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field theoretical method to obtain the time evolution of the quantum state. We consider

the decay of a light scalar field with mass M ≪ H with a cubic coupling in de Sitter

space-time. Radiative corrections feature an infrared enhancement manifest as poles in

∆ = M2/3H2 and we obtain the quantum state in an expansion in ∆. To leading order the

pure state density matrix describing the decay of a particle with sub-horizon wavevector

is dominated by the emission of superhorizon quanta, describing entanglement between

superhorizon and subhorizon fluctuations and correlations across the horizon. Tracing over

the superhorizon degrees of freedom yields a mixed state density matrix from which we

obtain the entanglement entropy. Asymptotically this entropy grows with the physical

volume as a consequence of more modes of the decay products crossing the Hubble radius.

A generalization to localized wave packets is provided. The cascade decay of single particle

states into many particle states is discussed. We conjecture on possible impact of these

results on non-gaussianity and on the “low multipole anomalies” of the CMB.
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1 Introduction

Quantum fluctuations during inflation seed the anisotropies in the cosmic microwave back-

ground and generate primordial gravitational waves. In its simplest inception the inflation-

ary stage can be effectively described as a quasi-deSitter space time. Early studies [1–10]

revealed that de Sitter space time features infrared instabilities and profuse particle pro-

duction in interacting field theories. During inflation the rapid cosmological expansion

modifies the energy-uncertainty relation allowing “virtual” excitations to persist longer,

leading to remarkable phenomena, which is stronger in de Sitter space time [11–16]. Parti-

cle production in a de Sitter background has been argued to provide a dynamical“screening”

mechanism that leads to relaxation of the cosmological constant [17–29] through back re-

action, much like the production of particle-antiparticle pairs in a constant electric field.

More recently this mechanism of profuse particle production has been argued to lead to

the instability of de Sitter space time [30–35].

A particular aspect of the rapid cosmological expansion is the lack of a global time-like

killing vector which leads to remarkable physical effects in de Sitter space time, as it implies

the lack of kinematic thresholds (a direct consequence of energy-momentum conservation)

and the decay of fields even in their own quanta [36–40] with the concomitant particle
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production. This result was confirmed in ref. [41–49] and more recently in ref. [50] by a

thorough analysis of the S-matrix in global de Sitter space time.

The decay of an initial single particle state into many particle states results in a

quantum state that is kinematically entangled in momentum space: consider the example

of a scalar field theory with cubic self-interaction and an initial single particle state with

spatial physical momentum ~k, namely |1~k〉, this state decays into a two-particle states of the
form

∑

~p C~p(t) |1~p〉|1~k−~p〉 where C~p(t) is the time dependent amplitude of the two particle

state with momenta ~p and ~k− ~p respectively. This is an entangled state that features non-

trivial correlations between the product particles. In ref. [36–38, 40] it is argued that in

de Sitter space time with Hubble constant H, the largest decay amplitude corresponds to

the case when one of the product particles features physical momenta p ≪ H, therefore, if

the initial particle has physical momenta k ≫ H and one of the product particles features

a momentum p ≪ H (the other with |~k − ~p| ≫ H) the quantum entangled state features

correlations between the sub and superHubble daughter particles.

We refer to these correlated pairs produced from the decay of a parent particle as entan-

gled across the Hubble radius, namely “superhorizon” entanglement, referring to the Hub-

ble radius in de Sitter space time as the horizon as is customary in inflationary cosmology.

Correlations of quantum fluctuations during a de Sitter inflationary stage have been

recently argued [51] to lead to remarkable Hanbury-Brown-Twiss interference phenomena

with potential observational consequences.

Unitary time evolution of an initial single particle state is a pure quantum state in which

the product particles are kinematically entangled. If a pure quantum state describes an

entangled state of several subsystems and if the degrees of freedom of one of the subsystems

are not observed, tracing the pure state density matrix over these unobserved degrees of

freedom leads to a mixed state reduced density matrix. The entanglement entropy is the

Von Neumann entropy associated with this reduced density matrix; it reflects the loss of

information that was originally present in the quantum correlations of the entangled state.

The main purpose of this article is to study the entanglement entropy in the case of

an initial quantum state describing a single particle state with physical momentum k ≫ H

decaying into a pair of particles one with p ≪ H (superhorizon), and the other with

|~k − ~p| ≫ H (subhorizon) by tracing over the super-Hubble (“superhorizon”) degrees of

freedom. This entanglement entropy is a measure of the loss of information contained in

the pair correlations of the daughter particles.

The entanglement entropy has been the focus of several studies in condensed mat-

ter systems [52–54],1 statistical physics and quantum field theory [56–63], black hole

physics [64–66] and in particle production in time dependent backgrounds [67]. Most of

these studies focus on entanglement between spatially correlated regions across boundaries.

The entanglement entropy in de Sitter space-time for a free, minimally coupled massive

scalar field has been studied in ref. [68] with the goal of understanding superhorizon cor-

relations, and ref. [69, 70] studied the entropy from momentum space entanglement and

renormalization in an interacting quantum field theory in Minkowski space-time.

1For a review see [55].
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Our study differs from these studies in many ways: we are not considering spatially

correlated regions, and momentum space entanglement resulting from the kinematics of

particle decay in states of the same quanta is different from the cases studied in ref. [69, 70]

which considered momentum space entanglement in the interacting ground state of a quan-

tum field theory or a finite density case, both in a stationary, equilibrium situation, whereas

we are interested in the time evolution of the reduced density matrix and the concomitant

increase of the entanglement entropy in an interacting theory in de Sitter space time.

More recently the entanglement entropy in the ubiquitous case of particle decay in

Minkowski space-time from tracing over the degrees of freedom of an unobserved daughter

particle has been studied in ref. [71] as a characterization of an “invisible” decay comple-

mentary to missing energy.

We focus on light scalar fields with mass M2 ≪ H2, for which radiative corrections fea-

ture infrared divergences that are manifested as poles in ∆ = M2/3H2 ≪ 1 [36–38, 40] in

the self-energy leading to a consistent expansion in ∆. A similar expansion was recognized

in refs. [72–76].

The field theoretic method introduced in ref. [40, 71, 77] that describes the non-

perturbative time evolution of quantum states is extended here and then generalized to infla-

tionary cosmology (for other applications of this field theoretical method see refs. [78, 79])

to obtain the entangled quantum state from single particle decay to leading order in a

∆ = M2/3H2 expansion. We show explicitly that unitarity is manifest in the time evo-

lution of the quantum state. From this state we construct the (pure) density matrix and

trace over the contribution from superhorizon modes and obtain the entanglement entropy

to leading order in a ∆ expansion. Whereas in ref. [80] the entanglement between only

two modes was studied in de Sitter space time, ours is a full quantum field theoretical

treatment that includes coupling between all modes as befits a local quantum field theory

and consistently trace over all the superhorizon degrees of freedom.

We find that the entanglement entropy asymptotically grows with the physical volume

as more wavevectors cross the Hubble radius. The method is generalized to a wave packet

description of single particle states and we study in detail the case of wave packets sharply

localized in momentum around a wavevector k0 ≫ H and localized in space on scales much

smaller than the Hubble radius all throughout the near de Sitter inflationary state. We find

that under these conditions, the entanglement entropy for wavepackets is approximately

the same as that for plane waves and assess the corrections.

As mentioned above, the lack of kinematic thresholds implies that quanta can decay

on many quanta of the same field, in particular for cubic interactions a single particle state

can decay into two particles of the same field, however the decay process does not stop at

the two particle level, but instead is a cascade decay 1 → 2 → 3 → · · · . We provide a

non-perturbative framework to study this cascade decay process and argue that for weak

(cubic) coupling λ there is a hierarchy of time scales and the cascade is controlled by this

weak coupling. The probability of multiparticle states is suppressed by λ2 for each extra

particle in the final state, the time scales of production and decay of multiparticle states

are also separated by 1/λ2.
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We comment on possible relationship with non-gaussianity, in particular pointing out

the relationship between the quantum correlations between subhorizon and superhorizon

quanta from particle decay and the bispectrum of scalar perturbations in the squeezed

(local) limit. Furthermore, we speculate as to whether the information “lost” as modes

cross the horizon is “recovered” when the modes re-enter the horizon during the matter

dominated era. This study then bridges the main concepts of entanglement between spatial

regions explored in ref. [68], with momentum space entanglement and coarse graining [69,

70] and quantum entanglement via particle decay [71] in inflationary cosmology.

2 Quantum Field Theoretical Wigner-Weisskopf treatment of the decay

width

The method developed in refs. [40, 71, 77–79] is a quantum field theoretical generalization

of the Wigner-Weisskopf method used in quantum optics [81–84].

We consider a scalar field minimally coupled to gravity in a spatially flat de Sitter

spacetime with scale factor a(t) = eHt . In comoving coordinates, the action is given by

S =

∫

d3x dt a3(t)

{

1

2
φ̇2 − (∇φ)2

2a2
− M2

2
φ2 − λ φ 3

}

, , (2.1)

It is convenient to pass to conformal time η = −e−Ht/H with dη = dt/a(t) and

introduce a conformal rescaling of the fields

a(t)φ(~x, t) = χ(~x, η). (2.2)

The action becomes (after discarding surface terms that will not change the equations of

motion)

S =

∫

d3x dη

{

1

2

[

χ′2 − (∇χ)2 −M2(η) χ2
]

− λC(η) χ3

}

, (2.3)

with primes denoting derivatives with respect to conformal time η and

M2(η) = M2C2(η)− C ′′(η)

C(η)
, (2.4)

where for de Sitter spacetime

C(η) = a(t(η)) = − 1

Hη
. (2.5)

In this case, the effective time dependent mass is given by

M2(η) =

[

M2

H2
− 2

]

1

η2
. (2.6)

The free field Heisenberg equations of motion for the spatial Fourier modes of the field

with wavevector k are given by

χ′′
~k
(η) +

[

k2 − 1

η2

(

ν2 − 1

4

)]

χ~k(η) = 0 , (2.7)

– 4 –



J
H
E
P
0
4
(
2
0
1
4
)
0
5
5

where

ν2 =
9

4
− M2

H2
. (2.8)

This can be solved to find the two linearly independent solutions of (2.7):

gν(k; η) =
1

2
iν+

1
2
√−πηH(1)

ν (−kη) (2.9)

fν(k; η) =
1

2
i−ν−

1
2
√−πηH(2)

ν (−kη) = g∗ν(k; η) , (2.10)

where H
(1,2)
ν (z) are Hankel functions. Expanding the field operator in this basis yields

χ(~x, η) =
1√
V

∑

~k

[

a~k gν(k; η) e
i~k·~x + a†~k

g∗ν(k; η) e
−i~k·~x

]

. (2.11)

The Bunch-Davies vacuum is defined such that

a~k|0〉 = 0 , (2.12)

and the Fock space states are obtained in the usual manner, i.e. by applying creation

operators a†~k
to the vacuum.

In what follows we consider a light scalar field with M ≪ H and write

ν =
3

2
−∆, ∆ =

M2

3H2
+ · · · ≪ 1 . (2.13)

For light scalar fields with ∆ ≪ 1 quantum loop corrections feature an infrared enhance-

ment from the emission and absorption of superhorizon quanta that is manifest as poles

in ∆ [36–38, 40]. Below we exploit the expansion in ∆ implemented in ref. [36–38, 40]

to leading order, isolating the most infrared sensitive contributions to the entanglement

entropy from these processes.

In the Schröedinger picture the quantum states |Ψ(η)〉 obey

i
d

dη
|Ψ(η)〉 = H(η) |Ψ(η)〉 (2.14)

where in an expanding cosmology the Hamiltonian H(η) is generally a function of η in

marked contrast to the situation in Minkowski space-time, where it is constant. Introducing

the time evolution operator U(η, η0) obeying

i
d

dη
U(η, η0) = H(η)U(η, η0), U(η0, η0) = 1, (2.15)

the solution of the Schröedinger equation is |Ψ(η)〉 = U(η, η0) |Ψ(η0)〉. Now separate out the

interaction Hamiltonian by writing H(η) = H0(η) +Hi(η) with H0(η) the non-interacting

Hamiltonian, and introduce the time evolution operator of the free theory U0(η, η0) satis-

fying

i
d

dη
U0(η, η0) = H0(η)U0(η, η0), i

d

dη
U−1
0 (η, η0) = −U−1

0 (η, η0)H0(η), U0(η0, η0) = 1,

(2.16)
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χ~k

χ~p

χ~k−~p

Figure 1. The decay χ~k
→ χ~p + χ~k−~p

.

the interaction picture states are defined as

|Ψ(η)〉I = UI(η, η0)|Ψ(η0)〉I = U−1
0 (η, η0)|Ψ(η)〉. (2.17)

Here UI(η, η0) is the time evolution operator in the interaction picture and obeys

d

dη
UI(η, η0) = −iHI(η)UI(η, η0), UI(η0, η0) = 1 (2.18)

and

HI(η) = U−1
0 (η, η0)Hi(η)U0(η, η0), (2.19)

where χ is the free field Heisenberg field operator in eq. (2.11).

2.1 Transition amplitudes and probability

Now consider a cubic interaction Hamiltonian for a scalar field which we label as χ(~x, η)

after the conformal rescaling described above:

HI(η) = − λ

H η

∫

d3x χ3(~x, η) . (2.20)

We can then use the expansion of the scalar field χ given by (2.11) to compute the transition

amplitude for a one particle state to decay into two particles χ~k → χ~p + χ~k−~p as depicted

in figure 1:

Aχ→χχ(~k, ~p; η) =
6 i λ

H
√
V

∫ η

η0

dη1
η1

gν(k; η1) g
∗
ν(p; η1) g

∗
ν(|~k − ~p|; η1). (2.21)

The total transition probability is

Pχ→χχ(k; η) = V

∫

d3p

(2π)3
∣

∣Aχ→χχ(~k, ~p; η)
∣

∣

2
=

∫ η

η0

dη2

∫ η

η0

dη1 Σ(k ; η1, η2) (2.22)

where

Σ(k ; η1, η2) =
36λ2 g∗ν(k, η2) gν(k, η1)

H2 η1 η2

∫

d3p

(2π)3
g∗ν(p, η1) g

∗
ν(q, η1) gν(p, η2) gν(q, η2),

(2.23)
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where q = |~k − ~p|. Note that this kernel has the property that

Σ(k ; η2, η1) = Σ∗(k ; η1, η2) . (2.24)

Introducing the identity 1 = Θ(η2 − η1) +Θ(η1 − η2) in the (conformal) time integrals and

using (2.24) we find

Pχ→χχ(k; η) = 2

∫ η

η0

dη2

∫ η2

η0

dη1 Re
[

Σ(k ; η1, η2)
]

(2.25)

from which we obtain the transition rate as

Γ(η) ≡ d

dη
Pχ→χχ(k; η) = 2

∫ η

η0

dη′ Re
[

Σ(k ; η, η′)
]

(2.26)

In Minkowski space-time (η → t), if the kinematics of the transition is allowed, i.e. if

energy-momentum conservation obtains, the transition is to on-shell states and the transi-

tion probability grows linearly in time, exhibiting secular growth. In the long time limit the

transition rate becomes a constant. This is basically how the result from Fermi’s Golden

rule comes about. If, on the other hand energy-momentum conservation is not fulfilled, the

probability becomes constant at asymptotically long times, with a vanishing transition rate,

describing virtual processes that contribute to wave function renormalization. A true decay

of the quantum state is therefore reflected in secular growth of the transition probability

and a transition rate that either remains constant or grows at asymptotically long time. In

de Sitter space time the lack of a global time-like Killing vector implies the lack of kinematic

thresholds. As discussed earlier in ref. [36–38, 40, 77] and confirmed in ref. [50], quanta of a

single field can decay into other quanta of the same field regardless of the mass of the field.

2.2 Wigner-Weisskopf theory in de Sitter space time

In this subsection, we review the work in refs. [40, 71, 77–79], as the implementation of the

quantum field theoretical Wigner-Weisskopf formulation is crucial in constructing states

whose time evolution is manifestly unitary.

Expanding the interaction picture state |Ψ(η)〉I in Fock states |n〉 obtained as usual

by applying the creation operators on to the (bare) vacuum state as

|Ψ(η)〉 =
∑

n

Cn(η)|n〉 (2.27)

the evolution of the state in the interaction picture given by eq. (2.17) yields

i
d

dη
|Ψ(η)〉 = HI(η)|Ψ(η)〉 (2.28)

which in terms of the coefficients Cn(η) become

dCn(η)

dη
= −i

∑

m

Cm(η)〈n|HI(η)|m〉 , (2.29)

– 7 –
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it is convenient to separate the diagonal matrix elements from those that represent transi-

tions, writing

dCn(η)

dη
= −iCn(η)〈n|HI(η)|n〉 − i

∑

m 6=n

Cm(η)〈n|HI(η)|m〉 . (2.30)

Although this equation is exact, it provides an infinite hierarchy of simultaneous equations

when the Hilbert space of states |n〉 is infinite dimensional. The Wigner-Weisskopf method

consists of two main ingredients: i) truncation of the hierarchy at a given order in the per-

turbative expansion, ii) a Markovian approximation that yields the long time asymptotics

of the coefficients.

In ref. [77] the equivalence between the Wigner-Weisskopf method, the time evolution

obtained from the Dyson resummation of propagators in terms of the self-energy and the dy-

namical renormalization group was shown in Minkowski space time. Hence this method pro-

vides a non-perturbative resummation to obtain the real time dynamics of quantum states.

We begin by implementing this program to lowest order, and provide a roadmap for

implementation at arbitrary higher order in section (6) where we also study “cascade

processes” that are available in de Sitter space time.

Thus, consider the case when a state |A〉, say, couples to a set of states |κ〉, which in

turn couple back to |A〉 via HI . Then to lowest order in the interaction, the system of

equation closes in the form

dCA(η)

dη
= −i〈A|HI(η)|A〉CA(η)− i

∑

κ 6=A

〈A|HI(η)|κ〉Cκ(η) (2.31)

dCκ(η)

dη
= −i〈κ|HI(η)|κ〉Cκ(η)− i 〈κ|HI(η)|A〉CA(η) (2.32)

where the
∑

κ 6=A is over all the intermediate states coupled to |A〉 via HI representing tran-

sitions. By including the diagonal terms 〈n|HI(η)|n〉Cn specifically, we can also consider

mass counterterms [40], however, we will neglect these terms in the sequel since we are not

concerned with either mass generation or renormalization in this article.

Consider the initial value problem in which at time η = η0 the state of the system is

given by |Ψ(η = η0)〉 = |A〉 so that

CA(η0) = 1 , Cκ 6=A(η = η0) = 0. (2.33)

We can then solve (2.32) and substitute the solution back into (2.31) to find

Cκ(η) = −i

∫ η

η0

〈κ|HI(η
′)|A〉CA(η′) dη′ (2.34)

dCA(η)

dη
= −

∫ η

η0

Σ(η, η′)CA(η
′) dη′ (2.35)

where

Σ(η, η′) =
∑

κ

〈A|HI(η)|κ〉〈κ|HI(η
′)|A〉. (2.36)

– 8 –
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This integro-differential equation with memory yields a non-perturbative solution for

the time evolution of the amplitudes and probabilities. We can construct an approximation

scheme to solve this equation as follows. First note that the time evolution of CA(η) as

determined by eq. (2.35) is slow in the sense that the relevant time scale is determined

by a weak coupling kernel Σ. This allows us to introduce a Markovian approximation in

terms of an expansion in derivatives of CA as follows: define

W0(η, η
′) =

∫ η′

η0

Σ(η, η′′)dη′′ (2.37)

so that

Σ(η, η′) =
d

dη′
W0(η, η

′), W0(η, η0) = 0. (2.38)

Integrating by parts in eq. (2.35) we obtain
∫ η

η0

Σ(η, η′)CA(η
′) dη′ = W0(η, η)CA(η)−

∫ η

η0

W0(η, η
′)

d

dη′
CA(η

′) dη′. (2.39)

The first term has “erased” the memory in the kernel by setting both time arguments to be

the time of interest, while the second term on the right hand side is formally of fourth order

in HI . Integrating by parts successively as discussed in ref. [77] a systematic approximation

scheme can be developed. To leading order in the coupling (second order in HI), we will

neglect the second term on the right hand side of (2.39), in which case eq. (2.35) becomes

dCA(η)

dη
+W0(η, η)CA(η) = 0 (2.40)

with solution

CA(η) = e
−

∫ η
η0
W0(η′,η′) dη′ , W0(η

′, η′) =

∫ η′

η0

Σ(η′, η
′′

)dη
′′

. (2.41)

Introducing the real quantities EA(η), ΓA(η) as
∫ η′

η0

Σ(η′, η′′)dη′′ = i EA(η′) +
1

2
ΓA(η

′) (2.42)

where

ΓA(η
′) = 2

∫ η′

η0

Re
[

Σ(η′, η′′)
]

dη′′ (2.43)

in terms of which

CA(η) = e
−i

∫ η
η0

EA(η′)dη′
e
− 1

2

∫ η
η0

ΓA(η′)dη′
. (2.44)

When the state A is a single particle state, radiative corrections to the mass are extracted

from EA and

ΓA(η) = − d

dη
ln
[

∣

∣CA(η)
∣

∣

2
]

(2.45)

is identified as a (conformal) time dependent decay rate. Comparing these expressions with

the transition probability (2.25) we see from (2.45) that
∣

∣CA(η)
∣

∣

2
= e−Pχ→χχ(k;η) , (2.46)

and that Γ(η) is exactly the same as expression (2.26).
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2.3 Unitarity

One of our main goals is to study the entanglement entropy from tracing over superhorizon

degrees of freedom. Thus it is important to make sure that the loss of information encoded

in the entanglement entropy is a genuine effect of the tracing procedure and not a conse-

quence of approximations in the evolution of the quantum state. Unitarity follows from the

set of equations (2.28), combining these with their complex conjugates it is straightforward

to confirm that
d

dη

∑

n

|Cn(η)|2 = 0 . (2.47)

therefore with the initial conditions (2.33) it follows that

∑

n

|Cn(η)|2 = 1 . (2.48)

Although this is an exact statement, we now show that the Wigner-Weisskopf approx-

imation and its Markovian implementation maintain unitary time evolution.

Using (2.34) consider

∑

κ

|Cκ(η)|2 =
∫ η

η0

dη1C
∗
A(η1)

∫ η

η0

dη2Σ(η1, η2)CA(η2). (2.49)

Inserting 1 = Θ(η1 − η2) + Θ(η2 − η1) as we did earlier, it follows that

∑

κ

|Cκ(η)|2 =

∫ η

η0

dη1C
∗
A(η1)

∫ η1

η0

dη2Σ(η1, η2)CA(η2)

+

∫ η

η0

dη2CA(η2)

∫ η2

η0

dη1Σ(η1, η2)C
∗
A(η1). (2.50)

Using Σ(η1, η2) = Σ∗(η2, η1), relabelling η1 ↔ η2 in the second line of (2.50) and us-

ing (2.35), we find

∑

κ

|Cκ(η)|2 = −
∫ η

η0

dη1

[

C∗
A(η1)

d

dη1
CA(η1) + CA(η1)

d

dη1
C∗
A(η1)

]

= −
∫ η

η0

dη1
d

dη1
|CA(η1)|2 = 1− |CA(η)|2 (2.51)

where we have used the initial condition CA(η0) = 1. This is the statement of unitary time

evolution, namely

|CA(η)|2 +
∑

κ

|Cκ(η)|2 = |CA(η0)|2 (2.52)

To leading order in the Markovian approximation, the unitarity relation becomes

∑

κ

|Cκ(η)|2 = −2

∫ η

η0

∣

∣

∣
CA(η1)

∣

∣

∣

2
Re

[

W0(η1, η1)
]

dη1 = 1− |CA(η)|2 (2.53)

where CA(η0) = 1.
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3 Particle decay: entanglement across the horizon

In the scalar theory described by eq. (2.20) the cubic interaction allows a single particle

state |1~k〉 to decay into two particle states |1~k−~p; 1~p〉 [36–38, 40]. To lowest order in the

coupling the matrix element for this process is given up to an overall phase by

M(p; k; η) = 〈1~k−~p; 1~p|HI(η)|1~k〉 = − 6λ

Hη
√
V

gν(k; η) g
∗
ν(p; η) g

∗
ν(|~k − ~p|; η) . (3.1)

Consider an initial single particle state |1~k〉 at time η0. Upon time evolution in the inter-

action picture this state evolves into

|Ψ(η)〉I = Ck(η)|1~k〉+
∑

~p

Cp(k; η)|1~k−~p; 1~p〉 ; Ck(η0) = 1 ; Cp(k, η0) = 0 . (3.2)

This is an entangled state in which pairs of particles with momenta ~k− ~p, ~p are correlated.

In particular if ~k is subhorizon and ~p is superhorizon, the quantum state (3.2) describes

entanglement and correlation of particles across the horizon.

The coefficients in the state (3.2) are the solutions of the (WW) equations, namely

d

dη
Ck(η) = −

∫ η

η0

Σ(k, η, η′)Ck(η
′) dη′ , (3.3)

Cp(k; η) = −i

∫ η

η0

M(p; k; η′)Ck(η
′) dη′ , (3.4)

where the matrix element is given by eq. (3.1). We will focus on the asymptotic limit where

η → 0−; η0 → −∞.

The self-energy (2.36) is given by2

Σ(k, η, η′) =
∑

~p

M∗(p; k; η)M(p; k; η′) , (3.5)

were the matrix elements are given by eq. (3.1) leading to the result given by (2.23).

As discussed in detail in ref. [40], as ∆ → 0 the integral features infrared divergences

from regions in which the momenta are superhorizon, namely pη, pη′ ≪ 1 and |~k− ~p|η, |~k−
~p|η′ ≪ 1. Both of these momentum regions yield the same infrared contribution as a single

pole in ∆ [40], as can be seen as follows. For superhorizon modes (−pη ≪ 1) the mode

functions (2.9) behave (up to an overall phase) as

gν(p; η) ≃
1√
2

1

p
3
2
−∆ (−η)1−∆

(3.6)

and for subhorizon modes −kη ≫ 1

gν(k; η) =
1√
2k

e−ikη. (3.7)

2This expression corrects a prefactor in ref. [40].
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~k ~k − ~p

|~p| ≤ µ

~k ~k
~k − ~p

|~p| ≤ µ

~k
~k − ~p

|~p| ≤ µ

(a) (b)

Figure 2. Processes that contribute to the leading order poles in ∆: (a) intermediate state of

superhorizon modes, (b) emission and absorption of superhorizon quanta, with µ . (−1/η).

Therefore for p ≪ (−1/η) and k ≫ (−1/η) the matrix element (3.1) becomes (up to an

overall phase)

M(p, k; η) ≃ 6λ

2
√
2Hk

√
V (−η)2−∆

1

p
3
2
−∆

. (3.8)

The contribution to the self-energy from superhorizon modes with p ≤ µ . (−1/η) (with

µ an infrared cutoff) yields

V

2π2

∫ µ

0
p2M∗(p; k; η)M(p; k; η′) dp =

9λ2

8π2H2k2η2η′2∆

[

1 + ∆ ln[µ2ηη′] + · · ·
]

. (3.9)

The processes that contributes to leading order in ∆ is the emission of superhorizon

quanta, depicted in figure 2

The simple rules to extract the leading order contribution in ∆ are given in ref. [40],

where the cancellation of the infrared regulator µ from the contributions of the subhorizon

modes, for which one can safely set ∆ = 0, is also shown in detail. In particular, the

appendix of ref. [40] shows how the contribution of the subhorizon modes replaces the

term ln[µ2ηη′] → ln[k2ηη′] which to leading order in ∆ can be written as 1+∆ ln[k2ηη′] ≃
[k2ηη′]∆. The contribution from the region |~k − ~p| ≪ µ yields an overall factor 2 in the

self-energy so that to leading order in ∆ (as can be seen by rerouting the loop momentum)

Σ(k, η, η′) =
α

k2−2∆η2−∆ η′ 2−∆
, α =

9λ2

4π2H2∆
=

27λ2

4π2M2
. (3.10)

Using the result in eq. (2.41) we finally find that to leading order,

Ck(η) = exp

[

− α

2 z(2−2∆)

]

, z = (−kη) , (3.11)

where we have approximated α/2 z2−2∆
0 → 0 since −kη0 ≫ 1 as the physical wavevector of

the initial particle is deep inside the Hubble radius at the initial time and it is assumed to

remain inside the Hubble radius during the evolution.

4 Entanglement entropy

The pure state density matrix corresponding to the entangled state of eq. (3.2) is

ρ(η) = |Ψ(η)〉〈Ψ(η)|. (4.1)
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Now let us trace over the superhorizon physical wavevectors −~pη . 1. This leads us to the

mixed state density matrix for modes whose wavelengths are inside the horizon during the

evolution

ρr(η) = |Ck(η)|2|1~k〉〈1~k|+ 2
∑

−pη.1

|Cp(k; η)|2|1~k−~p〉〈1~k−~p| (4.2)

where the factor 2 accounts for the two regions of superhorizon (physical) momenta−pη < 1

and −|~k−~p|η < 1 which yield the same contribution, as can be easily seen after a relabelling

of momenta.

The entanglement entropy is the Von-Neumann entropy for the reduced density matrix,

we find

S(η) = −nk(η) lnnk(η)− 2
∑

p.(−1/η)

np(η) lnnp(η) (4.3)

where the occupation numbers of the initial and produced quanta are given by

nk(η) = 〈Ψ(η)|a†~k a~k|Ψ(η)〉 = |Ck(η)|2, np(η) = 〈Ψ(η)|a†~p a~p|Ψ(η)〉 = |Cp(k; η)|2 . (4.4)

Note that the unitarity relation in eq. (2.53) implies that

∑

~p

np(η) = 1− nk(η) . (4.5)

as expected on physical grounds.

At this stage it is important to highlight how unitarity is manifest to leading order in

the ∆ expansion as this feature simplifies the calculation of the entanglement entropy con-

siderably. The main point is that the unitarity relation (2.53) implies that the contribution

of superhorizon modes is the dominant one. This can be seen clearly from the following

arguments: to leading order in ∆ we can neglect the term 2∆ in the exponent of z in the

solution (3.11) and in the term −∆ in the exponent of (−η) in the matrix element (3.8)

for superhorizon modes. Now the coefficient

Cp(k; η) = −i

∫ η

η0

M(p; k; η1)Ck(η1) dη1 ≃ −i
2π√
2V

√
∆

p
3
2
−∆

∫ y(η)

y(η0)
e−y

2/2dy (4.6)

where we used the definition of α given by eq. (3.10) and changed variables of integration

to η1 =
√
α/k y. This expression clearly exhibits that the contribution to |Cp(k; η)|2 from

superhorizon modes, to leading order in ∆ can be written in the following factorized form:

|Cp(k; η)|2 = F [k; η]
∆

V p3−2∆
. (4.7)

The dependence on ∆ is a manifestation of unitarity to leading order; if we compute the

integral in eq. (4.7) over superhorizon modes

∑

p.(−1/η)

|Cp(k; η)|2 =
F [k; η] ∆

2π2

∫ (−1/η)

0

p2dp

p3−2∆
=

F [k; η]

4π2
(−1/η)2∆, (4.8)
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the ∆ in the numerator in eq. (4.7) cancels the single pole in ∆ from the integral giving

an O(1) contribution, which is what is necessary to satisfy the unitarity condition (2.53)

to leading order in ∆.

This result is similar to that found in the case of particle decay in Minkowski space

time [71]: in this case the particles produced from the decay of a parent particle feature a

Lorentzian distribution in energy, with width Γ the decay width of the parent particle and

amplitude 1/Γ, so that the energy integral over the distribution is O(1). In ref. [71] it is

proven to leading order in the perturbative expansion O(Γ) that this narrow distribution

of large amplitude is the main reason for the fulfillment of unitarity to leading order in

the Wigner-Weisskopf approximation. In the case of de Sitter space time, the distribution

function of the particles produced with superhorizon wavevectors is ∝ ∆/p3−2∆ whose

momentum integral over the region of superhorizon momenta is also of O(1).

Thus in the limit ∆ ≪ 1 the sum
∑

p |Cp(η)|2 is dominated by the superhorizon

momenta and from the unitarity relation (2.53) we find

Trρr(η) = |Ck(η)|2 +
∑

p

|Cp(η)|2 = 1 . (4.9)

Although the integral in F [k; η] can be written in terms of error functions, the unitarity

relation (2.53) and the result (4.9) furnish a more direct evaluation. Consider

∑

p

|Cp(k; η)|2 =

∫ η

η0

∫ η

η0

∑

p

M∗(p; k; η1)M(p; k; η2)C
∗
k(η1)Ck(η2) dη1 dη2

=

∫ η

η0

∫ η

η0

Σ(k, η1, η2)C
∗
k(η1)Ck(η2) dη1 dη2 . (4.10)

This is the same expression as in eq. (2.49), so that implementing the same steps as in

eqs. (2.50), (2.51) leads to the unitarity relation (2.53), namely

∑

p

|Cp(k; η)|2 = 1− |Ck(η)|2 . (4.11)

To leading order in ∆, the sum is dominated by the superhorizon contributions from both

regions of integrations p . (−1/η) , |~k − ~p| . (−1/η) contributing equally, hence

∑

p.(−1/η)

|Cp(k; η)|2 ≃
1

2

[

1− |Ck(η)|2
]

. (4.12)

Then the factorized form (4.7) for superhorizon modes, combined with eq. (4.12) leads to

F [k; η] =
2π2

(−η)−2∆

[

1− |Ck(η)|2
]

, (4.13)

and for −kη ≫ 1 and −pη ≪ 1 we find to leading order in ∆

|Cp(k; η)|2 =
2π2∆

V p3 (−pη)−2∆

[

1− |Ck(η)|2
]

; (4.14)

the same result is valid in the region −kη ≫ 1 with −|~k−~p|η ≪ 1 by replacing p ↔ |~k−~p|.
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The long wavelength limit of eq. (4.14) requires a careful treatment. Since |Cp(η)|2 =
np(η) is the distribution function of particles, for a fixed volume V there is an infrared

divergence in the occupation as p → 0. However, our goal is to trace over the superhorizon

quanta from the decay since the initial conformal time −η0 up to conformal time η → 0−.

This entails that the lower momentum cutoff is determined by the mode that just becomes

superhorizon at the initial time, namely

pm = −1/η0 . (4.15)

Now the calculation of the entanglement entropy is straightforward: let us consider

I =
∑

(−1/η0)≤p≤(−1/η)

|Cp(k; η)|2 ln
[

|Cp(k; η)|2
]

≡ I1 + I2 (4.16)

with

I1 =
[

1− |Ck(η)|2
]

ln

[

2π2∆(−η0)
3

V

[

1− |Ck(η)|2
]

]

∆

∫ (−1/η)

(−1/η0)
(−pη)2∆

dp

p

=
1

2

[

1− |Ck(η)|2
]

ln

[

2π2∆(−η0)
3

V

[

1− |Ck(η)|2
]

]

[

1− x2∆m

]

(4.17)

where we have introduced

xm =
η

η0
(4.18)

and changing integration variable to x = −pη

I2 = −
[

1− |Ck(η)|2
]

∆

∫ 1

xm

x2∆−1 ln

[

x3−2∆

x3m

]

dx

=
1

2

[

1− |Ck(η)|2
]

{

3 ln[xm] +
3− 2∆

2∆

[

1− (xm)
2∆

]

− 2∆ (xm)
2∆ ln[xm]

}

. (4.19)

It is now clear that we can set xm → 0 safely in I1 and in the terms that do not feature

poles in ∆ in I2. The terms in I2 that feature the ln[xm] and the (single) pole in ∆, namely

(3/2∆)× [1− (xm)
2∆] yield the leading contribution for ∆, xm ≪ 1.

Therefore for ∆ ≪ 1 and xm ≪ 1 we find for the entanglement entropy to leading order

S(η) ≃ α

(kη)2
e
− α

(kη)2 −
[

1− e
− α

(kη)2

]

ln
[

1− e
− α

(kη)2

]

+
1

2

[

1−e
− α

(kη)2

]

{

3 ln

[

aiHi

a0H0

]

+ln

[

1

2π2∆

]

+
3

2∆

[

Z[η]−1+e−Z[η]
]

}

(4.20)

where

Z[η] = 2∆ ln

[

η0
η

]

, (4.21)

α is given in eq. (3.10) and we have set −η0 = 1/(aiHi) and V = 1/(a0H0) with ai, a0 the

scale factor, and Hi, H0 the values of the Hubble parameter at the beginning of inflation

(i) and today (0) respectively, taking the physical volume today to be the Hubble volume,
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therefore aiHi/a0H0 ≃ 1. The function Z − 1 + e−Z is manifestly (semi) positive and

monotonically increasing, behaving as ≃ Z2/2 for Z ≪ 1 and as ≃ Z for Z ≫ 1. As η → 0

the entanglement entropy grows monotonically during the time evolution.

We can Z[η] in terms of the number of e-folds since the beginning of inflation as

Z[η] ≃ 40
M2

H2

[

1 + (Ne(η)−NT )/NT

]

, (4.22)

where Ne(η) is the number of e-folds during inflation at (conformal) time η and NT ≃ 60

is the total number of e-folds of the inflationary stage.

5 Wave packets

The discussion above treated the initial and product particles in terms of plane waves.

However, given the existence of a horizon and the intricacies that can give rise to for non-

localized states, we now generalize the treatment to the case of wave packets. Quantization

in a finite volume V is used throughout. Fock states describing single particle plane wave

states of momentum ~k, |1~k〉, are normalized such that

〈1~k|1~k′〉 = δ~k,~k′ . (5.1)

Localized single particle states are constructed as linear superpositions

|~k0, ~x0〉 =
∑

~k

C(~k;~k0; ~x0) |1~k〉 (5.2)

where C(
~k;~k0; ~x0) is the amplitude, normalized so that

〈~k0, ~x0|~k0, ~x0〉 =
∑

~k

|C(~k;~k0; ~x0)|2 = 1 . (5.3)

For a monochromatic plane wave C(~k;~k0; ~x0) = δ~k,~k0 . The spatial wave function corre-

sponding to the wave packet is given by

Υ(~x) =
1√
V

∑

~k

C(~k;~k0; ~x0) e
−i~k·~x . (5.4)

The normalization (5.3) implies

∫

d3x|Υ(~x)|2 = 1 . (5.5)

For a monochromatic plane wave it follows that Υ(~x) is a volume normalized plane wave.

The total number of particles and average momentum of the wave packet are given by

N(~k0, ~x0) = 〈~k0, ~x0|
∑

~k

a†~k
a~k|~k0, ~x0〉 =

∑

~k

|C(~k;~k0; ~x0)|2 = 1 (5.6)
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and

〈~k0, ~x0|
∑

~k

~k a†~k
a~k|~k0, ~x0〉 =

∑

~k

~k|C(~k;~k0; ~x0)|2 (5.7)

respectively, where a†~k
; a~k are the creation and annihilation operators. If ~k0 is identified

with the average momentum of the wave packet we assume that

C(~k;~k0; ~x0) = C(~k − ~k0; ~x0) , (5.8)

and the isotropy of |C(~k;~0, ~x0)|2.
As a specific example we consider Gaussian wave packets,

C(~k − ~k0; ~x0) =

[

8π
3
2

σ3 V

]
1
2

e−
(~k−~k0)

2

2σ2 ei(
~k−~k0)·~x0 , (5.9)

where σ is the localization in momentum space. The spatial wave function is

Υ(~x) =

[

σ√
π

]3/2

e−i
~k0·~x e−

σ2

2
(~x−~x0)2 . (5.10)

The spatial wave function is localized at ~x0 with localization length 1/σ and the momen-

tum wave function is localized at ~k0 which is the average momentum in the wave packet

and the momentum localization scale is σ. The plane wave limit is obtained by formally

identifying σ/
√
π → 1/V 1/3 ; V → ∞.

In terms of these wave functions the overlap of two wave packets with different momenta

localized at different spatial points is

〈~q0; ~x0|~k0; ~x0〉 = e−
(~k0−~q0)

2

4σ2 . (5.11)

In the limit σ → 0 the overlap becomes a Kronecker delta, and in particular for k0, q0 ≫ σ

it follows that the wavepackets are nearly orthogonal since the overlap is non-vanishing for

∆k = k0 − q0 ∼ σ so that ∆k/k0 ≪ 1.

From the identity (5.8) we can infer the following important property of these wave

packets which will be useful below:

∑

~k

C(~k − ~k0; ~x0) |1~k−~q〉 = |~k0 − ~q; ~x0〉 . (5.12)

Although this result is evident with the Gaussian wave packets (5.9) it is quite general for

localized functions of ~k − ~k0.

The wave packet description is easily incorporated into the Wigner-Weisskopf approach

to the description of the full time evolution of the quantum state of the decaying parent

particle. The interaction picture quantum state (2.27) is generally written as

|Ψ(η)〉 =
∑

~k

C(~k,~k0; ~x0; η)|1~k〉+
∑

κ

Cκ(η)|κ〉 (5.13)
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where the states |κ〉 are multiparticle states, with the initial conditions

C(~k;~k0; ~x0; η0) = C(~k − ~k0; ~x0) ; Cκ(t = 0) = 0 , (5.14)

where C(~k − ~k0; ~x0) describe the localized wave packet of the single particle state at the

initial time, for example (5.9).

Generalizing the state (3.2) describing the time evolved state to lowest order in λ, to

a wave packet localized at the origin in space with the gaussian profile (5.9), we can write

|Ψ(η)〉I =
∑

~k

C1(~k − ~k0;~0; η)|1~k〉+
∑

~p,~k

C2(~k, ~p,~k0; η)|1~k−~p; 1~p〉 , (5.15)

with the initial condition

C1(~k − ~k0;~0; η0) = C(~k − ~k0;~0) ; C2(~k, ~p,~k0; η0) = 0 (5.16)

with C(~k − ~k0;~0) given by (5.9).

Recall that our goal in this article was to obtain the entanglement entropy associated

with the decay of single particle states with sub-Hubble physical momenta all throughout

the inflationary stage, assuming that near de Sitter inflation lasts a finite time. Namely

the physical wavelength of the single particle state is always deep within the Hubble ra-

dius during the evolution. A wave packet description of single particle states, therefore

must be in terms of wave packets whose physical spatial localization scale is always much

smaller than the Hubble radius. Hence, we will consider wavepackets that are i) sharply

localized in comoving momentum with an average momentum ~k0 with k0 ≫ H; k0 ≫ σ,

the latter condition ensuring a sharp localization around k0, and ii) with comoving spatial

localization scale 1/σ . 1/H so that the wavepacket is localized well within the Hubble

radius. Namely the condition for the wavepacket to describe single particle states with a

sharp localization in momentum and with spatial localization length scale smaller than or

of the order of the Hubble radius implies the following constraint:

k0 ≫ σ & H . (5.17)

Furthermore, consistency in tracing over degrees of freedom with super-Hubble physical

wavelengths requires that the wavepacket is mainly composed of components with comov-

ing momenta corresponding to physical wavelengths that are always inside the Hubble

radius throughout the near de Sitter stage. This condition requires −k0η ≫ −ση ≫ 1 so

that components of the wavepacket with super Hubble physical wavelengths are exponen-

tially suppressed.

The Wigner Weisskopf method follows the steps described in detail above. The inter-

action Hamiltonian connects the single particle plane wave states |1~k〉 with the two-particle

plane wave states |1~k−~p; 1~p〉 with matrix elements given by (3.1) leading to the set of equa-

tions

d

dη
C1(~k − ~k0;~0; η) = −

∫ η

η0

Σ(k, η, η′)C1(~k − ~k0;~0; η
′) dη′ , (5.18)

C2(~k, ~p,~k0; η) = −i

∫ η

η0

M(p; k; η′)C1(~k − ~k0;~0; η
′) dη′ . (5.19)
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Implementing the Markovian approximation as in the plane wave case with the initial

conditions (5.16) we find

C1(~k − ~k0;~0; η) = C1(~k − ~k0;~0; η0)Ck(η) ; C2(~k, ~p,~k0; η) = C1(~k − ~k0;~0; η0)Cp(k; η) ,

(5.20)

where Ck(η);Cp(k; η) are the solutions of the Wigner-Weisskopf equations for plane waves,

given by (3.11), (3.4).

To obtain the reduced density matrix we would need to carry out the integration over

the wavepacket variable ~k. The wave packet profile (as function of comoving wavevectors)

is chosen to be sharply peaked at ~k0 with a width σ ≪ k0. Therefore upon integration we

can Taylor expand the integrand around ~k = ~k0 and integrate term by term in the Taylor

expansion in ~k − ~k0, because the wavepacket profile is a function of |~k − ~k0| it follows that
the corrections are a series in σ2/k20 ≪ 1. An example of a quantity that must be integrated

in ~k are the matrix elements (3.1), which upon being integrated with the wavepacket profile

can be simply written as M(p; k0; η) +O(σ2/k20) + · · · . The same argument applies to the

coefficients

C1(~k − ~k0;~0; η) = C(~k − ~k0;~0)Ck0(η) +O(σ2/k20) + · · ·
C2(~k, ~p,~k0; η) = C(~k − ~k0;~0)Cp(k0; η) +O(σ2/k20) + · · · (5.21)

Therefore, to leading order in σ2/k20 the reduced density matrix becomes

ρr(η) = |Ck0(η)|2
∑

~k

(

C(~k − ~k0;~0)|1~k〉
)

∑

~k′

(

C∗(~k′ − ~k0;~0)〈1~k′ |
)

+

+2
∑

(−1/η0)<p<(−1/η)

|Cp(k0; η)|2
∑

~k,~k′

(

C(~k − ~k0;~0)|1~k−~p〉
)(

C∗(~k′ − ~k0;~0)〈1~k′−~p|
)

. (5.22)

We emphasize that the trace over the superhorizon modes leading to the reduced

density matrix (5.22) has been carried out in the orthonormal plane wave basis.

Using the definition of the wavepacket single particle states (5.2) and the prop-

erty (5.12) we finally find to leading order in σ2/k20 ≪ 1

ρr(η) = |Ck0(η)|2 |~k0,~0〉 〈~k0,~0|+2
∑

(−1/η0)<p<(−1/η)

|Cp(k0; η)|2 |~k0 − ~p,~0〉 〈~k0 − ~p,~0|. (5.23)

For k0 ≫ p, σ the wave-packet states |~k0 − ~p,~0〉 contain plane wave components with

subhorizon momenta ≃ ~k0 − ~p since components with wavevectors that are very different

from this value are exponentially suppressed. Therefore these wavepacket states are very

nearly plane wave states with subhorizon momenta k0 ≫ −1/η.

Therefore, to leading order in σ2/k20, the reduced density matrix in terms of the wave

packet single particle states features the same form as for the plane wave case with the

only modification being the replacement of the single particle Fock states by the local-

ized wavepacket states of single particles. As a corollary, to leading order in σ2/k20 the

entanglement entropy is the same either for localized wavepackets or plane waves.
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The logarithmic dependence of the entanglement entropy (4.20) on the volume factor

has a clear statistical interpretation independent of whether the description is in terms

of localized wavepackets or plane wave states. Consider a dilute gas of particles whose

statistical distribution or phase space density is fp. The total density of particles is

N

V
=

∫

d3p

(2π)3
fp (5.24)

and the Von-Neumann entropy of this (dilute) gas is

SV N = −
∑

p

fp ln[fp] = −V

∫

d3p

(2π)3
fp ln[fp] . (5.25)

If the number of particles remains finite in the large volume limit, namely if the particle

density scales ∝ 1/V in this limit, then it follows that fp ∝ 1/V . On the contrary, if fp
is independent of the volume as in the cases of the Maxwell-Boltzmann, Bose-Einstein or

Fermi-Dirac distributions, the total density is finite in the infinite volume limit and the

entropy is extensive. For a finite number of particles (vanishing particle density in the

infinite volume limit) fp ∝ 1/V and the Von-Neumann entropy is not extensive,

SV N ∝ N ln[V ] . (5.26)

This is precisely the origin of the logarithmic dependence on the volume of the entanglement

entropy: the initial state has one particle within a Hubble volume and the final state

has one (of each) daughter particle, the distribution function of the daughter particles at

asymptotically long times after the decay of the parent particle is |Cχψ(p,∞)|2 ∝ 1/V

the inverse volume dependence is the statement that there is a finite number of particles

distributed in phase space.3 Obviously this volume dependence is independent of whether

the states are described by plane waves or wave packets, but is a statement of the simple

fact that the number of particles in the volume V = (−1/η0)
3 is finite. The dependence

on the scale factor reflects the fact that more modes are crossing the Hubble radius, but

the total number of particles described by these modes is still finite.

6 Cascade processes: the way forward

In the previous section we implemented the Wigner Weisskopf method to lowest order in λ2,

but the method itself is much more general. It relies on a perturbative expansion, a trunca-

tion of the hierarchy at a given order in this expansion, and a resummation of the resulting

self-energy terms that yield the long time asymptotics. For example, in quantum optics it

has been implemented to study the cascade decay of many level atoms [82–84, 93]. As shown

in [77] this resummation is a real time version of the Dyson resummation of self-energies

and is equivalent to a dynamical renormalization group resummation of secular terms.

3In the first reference in [69, 70], only the coupling was kept in the ln |C(k)| and terms that feature a

volume dependence in |C(k)| were discarded as subleading. This explains a discrepancy in the logarithmic

volume dependence between this ref. and our results.
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1 → 2 1 → 2 → 3 1 → 2 → 3 → 4

2 → 1 3 → 2 → 1 4 → 3 → 2 → 1

Figure 3. Upper diagrams: cascade decay 1 → 2 → 3 → 4, each vertex corresponds to a matrix

element Mij ∝ λ. Lower diagrams: inverse processes, each vertex corresponds to the matrix element

Mji = M∗

ij ∝ λ. Vacuum disconnected diagrams are neglected.

In this section we set up a roadmap to study higher order processes and along the way

we exhibit the relation between the Wigner-Weisskopf method and the resummation of

self-energy diagrams and a diagrammatic expansion. Given the discussion on wavepackets

in the previous section, we will restrict ourselves to treating the plane wave case.

The lack of kinematic thresholds in inflationary cosmology implies that the decay of

quanta occur in a cascade process. For example with a cubic interaction as studied above,

a state with a single quanta can decay into a state with two other quanta, in turn each

one of the quanta in this state can decay into two other quanta, therefore a single particle

state will decay via a “cascade”: 1 → 2 → 3 → 4 · · · depicted in figure 3.

Each branch of the cascade corresponds to an interaction vertex and another power

of the coupling, showing that the branches of the cascade are suppressed in perturbation

theory. For example, the amplitude for 3 particles is down by a factor of λ (trilinear

coupling) with respect to the two particle one, the four particle state is suppressed by

another power of λ, etc.

To simplify notation, let us define matrix elements that connect a state of i quanta

with a state of j quanta via the interaction Hamiltonian HI ,

Mij(η) = 〈[i]|HI(η)|[j]〉 ∝ λ . (6.1)

Here [i], [j] describes the set of i, j quanta with different values of momenta. As studied

above, we see that a state with a single quanta of (comoving) momentum ~k is connected

via HI to a state with two quanta, with momenta ~q,~k−~q respectively. The matrix element

for this process is 〈[1]|HI(η)|[2]〉 = 〈1~k|HI(η)|1~q; 1~k−~q〉 where the set of values ~q defines

the two-quanta states [2]. Thus the generic matrix elements between single quanta states

and two quanta states in this set are 〈[1]|HI(η)|[2]〉 ≡ M12(η) ∝ λ. The inverse process

[j] → [i] is described by the matrix element 〈[j]|HI(η)|[i]〉 = Mji(η) = M∗
ij(η) because the

Hamiltonian is hermitian.

In what follows we will only consider connected diagrams or processes, neglecting dis-

connected diagrams which do not describe transitions but rather a renormalization of the
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vacuum state (for discussions see [77]). Consider the cascade decay of a single particle state

|1~k〉 into three particles, along with their inverse processes, neglecting the disconnected (vac-

uum) diagrams the typical sequence is shown in figure 3 and the quantum state is given by

|Ψ(~k, η)〉 = C1(k, η)|1~k〉+
∑

~p

C2(~k, ~p; η)|1~k−~p; 1~p〉+
∑

~p,~q

C3(~k, ~p, ~q; η)|1~k−~p; 1~q; 1~p−~q〉+ · · ·

(6.2)

The set of Wigner-Weisskopf equations are obtained straightforwardly as in the pre-

vious section. An important aspect in obtaining these equations is that a particular state

with n particles with a fixed set of momenta has branched out from one “ancestor state”,

whereas it branches forward into an n + 1 particle state where the new particle has an

arbitrary momentum that is summed over. As an example of this pattern consider the 3

particle state |1~k−~p; 1~q; 1~p−~q〉 for a fixed value of ~p and ~q (the value of ~k is fixed by the initial

state). This state branched out from the two particle state |1~k−~p; 1~p〉 (up to relabelling the

momenta and indistinguishability of the particle states), therefore it only has one “ances-

tor” as a consequence of momentum conservation. However, it branches out to 4 particle

states of the form |1~k−~p; 1~q; 1~l; 1~p−~q−~l〉 where the wavector ~l must be summed over.

The hierarchy of Wigner-Weisskopf equations reads in shortened notation

Ċ1(η) = −i
∑

[2]

M12(η)C[2](η) (6.3)

Ċ2(η) = −iM21(η)C1(η)− i
∑

[3]

M23(η)C[3](η) (6.4)

Ċ3(η) = −iM32(η)C2(η)− i
∑

[4]

M34(η)C[4](η) (6.5)

... =
...

The labels without brackets in the coefficients Cn correspond to a particular state of

n − particles with a fixed set of momenta compatible with total momentum conser-

vation, whereas the sums over [n] are over the n-particle states compatible with the

set of wavenumbers determined by momentum conservation. The terms shown in the

hierarchy (6.3), (6.4), (6.5) are the ones depicted in figure 3 and their inverse processes:

if the Hamiltonian connect the states [i] with the states [j] it also connects [j] back with

[i], these are the inverse processes depicted in figure 3.

The two terms in eqs. (6.4), (6.5) have an illuminating interpretation. The first

terms correspond to the “population gain” of the states with two and three particles

from the decay of their ancestors states with one and two particles respectively, while

the second terms represent the “loss” or decay of the amplitudes into states with one

more particle. Because of the initial conditions C1(η0) = 1;Cn 6=1(η0) = 0, it follows that

d|C2|2/dη ∝ λ2 + λ3 + · · · ; d|C3|2/dη ∝ λ4 + λ5 + · · · so that the (conformal) time

dependence of the coefficients also follows a hierarchy: the three particle state “fills up”

on time scales ∝ 1/λ2 larger than the two particle state, the four particle state on time

scales ∝ 1/λ2 larger than the three particle state, etc.
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Let us consider truncating the hierarchy beyond the three particles intermediate state,

namely set C[4] = C[5] = · · · = 0 along with all the other higher terms in the hierarchy.

We then proceed to solve the equations from the bottom up with the initial conditions

C1(η0) = 1;C[2](η0) = C[3](η0) = · · · = 0. We obtain

C3(η) = −i

∫ η

η0

M32(η
′)C2(η

′) dη′ (6.6)

Ċ2(η) = −iM21(η)C1(η)−
∫ η

η0

dη1
∑

[3]

M23(η)M32(η1)C2(η1) . (6.7)

The first term in (6.7) describes the build-up of the two-particle amplitude from the

decay of the initial single particle state, whereas the second term describes the decay of

the two-particle state into three particles via the cascade decay. Since the matrix elements

are ∝ λ we can solve eq. (6.7) iteratively in perturbation theory up to the order considered

in the hierarchy, in order to understand the time scales,

C2(η) = −i

∫ η

η0

M21(η1)C1(η1) dη1

+i

∫ η

η0

dη1

∫ η1

η0

dη2

∫ η2

η0

dη3
∑

[3]

M23(η1)M32(η2)M21(η3)C1(η3) + · · · . (6.8)

To make the arguments clear, let us consider Minkowski space time and early time

scales so that C1 ≃ 1. Then the two particle amplitude builds up ∝ λt (with rate ∝ λ),

and from eq. (6.6) we see that the three particle state builds up ∝ λ2t2 ≪ λt, clearly

reflecting that the population of the three particle state builds up much slower than that

of the two particle state etc.

The build-up and decay integrals feature secular growth as η → 0 (long cosmic time),

and the second step in the Wigner-Weisskopf method provides a non-perturbative resum-

mation of these processes: writing (6.7) as an integro-differential equation

Ċ2(η) +

∫ η

η0

Σ(2)(η, η1)C2(η1)dη1 = −iM21(η)C1(η) ; Σ(2)(η, η1) =
∑

[3]

M23(η)M32(η1) ,

(6.9)

and introducing the Markovian approximation as in eq. (2.37)–(2.39) (the second approx-

imation in the Wigner-Weisskopf method) we find

C2(η) = −ie−γ2(η)
∫ η

η0

M21(η1)C1(η1)e
γ2(η1) dη1 ; γ2(η) =

∫ η

η0

Σ(2)(η, η
′)dη′ . (6.10)

This compact expression reveals at once the build-up of the amplitude from C1 and the

eventual decay of the two-particle state encoded in γ2(η).

A simple perturbative expansion of this expression up to O(λ4) reproduces (6.8) con-

sistently with the Markovian approximation.

The last step is to insert this solution into (6.3), solve the integro-differential equation

for C1 and insert this solution into (6.8) and (6.6) respectively. Obviously this procedure
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(b) : M12M23M32M21(a) : M12M21

Figure 4. The contributions to C1 showing the one and two loop contributions to the self-energy.

The dashed lines represent intermediate states with two or three particles, corresponding to the ma-

trix elements M12;M21 in (a), and similarly for (b). There are other two loop diagrams not shown.

leads to a very complicated expression that is not very illuminating. However progress

can be made by introducing the perturbative solution (6.8), leading to the following

integro-differential equation for C1:

Ċ1(η) = −
∫ η

η0

∑

[2]

M12(η)M21(η1)C1(η1)

+

∫ η

η0

dη1

∫ η1

η0

dη2

∫ η2

η0

dη3
∑

[2],[3]

M12(η)M23(η1)M32(η2)M21(η3)C1(η3) (6.11)

The first and second terms have a simple interpretation in terms of one and two loop

self-energies as depicted in figure 4 (only one two loop contribution is shown).

The dashed lines cut through multiparticle states and indicate similar rules to the

Cutkosky rules of quantum field theory that relate the absorptive parts of self-energy

diagrams to intermediate multiparticle states.

In order to make progress in the solution of (6.11) the second part of the Wigner-

Weisskopf method invokes a Markovian approximation, just as that described in

section (2.2) implemented to lowest order. This approximation is again justified in a

weak coupling expansion and is the statement that η derivatives of the coefficients are

“slow” and can be systematically expanded perturbatively. The procedure follows the

steps described by eqs. (2.37)–(2.40), integrating by parts the kernels of the integrals and

keeping consistently up to O(λ4) we find

Ċ1(η) +W (η)C1(η) = 0 ; C1(η0) = 1 , (6.12)

where

W (η) =

∫ η

η0

∑

[2]

M12(η)M21(η1)dη1

[

1 +

∫ η

η0

∫ η1

η0

∑

[2]

M12(η)M21(η2)dη1dη2

]

+

∫ η

η0

dη1

∫ η1

η0

dη2

∫ η2

η0

dη3
∑

[2],[3]

M12(η)M23(η1)M32(η2)M21(η3) . (6.13)

The second term in the bracket in the first line arises from the derivative expansion of the

term with the one-loop self-energy (see eq. (2.39)); in ref. [77] this term is identified as a

contribution to wave function renormalization. Therefore

C1(η) = e
−

∫ η
η0
W (η′)dη′

. (6.14)
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This expression provides a non-perturbative resummation of self-energies in real time up

to two loops and includes the decay of the initial state into intermediate states with two

and three particles.

In Minkowski space time, the initial state decays as ∝ e−Γt with Γ = λ2γ2+λ4γ3+ · · ·
corresponding to the contribution to the self energy from the two particle intermediate

states (one loop) three particle intermediate states (two loops) etc, highlighting that the

probability of production of the two particle intermediate state occurs on a time scale

∝ 1/λ2, that of the three particle intermediate state on ∝ 1/λ4 etc.

Clearly the decay into two particle states occurs on shorter time scales as this process

corresponds to the one-loop diagram, whereas decay into three particles occurs on much

slower scales at this process corresponds to the two-loop contributions.

It remains to insert this solution into (6.8) and in turn insert the solution for

C[2],into (6.6). Because the matrix elements Mij ∝ λ it follows that if we take C1 ∝ O(λ0),

then C[2] ∝ λ ; C[3] ∝ λ2 · · · . The quantum state obtained from the decay of a quanta

with momentum ~k is given by

|Ψ(~k, η)〉 = C1(η)|1~k〉+
∑

[2]

C[2](η)|[2]〉+
∑

[3]

C[3](η)|[3]〉+ · · · , (6.15)

The states |[2]〉 = |1~p; 1~k−~p〉 and |[3]〉 = |1~p1 ; 1~p2 : 1~k−~p1−~p2〉 and the sums over [2], [3] are

over ~p and ~p1, ~p2 respectively.

Thus the probability of a given two particle state is given by |C2(η)|2 ∝ λ2, of a given

three particle state is |C3(η)|2 ∝ λ4, etc. This is exactly as in the case of multiphoton

processes in quantum electrodynamics or of an atomic cascade of a multilevel atom.

Each photon in the final state is associated a probability that is proportional to αem, so

multiphoton processes are suppressed by powers of the fine structure constant. In this

case multiparticle final states are suppressed by powers of λ2 for each extra particle in the

final state. This is also the case in atmospheric air showers where very energetic particles

decay via a cascade process where each branch of the cascade is down by a power of the

coupling to the respective channel.

In the case of cascade decay in Minkowski space time, the probability of finding

particles from a particular decay channel is given by the branching ratio of such channel

Γc/Γtot, namely ratios of different powers of the couplings. Our result obviously entails

the same physics: the probability of a state with three quanta is suppressed by λ2 with

respect to that with only two quanta, etc.

Furthermore, the explicit form of W (η) (6.13) clearly shows the separation of time

scales: the decay into two particles involves time scales ∝ 1/λ2 and is determined by the

product of matrix elements M21M12 whereas the time scales for decay into three particle

states is determined by the last term in (6.13) which implies time scales ∝ 1/λ4. Therefore

there is a hierarchy both in the probability of multiparticle states and the time scales

associated with their production from the decay of the parent particle. The cascade decay

processes are controlled by the small coupling λ.

The entanglement entropy can now be calculated by obtaining the reduced density

matrix by tracing over the superhubble degrees of freedom in the pure state density matrix
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|Ψ(~k, η)〉〈Ψ(~k, η)| and is a straightforward implementation of the steps described in the

previous section with the technical complication of the integration over the super Hubble

subset of momenta in the multiparticle contributions. This is only a technical difficulty but

not a conceptual roadblock, since the contribution to the entanglement entropy from higher

multiplicity states will be suppressed by high powers of the coupling λ. An illustrative

example in Minkowski space time is the cascade decay π− → µ− νµ ; µ− → e− νe νµ:

whereas the pion decays on a time scale ≃ 2.8× 10−8 secs the muon decays on a time scale

≃ 2.2 × 10−6 secs therefore during a long time interval 10−8 secs ≤ t ≤ 10−6 secs the two

particle state |µ−, νµ〉 yields the largest contribution to the quantum state.

Furthermore, the unitarity relation (2.48) entails that

|C1(η)|2 +
∑

[2]

|C[2](η)|2 +
∑

[3]

|C[3](η)|2 + · · · = 1 , (6.16)

which was confirmed in the previous section to leading order in the coupling and ∆.

In summary: the cascade decay is controlled by the perturbative nature of the inter-

action, the probability for multiparticle states being suppressed by powers of the coupling

constant and the time scales associated with the formation of multiparticle states widely

separated by larger powers of 1/λ. Furthermore, in the case under consideration here, the

physical momentum of the initial state is taken to remain deep inside the Hubble radius at

all times during inflation. At any large but fixed (conformal time) the initial state maintains

a small but non-vanishing population, a two particle state being populated with probability

λ2, a given three particle state with probability ∝ λ4 etc. Therefore if the quasi-de Sitter

inflationary stage lasts a finite (say ≃ 60) number of e-folds, the quantum state will be a

linear superposition of many particle states and unitarity implies that each state features a

perturbatively small population. An interesting and conceptually puzzling situation arises

in the case of eternal de Sitter, since in this case, at asymptotically long times all states

would have decayed to vanishing probability in clear contradiction with unitarity, but in

this case all physical momenta eventually also become superHubble. Perhaps this puzzling

aspect is related to the intriguing results of ref. [30–33] and deserves to be studied further.

While we have established a roadmap and a “proof of principle” of the method, un-

doubtedly there are several aspects that merit a deeper study such as infrared enhancement

from superhorizon modes, the issue of unitarity in eternal de Sitter, the detailed aspects of

the (conformal) time dependence of the amplitudes of multiparticle states etc. We postpone

the study of these more technical details of the higher order processes to a future article.

7 Discussion and further questions

Possible relation to non-Gaussianity. The cubic interaction vertex suggests a relation

between the decay amplitude (see figure 1) and the non-gaussian bispectrum which is the

three point function of the field. The relationship with the bispectrum becomes more clear

by introducing G(k, η, η′) = g∗ν(k; η)gν(k; η
′) from which it follows that

∫ η

η0

Σ(k, η, η′) dη′ ∝
∫

d3p

(2π)3

∫

dη′

Hη′
G(k, η, η′)G(p, η, η′)G(|~k − ~p|, η, η′) . (7.1)
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~k

~k − ~p

|~p| ≤ µ → 0

Figure 5. Triangle of momenta for the bispectrum (see eq. (7.1)) integration over |~p| < µ → 0

corresponds to the highly squeezed limit and yields the pole in ∆.

The imaginary part of the η′-integral is proportional to the bispectrum of the scalar field [86,

87]. The main difference is that the self-energy is the integral over one of the momenta.

In particular the leading order in ∆, namely the contribution from the infrared enhanced,

superhorizon modes, is determined by the highly squeezed limit shown in figure 5, which

corresponds to the local limit of the non-gaussian correlator.

This connection highlights that this local limit is describing correlations between sub-

horizon and superhorizon modes, these are the correlations that yield the entanglement

entropy upon tracing over the superhorizon degrees of freedom.

There are important differences between the scalar field theory with cubic interaction

studied here, and the cubic interactions of curvature perturbations in the theory of non-

gaussian fluctuations [86, 87], the main difference being both spatial and (conformal) time

derivatives in the interactions. However, the study of ref. [88] found that transition proba-

bilities of curvature perturbations (in single field slow roll inflation) are suppressed by slow

roll parameters but enhanced by infrared logarithms, which are similar to those emerging

in the ∆ → 0 limit in our study (corresponding to massless fluctuations), thus suggesting

that the results obtained above may apply to the decay of curvature perturbations and

superhorizon entanglement and concomitant entanglement entropy.

Is the information retrieved upon horizon entry? An important feature of

inflationary cosmology is that physical wavelengths that cross the Hubble radius during

inflation, re-enter the Hubble radius (now the particle horizon) during radiation or matter

domination and these quantum fluctuations are the seeds of temperature anisotropies and

inhomogeneities.

The entanglement entropy that we have studied is a measure of the correlations be-

tween the entangled subhorizon and superhorizon degrees of freedom as a consequence of

interactions, which brings the question of whether upon re-entry the fluctuation modes that

were superhorizon during inflation “bring back” the quantum correlations and if so how

are these manifest in the power spectrum of the CMB? Furthermore, going from quantum

fluctuations of the curvature (or gravitational potential) to temperature fluctuations entails

replacing quantum averages by statistical averages. Thus it is a relevant question whether

this statistical averaging includes the quantum correlations from entanglement. Last but

not least, if the quantum states can decay, it is conceivable that the lack of power in the low

multipoles which is present in the cosmological data and has been persistent in the statis-
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tical analysis of WMAP7 [89], WMAP9 [90] and Planck [91] which reports a power deficit

at low multipole with 2.5−3σ significance and a recent statistical analysis of the combined

dataset [92], may be due to the decay of the quantum fluctuations during the inflationary

stage. Our study applies to a scalar field in de Sitter space time and in order to answer this

question the analysis presented here must be applied to the case of scalar perturbations.

Intensity correlations? Furthermore, and in relation with the question above, it is

a tantalizing possibility that the superhorizon correlations become manifest as intensity

correlations leading to interference phenomena akin to the Hanbury-Brown-Twiss effect

discussed in ref. [51]. If this is the case what would be the observable consequences of the

correlations between sub and superhorizon degrees of freedom.

An infinite cascade? The discussion of the cascade process offered above is mainly

based on the physical aspects of cascade decays in Minkowski space time (for example

shower cascade). However, infrared effects may modify this picture justifying a deeper

understanding of how the infrared enhancements modify the higher order multiparticle

processes in the cascade decay. Furthermore an interesting remaining question is how

unitarity is manifest in the (formal) case of eternal de Sitter inflation in which the cas-

cade processes would continue forever perhaps resulting in a quantum state of infinitely

many particles but with infinitesimally small probabilities. This question clearly merits a

continued effort to understand these aspects in view of the results of ref. [30–33].

8 Conclusions

In inflationary cosmology all particle states decay as a consequence of the lack of a global

time-like Killing vector which would in turn enforce kinematic thresholds. In this article

we have studied the entanglement entropy from the decay of single particle states during de

Sitter inflation in a theory of a light scalar field with M2 ≪ H2 and cubic interactions. The

quantum state that describes the single particle decay and the produced particles is a two-

particle state entangled by momentum conservation. We have extended and generalized

the Wigner-Weisskopf method used in the treatment of spontaneous decay of atomic states

to the realm of quantum field theory in an expanding cosmology, and implemented this

method to obtain the quantum state that describes the decay of the parent particle and

the production of the daughter particles. We showed in detail that this non-perturbative

approximation is manifestly unitary. The amplitudes for the two-particle entangled state

features infrared enhancements that are manifest as poles in ∆ = M2/3H2 as a consequence

of the emission of superhorizon quanta and we implement a consistent expansion in ∆ to

leading order to obtain the (pure state) density matrix that describes the decay of the

parent and production of daughter particles. When the parent particle’s wavelength is

inside the horizon, the density matrix elements for the produced particles are dominated

by the contribution of superhorizon momenta of one of the daughter particles, describing

entanglement, correlation and coherences across the horizon. Tracing the pure state density

matrix over the superhorizon modes we obtain a mixed state density matrix from which we

calculate the Von Neumann entanglement entropy, which describes the loss of information
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from the correlations between sub and superhorizon modes due to the non-observation of

these latter states. We find that the entanglement entropy is enhanced in the infrared by

a factor of ln[1/∆] and grows logarithmically with the physical volume as a consequence

of more modes crossing the Hubble radius during the inflationary stage.

The generalization to the description of single particle states in terms of wavepackets

spatially localized within the Hubble radius but localized in momentum was provided.

Under the conditions that the average wavevector of the wave packet be associated with

subHubble wavelengths all throughout the near de Sitter stage, we showed the equivalence

between the plane wave and wave packet description and assessed the corrections in

terms of the ratio of the width of the wavepacket in momentum space and the average

momentum associated with the single particle state.

The lack of kinematic thresholds implies that particle decay occurs in a cascade process,

namely 1 → 2 → 3 · · · . We have extended the Wigner-Weisskopf method to establish a

framework to study the cascade decay and analyzed in detail the process up to a three

particle branching in the cascade, but the results are quite general. We showed that for

weak coupling (here we considered a cubic coupling) the probability of multiparticle states

is suppressed by powers of the coupling, for example in the case of cubic coupling the three

particle state is suppressed by O(λ2) with respect to the two particle state, the four particle

O(λ4) etc. We have established a relation between the different multiparticle processes and

higher order loop contributions in the self-energy, just as in the case of Cutkosky rules in

Minkowski space-time. This relation clearly shows that just as the probability of higher

multiparticle states is suppressed by high powers of the coupling, the time scales for decay

into higher multiplicity states are widely separated by inverse powers of λ2. Therefore the

cascade decay is controlled by the weak coupling, just as multiphoton processes in QED,

however important questions raised above remain, justifying continued study of these issues.

This study of the superhorizon entanglement entropy from particle decay bridges

two concepts previously explored in the literature: the entanglement between spatially

separated but correlated regions, in our case the correlations between sub and superhorizon

quanta of the daughter particles, akin to the superhorizon correlations studied in ref. [68],

and the momentum-space entanglement studied in ref. [69–71]. In our study the entan-

glement entropy is a result of both types of concepts, linked together by the interactions

but with the distinct aspect of being a non-equilibrium process as a consequence of the

cosmological expansion.

While at this stage we do not yet see a clear observational consequence of the

entanglement entropy beyond the theoretical conceptual aspect of information loss from

the correlations and superhorizon entanglement, the exploration of potential observational

consequences along with the questions raised above are worthy of further and deeper

study, on which we expect to report in the future.
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