mq

dv
6

+ . . .

)2(

1 +
E

2mq

)−2

Gs(0, 0;E) , (2.9)

where E =
√

q2 − 2mq ∼ v2mq and only the component of total spin one is kept in the

Green function as dictated by the form of the production current. The corrections to the

leading order Coulomb approximation for the polarization function (2.9) can be computed

in pNRQCD as a series in αs and v ∼ αs according to the effective theory power counting,

which gives a systematic perturbative expansion for the high moments. The explicit result

for the polarization function up to the NNLO can be found in refs. [18, 19]. The spectral

representation of the color-singlet Green function includes an infinite number of Coulomb-

like bound state poles

Gs(0, 0;E) =
∞
∑

n=1

|ψn(0)|2
En − E − iǫ

+ . . . , (2.10)

where the ellipsis stand for the continuum contribution, and En (ψn(r)) is the energy (wave

function) of the bound state with spin S = 1 and orbital angular momentum l = 0. In the

Coulomb approximation they read

EC
n = −mqC

2
Fα

2
s

4n2
, |ψC

n (0)|2 =
(mqCFαs)

3

8πn3
. (2.11)

Thus, the effective theory expression for the moments can be written in the following form

Mn = (4m2
b)

n

(

12π2Nc

m2
b

∑

m

Zm

(2mb + Em)2n+1
+

∫ ∞

4m2
b

R(s)ds

sn+1

)

, (2.12)

where

Zm =

(

cv −
Em

mb

dv
6

)2(

1 +
Em

2mb

)−2

|ψm(0)|2 , (2.13)

and R(s) for s > 4m2
b is determined by the imaginary part of eq. (2.9). The quantities En

and Zn determine the perturbative QCD predictions for the Υ(nS) resonance mass and

leptonic width

Mp.t.
Υ(nS) = 2mb + En , Γp.t.

Υ(nS)→l+l−
=

4π

3

NcQ
2
bα

2(2mb)

m2
b

Zn . (2.14)

The nonperturbative corrections to the binding energy and the width in eq. (2.14) are

parametrically as large as Λ4
QCD/(α

6
sm

4
b), being significantly enhanced in comparison to

the moments [1, 2]. They grow rapidly with the principal quantum number and result in

a large theoretical uncertainty even in the case of the Υ(1S) state. On the other hand for

high moments the contribution of the sum to eq. (2.12) significantly exceeds the one of

the integral and one may expect the nonperturbative effects to become as important as for

the bound state parameters. Indeed, for a large moment number n the nonperturbative
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correction to the sum rules result for the bottom quark mass scales as n2Λ4
QCD/m

4
b , and

for n ∼ 1/α2
s it is parametrically as large as the nonperturbative contribution to the first

of eqs. (2.14). However, the explicit calculations [13, 14] show that the moments get a

negligible contribution from the momentum region of order ΛQCD for n<∼20, though the

nonperturbative contribution in this case is suppressed numerically rather than paramet-

rically. Thus for n ∼ 1/α2
s the moments are significantly less sensitive to the long-distance

phenomena than the bound state parameters. This is in agreement with a general argu-

ment that the moments are inclusive Euclidean quantities, which is valid even when the

bound state contributions to the spectral representation is large. The evaluation of the

perturbative corrections to the parameters En and Zn is, therefore, crucial for high-order

analysis of the nonrelativistic sum rules. In the next section we present the complete O(α3
s)

result for these quantities.

2.2 Heavy quarkonium mass and leptonic width to O(α3

s
)

We parameterize the perturbative series for the resonance mass and leptonic width

as follows

En = EC
n

∞
∑

m=0

(αs

π

)m

e(m)
n , Zn = |ψC

n (0)|2
∞
∑

m=0

(αs

π

)m

z(m)
n , (2.15)

where αs ≡ α
(nl)
s (µ) is the MS renormalized coupling with nl light-quark flavors and

e
(0)
n = z

(0)
n = 1. The first two coefficients of the series for the binding energy are well

known [30] and listed in the appendix A. The third-order term can be decomposed according

to the powers of the logarithm

e(3)n =

(

1331

2
− 121nl +

22

3
n2l −

4

27
n3l

)

L3
n + δ(2)e (n)L2

n

+

(

9

2
+

424

9n
− 32

9n2

)

π2L+ δ(1)e (n)Ln + δ(0)e (n) , (2.16)

where Ln = ln (nµ/αsCFmq) and L = ln (µ/mq). The full analytical expression of the

coefficients in eq. (2.16) for arbitrary n [31, 32] is too cumbersome and we only present

their values for the six lowest states. For the ground state they read [4]

δ(2)e (1) =
4521

2
− 10955

24
nl +

1027

36
n2l −

5

9
n3l ,

δ(1)e (1) =
247675

96
+

26897

108
π2 +

3025

2
ζ(3)− 99

16
π4 +

(

−166309

288
− 5095

162
π2 − 902

3
ζ(3)

+
3

8
π4
)

nl +

(

10351

288
+

11

9
π2 +

158

9
ζ(3)

)

n2l +

(

−50

81
− 2

81
π2 − 8

27
ζ(3)

)

n3l ,

δ(0)e (1) = 7362.11− 1318.36nl + 75.2630n2l − 1.25761n3l , (2.17)

where ζ(z) is the Riemann zeta-function, ζ(3) = 1.20206 . . .. The last coefficient incor-

porates the three-loop contribution to the static potential [33, 34]. For n = 2, . . . , 6 the

coefficients are listed in the appendix B. The corrections to the leptonic width up to O(α2
s)
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can be read off the results [18, 19, 35, 36] and are given in the appendix A. The third-order

term for general n has only been evaluated in the logarithmic approximation [5, 6, 37]. Re-

cently the total third-order correction for n = 1 has been published in a numerical form [7].

Below we present the result for the excited states. As it follows from eq. (2.15), the O(α3
s)

contribution consists of:

(i) Interference of the leading and next-to-leading order corrections from each of three

factors in eq. (2.13).

(ii) The one-loop correction to the matching coefficient dv [38] and recently completed

three-loop corrections to matching coefficient cv [39–41].

(iii) The corrections to the wave function [31, 32, 42, 43] due to the N3LO operators in

the effective Hamiltonian [33, 34, 44, 45] and due to the multiple iterations of the

next-to-leading and NNLO operators.

(iv) The ultrasoft correction to the wave function [46].

Combining all the above contribution we get the complete result for the third-order term

in the following form

z(3)n =

(

6655

4
− 605

2
nl +

55

3
n2l −

10

27
n3l

)

L3
n +

(

−484

3
− 1406

27
π2 +

(

176

9
+

140

81
π2
)

nl

− 16

27
n2l

)

L2 +

(

−484− 346

9
π2 +

(

176

3
+

140

27
π2
)

nl −
16

9
n2l

)

LLn

+δ(2)z (n)L2
n + δ′

(1)
z (n)L+ δ(1)z (n)Ln + δ(0)z (n) . (2.18)

For the ground state we obtain the following values of the n-dependent coefficients

δ(2)z (1) =
6809

2
− 50119

108
π2 +

(

−37943

48
+

15215

162
π2
)

nl +

(

3935

72
− 55

9
π2
)

n2l

+

(

−7

6
+

10

81
π2
)

n3l ,

δ′
(1)
z (1) = −15553

27
− 26981

4860
π2 − 2750

9
ζ(3) +

770

81
π4 − 2284

27
π2 ln 2

+

(

7468

81
+

337

54
π2 +

500

27
ζ(3)− 140

243
π4 +

56

27
π2 ln 2

)

nl +

(

−260

81
+

16

81
π2
)

n2l ,

δ(1)z (1) =
214891

144
− 7274327

38880
π2 +

193985

48
ζ(3) +

20735

10368
π4 − 26

27
π2 ln 2

+

(

−916993

1728
+

458711

3888
π2 − 30185

36
ζ(3)− 45445

15552
π4 +

28

9
π2 ln 2

)

nl +

(

76739

1728

− 7045

648
π2 +

205

4
ζ(3) +

55

216
π4
)

n2l +

(

−80

81
+

227

972
π2 − 25

27
ζ(3)− 5

972
π4
)

n3l ,

δ(0)z (1) = −3557(4) + 310.22(2)nl − 2.83280n2l + 0.0565322n3l , (2.19)

where the error in δ
(0)
z is due to the numerical evaluation of cv [41]. The corresponding

expressions for n = 2, . . . , 6 are listed in the appendix B.
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n 1 2 3

MΥ(nS) (GeV) 9.46030(26) 10.02326(31) 10.3552(5)

ΓΥ(nS)→e+e− (keV) 1.340(18) 0.612(11) 0.443(8)

n 4 5 6

MΥ(nS) (GeV) 10.5794(12) 10.876(11) 11.019(8)

ΓΥ(nS)→e+e− (keV) 0.272(29) 0.31(7) 0.130(30)

Table 1. Experimental values of the Υ-resonance masses and leptonic widths [47].

3 Numerical analysis

Now we are in a position to apply the method described in the previous section for the

determination of the bottom quark mass. We use the parameters of the six Υ resonances

listed in table 1 as the experimental input. The 5th and 6th resonances actually lie above

the B-meson production threshold and their contribution does not represent the total

experimental spectral density in this region. We use this contribution only to estimate the

experimental uncertainty of our result. For the QED running coupling we adopt the value

α(2mb) = 1.036α [48], where α = 1/137.036 is the fine structure constant.

On the theory side we use the complete O(α3
s) expression for the contribution of the

perturbative heavy-quarkonium bound states below the bb̄ threshold given in section 2.2

for nl = 4. The continuum contribution from the above-threshold region is strongly sup-

pressed for high moments and high accuracy of the theoretical approximation there is not

mandatory. Thus, without introducing significant error we emulate the N3LO spectral

density for s > 4m2
b by rescaling the NNLO result [16]

R(s) =
ZN3LO
1

ZNNLO
1

RNNLO(s) . (3.1)

To estimate the error introduced by this approximation we multiply the total continuum

contribution to the theoretical moments by 1/2 < ρ < 2, which corresponds to the variation

of its absolute value by factor four.

The sequence of the values of the bottom quark pole mass mb extracted from the sum

rules order by order in perturbation theory does not converge well. This is expected since

the pole mass is widely believed not to be a good parameter of perturbative QCD due

to infrared renormalon contribution (see [49] for a review and [50] for a recent high-order

analysis). The perturbative behavior of the “short-distance” mass parametermb(µ) defined

in MS renormalization scheme is supposed to be much better. Therefore we convert the

extracted pole mass value into mb(mb) according to the relation

mb = mb(mb)
∑

n

r(n)
(

αs(mb)

π

)n

, (3.2)

where the coefficients r(n) have been evaluated up to n = 3 [51, 52]. To achieve the

cancellation of factorially growing terms associated with the infrared renormalon one has

to correlate perturbative approximations for the mass relation and the sum rules in such

– 7 –
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a way that the series (3.2) is truncated at one order higher than the series (2.15), i.e. the

one-loop mass relation is used with the Coulomb approximation for the moments, and so

on [53, 54]. Our analysis therefore requires the four-loop coefficient r(4). Since the exact

value of this coefficient is not yet available we use the renormalon-based estimate [55]

r(4)ren ≈ 1346 . (3.3)

This method reproduces the value of the three-loop coefficient r(3) with the precision better

than one part in a thousand. We take the difference between eq. (3.3) and the large-β0
prediction r

(4)
β0

≈ 1325 [49] as a conservative estimate of its uncertainty.

An important issue of the numerical analysis of high moments is whether the factor

1/(2mb+Em)2n+1 in eq. (2.12) should be expanded about 1/(2mb+E
C
m)2n+1. Formally all

the terms of this expansion beyond the N3LO are suppressed according to the
√
n ∼ 1/αs

power counting and can be neglected in our approximation. Such an expansion, however,

merely violates the cancellation of the large perturbative corrections related to the infrared

renormalon in the series for the binding energy (2.15) and for the pole mass (3.2) [18, 20,

21, 53–55]. This spoils the convergence of the resulting series for mb since the factorial

growth of the coefficients e
(k)
m beats the 1/

√
n suppression. To ensure the cancellation to

all orders in 1/
√
n we first extract the value of the pole mass keeping the above factor

unexpanded and then convert it into mb to the required order of perturbation theory.

The result for the MS bottom quark mass is shown in figures 1(a) and 1(b) in the

different orders of perturbation theory as functions of the moment number and the renor-

malization scale. For the numerical estimates we use the moments in the interval 10>∼n>∼20,

where the nonrelativistic perturbative approximation for the spectral density is valid, the

nonperturbative effects are under control, and the result is almost insensitive to the con-

tinuum contribution to the theoretical moments. The renormalization scale is varied in a

physically motivated interval between the soft scale µ ∼ αsmb and the hard scales µ ∼ mb.

We take αs(Mz) = 0.1184 ± 0.0007 [47] as an input and run it down to µ = mb with the

four-loop beta-function [56]. To convert αs(mb) into αs(µ) used in our numerical analysis

we correlate the order of the renormalization group evolution of the strong coupling con-

stant with the perturbative expansion for the sum rules so that the one-loop running is

used in the leading approximation, an so on. To ensure the renormalon cancellation we

reexpress eq. (3.2) through αs(µ) and use the same renormalization scale both for the sum

rules and the mass relation.

A stable perturbative result is achieved for n>∼10 and µ>∼3.5GeV, see figure 2. We

take mb(mb) = 4.194 as a central value of our estimate. It corresponds to n = 15 in the

center of the allowed interval and to the renormalization scale µ = mb, which belongs to the

stability plateau and provides nα2
s ≈ 0.8 in agreement with the power counting rules. The

uncertainty budget of our estimate is summarized in table 2. The experimental part of the

uncertainty ∆exp accounts for both the error bars in the measured values of the resonance

mass and width, and the contribution from the region above the B-meson production

threshold. We estimate the latter by the size of the 5th and 6th Υ-resonance contribution

to the experimental moments. The uncertainty ∆αs
corresponds to the error in the input

value of αs(MZ). The quantities ∆ρ and ∆r(4) account for the approximate character of

– 8 –
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n = 15

N3LO*
NNLO

NLO

LO

2 3 4 5 6
3.8

3.9

4.0

4.1

4.2

4.3

4.4

ΜHGeVL

m
bH

m
bL
HG

eV
L

(a)

Μ = 4GeV

N3LO*
NNLO

NLO

LO

10 15 20
4.0

4.1

4.2

4.3

4.4

n

m
bH

m
bL
HG

eV
L

(b)

Figure 1. The bottom quark mass plotted (a) as function of the renormalization scale for n = 15

and (b) as function of the moment number for µ = 4GeV in different orders of perturbation theory.

The star in N3LO∗ refers to the approximate character of eqs. (3.1), (3.3).

the eqs. (3.1), (3.3). The value of ∆ρ is given by a half of the variation of the result with

the parameter ρ changing from 1/2 to 2. In the same way ∆n is given by a half of the

variation of the result with the moment number spanning the interval 10 < n < 20. We

take one half of the third-order correction as an estimate of the uncertainty ∆p.t. introduced

by truncation of the perturbative expansion. This procedure can be verified through the

N3LO. Indeed, the numerical series for the bottom quark mass reads

mb(mb) = 4.294 (1LO + 0.0262NLO − 0.0038NNLO + 0.0010N3LO + . . .) , (3.4)

where the third-order correction amounts only about a quarter of the second-order term.

Each individual contribution to the total uncertainty is computed with all other parameters

fixed at their central values and at the normalization scale µ = mb. We refrain from using

the scale dependence for the uncertainty estimate since this procedure strongly depends on
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∆exp ∆αs
∆ρ ∆r(4) ∆n ∆p.t. ∆n.p. ∆mc

2.3 1.9 4.2 2.2 3.4 2.1 0.8 5.0

Table 2. Different contributions to the uncertainty of mb(mb) in MeV.

the low boundary of the allowed scale variation which cannot be unambiguously defined.

We therefore restrict the analysis only to the large stability region where the variation of

the result due to the change of the scale is much smaller than our estimate of perturbative

uncertainty given above. The choice of the hard renormalization scale may look ambiguous

since for large n the soft scale mb/
√
n and the ultrasoft scale mb/n are involved. As a con-

sequence the coefficients of the series get contributions enhanced by logarithm of a scale

ratio proportional to lnn, which may affect the convergence of the perturbative expansion.

The logarithmic terms cannot be completely eliminated by adjusting the renormalization

scale of αs but can be resummed to all orders through the effective theory renormalization

group [22, 23, 57]. However, for our choice of the moments lnn < 3, i.e. the asymptotic

regime is not yet reached. In fact for such n the logarithmic terms do not saturate the

coefficients of the series numerically and do not have to be distinguished from the nonloga-

rithmic contributions. This justifies our choice of the renormalization scale dictated solely

by the convergence of the perturbation theory.

The moments get also a contribution from the nonperturbative scale ΛQCD. Within

the operator product expansion it is given by a series in nΛ2
QCD/m

2
b . The leading non-

perturbative contribution to the high moments due to the gluon condensate turns out to

be numerically suppressed [14]. For n = 15 and 〈αs

π
G2〉 ≈ 0.012 GeV4 the corresponding

correction to the bottom quark mass is about −0.8MeV. We take this value as the nonper-

turbative uncertainty ∆n.p. of our result. Though the nonperturbative uncertainty rapidly

increases with the moment number, the perturbative one is suppressed for higher moments

and their sum does not significantly change over the whole range of n considered in the

paper. One may be concerned that for large n the ultrasoft scale mb/n approaches ΛQCD,

which questions the perturbative treatment of the ultrasoft contribution. However, the re-

sult of ref. [14] ensures that even for n = 20 the moments do not get a sizable contribution

from the gluonic field fluctuations at the scale ΛQCD and the perturbative description of

the moments is justified.

3.1 Charm mass effect

So far we considered the charm quark to be massless. Since its mass mc is not much smaller

than the soft scale, the charm quark mass effect on the effective potential and the bound

state dynamics may not be negligible [58, 59]. This effect has been analyzed in the context

of Υ sum rules through the NNLO [60]. By using the results of ref. [60] for the charm

quark mass correction to the moments and to the mass relation, for mc(mc) ≈ 1.3GeV [11]

and a set of input parameters similar to the one adopted in this section we get a negative

shift of approximately 25MeV in the extracted value of mb(mb) with an estimated error

∆mc
= 5MeV. We incorporate this correction in the analysis. Our final prediction for the

– 10 –



J
H
E
P
0
4
(
2
0
1
4
)
1
2
0

(a)

4.213 4.213

4.051

4.193

4.095

4.194 4.194

4.132

4.196

4.147

4.203 4.204

4.197 4.198 4.198

4.191 4.193

4.195 4.194

4.198 4.197

4.150

4.194 4.200 4.202

4.192 4.193

4.195 4.195

4.198 4.198

4.150 4.182

4.182 4.189

4.188 4.192 4.193

4.196 4.196 4.195

4.199 4.199 4.199

4.181 4.190 4.193

4.193

4.127

4.189 4.197

4.167 4.185

4.178 4.190 4.194

4.198 4.198

4.148 4.186 4.201

4.076 4.157

4.193

4.122 4.176

4.194 4.197 4.197

4.193 4.192

4.136 4.182 4.193

4.192 4.193 4.193

4.194 4.193

4.198 4.197 4.197

4.191 4.195

4.193 4.193 4.192

4.195 4.196 4.195

4.187 4.196 4.198

4.208 4.211

4.190 4.192 4.193

4.196 4.196

4.036

4.193 4.192

4.103

4.180 4.192

4.064 4.153 4.181

4.195 4.195

4.189 4.193

4.196

4.144 4.186

4.195

4.086 4.160

4.116 4.173

4.140 4.184

4.110 4.170 4.186

4.197 4.196

4.164 4.183 4.190

4.194 4.194 4.194

4.195 4.197

4.194

mbHmbLHGeVL

2 3 4 5 6

10

15

20

ΜHGeVL

n

(b)

Figure 2. Three-dimensional (a) and contour (b) plots of the bottom quark mass as function of the

renormalization scale and moment number in the N3LO approximation. The red blob corresponds

to the central value of our estimate.

bottom quark mass reads

mb(mb) = 4.169± 0.008th ± 0.002αs
± 0.002exp , (3.5)

where the theoretical error corresponds to ∆ρ, ∆r(4) , ∆n, ∆p.t., ∆n.p., and ∆mc
added up

in quadrature.
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3.2 Υ(1S) mass and leptonic width

Though significant nonperturbative effects are expected in the QCD analysis of the Υ-

resonance mass and width, it is instructive to figure out how perturbative QCD results [4, 7]

reproduce the experimental data for the lowest Υ(1S) state, where the nonperturbative

contribution is minimal. From the result of the previous section we get the following

numerical series for the ground state mass and width for mc = 0

Mp.t.

Υ(1S) = 2mb + EC
1

[

1 + (2.653L1 + 3.590)αs +
(

5.277L2
1 + 12.066L1 + 19.524

)

α2
s

+
(

9.332L3
1+27.593L2

1+15.297L+78.375L1 + 103.605
)

α3
s + . . .

]

, (3.6)

Γp.t.
Υ(1S)→l+l−

= ΓLO
Υ(nS)→l+l−

[

1 + (3.979L1 − 2.003)αs +
(

10.554L2
1 − 7.437L

− 6.514L1 + 11.188)α2
s +

(

23.330L3
1 − 17.361L2 − 14.594L1L− 23.125L2

1

− 4.339L+ 80.603L1 − 76.033)α3
s + . . .

]

, (3.7)

in agreement with [4, 7]. In figure 3 we plot MΥ(1S) and ΓΥ(1S)→e+e− evaluated accord-

ing to eqs. (3.6), (3.7) as functions of the renormalization scale with a fixed value of

mb(mb) = 4.194GeV as an input parameter. The plots clearly indicate stabilization of the

perturbative expansion at µ ∼ mb. Evidently the inclusion of the high-order corrections

improves the accuracy of the perturbative QCD prediction. The convergence of the sum

rules series (3.4), however, is by far superior to the series (3.6).

The O(α3
s) approximation is in a rather good agreement with the experimental data

for the resonance mass (width). The difference of about 60MeV (0.3 keV) quantitatively

agrees with an estimate of the nonperturbative contribution of the gluon condensate [61].

The inclusion of the charm mass effects increases the difference between the perturbative

result and the measured Υ(1S) mass to approximately 90MeV since the reduction of the

binding energy [60] does not fully compensate the negative corrections to the input value

of mb (3.5). The interpretation of the nonperturbative contribution to eqs. (3.6), (3.7)

in this case is more ambiguous [7] but still consistent with the gluon condensate. This

validates our estimate of the nonperturbative correction to the sum rules, which is also

based on the gluon condensate contribution. As it has been pointed out in section 2, for

n ∼ 1/α2
s the nonperturbative correction to eq. (3.5) is not parametrically suppressed in

comparison to the first equation of (2.14). Nevertheless, numerically the gluon condensate

contribution to the sum rules result for mb is almost two orders of magnitude smaller than

the nonperturbative correction to the resonance mass, clearly showing the short-distance

nature of the moments.

4 Summary and discussion

The main result of this work is the new value of the bottom quark mass (3.5) from the

O(α3
s) analysis of the nonrelativistic Υ-sum rules. In table 3 we confront eq. (3.5) with the

existing results of the bottom quark mass determination from Υ phenomenology beyond

the NNLO of perturbation theory. In refs. [4, 32] the bottom quark mass has been obtained

from the O(α3
s) approximation for MΥ(1S). A relatively large value of the bottom quark
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Figure 3. The Υ(1S) mass (a) and leptonic width (b) plotted as functions of the renormalization

scale in different orders of perturbation theory for αs(MZ) = 0.1184 and and mb(mb) = 4.194GeV.

mass reported in ref. [4] is due to the choice of the “physical” soft renormalization scale

µ = 2.7GeV natural for the bound state dynamics. However, the perturbative expansion

becomes unstable at such a low scale (cf. figure 3(a)). For µ = 4.20GeV the analysis [4]

gives the value mb(mb) = 4.22± 0.07 consistent with refs. [21, 32] and eq. (3.5).

The high-moment sum rules have been considered in a context of the effective theory

renormalization group in refs. [22, 23]. Both analyses involve partial resummation of the

next-to-next-to-leading logarithms (NNLL) of the form αm+2
s lnm αs for all m.1 The re-

sult of ref. [22] agrees with eq. (3.5) within the error bars. Though the renormalization

group resummation improves the behavior of the perturbative expansion especially at a low

renormalization scale, the logarithmic terms do not dominate the perturbative series (2.15)

and cannot be used for a precise quantitative estimate of the third-order corrections. As a

consequence, the theoretical error of the NNLL approximation is significantly larger than

the one of the N3LO result.
1The complete NNLL result is available only for the spin dependent part of the quarkonium production

and annihilation rates [57].
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Reference Method Approximation mb(mb) (GeV)

ref. [4] Υ(1S) mass O(α3
s) 4.346± 0.070

ref. [32] Υ(1S) mass O(α3
s) 4.25± 0.08

ref. [22] high moments partial NNLL 4.190± 0.060

ref. [23] high moments partial NNLL 4.235± 0.055

ref. [11] low moments O(α3
s) 4.163± 0.016

This work high moments O(α3
s) 4.169± 0.009

Table 3. The results of the bottom quark mass determination from Υ family properties beyond

the NNLO. In the last line all the errors given in table. 2 are added up in quadrature.

The most accurate value of the bottom quark mass up to date has been reported

in ref. [11] and is obtained from the relativistic sum rules at O(α3
s). The central value

given in table 3 corresponds to n = 2. The error estimate includes ±10MeV due to

uncertainty of the experimentally measured cross section, ±12MeV due to the input value

αs(MZ) = 0.1189±0.002, and the theoretical uncertainty ±3 estimated by the variation of

the renormalization scale. The overall accuracy of the relativistic sum rules is comparable

to eq. (3.5) for a given interval of αs(MZ). However for the low moments the experimental

error clearly dominates the theoretical one. Our result is in a perfect agreement with the

analysis [11]. The amazing agreement of two approaches based on significantly different

theoretical and experimental input boosts our confidence in the result and, in particular,

in the uncertainty assessment.
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A First and second-order perturbative coefficients

The first and the second-order coefficients of the series (2.15) for general n read [18, 19,

30, 32]

e(1)n = β0 (Ln + S1(n)) +
31

18
CA − 10

9
nlTF , (A.1)

e(2)n =
3

4
β20L

2
n +

[

β1
4

+

(

3

2
S1(n)−

1

2

)

β20 +

(

31

12
CA − 5

3
nlTF

)

β0

]

Ln +
S1(n)

4
β1

+

[

π2

24
+
ζ(3)

2
n−

(

1

2
+

1

2n

)

S1(n) +
3

4
S2
1(n) + S2(n)−

n

2
S3(n)

]

β20

+

[(

31

12
S1(n)−

31

36

)

CA +

(

5

9
− 5

3
S1(n)

)

nlTF

]

β0

+

(

221

54
+
π2

2
− π4

32
+

11

12
ζ(3)

)

C2
A −

(

403

108
+

7

3
ζ(3)

)

nlTFCA +
π2

n
CFCA

+
25

27
n2l T

2
F +

(

2ζ(3)− 55

24

)

nlTFCF +

(

2

3
− 11

16n

)

π2

n
C2
F , (A.2)

z(1)n =
3

2
β0Ln +

[

S1(n)

2
− 1

2
+

(

S2(n)−
π2

6

)

n

]

β0 +
31

12
CA − 5

3
nlTF − 4CF , (A.3)

z(2)n =
3

2
β20L

2
n +

[

3

8
β1 +

(

S1(n)−
7

4
+

(

2S2(n)−
π2

3

)

n

)

β20 +

(

31

6
CA − 10

3
nlTF

− 6CF

)

β0 + π2CFCA +
2

3
π2C2

F

]

Ln −
[

2CFβ0 + π2CFCA +
2

3
π2C2

F

]

L

+

[

S1(n)

8
− 1

8
+

(

S2(n)

4
− π2

24

)

n

]

β1 +

[

1

4
+
π2

16
+

(

π2

12
+

5

4
ζ(3)

)

n+
π4

144
n2

+

(

S1(n)

2
+ nS2(n)−

5

4
− 3

4n
− π2

6
n

)

S1(n) +

(

1

2
− n

2
− π2

12
n2 +

n2

4
S2(n)

)

S2(n)

+
7

4
nS3(n)−

5

4
n2S4(n)−

3

2
nS2,1(n) + n2S3,1(n)

]

β20 +

[(

31

18
S1(n)

+
31

9
nS2(n)−

217

72
− 31

54
π2n

)

CA +

(

35

18
+

10

27
π2n− 10

9
S1(n)−

20

9
nS2(n)

)

nlTF

+

(

2 +
2

3
π2n− 2S1(n)− 4nS2(n)

)

CF

]

β0 +

[

6265

864
+

3

4
π2 − 3

64
π4 +

11

8
ζ(3)

]

C2
A

−
[

1519

216
+

7

2
ζ(3)

]

nlTFCA +

[(

179

72
− 5

3
ln 2 +

2

n

)

π2 − 523

36
− 13

2
ζ(3)

− π2S1(n)

]

CFCA +
50

27
n2l T

2
F +

(

641

144
+ 3ζ(3)

)

nlTFCF +

(

44

9
− 4

9
π2
)

TFCF

+

[

39

4
+

(

2 ln 2− 35

18
+

4

3n
− 37

24n2

)

π2 − ζ(3)− 2

3
π2S1(n)

]

C2
F , (A.4)

where βi are the coefficients of the beta-function, β0 = 11
3 CA − 4

3nlTF , etc., CA = Nc,

TF = 1/2, Si(n) =
∑n

m=1 1/m
i are the harmonic sums and Si,j(n) =

∑n
m=1 Sj(m)/mi are

the nested harmonic sums.
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B Third-order perturbative coefficients

The third-order coefficients of the series for the n = 2, . . . , 6 binding energy read [31, 32]

δ(2)e (2) =
13035

4
− 15311

24
nl +

1423

36
n2l −

7

9
n3l ,

δ(1)e (2) =
448711

96
+

25171

108
π2 +

5687

2
ζ(3)− 99

16
π4 +

(

−289057

288
− 4733

162
π2 − 1628

3
ζ(3)

+
3

8
π4
)

nl +

(

6013

96
+

11

9
π2 +

290

9
ζ(3)

)

n2l +

(

−92

81
− 2

81
π2 − 16

27
ζ(3)

)

n3l ,

δ(0)e (2) = 12043.4− 2283.40nl + 135.037n2l − 2.35778n3l , (B.1)

δ(2)e (3) =
15697

4
− 18215

24
nl +

1687

36
n2l −

25

27
n3l ,

δ(1)e (3) =
188921

32
+

72947

324
π2 +

8349

2
ζ(3)− 99

16
π4 +

(

−362177

288
− 4583

162
π2 − 2354

3
ζ(3)

+
3

8
π4
)

nl +

(

67909

864
+

11

9
π2 +

422

9
ζ(3)

)

n2l +

(

−13

9
− 2

81
π2 − 8

9
ζ(3)

)

n3l ,

δ(0)e (3) = 16157.3− 3111.10nl + 185.835n2l − 3.30878n3l , (B.2)

δ(2)e (4) =
35387

8
− 20393

24
nl +

1885

36
n2l −

28

27
n3l ,

δ(1)e (4) =
2871661

432
+

47671

216
π2 +

11011

2
ζ(3)− 99

16
π4 +

(

−1222979

864
− 9005

324
π2 − 3080

3
ζ(3)

+
3

8
π4
)

nl +

(

229655

2592
+

11

9
π2 +

554

9
ζ(3)

)

n2l +

(

−4771

2916
− 2

81
π2 − 32

27
ζ(3)

)

n3l ,

δ(0)e (4) = 19849.6− 3844.67nl + 230.754n2l − 4.15765n3l , (B.3)

δ(2)e (5) =
192907

40
− 110677

120
nl +

10217

180
n2l −

152

135
n3l ,

δ(1)e (5) =
305326847

43200
+

117653

540
π2 +

13673

2
ζ(3)− 99

16
π4 +

(

−8154553

5400
− 111311

4050
π2

− 3806

3
ζ(3) +

3

8
π4
)

nl +

(

6135349

64800
+

11

9
π2 +

686

9
ζ(3)

)

n2l +

(

−255247

145800
− 2

81
π2

− 40

27
ζ(3)

)

n3l ,

δ(0)e (5) = 23217.6− 4508.70nl + 271.381n2l − 4.93013n3l , (B.4)

δ(2)e (6) =
206217

40
− 117937

120
nl +

10877

180
n2l −

6

5
n3l ,

δ(1)e (6) =
261142397

36000
+

69961

324
π2 +

16335

2
ζ(3)− 99

16
π4 +

(

−56127979

36000
− 13255

486
π2

− 4532

3
ζ(3)+

3

8
π4
)

nl +

(

10577453

108000
+

11

9
π2+

818

9
ζ(3)

)

n2l +

(

−109931

60750
− 2

81
π2

− 16

9
ζ(3)

)

n3l ,

δ(0)e (6) = 26327.3− 5118.61nl + 308.686n2l − 5.64252n3l . (B.5)
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The third-order coefficients of the series for the n = 2, . . . , 6 leptonic width read

δ(2)z (2) =
73821

8
− 55007

54
π2 +

(

−88763

48
+

15775

81
π2
)

nl +

(

8555

72
− 110

9
π2
)

n2l

+

(

−133

54
+

20

81
π2
)

n3l ,

δ′
(1)
z (2) = −30799

27
− 550241

4860
π2 − 2750

9
ζ(3) +

1540

81
π4 − 2284

81
π2 ln 2

+

(

13012

81
+

935

162
π2 +

500

27
ζ(3)− 280

243
π4 +

56

27
π2 ln 2

)

nl +

(

−428

81
+

32

81
π2
)

n2l ,

δ(1)z (2) =
2037613

144
− 94029647

38880
π2 +

393635

48
ζ(3) +

640915

10368
π4 − 26

27
π2 ln 2

+

(

−5585245

1728
+
2200685

3888
π2 − 28705

18
ζ(3)− 232505

15552
π4 +

28

9
π2 ln 2

)

nl+

(

128953

576

− 25475

648
π2 +

1165

12
ζ(3) +

55

54
π4
)

n2l +

(

−257

54
+

799

972
π2 − 50

27
ζ(3)− 5

243
π4
)

n3l ,

δ(0)z (2) = −4893(4) + 410.99(2)nl − 2.04062n2l + 0.0372517n3l , (B.6)

δ(2)z (3) =
60203

4
− 169909

108
π2 +

(

−139583

48
+

47885

162
π2
)

nl +

(

13175

72
− 55

3
π2
)

n2l

+

(

−203

54
+

10

27
π2
)

n3l

δ′
(1)
z (3) = −46045

27
− 2755463

14580
π2 − 2750

9
ζ(3) +

770

27
π4 − 2284

27
π2 ln 2 ,

+

(

18556

81
+

859

162
π2 +

500

27
ζ(3)− 140

81
π4 +

56

27
π2 ln 2

)

nl +

(

−596

81
+

16

27
π2
)

n2l ,

δ(1)z (3) =
19134865

576
− 337523323

58320
π2 +

593285

48
ζ(3) +

580085

3456
π4 − 26

27
π2 ln 2

+

(

−12268147

1728
+
892237

729
π2 − 84635

36
ζ(3)− 183415

5184
π4 +

28

9
π2 ln 2

)

nl+

(

819079

1728

− 2180

27
π2 +

1715

12
ζ(3) +

55

24
π4
)

n2l +

(

−239

24
+

271

162
π2 − 25

9
ζ(3)− 5

108
π4
)

n3l ,

δ(0)z (3) = −5571(4) + 430.50(2)nl + 0.440551n2l + 0.00996215n3l , (B.7)

δ(2)z (4) =
2999183

144
− 57451

27
π2 +

(

−569999

144
+

32110

81
π2
)

nl +

(

53275

216
− 220

9
π2
)

n2l

+

(

−1226

243
+

40

81
π2
)

n3l ,

δ′
(1)
z (4) = −20390

9
− 1230931

4860
π2 − 2750

9
ζ(3) +

3080

81
π4 − 2284

27
π2 ln 2

+

(

24056

81
+
6977

1458
π2 +

500

27
ζ(3)− 560

243
π4 +

56

27
π2 ln 2

)

nl+

(

−2288

243
+

64

81
π2
)

n2l ,
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δ(1)z (4) =
16780655

288
− 397851877

38880
π2 +

792935

48
ζ(3) +

3318755

10368
π4 − 26

27
π2 ln 2

+

(

−62469101

5184
+

24249269

11664
π2 − 27965

9
ζ(3)− 998665

15552
π4 +

28

9
π2 ln 2

)

nl

+

(

12280831

15552
− 86975

648
π2 +

755

4
ζ(3) +

110

27
π4
)

n2l +

(

−12014

729
+

8069

2916
π2

− 100

27
ζ(3)− 20

243
π4
)

n3l ,

δ(0)z (4) = −5970(4) + 416.97(2)nl + 3.85644n2l − 0.0754395n3l , (B.8)

δ(2)z (5) =
7650137

288
− 289699

108
π2 +

(

−45010

9
+

80555

162
π2
)

nl +

(

33463

108
− 275

9
π2
)

n2l

+

(

−6145

972
+

50

81
π2
)

n3l ,

δ′
(1)
z (5) = −761861

270
− 631136

2025
π2 − 2750

9
ζ(3) +

3850

81
π4 − 2284

27
π2 ln 2

+

(

1822

5
+
3080

729
π2+

500

27
ζ(3)− 700

243
π4+

56

27
π2 ln 2

)

nl +

(

−13922

1215
+

80

81
π2
)

n2l ,

δ(1)z (5) =
227792547

2560
− 4074337157

259200
π2 +

992585

48
ζ(3) +

5376415

10368
π4 − 26

27
π2 ln 2

+

(

−1869252041

103680
+

728770499

233280
π2 − 139085

36
ζ(3)− 1577765

15552
π4 +

28

9
π2 ln 2

)

nl

+

(

181570829

155520
− 172165

864
π2 +

2815

12
ζ(3) +

1375

216
π4
)

n2l +

(

−5658707

233280
+
47765

11664
π2

− 125

27
ζ(3)− 125

972
π4
)

n3l ,

δ(0)z (5) = −6216(4) + 386.70(2)nl + 7.76141n2l − 0.151118n3l , (B.9)

δ(2)z (6) =
1935901

60
− 174797

54
π2 +

(

−1449083

240
+

48445

81
π2
)

nl +

(

14907

40
− 110

3
π2
)

n2l

+

(

−6149

810
+

20

27
π2
)

n3l ,

δ′
(1)
z (6) = −2277877

675
− 5343263

14580
π2 − 2750

9
ζ(3) +

1540

27
π4 − 2284

27
π2 ln 2

+

(

873628

2025
+
8821

2430
π2+

500

27
ζ(3)− 280

81
π4+

56

27
π2 ln 2

)

nl+

(

−27316

2025
+
32

27
π2
)

n2l ,

δ(1)z (6) =
7209136189

57600
− 1296002359

58320
π2 +

1192235

48
ζ(3) +

2637745

3456
π4 − 26

27
π2 ln 2

+

(

−239985727

9600
+

126975799

29160
π2 − 83155

18
ζ(3)− 762515

5184
π4 +

28

9
π2 ln 2

)

nl

+

(

2600603

1620
− 148811

540
π2 +

3365

12
ζ(3) +

55

6
π4
)

n2l +

(

−6462751

194400
+

4577

810
π2

− 50

9
ζ(3)− 5

27
π4
)

n3l ,

δ(0)z (6) = −6365(4) + 346.96(1)nl + 11.9236n2l − 0.232450n3l (B.10)
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