
J
H
E
P
0
4
(
2
0
1
4
)
0
7
3

Published for SISSA by Springer

Received: February 26, 2014

Accepted: March 8, 2014

Published: April 10, 2014

(Non-)decoupled supersymmetric field theories

Lorenzo Di Pietro,a Michael Dineb and Zohar Komargodskia

aDepartment of Particle Physics and Astrophysics,

Weizmann Institute of Science, Rehovot 76100, Israel
bSanta Cruz Institute for Particle Physics and Department of Physics,

Santa Cruz CA 95064, U.S.A.

E-mail: lorenzo.dipietro@weizmann.ac.il, mdine@ucsc.edu,

zohar.komargodski@weizmann.ac.il

Abstract: We study some consequences of coupling supersymmetric theories to (su-

per)gravity. To linear order, the couplings are determined by the energy-momentum su-

permultiplet. At higher orders, the couplings are determined by contact terms in corre-

lation functions of the energy-momentum supermultiplet. We focus on the couplings of

one particular field in the supergravity multiplet, the auxiliary field M . We discuss its

linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy

to the local renormalization group formalism [1–3], we provide a prescription for how to

fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We

check our prescription by explicitly computing these couplings in several examples such

as mass-deformed N = 4 and in the Coulomb phase of some theories. These couplings

affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our

analysis leads to a transparent derivation of the phenomenon known as Anomaly Media-

tion. In contrast to previous approaches, we obtain both the gaugino and scalar masses

of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly

local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates

the connection between Anomaly Mediation and supersymmetric AdS4 Lagrangians. This

note can be read without prior familiarity with Anomaly Mediated Supersymmetry Break-

ing (AMSB).
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1 Definition of the problem and summary

Consider a supersymmetric quantum field theory (QFT) with two sectors, A and B. Our

central assumption is that in the limit of MP l → ∞ the theories A and B are exactly

decoupled. With this assumption, at energies much below MP l, the theories A, B only

communicate via supergravity fields and via irrelevant operators induced by Planck-scale

physics. The supergravity fields may be embedded in the (old-)minimal supergravity mul-

tiplet, which consists of the metric field gµν , the gravitino Ψµα, a vector field bµ, and a

complex scalar M . (In the minimal supersymmetric Einstein-Hilbert action, the fields bµ
and M are non-propagating. However, they are still important since they can couple to

matter fields and induce various interactions.) See figure 1.

For example, if both theories A and B are asymptotically free, then we can imagine

quartic terms such as
∫

d4θ c
M2

Pl
QA

†QAQB
†QB, where QA,B are some chiral fields of dimen-

sion 1 in the theories A, B respectively, and c is some order 1 coefficient. Such local terms

can be induced by unknown Planck-scale physics and the parameter c is therefore incalcu-

lable. In addition to such incalculable terms, there may be genuine calculable low-energy

interactions mediated by the (old-)minimal supergravity multiplet (gµν ,Ψµα, bµ, M).

One can suppress the incalculable effects from Planck-scale physics by assuming that

the dimensions of certain operators as measured in the UV SCFTs associated to A and B

are high enough. For example, let us imagine that the theory A is the Supersymmetric

Standard Model (SSM) (not necessarily its minimal version). Then the theory B can be

treated as some “hidden sector.” Let us now suppose that the UV SCFT associated to B

has no non-chiral operators of dimension ≤ 2. (This in particular means that there are no
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Figure 1. The two theories A and B interact through supergravity fields. When we takeMPl → ∞,

the two theories decouple.

global non-R symmetries in the UV SCFT. This assumption may be somewhat relaxed,

but we still make it for simplicity.) This assumption about B is sometimes referred to as

“conformal sequestering” [4, 5].

With the assumption of conformal sequestering, there is a simple physical question to

which the answer must be given by analyzing the exchange of the minimal supergravity

fields at energies much below MP l and, in particular, the answer must be finite. Assuming

SUSY is broken in the theory B, one can ask what is the SUSY-breaking mass-squared that

is mediated to the squarks and sleptons of the SSM. Due to the assumption of conformal

sequestering, the irrelevant operators induced by unknown Planck-scale physics connecting

the visible quark or lepton superfields with the hidden sector must be of the type
∫

d4θ
QQ†OB

M
∆OB
P l

, (1.1)

where Q is a quark or lepton superfield in the SSM, and OB is an operator in the UV

SCFT of B. We see that such irrelevant terms are suppressed by M
∆OB
P l and ∆OB

> 2.

Hence, one immediately concludes that the contribution to the mass squared at orderM−2
P l

is calculable and is dominated by small momenta (a priori, it could be zero).

Typical low-energy supergravity interactions coupling the two sectors and potentially

inducing a mass squared for the squarks and sleptons involve diagrams such as the one

in figure 2. Since each vertex contributes M−1
P l , this diagram can be naively estimated as

M−4
P l . These diagrams could diverge, but one must keep in mind that there are no counter-

terms of the order M−2
P l . Similarly, the gaugino masses of the SSM can be induced by UV

counter-terms of the type
∫

d4x

∫

d2θ
W 2

αΦB

M
∆ΦB
P l

, (1.2)

where ΦB is some chiral operator in the UV SCFT associated to B. If we make the

assumption that all the chiral operators in B have dimension > 1, we find that contributions

to the gaugino mass of order M−1
P l are calculable and dominated by small momenta.

As it turns out, even with the assumption of conformal sequestering, processes that

generate a non-holomorphic mass squared of order M−2
P l (and gaugino mass of order M−1

P l )

do exist.1 To give an intuitive feeling where such effects might come from, it is helpful

1Note that in some cases, such as weakly coupled string theory, there is new physics much before the

Planck scale. Hence, depending on the details, there might be stringy effects that wash out the calculable

terms of order M−1
Pl and M−2

Pl .
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B

h h

Q Q

Figure 2. Processes contributing to the visible mass squared of sleptons and squarks. Naively,

they are of order M−4

Pl
.

to recall some facts about the situation when the theories A, B only couple through U(1)

(super)gauge interactions. The Lagrangian is:

LGGM = − 1

4g2
F 2 +

1

2g2
D2 − i

g2
λσµ∂µλ̄

−Aµ(j(A)
µ + j(B)

µ ) +D(J (A) + J (B))−
[

λα(j(A)
α + j(B)

α ) + c.c.
]

+ · · · , (1.3)

where (J (A), j
(A)
α , j

(A)
µ ), (J (B), j

(B)
α , j

(B)
µ ) comprise the global symmetry linear multiplets of

the theories A and B, respectively. The vector multiplet (Aµ, λα, D) couples to these two

linear multiplets. The · · · stand for interactions between the vector multiplet and matter

fields that are quadratic in the vector multiplet (they are fixed by gauge invariance).

In general, the processes that communicate between the sectors A and B are analogous

to that of figure 2 with the graviton lines replaced by one of (Aµ, λα, D). Imagine again that

theory A is the SSM and B is some hidden sector that breaks SUSY spontaneously. Then

the mass squared contribution to the sleptons and squarks of A due to gauge interactions is

calculable. The analogs of the diagrams of figure 2 are of order g4 and lead to the familiar

gauge-mediated contributions to the scalar masses. These were studied in [6] (also see

references therein).

However, there is one notable exception. Suppose the operator J (B) has a nonzero

VEV, while the U(1) gauge symmetry is unbroken. Then, from (1.3) we see that from the

terms 1
2g2
D2 + D(J (A) + J (B)), upon replacing J (B) by its VEV and integrating out the

auxiliary field D, we find the term g2〈J (B)〉J (A). Since the bottom component of J (A) is

bilinear in squarks and sleptons, this term results in SUSY-breaking scalar masses in the

visible sector proportional to g2. This is represented diagrammatically by figure 3. Note

that this is a tree-level effect in the gauge coupling.2

2Importantly, the VEV of the bottom component J of a linear multiplet is not a well-defined observable.

This is due to an improvement ambiguity that allows to shift the operator J by a constant (the most

general improvement takes the form J → J + c+(Dαχα + c.c.), where c is real and χα is chiral). When the

symmetry is gauged, by coupling the linear multiplet to a dynamical vector multiplet, the VEV becomes a

physical observable, namely a Fayet-Iliopoulos (FI) term. However, when the gauge coupling is turned on,
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Figure 3. When two theories communicate only via gauge interactions, one would have naively

thought that the mass squared of the visible sleptons and squarks would be suppressed by g4, but,

due to some contact terms that are forced by supersymmetry, there are also effects of the order g2.

Thus, when the theories A and B interact via gauge interactions only, our naive in-

tuition that the scalar masses must be of order g4 is generally incorrect. SUSY forces us

to introduce the contact term D2 in the Lagrangian and the auxiliary field D is forced to

couple to an operator in the hidden sector B that may have a nonzero VEV. The latter

effect, namely the coupling of D to the bottom component of the linear multiplet, is already

present in the limit that the gauge interactions are non-dynamical.

The source of the enhancement of the scalar and gaugino masses in the case that

two theories interact only gravitationally is similar. Super-coordinate invariance imposes

certain contact term in the coupling of gravity to matter fields and in the kinetic Lagrangian

of gravity. These terms communicate supersymmetry breaking from the hidden sector B

to the SSM.

Let us now briefly summarize our findings. The Lagrangian that dictates how the two

sectors A and B communicate is as follows:

L =M2
P l

(

−1

2
hµνE

µν + ǫµνρσΨ̄µσ̄ν∂ρΨσ +
1

3
b2µ − 1

3
|M |2

)

+
1

2
hµν

(

T (A)
µν + T (B)

µν

)

+
i

2

[

Ψµα
(

S(A)
µα + S(B)

µα

)

+ c.c.
]

− 1

4

[

M(x(A) + x(B))† + c.c.
]

− 1

2
bµ

(

jFZ;(A)
µ + jFZ;(B)

µ

)

+ · · · , (1.4)

there is no well-defined distinction between the operators JA and JB , since D couples only to the sum of

the two, and one may question the validity of the picture of “mediation of supersymmetry breaking from B

to A”. Indeed, one can give up this interpretation and take the point of view that the only relevant effect

is the coupling of D to an FI term, which results in a non-zero VEV for D which in turn generates the soft

masses. This is not always necessary, because typically it is possible to fix the improvement ambiguity before

gauging the symmetry, if some additional assumption is satisfied. For instance, the ambiguity is resolved if

the theory admits a messenger parity symmetry that acts on the current as J → −J . More relevant for our

discussion, we can fix the ambiguity by requiring 〈J〉 = 0 in vacua that preserve supersymmetry and the

global symmetry (this is not always possible if there is nontrivial topology in target space, but we ignore

this issue here). This is the choice we have made implicit in our discussion above. With this choice, any

one-loop contribution to the scalar masses is naturally interpreted as mediated from a nonzero 〈JB〉 in the

hidden sector. Examples of models realizing this scenario are [7, 8].
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We denote the fluctuation of the metric by hµν , and Eµν is the linearized Einstein tensor.

The fields (hµν , Ψµα, bµ,M) comprise the (old-minimal) supergravity multiplet. The opera-

tors to which the supergravity fields couple are (Tµν , Sµα, j
FZ
µ , x). These form the so-called

Ferrara-Zumino multiplet (the vector jFZ
µ is not generally conserved). The superscripts

(A), (B) indicate the sector to which the operators belong. Crucially, in equation (1.4)

we have neglected couplings to matter fields that are quadratic in the supergravity fields

and higher. We have also neglected terms that are higher than second order in the kinetic

terms. These terms are collectively indicated by the dots.

In the context that A is the SSM and B is some hidden sector, the assumption that

B breaks supersymmetry spontaneously implies the one-point function 〈T (B)
µν 〉 = −F 2ηµν .

To cancel the vacuum energy density we need to take 〈x(B)〉 ∼ FMP l (this leads to an

additional, negative, contribution to the vacuum energy density via (1.4)).3

Upon integrating out M in (1.4) we find the contact interaction between the sectors

A and B: ∼M−2
P l x

(B)†x(A). This interaction exists regardless of whether SUSY is broken

or not. If SUSY is broken in the sector B we replace x(B)† by its VEV and find the

term ∼ M−1
P l F x

(A) in the Lagrangian. All that remains is to calculate the operator x(A)

of the visible sector. x(A) sits in the same chiral multiplet as T (A) = ηµνT
(A)
µν , which is

nonzero only if the theory is non-conformal. This chiral multiplet is denoted by X and it

is a sub-multiplet of the Ferrara-Zumino multiplet. If we take our visible sector to be the

supersymmetric W = λΦ3 theory then X ∼ β(λ)Φ3. If the visible sector is a gauge theory

with some charged matter (and no superpotential for simplicity) then X ∼ β(g)
g W 2

α. Hence,

one can determine in the two cases x(A) ∼ β(λ)φ3 and x(A) ∼ β(g)
g λ2α, respectively (here λα

is the visible gaugino). The above expressions for X hold to all orders in the visible sector.

Therefore, plugging these expressions into M−1
P l F x

(A), we find that the SUSY breaking in

B mediates a SUSY-breaking A-term ∼M−1
P l F β(λ)φ

3 in the first case, and a gaugino mass

∼M−1
P l F

β(g)
g λ2α, in the second case. This is the AMSB contribution [11, 12].

It is worth pausing to comment on this derivation of the AMSB gaugino masses (or

the A-term). We see that all we have done is to write the couplings of the supergravity

fields to the visible sector and the hidden sector, where we worked in an expansion in M−1
pl

but to all orders in the field theory couplings (the Ferrara-Zumino multiplet and thus X

exist even in non-Lagrangian theories). The couplings to leading order in M−1
P l are fixed

by super-coordinate invariance and, if SUSY is broken, they lead to the anomaly-mediated

contributions to gaugino masses and A-terms. The only role played by supergravity is

the existence of the tree-level term −1
3M

2
P l|M |2 in the Lagrangian. Also note that this

derivation involves (unlike the approach of [13] and several more recent treatments) only

manifestly local and supersymmetric terms in the effective action.

3The ambiguity of the VEV of J in the U(1) analogue, discussed in footnote 2, carries over to this case.

Indeed, while 〈T
(B)
µν 〉 is set unambiguously by the dynamics of the hidden sector B (the usual ordering

ambiguity is fixed in SUSY theories by requiring that the energy sits on the right hand side of the SUSY

algebra), the VEV 〈x(B)〉 is unobservable in the rigid limit since the operator X is only defined up to

D̄2Λ† where Λ† is an anti-chiral superfield (this is the redundancy in the FZ-multiplet described in [9, 10];

see equations (3.4) below). In particular, the constant mode of x is not observable. When we couple to

supergravity, only the sum of the VEVs 〈xA + xB〉 is observable.
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A derivation of the gaugino soft mass along the lines outlined here is presented for

instance in [14]. An additional remark we want to make here is that the coupling of the

supergravity fieldM to xmust be included also when we want to study rigid supersymmetry

in curved space. For example, to preserve supersymmetry in AdS4 we must turn on a

constant value of M [15]. The coupling of M to x therefore implies that, for instance, in

W = λΦ3 theory, if we want to preserve SUSY in AdS4, then we need to introduce an

A-term in the Lagrangian. (There are many other curved spaces in which one needs to

turn on a VEV for M [16].)

Let us now consider the SUSY-breaking non-holomorphic sfermion masses. Those

clearly do not arise at order M−1
P l . In fact, to understand the origin of scalar masses we

need to go beyond (1.4). The crucial effect comes from couplings between supergravity

and matter that are quadratic in the supergravity fields. Fixing the form of the relevant

quadratic terms is one of the results of this note. The idea that there exist quadratic

couplings between the backgrounds fields and matter fields is already familiar from the

coupling of a conserved current to a gauge field, where we need to add terms such as A2
µ|q|2

coupling the vector field to charged scalars. This “seagull term” coupling is needed in

order to cancel a contact term in 〈jµjν〉 such that this correlation function is conserved

both at separated and coincident points. There are similar seagull terms in supergravity.

They are completely fixed by demanding super-coordinate invariance, or equivalently, the

conservation of the energy-momentum tensor. There is one conceptual difference from the

seagull term in gauge theories: A2
µ|q|2 is already necessary at tree-level in order to fix gauge

invariance. The seagull term that we exhibit below is only necessary at higher order in

perturbation theory.

Denoting by γ the anomalous dimension of the matter fields, we find that we need to

add the following seagull term

Lseagull ⊃ γ̇|M |2|q|2 , γ̇ ≡ dγ

d logµ
. (1.5)

This is necessary whenever we couple minimal supergravity to matter, regardless of super-

symmetry breaking. As emphasized above, the form of this coupling is fixed by some contact

terms in the correlators of the energy-momentum tensor multiplet and it is necessary even

if supergravity is non-dynamical. It has to be included when analyzing supersymmetric

theories in curved space (for a discussion from a different point of view in the case of AdS4,

see also [17, 18]). In flat space, if SUSY is broken in the hidden sector B, we need to

turn on a VEV for M in order to cancel the cosmological constant. This then leads to

the anomaly-mediated SUSY-breaking contribution to non-holomorphic sfermion masses

m2 ∼ γ̇ F 2

M2
Pl
. Our analysis is again exact to all orders in the coupling constants of the

sectors A, B and it is to leading nontrivial order in the gravitational coupling.

Before we discuss how we determined the non-linear seagull term (1.5), let us recall-

several issues that one needs to keep in mind:

• The seagull terms are, by construction, non-universal. The Ferrara-Zumino multiplet

is defined only modulo the equations of motion of the rigid theory, but depending on

how one chooses to present it using the microscopic fields, the required seagull terms

may be different. Indeed, the correlation functions of operators that are equivalent

– 6 –
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on-shell are identical at separated points, but they could differ at coincident points

and hence, the seagull terms could differ too. The precise way one realizes the linear

couplings (1.4) in terms of the microscopic fields is ambiguous, and this affects the

form of the seagull term. We will see several examples of such ambiguities in the

main body of this note. (The final answers to physical questions are unambiguous.)

• The contact term (1.5) clearly appears first at two-loops. One therefore has to com-

pute various correlation functions of the Ferrara-Zumino multiplet at two loops to

directly establish its existence. Here we will use a more general approach, that also

allows us to determine this contact term to all orders in perturbation theory. Our

approach is analogous to [1–3, 19, 20].

The derivation of (1.5) proceeds along the following lines. First, consider some QFT

coupled to a background metric field. It is convenient to organize the correlation func-

tions of the energy-momentum tensor in terms of the generating functional W [gµν ]. The

generating functional is invariant under diffeomorphisms, which leads to the usual energy-

momentum conservation Ward identities. If the theory is conformal, then up to local

anomalies, W [eΩgµν ] = W [gµν ]. If the theory is non-conformal then the generating func-

tional is no longer invariant under gµν → eΩgµν . Suppose our theory is given by perturbing

a conformal field theory by some dimension-4 operator δS ∼ g
∫

d4xO. In this theory we

can consider the (n+m)-point functions 〈Tµ1ν1(y1) . . . Tµmνm(ym)O(x1) . . .O(xn)〉. These
are constrained by the requirement that the energy-momentum tensor is conserved. If one

insists on that, then one cannot maintain the equation Tµ
µ = 0 at separated points. In-

stead, one finds the operator equation Tµ
µ = β(g)O. This is the familiar operatorial trace

anomaly. It follows from diffeomorphism invariance. It holds for any g and any background

metric (up to local anomalies).

The requirement that Tµ
µ = β(g)O holds up to local anomalies fixes infinitely many

seagull terms. Indeed, let us start from g = 0. Then, of course, the conformal factor of the

metric is decoupled. Once we turn on g, the equation Tµ
µ = β(g)O means that we must

couple h ≡ ηµνhµν to the Lagrangian via the contact term β(g)
∫

d4xhO. However, this

is not sufficient, and one needs to add further contact terms of higher order in h. After

a short computation one finds that one must add β̇
∫

d4xh2O (and so forth). Indeed, if

we had not added this O(h2) term, certain three-point functions of the energy-momentum

tensor would have not been consistent with the equation Tµ
µ = β(g)O (and hence, one

would violate diffeomorphism invariance).

The seagull term β̇
∫

d4xh2O is reminiscent of the contact term that we claimed in (1.5).

Indeed, roughly speaking, they are related by supersymmetry.

As a further check of our claims about the coupling of M , we consider mass-deformed

finite theories, in which the running of the coupling stops above the threshold. In such cases,

above the threshold, the conformal symmetry is broken only by classical effects. Hence, the

interactions of M are those dictated by the classical supergravity Lagrangian. The linear

coupling to the beta-function and the seagull term that appear below the threshold can

be obtained by evaluating loop diagrams with supergravity background fields as external

legs. We also discuss the case of gauge theories in the Coulomb phase. They provide

– 7 –
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another example in which the couplings of M can be determined via a classical analysis,

by considering the effective theory below the scale of the VEV.

Let us very briefly compare to some other approaches. Originally [11, 12], the deriva-

tion of AMSB proceeded through the “conformal compensator formalism” for supergrav-

ity. Moreover, an explicit loop calculation of the gaugino mass is presented in [11] with

the choice of a specific regulator, namely the embedding in UV-finite theories. In [13] the

gaugino soft mass is explained as a supersymmetric completion of certain non-local terms

in the effective action, that are fixed by the anomaly in the conformal symmetry and in

the superconformal R-symmetry.4 These terms are readily seen to arise in straightforward

Feynman diagram computations. Many works have appeared since then, attempting to

clarify the origin of Anomaly Mediation. Just to mention two recent examples (and see

references therein): in [21] the AMSB contribution was understood as a contact term re-

quired by supersymmetry. In particular, in a Higgs phase (see also [22]), the effective action

is local, and the gluino bilinear is required by the standard action, written in component

form. With massless particles, the contact term was argued to be analogous to local terms

familiar in gauge theories, along the lines of [13]. In either case, this counterterm could be

interpreted as a regulator effect that does not decouple. This non-decoupling term breaks

flat-space SUSY. If the vacuum is supersymmetric, it is eventually canceled by infrared

dynamics. In [17, 18] the central idea is that the anomaly mediated contribution (for

example, the gaugino mass or the A-term) is actually supersymmetric under a deformed

SUSY algebra characteristic of AdS4 space. Several aspects of these derivations have to be

contrasted with the main features of our approach, which we now summarize:

• We use a minimal set of auxiliary fields, those belonging to the old minimal super-

gravity multiplet. In the formalism of conformal supergravity, the set of auxiliary

fields is extended to include also a chiral superfield Φ, the “conformal compensator,”

in such a way that the full super-Weyl invariance is recovered. This extended sym-

metry fixes completely the coupling of Φ. When supersymmetry is broken, FΦ 6= 0

generates the soft terms. This is the essence of the conformal compensator trick,

which underlies the original derivation of AMSB [11, 12] and many subsequent dis-

cussions. In our derivation Φ is gauge fixed to 0 and the background field M plays

a major role instead. The couplings of M are determined by diffeomorphism in-

variance and supersymmetry. Even though, in principle, setting Φ = 0 is merely a

gauge choice and hence one does not gain any new information, it is still instructive

(and non-trivial) to understand how to extract the physics directly in the minimal

supergravity formalism, without using the extended symmetry.

• Our analysis is manifestly supersymmetric throughout. In particular, we do not in-

troduce any non-supersymmetric counterterm. The coupling of the operator x to M

and the seagull term (1.5) are present in the supergravity Lagrangian, and we use

supersymmetry to fix their form. Supersymmetry breaking is introduced only upon

4The authors of [13] also considered subleading corrections to the gaugino mass induced by the Kähler

potential. We will not discuss those in the present note.
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choosing certain VEVs for the background fields. For instance, supersymmetry break-

ing in flat space is realized by taking gµν = ηµν and M ∼ M−1
P l F . Different choices

for the background can lead to supersymmetric Lagrangians on curved spaces. As an

example, a VEV for M is necessary for supersymmetry in AdS4, and this explains

the analogy between AMSB and supersymmetry in AdS4 discussed in [17, 18].

• We do not need to include any non-local term in the effective Lagrangian, or rely

on some specific UV regulator. Our approach separates the dynamics responsible for

breaking the conformal symmetry, which may or may not rely on quantum effects,

from the coupling to supergravity, which, for us, is always classical. Said otherwise,

it is instructive to imagine that we have already solved the SUSY QFT on R
4 and

then imagine coupling to supergravity. In this way, classical breaking of conformal

symmetry and quantum breaking of conformal symmetry of the rigid theory on R
4

are treated on the same footing. This leads us to a description of AMSB using

only perfectly local and supersymmetric couplings. Equivalently, if we start with

the classical supergravity Lagrangian at a certain UV scale M1 ≪ MP l, when we

integrate out the modes up to M2 < M1 we generate new local, supersymmertic

couplings in the Lagrangian (not present in the classical supergravity Lagrangian),

such as ∼ βM̄λ2α and ∼ γ̇|M |2|q|2.

Many of the points we make individually are likely known to workers who have inves-

tigated this topic. However, it seems that our presentation leads to a compelling picture

which allows to understand the phenomenon in a transparent fashion.

Before proceeding, we would like to comment on several research directions in which

the approach we develop in this note may be a useful starting point. The results presented

here are derived following the logic of the local renormalization group formalism [1–3],

which has recently been object of revived interest [19, 20] but whose full range of appli-

cations is yet to be explored. Here we make some very preliminary steps in the direction

of a supersymmetrized version of this formalism. It would be interesting to fix the full set

of equations for the entire supergravity multiplet, and analyze their consequences for the

correlators of the energy-momentum tensor multiplet and for the coupling of rigid super-

symmetric theories to curved space. In particular, such a formalism seems to be suited

to tackle problems in which radiative corrections to the supersymmetric Lagrangian in

curved space play an important role. Another application would be to understand the role

of anomalies in partition functions on curved space, see e.g. [23]. Finally, the seagull term

γ̇|M |2|q|2 that we discuss here and analogous terms involving other supergravity back-

ground fields may be relevant in the discussion of dynamics and phases of gauge theories

in curved background (e.g. [24]).

In the context of possible phenomenological applications, some questions remain to be

explored in our formalism. In [17, 18] the relation between AMSB and the supersymmetry

algebra in AdS4 is used to derive a peculiar form for the couplings of the Goldstino to

the matter fields, which differs from the naive expectations from ordinary supersymmetry

breaking in rigid field theory. Deriving these couplings within our approach may offer

a different perspective and lead to a better understanding of this subject. Moreover,
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in [13, 17, 18] several subleading contributions to the soft masses are obtained, based on

the supersymmetric completion of some non-local terms in the effective Lagrangian. It

would be interesting to try to re-derive these results using a purely local effective action.

The outline of this note is as follows. In section 2 we describe the classical couplings of

the supergravity multiplet to matter fields. We emphasize the role of classical seagull terms

and the interplay with the linear couplings. In section 3 we describe the Ferrara-Zumino

multiplet and the linearized coupling to supergravity. Section 4 contains some examples

demonstrating the utility of the formalism. This is where we obtain the couplings of the

background field M to the gaugino bilinear and to the A-terms. In section 5 we go beyond

linearized supergravity and derive (1.5). In section 6 we show that the contact terms that

we have derived from consistency conditions on the low-energy effective theory indeed arise

upon integrating out supersymmetric matter in the concrete examples of finite theories and

of theories in the Coulomb phase. These examples are used to reconcile some of the different

approaches to AMSB which we have mentioned.

2 Matter fields coupled to background supergravity: classical aspects

Consider a general theory of chiral superfields Φi with superpotential W (Φi) and Kähler

potential K(Φi,Φ
†
ī
). Keeping only the bosonic terms, and neglecting couplings suppressed

by MP l, which will not matter in our discussion, the minimal coupling to the supergravity

multiplet (hµν ,Ψµα, bµ,M) leads to the Lagrangian [15]

Lbosonic =

(

1

6
R+

1

9
|M |2 − 1

9
b2µ

)

K +Kij̄

(

F iF̄ j̄ − ∂µφ
i∂µφ̄j̄

)

+ F iWi + F̄ īW̄j̄

− 1

3
MF iKi −

1

3
M̄F̄ īKī − M̄W −MW̄ − i

3
bµ

(

Ki∂µφ
i −Kī∂µφ̄

ī
)

. (2.1)

Let us start from the massless free field theory, K = Φ†Φ and W = 0, and let us

concentrate on the terms relevant to the couplings to M : L ⊃ |F |2 − 1
3MFφ̄ − 1

3M̄F̄φ +
1
9 |M |2|φ|2. In conformal field theories we expect M to be exactly decoupled, so let us see

how this expectation is borne out. To linear order, M couples to φ̄F , which is a vanishing

operator in the flat space theory. However, despite φ̄F being a vanishing operator, it has a

nontrivial contact term in its two-point function: 〈φ̄F (x)φF̄ (y)〉 ∼ δ(4)(x − y)〈φ̄(x)φ(y)〉.
Because of this, to ensure the exact decoupling of M , we see that we need to add the

seagull term 1
9 |M |2|φ|2. Then, M is decoupled. This is a simple demonstration of how

seagull terms are fixed by contact terms in certain correlation functions.

More generally, let us take any conformal field theory and couple it to background su-

pergravity. We can define the generating functionalW [gµν ,Ψµα, bµ,M ] by path integrating

over the matter fields. In conformal field theories the following equation must hold true

δ

δM
W [gµν ,Ψµα, bµ,M ] = 0 . (2.2)

This is the statement that M is exactly decoupled from the matter theory. We see that to

realize this equation in free field theory, we had to add a seagull term 1
9 |M |2|φ|2 because our
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linear coupling was to an operator that vanishes on-shell, but has nontrivial contact terms.

Of course, in free field theory we can integrate out F in the presence of M , which gives

F = 1
3M̄φ. Plugging this back into the free field Lagrangian, we verify that M disappears

altogether. The contact term in 〈φ̄F (x)φF̄ (y)〉 is completely equivalent to the fact that,

in the presence of M , the equation of motion for F is modified and thus we need a seagull

term to maintain (2.2).5

Let us consider now a free massive scalar field K = Φ†Φ, W = 1
2mΦ2. The relevant

couplings are

L ⊃ |F |2 +Fmφ+ F̄ m̄φ̄−M

(

1

2
m̄φ̄2 +

1

3
Fφ̄

)

− M̄

(

1

2
mφ2 +

1

3
F̄ φ

)

+
1

9
|M |2|φ|2 . (2.3)

Integrating out F , we see that nowM couples to a non-vanishing operator on-shell, namely

−1
6m̄φ̄

2. Hence, as expected, the equation (2.2) is no longer true. However, there is a useful

generalization of this equation. Imagine that m is promoted to a chiral background field.

Then it is natural to define the generating functional W [gµν ,Ψµα, bµ,M ;m,ψm, Fm]. Now

the following equation holds true
(

δ

δM
+

1

3
m̄

δ

δF̄m

)

W [gµν ,Ψµα, bµ,M ;m,ψm, Fm] = 0 . (2.4)

This equation not only predicts the linear coupling of M to −1
6m̄φ̄

2, but also correctly

constrains all the seagull terms. In effect, it means that the partition function W depends

on the combination 1
3m̄M − F̄m.6

The linear coupling of M to −1
6m̄φ̄

2 means that:

• If SUSY is broken in flat space (and therefore M has a VEV), we must add a “holo-

morphic mass term” proportional to φ2 to the Lagrangian. In particular, imagine

that SUSY is broken in the hidden sector B. In the SSM we often have the so-called

µ-term for the two Higgs doublets W = µHuHd. Then, as a consequence of SUSY

breaking in the sector B, we need to add a SUSY-breaking Bµ-term to the Lagrangian

∼ F
MPl

µHuHd. This is already present at tree level, in spite of the fact that SUSY

breaking takes place in some sequestered sector B.

• If we want to write the free massive scalar theory on curved manifolds such as AdS4
while preserving SUSY, we need to add such a holomorphic mass term. This term

preserves SUSY but breaks the R-symmetry. In general, the R-symmetry cannot

be preserved on AdS4 unless the underlying theory is conformal (or perhaps has

extended SUSY).

5The decoupling of the conformal factor of the metric works in a very similar fashion.
6One can verify the equation (2.4) as follows. Using (2.1) with m treated as a chiral superfield (that is

non-propagating and does not appear in the Kähler potential) we can derive the couplings of the background

field Fm to supergravity and to matter. In addition to the terms already mentioned in (2.3) one finds only

two additional terms, 1
2
Fmφ2 + 1

2
F̄mφ̄2. (There are no terms coupling Fm to M .) Then, integrating out

the F component of Φ in (2.3) we find L ⊃ −
(

mφ− 1
3
Mφ̄

) (

m̄φ̄− 1
3
M̄φ

)

+ 1
2
(Fm − m̄M)φ2 + 1

2
(F̄m −

mM̄)φ̄2 + 1
9
|M |2|φ|2 = −|m|2|φ|2 +

(

1
2

(

F̄m − 1
3
Mm̄

)

φ̄2 + c.c.
)

. We see that the theory only depends on

the combination 1
3
Mm̄− F̄m, confirming (2.4).
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An important interpretation of equation (2.4) is that this is a supersymmetric partner of

the classical equation of motion Tµ
µ = −2|m|2|φ|2 + fermions. The couplings of M to

matter are related by supersymmetry to the couplings of the conformal factor of the metric

to matter.

Our final example is the φ3 theory, K = Φ†Φ and W = 1
3λΦ

3. It is classically confor-

mal. If we couple it to background supergravity we again find the equation (2.2). Indeed,

despite there being a superpotential, as we can see from (2.1), the linear coupling of M

is to W̄ + 1
3K

iFi, which vanishes on-shell. The seagull term 1
9 |M |2|φ|2 takes care of the

modification of the equation of motion of F due to the coupling to background supergrav-

ity. Let us now promote the superpotential coupling λ to a superfield with components

(λ, ψλ, Fλ). Then we can examine the generating functional W [gµν ,Ψµα, bµ,M ; λ, ψλ, Fλ].

One can easily check that at tree level it still obeys (2.2), namely,

δ

δM
W [gµν ,Ψµα, bµ,M ; λ, ψλ, Fλ] = 0 . (2.5)

A correction analogous to that in (2.4) is absent due to classical conformal invariance.

In this section we have started from the known classical Lagrangian (2.1) and extracted

the equations (2.2), (2.4), (2.5). These equations can be viewed as the physical guiding

principles that fix the seagull terms when one couples some matter theory to background

supergravity. In the next section we will start developing a more abstract machinery that

applies for any SUSY QFT.

3 The FZ multiplet and linearized supergravity

In this section we study the linear couplings of arbitrary SUSY QFT to background su-

pergravity. We start by reviewing the structure of the Ferrara-Zumino multiplet and its

gauging. We follow [10] (and see references therein). In supersymmetric QFTs, the energy-

momentum tensor Tµν and the supercurrent Sµα are part of a supersymmetric multiplet

of operators. This multiplet is not unique, but in all cases it must include some additional

operators. A multiplet that always exists unless there are FI terms (or the target space

has nontrivial Kähler class) is the so-called Ferrrara-Zumino multiplet, which in addition

to the supercurrent and the energy-momentum tensor includes a current jFZ
µ (which is not

conserved unless the theory is conformal) and an additional complex scalar operator, x.

The multiplet can be defined via the superfield equation

D̄α̇Jαα̇ = DαX , (3.1)

where Jαα̇ = −2σµαα̇Jµ is a real vector superfield, and X is a chiral superfield D̄α̇X = 0.

Being an operator equation, (3.1) holds in all correlation functions at separated points.

The expansion of the superfields Jµ and X in components gives

Jµ = jFZ
µ +

[

θ

(

Sµ +
1

3
σµσ̄νS

ν

)

+
i

2
θ2∂µx

† + c.c.

]

+ θσν θ̄

(

2Tµν −
2

3
ηµνT +

1

2
ǫµνρσ∂

ρjFZ σ

)

+ . . . , (3.2)

X = x+
1

3
θσµSµ + θ2

(

2

3
T + i∂ · jFZ

)

+ . . . , (3.3)
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where the dots stand for higher components, and T = ηµνT
µν . The conservation of the

energy-momentum tensor and of the supercurrent follow from (3.1). One can check that

if jFZ
µ is conserved then the trace of the energy-momentum tensor vanishes, implying

superconformal invariance.

Equation (3.1) does not uniquely determine the multiplet, because given a solution

(Jµ, X) and a chiral operator Λ, one can find a new solution (J ′
µ, X

′) by the transformation

J ′
µ = Jµ − i∂µ(Λ− Λ†) , (3.4)

X ′ = X +
1

2
D̄2Λ†. (3.5)

This transformation acts as an improvement transformation on Tµν and Sµα. If a transfor-

mation such that X ′ = 0 exists, then the theory is superconformal.

A special case of (3.4) is a shift of the operator X by a constant. Hence, the expec-

tation value of the bottom component of X is not well defined in the rigid limit. We will

momentarily see that it becomes well defined upon gauging the multiplet Jµ.

The gauging to linear order is done by coupling the FZ multiplet to the supergravity

multiplet Hµ
∫

d4θJ µHµ , (3.6)

where Hµ is a real vector superfield. Using equation (3.1), we see that this is invariant

under

H′
αα̇ = Hαα̇ +DαL̄α̇ − D̄α̇Lα , D̄2DαLα = 0 . (3.7)

Equation (3.7) is the linearized supergravity gauge invariance. We can use this gauge

invariance to fix a convenient gauge, where the lowest components of Hµ vanish, giving the

following expansion

Hµ = −1

2
θσν θ̄(hµν − ηµνh) +

[

θ2M̄µ + iθ̄2θ(Ψµ + σµσ̄ρΨ
ρ) + c.c.

]

− 1

2
θ2θ̄2bµ . (3.8)

This is analogous to Wess-Zumino gauge in ordinary gauge theories. There is a leftover

gauge-invariance acting on (3.8)

hµν →hµν + ∂µξν − ∂νξµ , (3.9)

Ψαµ →Ψαµ + ∂µωα , (3.10)

and also Mµ can be shifted by any conserved vector

Mµ →Mµ + χµ , ∂µχµ = 0 . (3.11)

Equations (3.9)–(3.10) correspond to linearized superdiffeomorphisms and local supersym-

metry. The leftover gauge-invariance in Mµ (3.11) means that only M ≡ 2i∂µMµ will

appear in Lagrangians.

As always, the gauge-fixed superfield (3.8) does not transform well under ordinary

supersymmetry, but if we accompany supersymmetry transformations with appropriate

gauge transformations then (3.8) becomes a good superfield.
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The expansion of the Lagrangian (3.6) is thus

∫

d4θJ µHµ =
1

2
Tµνhµν +

i

2
(SµΨµ + c.c.)− 1

2
jFZ;µ bµ − 1

4
(x M̄ + c.c.) . (3.12)

This defines the linearized coupling of any SUSY theory (that possesses an FZ-multiplet)

to the minimal supergravity multiplet.

Let us also discuss the supergravity kinetic term to second order in the supergravity

fields. It can be derived from the following superspace Lagrangian

Lkinetic =M2
P l

∫

d4θHµEµ , (3.13)

where Eαβ̇ = D̄τ̇D
2D̄τ̇Hαβ̇+D̄τ̇D

2D̄β̇H
τ̇
α+D

γD̄2DαHγβ̇−2∂αβ̇∂
γτ̇Hγτ̇ is a real superfield

that is invariant under the gauge transformations (3.7), and it obeys an equation of the

type (3.1) guaranteeing that the density (3.13) is gauge invariant. Expanding (3.13) in

components in our Wess-Zumino gauge we find (up to total derivatives)

Lkinetic =M2
P l

(

−1

2
hµνEµν + ǫµνρκσα̇γκ Ψ̄µα̇∂νΨργ −

1

3
|M |2 + 1

3
b2µ

)

, (3.14)

where Eµν is the linearized Einstein tensor. We see that the fields M and bµ are non-

propagating.

If SUSY is broken at the scale
√
F , then the rigid theory generates vacuum en-

ergy density F 2, which needs to be canceled in order to remain in flat space. The La-

grangians (3.12), (3.14) provide a mechanism for doing so: one declares that x has a VEV

(up to a phase)

〈x〉 = 4√
3
FMP l, (3.15)

which upon integrating out M (which leads to 〈M〉 = −
√
3M−1

P l F ), exactly cancels the

energy density generated by the dynamics of the rigid theory. Hence, if SUSY is broken in

flat space, x and M have a fixed VEV.

If one treats gravity as non-dynamical, i.e. one only has (3.12) (and higher order

corrections), then coupling the theory to the AdS4 metric and turning on a constant VEV

forM allows to preserve all four supercharges [15]. For the coupling to more general curved

spaces, see [16].

4 Examples

Let us give several simple examples of the FZ multiplet in rigid SUSY theories, and discuss

the linearized coupling to supergravity.

4.1 Four-dimensional σ-models

First, following section 2, we re-consider classical four-dimensional σ-models, i.e. a collec-

tion of chiral superfields Φi with Kähler potential K(Φi,Φ
†
ī
) and superpotential W (Φi).
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One can deduce the Ferrara-Zumino multiplet

Jαα̇ = 2gīiDαΦ
iD̄α̇Φ̄

ī − 2

3
[Dα, D̄α̇]K ,

X = 4W − 1

3
D̄2K . (4.1)

From this we see that M̄ couples at linear order to the combination 4W − 1
3D̄

2K, which,

using D̄2K = −4KīF̄
ī, is equivalent to 4(W + 1

3KīF̄
ī). This is precisely what we had

in (2.1). One can infer all the other linearized couplings from (4.1) as well.

Let us now discuss quantum effects, limiting ourselves for simplicity to the theory

K = Φ†Φ andW = λ
3Φ

3. Classically, the theory is conformally invariant, andM decouples.

Indeed, it is manifest from (4.1) that X = 0 on-shell. However, conformal symmetry is

broken at the quantum level. Hence, M actually couples to the theory via loop corrections.

At the scale µ one can describe the theory by K = Z(λ, µ)Φ†Φ and W = λ
3Φ

3, where

we used the non-renormalization theorem for the superpotential. We define the physical

Yukawa coupling λp ≡ λ/Z3/2 and the physically normalized field Φp ≡ Φ
√
Z. The usual

renormalization group argument implies that d logZ
d log µ = −γ(λp), namely, the derivative of

logZ with respect to the scale only depends on the physical coupling at that scale. With

these definitions, β(λp) ≡ dλp

d log µ = 3
2λpγ.

The expression for X in the full theory is easily seen to be X = 4
9β(λp)Φ

3
p. It is

therefore nonzero already at one loop. From this we see that M couples to the theory at

the linear order via −1
9β(λp)M̄φ3p+ c.c.. Upon SUSY breaking in flat space in some hidden

sector, this leads to the soft A-term 1
3Aφ

3
p, with

A =
F√
3MP l

β(λp) . (4.2)

This is the origin of the anomaly mediated A-terms. In SUSY Lagrangians on curved

manifolds with 〈M〉 6= 0, the same term gives a coupling proportional to φ3.

4.2 Gauge theory with matter

Consider a gauge theory based on gauge group G with some chiral matter in representations

Ri, and assume for simplicity that the superpotential vanishes, W = 0. This theory

is classically conformal; however, it is generally not conformal upon including quantum

corrections. Let us normalize the Lagrangian as

L =
τ

32πi

∫

d2θTr(W 2
α + c.c.) +

∫

d4θ
∑

i

Q†
ie

VQi , (4.3)

with τ = θ
2π+i

4π
g2

and Tr(T a T b) = 1
2δ

ab. With this normalization, the gauge transformation

properties of the field strength superfield Wα are independent of the gauge coupling (and

therefore the RG scale). Denoting the wave function renormalization function of the i’th

superfield by Zi (and assuming for simplicity no off-diagonal terms) we find

X =
1

3

(

b0
16π2

TrW 2
α − 1

2
D̄2

∑

i

dZi

d log µ
Q†

ie
VQi

)

, (4.4)
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where b0 is the one-loop beta function coefficient (b0 = 3T (G)−∑

i T (Ri) with T (Ri) the

Dynkin index of the representation Ri).

Note that in the classical theory the axial current Q†
ie

VQi is conserved for every i.

In the full theory it is anomalous, and after plugging back the anomaly equation one

finally finds

X =
1

3

1

16π2

(

b0 +
∑

i

T (Ri)γi

)

TrW 2
α (4.5)

where γi = −d logZi

d log µ . The corrections due the matter wave function renormalization
∑

i T (Ri)γi are loop suppressed compared to b0 and hence they are negligible unless one

has in mind a Banks-Zaks-like fixed point. We will therefore neglect them in the following,

although they might be important for some applications.

We are now in position to determine the coupling of the gauge+matter theory to

the background supergravity field, M . From the bottom component of the superfield

X we readily find that one has the supersymmetric coupling 1
12

b0
16π2 M̄ Trλ2α + c.c.. The

consequences of adding such a term to the supersymmetric AdS4 Lagrangian have been

discussed in detail in [25]. Upon SUSY breaking in the hidden sector, by substituting the

VEV of M and rescaling the vector superfield V → 2gV to have canonically normalized

kinetic term, we find the anomaly-mediated gaugino masses

m1/2 =
b0 g

2

16π2
F√
3MP l

. (4.6)

5 Beyond linearized couplings

In sections 2, 3, 4 we have seen that the linearized couplings of supergravity fields to matter

are fixed by the Ferrara-Zumino multiplet of the rigid theory. It is common in the couplings

of background fields to matter that one needs to introduce higher order seagull terms in

order to maintain various symmetries of the theory. A useful way to keep track of such

seagull terms is to define the generating functional W [·] which depends on the background

fields, such that derivatives of it lead to consistent correlation functions of the operators

to which the background fields couple.

For example, coupling a continuous global symmetry associated to a current jµ to a

background gauge field allows one to consider the generating functional W [Aµ]. One can

then define correlation functions of the operator jµ by taking derivatives of W [Aµ] with

respect to Aµ. Current conservation is encoded in the gauge invariance of W [Aµ]. Note

that the correlation functions obtained by taking derivatives of W [Aµ] with respect to Aµ

are not necessarily identical to what one would have obtained by directly evaluating the

correlation functions of jµ (realized through the microscopic fields) with, say, Feynman

rules. Indeed, W [Aµ] also receives coincident-points contributions from seagull terms etc.,

which are necessary in order to have jµ appropriately conserved at coincident points.

Our situation is very similar. As we have seen in section 2, the seagull terms that

appear in coupling matter to background gravity are there to make sure that various
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Ward identities such as (2.2), (2.4) are respected. It thus only remains to identify the

right generalization of (2.2), (2.4) and use it to fix the nonlinear coupling of M to matter

theories. In this paper we will not attempt to fix all the seagull terms, but just the one

involving |M |2.
Let us take a theory with a Ferrara-Zumino multiplet, Jαα̇, satisfying the usual equa-

tion D̄α̇Jαα̇ = DαX. If X = 0 on-shell then the theory is conformal and one should impose

δ

δM
W [gµν ,Ψµα, bµ,M ] = 0 . (5.1)

This means that M is physically decoupled. As we have demonstrated in section 2, one

may need to add seagull terms proportional to |M |2 to ensure the exact decoupling. The

operatorial meaning of (5.1) is that X = 0 also holds at coincident points (in the class of

correlation functions that one can obtain from W [gµν ,Ψµα, bµ,M ]).7

Since the theories of interest are not conformal, we seek a generalization of (5.1). We

have already seen an example of how such a generalization might look like in the case of

a free massive chiral field (2.4). In the following, we discuss for concreteness the theory

K = Φ†Φ and W = λ
3Φ

3. The case of gauge+matter theories is completely analogous.

As mentioned in section 4, in this theory X = 4
9β(λp)Φ

3
p. (The subscript p stands for

‘physical’, and the physical coupling and field were defined in section 4.) It will be useful

to note that this can be written as X = 1
6ZγD̄

2U , with U = Φ†Φ. Hence, the FZ equation

becomes D̄α̇Jαα̇ = 1
6ZγDαD̄

2U . Here Z and γ are the wave function renormalization and

anomalous dimension functions, respectively.

We can couple our theory to background supergravity:
∫

d4θJαα̇Hαα̇. This is invari-

ant on-shell under supergravity transformations Hαα̇ → Hαα̇ + DαL̄α̇ − D̄α̇Lα, with the

constraint D̄2DαLα = 0 (and D2D̄α̇L̄
α̇ = 0). If we had a super-conformal theory, we would

not have to impose any constraint on Lα. The constraint that we impose on Lα removes

R-gauge transformations, Weyl transformations, and arbitrary shifts of Hαα̇

∣

∣

θ2
. (From the

latter, only divergence-less shifts remain in non-conformal theories (3.11).)

Let us add sources for the superfield U = Φ†Φ. Then, we have at leading order in the

background fields
∫

d4θ
(

Jαα̇Hαα̇ +GU
)

, where G is a real superfield that generates corre-

lation functions of U . Now, to linear order in the background fields, the action is invariant

under arbitrary (unconstrained) Lα transformations if we accompany the transformation

of the background supergravity multiplet Hαα̇ → Hαα̇+DαL̄α̇−D̄α̇Lα with an appropriate

transformation of G.

7Due to anomalies, one might expect that the right hand side of equation (5.1) is corrected by a local

polynomial in the background fields. (For example, the equation gµν
δ

δgµν
W [gµν ,Ψµα, bµ,M ] = 0, which

states the decoupling of the conformal factor of the metric in conformal field theories, is clearly corrected

by the trace-anomaly polynomial. This is related by supersymmetry to the equation (5.1).) Whether this is

the case or not, does not influence the derivation of the seagull terms (this is because the seagull terms affect

correlation functions where some of the points are coincident and some are potentially separated, while the

anomaly polynomial is strictly local). Therefore, for our purposes, we may henceforth ignore the anomaly

polynomial. In a very closely related setting [1–3, 19, 20], the anomaly polynomial was constrained by

dimensional analysis and the Wess-Zumino consistency conditions. For various other applications, it would

be very interesting to generalize this to the supersymmetric case.
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The operator U (to which G couples) is a composite operator which undergoes some

renormalization. Its renormalization can be understood by viewing G as the normaliza-

tion of the kinetic term of the Φ3 theory in the ultraviolet. The action in the UV is

taken to be
∫

d4θGΦ†Φ +
(∫

d2θ λ3Φ
3 + c.c.

)

. One can determine the structure of the ef-

fective action at some scale µ from symmetries (and the non-renormalization theorem) to

be
∫

d4θGZ
(

λ†λ
G3 ;µ

)

Φ†Φ +
(∫

d2θ λ3Φ
3 + c.c.

)

. Additionally, there are various irrelevant

operators which are unimportant for us. One can use this effective action with arbitrary

superfields G and λ, simply because there are no other terms one can write of dimension

4. From this, one can define the physical coupling λp = λ
(GZ)3/2

. The dependence of Z on

µ is restricted to be such that d logZ
d log µ = −γ(λp), namely, the µ-derivative is only a function

of the physical coupling at that scale.

From the general form of the effective action,
∫

d4θGZ
(

λ†λ
G3 ;µ

)

Φ†Φ+
(∫

d2θ λ3Φ
3+c.c.

)

,

one can read off the operator to which G couples at the scale µ. This is defined to be the

renormalized operator U at the scale µ.

Now we are ready to read off the linearized transformation of G under the general

supergravity gauge parameter Lα. Indeed, we need a transformation G → G + δG such

that the transformation of the effective action exactly cancels the piece that comes from

the coupling to gravity, ZγΦ†Φ
(

D̄2DαLα + c.c.
)

. We find

Hαα̇ → Hαα̇ +DαL̄α̇ − D̄α̇Lα + · · · , (5.2)

G→ G− 1

48
γ

(

∂ logGZ

∂G

)−1

(D̄2DαLα + c.c.) + · · · . (5.3)

In both equations above, the · · · stand for higher order terms in the background

fields (i.e. terms that contain, for instance, at least one G and at least one Lα etc.).

The term that we included on the right hand side of the second equation, namely,

∼ γ
(

∂ logGZ
∂G

)−1
(D̄2DαLα + c.c.) already contains in it higher order couplings (since both

γ and Z both depend in a complicated way on the superfield G), which, strictly speaking,

should not be trusted before the higher orders are specified.

Suppose that we have computed the partition function of the theory coupled to these

sources,W [H, G]. Then (5.2), (5.3) lead to the following differential equation in superspace:

∫

d4x

∫

d4θ

[

δW

δHαα̇
(DαL̄α̇+c.c.)−

1

48

δW

δG
γ

(

∂ logGZ

∂G

)−1

(D̄2DαLα+c.c.) + · · ·
]

= 0 ,

(5.4)

where the · · · stand for higher order terms in the background fields. Those higher-order

terms are certainly there, and can be classified systematically. For the problem at hand, the

task simplifies as one can check that the corrections to (5.4) do not influence the equation

involving δW/δM , which is what we are after. Furthermore, as we will momentarily see,

the equation one gets for δW/δM from (5.4) is renormalization-group invariant, which is

an important consistency check.
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5.1 Derivation of the Seagull term

Starting from the UV theory, defined by
∫

d4θGΦ†Φ +
∫

d2θ λ3Φ
3 + c.c., we flow to the

effective theory at scale µ,
∫

d4θGZ
(

λ†λ
G3 ;µ

)

Φ†Φ +
(∫

d2θ λ3Φ
3 + c.c.

)

. Treating G as a

superfield, we can expand the effective action in components. In addition, we include the

most general couplings of M to the operators of the theory, compatibly with R-symmetry

and dimensional analysis. This leads to

L(FG, p, DG, p, M) = (FG, p F̄pφp + c.c.) +DG, p|φp|2 + |Fp|2 +
(

λpFpφ
2
p + c.c.

)

+ (c1 M̄ F̄pφp + c.c.)+(c2M FG, p+c.c.)|φp|2+c3 |M |2 |φp|2 , (5.5)

where the physical couplings FG, p and DG, p can be written explicitly in terms of the

couplings of the UV theory (i.e. G, FG, DG and λ) using the general form of the effective

action. c1,2,3 are unknown coefficients to be determined using (5.4).

Note that we have chosen to write the linear coupling of M as M̄ F̄pφp, rather than

M̄ φ3p. The two are equivalent after integrating out Fp, and the difference only amounts to

a redefinition of the second order terms c2 and c3. This is the inherent ambiguity present

in seagull terms that we discussed in the introduction.

Expanding (5.4) in components and taking the terms which are proportional to Lα|θ2θ̄
(this is the gauge parameter that allows to shift M), we find after some algebra

D(x)W = 0 ,

D(x) ≡ δ

δM̄(x)
− 1

6
γ

δ

δFG, p(x)
−
(

1

6
γ − 1

2
|λp|2γ′

)

FG, p(x)
δ

δDG, p(x)
. (5.6)

Note that even though we originally derived the expression for the differential operator D
in terms of the UV couplings (λ, G,FG, DG), it depends on these sources only through the

physical couplings (λp,FG, p, DG, p). This reflects the RG invariance of our equation (5.6).

By applying D(x)D̄(y) to the effective action (5.5) we have

0 = D(x)D̄(y)W |{s,FG, p,DG, p}=0 = |c1 −
1

6
γ|2〈(F̄pφp)(x)(Fpφ̄p)(y)〉+ coincident− points,

(5.7)

where ‘coincident-points’ stands for terms that only have support for x = y. Since the

correlation function above at separated points is nonzero, the results can only vanish if c1 =
1
6γ. This relation gives the expected linearized coupling, ∼ M̄γF̄pφp, which is equivalent to

leading order in M to M̄γλpφ
3
p ∼ β(λp)M̄φ3p. This coincides with the results of section 4.

Substituting c1 =
1
6γ in the Lagrangian (5.5), we obtain

0 = D(x)D̄(y)W = B(x) B̄(y)〈|φp|2(x)|φp|2(y)〉sources + coincident− points , (5.8)

B(x) ≡
(

c2 −
1

6
γ +

1

2
|λp|2γ(

′)

)

FG, p(x) +

(

c3 −
1

6
c̄2γ

)

M̄(x) , (5.9)

where 〈. . . 〉sources is the correlator in the theory with background sources. The term

‘coincident-points’ again stands for terms that only have support when x = y. We can

imagine expanding the right hand side of (5.8) in the number of sources. The leading
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pieces comes from taking 〈|φp|2(x)|φp|2(y)〉sources = 〈|φp|2(x)|φp|2(y)〉sources=0. Then the

two-point function is manifestly nonzero and we thus find that to satisfy the equation we

have to take B = 0, and therefore

c2 =
1

6
γ − 1

2
|λp|2γ(

′) (5.10)

c3 =
1

6
γ c̄2 =

1

36
γ2 − 1

12
|λp|2γ γ(

′) =
1

36
(γ2 − γ̇). (5.11)

Alternatively, we can act with two additional operators D and set all the sources to zero to

get the same result. This means that the seagull terms c2,3 are set by requiring consistency

of four-point functions of x. In fact, were we to carefully follow the ‘coincident-points’

contribution, we could have derived the same results by just using a three-point function.

To summarize, the linear in M contact term ∼ β(λp)Mφ3p follows from consistency

conditions on two-point function and the quadratic one in M follows from consistency

conditions on three-point functions. While the source G plays an important intermediate

role in the derivation, we find that there are some contact terms of M even when G is a

constant. Our final Lagrangian is

L =
1

6
γ(M̄ F̄pφp + c.c.) +

1

36
(γ2 − γ̇)|M |2|φp|2 . (5.12)

Integrating out Fp, this is equivalent to

L = −1

9
β(λp)(M̄φ3p + c.c.)− 1

36
γ̇|M |2|φp|2 . (5.13)

In particular, upon SUSY breaking in some hidden sector (generating the vacuum energy

density F 2 and a VEV for M), the scalar φ acquires a physical non-holomorphic mass-

squared

m2
s =

1

4

(

F√
3MP l

)2

γ̇. (5.14)

6 A derivation from finite theories and Coulomb phase

In the previous sections we have seen that the couplings of the supergravity background

fieldM , at linear level and beyond, are determined by the running of the parameters of the

theory. In this section we will consider cases in which conformal symmetry is broken at the

classical level by the introduction of some dimensionful parameter (mass term or VEV),

with the property that the running of the dimensionless coupling stops at the massive

threshold (above or below the threshold, respectively). Therefore, in the appropriate range

of scales, the couplings of M are determined just by classical considerations, as in the

examples discussed in section 2. Once the couplings of M are determined at some range of

scales, we can evolve to other scales. In this way we will show that the expected couplings

of M are generated precisely with the coefficients found in the previous sections. This is

therefore an important consistency check of our proposal.
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As a first example, let us consider finite N = 2 and N = 4 supersymmetric gauge

theories, deformed by mass terms to N = 1 theories. This case was already considered in

the original derivation of the anomaly-mediated gaugino mass in [11], but we find it useful

to reproduce it here, both to stress the point of view of the coupling to the background field

M (which exists independently of SUSY breaking), and to show that it can be extended

beyond linear order to derive the seagull term. For example, consider first the N = 4

theory and add mass terms, 1
2mΦaΦa, for all the adjoint fields. Because the theory is

finite, at energies above the typical mass scale, the operator X of the FZ multiplet is given

by its classical expression

X = 4

(

W − 1

3
Φa ∂W

∂Φa

)

=
2

3
mΦaΦa . (6.1)

The infrared of this theory is pure N = 1 super Yang-Mills theory. Thus, at scales

below m, one finds X ∼ β(g)TrW 2
α, where β(g) is the usual beta function. We will only

consider the leading one-loop order in g in order to avoid having to discuss the anomaly

puzzle ([26–28], see also [29, 30] for some background). Similar remarks apply to the finite

N = 2 theories.

The lack of wave function renormalization at scales above m implies that the equa-

tion (2.4) holds exactly. This follows from the fact that the operatorX receives no quantum

corrections. This means that above the scale m the dependence on M is particularly sim-

ple: upon promoting m to a superfield, the physical observables depend on Fm andM only

through F̄m − 1
3m̄M . Since it is easy to determine the effective action below the scale m

as a function of Fm, we can therefore infer the couplings of M rather easily.

Indeed, the dependence on the superfield m of the low-energy effective action follows

from the usual non-renormalization theorems, and at the scale µ the dependence on m is

given by
∫

d2θ 14
b0

16π2 log(m/µ)TrW
2
α, where b0 = 3Nc for SU(N) gauge group. Corrections

that include covariant derivatives acting on m are irrelevant at low energies. From here

one can read off the coupling of M to be 1
12

b0
16π2 M̄Trλ2α, which gives the expected gaugino

mass upon SUSY breaking in some hidden sector.

As an aside, note that in the presence of the background field M the spectrum of the

heavy fields is identical to what it would be in the so-called Minimal Gauge Mediation.

Indeed, effectively, one can describe the UV spectrum of the heavy fields φa by a Minimal

Gauge Mediation spurion S = m(1− 1
3θ

2M̄). In such cases one expects the infrared result

to be proportional to the number of messengers we have integrated out. This is given by

the number of massive adjoint chiral multiplet Na, each weighted with the Casimir Nc of

the representation, giving a total of NaNc messengers. If all the adjoint chiral fields of the

UV theory get a mass, then Na = 3, consistent with what we have found. Indeed, all of the

results we have described here, such as the form of X at low energies and the coupling of

λλ to M are readily obtained from simple Feynman diagram computations. Because the

theories are finite, one can proceed in a pedestrian fashion, ignoring issues of regulators

and counterterms.

By slightly complicating things, we can also find the seagull term containing |M |2.
Let us suppose we give a mass m to 1 ≤ Na < 3 of the adjoints. In this case the effective
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action in the infrared is more complicated, as the remaining 3−Na adjoints have nontrivial

dynamics. (We can imagine giving them a much smaller mass, and in the meanwhile study

the effective action in the intermediate regime where they can be viewed as massless.) Since

we are dealing with UV-finite theories, above the scale m the dependence on M is again

fixed by replacing F̄m → F̄m − 1
3m̄M . It thus only remains to fix the dependence on the

superfield m of the effective action below the scale m.

Using the usual non-renormalization theorems one finds for the effective action at some

scale µ < m

Seff =

∫

d4θZ
(

τ,m†m/µ2
)

3−Na
∑

a=1

Φ†aeV Φa

+

∫

d2θ

(

τ

32πi
− 1

4

NaNc

16π2
log (m/µ)

)

TrW 2
α + c.c. . (6.2)

Here τ is the exactly marginal parameter of N = 4 theory. (This determines the gauge

coupling at and above the scale m.) The fact that Z depends only on m†m is obvious from

the symmetries of the theory, and the rest is fixed by dimensional analysis and holomorphy.

It also follows from dimensional analysis that the above effective action is the leading result

when m is an arbitrary superfield.

From (6.2), we see that the linear contact term for the gaugino mass is now proportional

to 3Nc − (3−Na)Nc = NaNc, as expected on general grounds.8

We can now turn to the seagull term containing |M |2. We can read off the result

directly from the effective action (6.2). After a short calculation in which one extracts the

coefficient of |φ|2|M |2 after integrating out Fφ, one finds that it is proportional to γ̇ with

the coefficient we found in the previous section.9 This therefore confirms the presence of

the seagull term (1.5) in the coupling to non-dynamical supergravity.

As a second example, we consider some theory (such as pure SU(2) N = 2 theory)

in the Coulomb phase, where the running of the gauge coupling stops at the scale of the

VEV. The theory below the scale of the VEV is therefore classical and its coupling to

supergravity is the usual one. The low-energy theory contains a neutral chiral field u and

a massless gauge field. In order to see how this works, we start with the effective action

below the scale u of the VEV, in the absence of the gravitational field,

L =

∫

d2θ

(

1

4g2
+

b0
32π2

log (u/Λ)

)

W 2
α, (6.3)

where Λ is the cutoff. (We dropped the instanton corrections, which are not important for

our purpose since we will mostly discuss u≫ Λ.)

This nonlinear theory can be coupled to supergravity via the usual classical prescrip-

tion. In particular, the couplings relevant to us take the form

L = |Fu|2 −
1

3
(FuMū+ c.c.)− b0

32π2
Fu

u
λ2α. (6.4)

8This is also proportional to the number of Minimal Gauge Mediation messengers we integrated out.
9The calculation can again be phrased in the language of Minimal Gauge Mediation, with one difference:

there are Yukawa couplings linking the light and heavy scalars. Phenomenologically, such terms correspond

to “Yukawa Mediation”.
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Upon integrating Fu out, the coupling ∼ β(g)
g M̄λ2α is generated. (We assumed that the

Kähler corrections are small, which is correct at large u.) We see that a term very similar

to our contact term is generated in this theory at low energies via classical supergravity

(due to the nontrivial gauge kinetic function). Since its coefficient is independent of u, it

is tempting to conclude that it reflects a similar (but not visible in classical supergravity)

coupling of M to all the gauginos at scales above u. The coefficient of this contact terms

supports this interpretation.

Also the seagull term can be derived in this fashion, by taking into account the correc-

tion to the Kähler potential for the u field. This comes from the wave-function renormal-

ization at the scale µ = |u|. (We again neglect instanton corrections.) Indeed, plugging in

equation (2.1) a non-trivial Kähler function of the form K(u, ū) = Z(|u|)|u|2 one readily

finds the Lagrangian

L = Z

(

(

1− γ

2

)2
− γ̇

4

)

|Fu|2 − Z
(

1− γ

2

) 1

3
(FuMū+ c.c.) +

1

9
Z|M |2|u|2 . (6.5)

When Fu is integrated out, we are left with the seagull term ∼ γ̇|M |2|u|2, with the same

coefficient as in (5.13). This is again present already in classical supergravity, but one is

tempted to conclude that it descends from a corresponding quantum contact term involving

|M |2 and the adjoint scalar in the UV.

Note that this analysis is very similar to the one of [21]. The difference is that here we

are working in the Coulomb phase rather than the Higgs phase, so the effective action we

are using is manifestly well defined. Ref. [22] in fact considered Coulomb phase examples,

as well as non-abelian extensions of the Higgs phase examples of [21].

The various approaches to anomaly mediation can all be understood in this frame-

work. First, it is again worth stressing that the gaugino mass is completely local and

supersymmetric. At a microscopic level, M couples to x = 2
3mφ

aφa (in the N = 4 case);

this is completely as expected from the standard supergravity analysis. At long distances,

x can be replaced by x = 1
3
β(g)
g λλ. So the superpotential, in the standard supergravity

formulas, should be modified, including the gaugino bilinear in x. Indeed, this was the

observation of [22], where it was noted that in theories in which a superpotential is gener-

ated non-perturbatively through gaugino condensation, it is the full superpotential which

should appear in the supergravity Lagrangian.

While the gaugino mass term is completely local and supersymmetric, it is not surpris-

ing that many Green’s functions in the low energy theory become singular at low momenta

(for example, involving external gravitons and gauge bosons). As in [13], some of these

are related by supersymmetric Ward identities to non-singular contact terms. This is also

consistent with the viewpoint in [21].

In the deformed finite theories, the conformal compensator approach, not surprisingly,

maps on to the treatment of the mass, m, as a spurion. This is closely related to the

coupling G in section 5.

– 23 –



J
H
E
P
0
4
(
2
0
1
4
)
0
7
3

Acknowledgments

We are grateful to O. Aharony, R. Argurio, M. Bertolini, P. Draper, G. Festuccia, M. Luty,

R. Rattazzi, A. Schwimmer, N. Seiberg, R. Sundrum, and especially J. Thaler for useful

discussions. The work of M.D. was supported in part by the U.S. Department of Energy.

M. Dine is grateful to the Weizmann Institute of Science for hospitality during the initial

stages of this project. L.D.P. and Z.K. are supported by the ERC STG grant number

335182, by the Israel Science Foundation under grant number 884/11. L.D.P. and Z.K.

would also like to thank the United States-Israel Binational Science Foundation (BSF) for

support under grant number 2010/629. In addition, the research of L.D.P. and Z.K. is

supported by the I-CORE Program of the Planning and Budgeting Committee and by

the Israel Science Foundation under grant number 1937/12. Finally, L.D.P. and Z.K. are

grateful to KITP for hospitality at the final stages of this project. Any opinions, findings,

and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the funding agencies.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] H. Osborn, Derivation of a Four-dimensional c Theorem, Phys. Lett. B 222 (1989) 97

[INSPIRE].

[2] I. Jack and H. Osborn, Analogs for the c Theorem for Four-dimensional Renormalizable

Field Theories, Nucl. Phys. B 343 (1990) 647 [INSPIRE].

[3] H. Osborn, Weyl consistency conditions and a local renormalization group equation for

general renormalizable field theories, Nucl. Phys. B 363 (1991) 486 [INSPIRE].

[4] M.A. Luty and R. Sundrum, Supersymmetry breaking and composite extra dimensions,

Phys. Rev. D 65 (2002) 066004 [hep-th/0105137] [INSPIRE].

[5] M. Luty and R. Sundrum, Anomaly mediated supersymmetry breaking in four-dimensions,

naturally, Phys. Rev. D 67 (2003) 045007 [hep-th/0111231] [INSPIRE].

[6] P. Meade, N. Seiberg and D. Shih, General Gauge Mediation,

Prog. Theor. Phys. Suppl. 177 (2009) 143 [arXiv:0801.3278] [INSPIRE].

[7] S. Dimopoulos and G.F. Giudice, Multimessenger theories of gauge mediated supersymmetry

breaking, Phys. Lett. B 393 (1997) 72 [hep-ph/9609344] [INSPIRE].

[8] R. Argurio and D. Redigolo, Tame D-tadpoles in gauge mediation, JHEP 01 (2013) 075

[arXiv:1206.7037] [INSPIRE].

[9] Z. Komargodski and N. Seiberg, Comments on the Fayet-Iliopoulos Term in Field Theory

and Supergravity, JHEP 06 (2009) 007 [arXiv:0904.1159] [INSPIRE].

[10] Z. Komargodski and N. Seiberg, Comments on Supercurrent Multiplets, Supersymmetric

Field Theories and Supergravity, JHEP 07 (2010) 017 [arXiv:1002.2228] [INSPIRE].

– 24 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/0370-2693(89)90729-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B222,97
http://dx.doi.org/10.1016/0550-3213(90)90584-Z
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B343,647
http://dx.doi.org/10.1016/0550-3213(91)80030-P
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B363,486
http://dx.doi.org/10.1103/PhysRevD.65.066004
http://arxiv.org/abs/hep-th/0105137
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105137
http://dx.doi.org/10.1103/PhysRevD.67.045007
http://arxiv.org/abs/hep-th/0111231
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111231
http://dx.doi.org/10.1143/PTPS.177.143
http://arxiv.org/abs/0801.3278
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.3278
http://dx.doi.org/10.1016/S0370-2693(96)01513-4
http://arxiv.org/abs/hep-ph/9609344
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9609344
http://dx.doi.org/10.1007/JHEP01(2013)075
http://arxiv.org/abs/1206.7037
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.7037
http://dx.doi.org/10.1088/1126-6708/2009/06/007
http://arxiv.org/abs/0904.1159
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1159
http://dx.doi.org/10.1007/JHEP07(2010)017
http://arxiv.org/abs/1002.2228
http://inspirehep.net/search?p=find+EPRINT+arXiv:1002.2228


J
H
E
P
0
4
(
2
0
1
4
)
0
7
3

[11] G.F. Giudice, M.A. Luty, H. Murayama and R. Rattazzi, Gaugino mass without singlets,

JHEP 12 (1998) 027 [hep-ph/9810442] [INSPIRE].

[12] L. Randall and R. Sundrum, Out of this world supersymmetry breaking,

Nucl. Phys. B 557 (1999) 79 [hep-th/9810155] [INSPIRE].

[13] J.A. Bagger, T. Moroi and E. Poppitz, Anomaly mediation in supergravity theories,

JHEP 04 (2000) 009 [hep-th/9911029] [INSPIRE].

[14] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry, Cambridge University

Press, Cambridge U.K. (2000).

[15] G. Festuccia and N. Seiberg, Rigid Supersymmetric Theories in Curved Superspace,

JHEP 06 (2011) 114 [arXiv:1105.0689] [INSPIRE].

[16] T.T. Dumitrescu and G. Festuccia, Exploring Curved Superspace (II), JHEP 01 (2013) 072

[arXiv:1209.5408] [INSPIRE].

[17] F. D’Eramo, J. Thaler and Z. Thomas, The Two Faces of Anomaly Mediation,

JHEP 06 (2012) 151 [arXiv:1202.1280] [INSPIRE].

[18] F. D’Eramo, J. Thaler and Z. Thomas, Anomaly Mediation from Unbroken Supergravity,

JHEP 09 (2013) 125 [arXiv:1307.3251] [INSPIRE].

[19] Y. Nakayama, Consistency of local renormalization group in d = 3,

Nucl. Phys. B 879 (2014) 37 [arXiv:1307.8048] [INSPIRE].

[20] F. Baume, B. Keren-Zur, R. Rattazzi and L. Vitale, The local Callan-Symanzik equation:

structure and applications, arXiv:1401.5983 [INSPIRE].

[21] M. Dine and N. Seiberg, Comments on quantum effects in supergravity theories,

JHEP 03 (2007) 040 [hep-th/0701023] [INSPIRE].

[22] M. Dine and P. Draper, Anomaly Mediation in Local Effective Theories,

JHEP 02 (2014) 069 [arXiv:1310.2196] [INSPIRE].

[23] Y. Imamura, Relation between the 4d superconformal index and the S3 partition function,

JHEP 09 (2011) 133 [arXiv:1104.4482] [INSPIRE].

[24] O. Aharony, M. Berkooz, D. Tong and S. Yankielowicz, Confinement in Anti-de Sitter Space,

JHEP 02 (2013) 076 [arXiv:1210.5195] [INSPIRE].

[25] B. Gripaios, H.D. Kim, R. Rattazzi, M. Redi and C. Scrucca, Gaugino mass in AdS space,

JHEP 02 (2009) 043 [arXiv:0811.4504] [INSPIRE].

[26] N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions

in supersymmetric gauge theories, JHEP 06 (2000) 030 [hep-th/9707133] [INSPIRE].

[27] M. Dine et al., Supersymmetric QCD: Exact Results and Strong Coupling,

JHEP 05 (2011) 061 [arXiv:1104.0461] [INSPIRE].

[28] K. Yonekura, On the Trace Anomaly and the Anomaly Puzzle in N = 1 Pure Yang-Mills,

JHEP 03 (2012) 029 [arXiv:1202.1514] [INSPIRE].

[29] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low

Function of Supersymmetric Yang-Mills Theories from Instanton Calculus,

Nucl. Phys. B 229 (1983) 381 [INSPIRE].

[30] M.A. Shifman and A.I. Vainshtein, Solution of the Anomaly Puzzle in SUSY Gauge Theories

and the Wilson Operator Expansion, Nucl. Phys. B 277 (1986) 456 [INSPIRE].

– 25 –

http://dx.doi.org/10.1088/1126-6708/1998/12/027
http://arxiv.org/abs/hep-ph/9810442
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9810442
http://dx.doi.org/10.1016/S0550-3213(99)00359-4
http://arxiv.org/abs/hep-th/9810155
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810155
http://dx.doi.org/10.1088/1126-6708/2000/04/009
http://arxiv.org/abs/hep-th/9911029
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911029
http://dx.doi.org/10.1007/JHEP06(2011)114
http://arxiv.org/abs/1105.0689
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.0689
http://dx.doi.org/10.1007/JHEP01(2013)072
http://arxiv.org/abs/1209.5408
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.5408
http://dx.doi.org/10.1007/JHEP06(2012)151
http://arxiv.org/abs/1202.1280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1280
http://dx.doi.org/10.1007/JHEP09(2013)125
http://arxiv.org/abs/1307.3251
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.3251
http://dx.doi.org/10.1016/j.nuclphysb.2013.12.002
http://arxiv.org/abs/1307.8048
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.8048
http://arxiv.org/abs/1401.5983
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.5983
http://dx.doi.org/10.1088/1126-6708/2007/03/040
http://arxiv.org/abs/hep-th/0701023
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701023
http://dx.doi.org/10.1007/JHEP02(2014)069
http://arxiv.org/abs/1310.2196
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.2196
http://dx.doi.org/10.1007/JHEP09(2011)133
http://arxiv.org/abs/1104.4482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4482
http://dx.doi.org/10.1007/JHEP02(2013)076
http://arxiv.org/abs/1210.5195
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5195
http://dx.doi.org/10.1088/1126-6708/2009/02/043
http://arxiv.org/abs/0811.4504
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4504
http://dx.doi.org/10.1088/1126-6708/2000/06/030
http://arxiv.org/abs/hep-th/9707133
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707133
http://dx.doi.org/10.1007/JHEP05(2011)061
http://arxiv.org/abs/1104.0461
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.0461
http://dx.doi.org/10.1007/JHEP03(2012)029
http://arxiv.org/abs/1202.1514
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1514
http://dx.doi.org/10.1016/0550-3213(83)90338-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B229,381
http://dx.doi.org/10.1016/0550-3213(86)90451-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B277,456

	Definition of the problem and summary
	Matter fields coupled to background supergravity: classical aspects
	The FZ multiplet and linearized supergravity
	Examples
	Four-dimensional sigma-models
	Gauge theory with matter

	Beyond linearized couplings
	Derivation of the Seagull term

	A derivation from finite theories and Coulomb phase

