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1 Introduction

In this paper we study compactifications of M-theory to three dimensions that preserve

N = 2 supersymmetry and which induce a potential for space-filling M2-branes. Though

interesting as three-dimensional vacua in themselves, our primary motivation for studying

them originates in F-theory [1]. Four-dimensional N = 1 F-theory vacua can be defined as

dual to a particular limit of N = 2 M-theory compactifications to three-dimensions. This

definition relies on the assumption that the 8-dimensional manifold on which M-theory
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is compactified is elliptically fibered. Then the appropriate limit where four-dimensional

physics is recovered is that of a vanishing fibre. This duality is most often used to construct

F-theory backgrounds as dual to M-theory compactifications on elliptically fibered Calabi-

Yau manifolds.1 Such compactifications can exhibit realistic particle physics models and

have been under intensive study in recent years [4–6]. A well-understood generalisation of

such models is to include a particular (2, 2) background four-form flux on the M-theory

side, which is dual to both background closed-string and brane fluxes on the F-theory side.

Such fluxes play a crucial role in moduli stabilisation and in generating chirality in particle

physics models. It is known that the backreaction of such fluxes deforms the background

only to conformal CY [7, 8], so that the relevant compactifications are warped N = 2

compactifications of M-theory to three dimensions. This class of compactifications have

the property that space-filling probe M2-branes on the M-theory side, which are dual to

space-filling probe D3-branes on the F-theory side, are BPS at all points of the (conformal)

CY and therefore feel no potential [8].

There are a number of interesting departures from such backgrounds which can be

characterised by the fact that a potential is generated for (probe) D3-branes. The most

familiar are backgrounds of type IIB string theory that support gaugino condensation

on D7-branes, or certain types of D3-instantons that contribute to the superpotential,

as used for moduli stabilisation in the KKLT and Large volume scenarios [9, 10]. The

fact that these induce a potential for D3-branes can be shown by performing a 1-loop

string calculation [11] or through gravitational back-reaction [12]. As well as being used

for moduli stabilisation, there is a direct cosmological use for type IIB backgrounds that

induce D3-potentials for inflation [13, 14]. Such backgrounds also play an important role in

particle physics model building. In F-theory models where all the generations are realised

on a single matter curve the Yukawa coupling at a point of intersection is rank one [15, 16]

unless an appropriate deformation of the geometry which induces a D3 potential by flux [15]

or non-perturbative effects [17] is present.2 Since all the listed interesting IIB/F-theory

backgrounds have potentials for D3-branes they are not within the better understood class

of warped CY compactifications. Although an approach of neglecting the backreaction of

the effects that induced the D3 potential on the geometry and continuing to use a CY

background may be a valid approximation for some purposes, an understanding of the

backreaction is essential for applications where the effects are large or when a treatment of

the background in a 10-dimensional sense, rather than a 4-dimensional effective theory, is

important. Studying such backgrounds, particularly at strong coupling, using F-theory/M-

theory duality should therefore involve some understanding of three-dimensional M-theory

backgrounds which preserve N = 2 supersymmetry and have a potential for M2-branes.

Having identified the presence of a D3/M2 brane potential as the defining feature we

are interested in, it is essential to understand what are the properties of the background

geometry and flux which induce such a potential. There is a rather general and neat

answer to this question in type IIB supergravity. The key property of the background is

1Though see recent work on manifolds with Spin(7) holonomy [2, 3].
2Interestingly, such backgrounds also induce non-commutative deformations on the world-volume theo-

ries of the 7-branes [13, 15, 17].
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the structure group of the metric once any flux/branes are back-reacted. Recall that a

nowhere vanishing spinor on a manifold reduces its structure group. Since the presence of

a nowhere vanishing internal spinor is a direct requirement for the background to preserve

some supersymmetry a reduced structure group typically characterises supersymmetric

backgrounds [18]. In particular the most general type IIB (supergravity) backgrounds

which preserve four-dimensional N = 1 supersymmetry have an SU(3) × SU(3) structure

group [19, 20].3 Here each SU(3) is associated to a spinor on the manifold, but the two

spinors are not everywhere orthogonal (which would lead to SU(2)-structure) or parallel

(leading to SU(3)-structure) but rather the angle between them varies over the manifold.

Now an interesting result of [21, 22] is that backgrounds which support potentials for D3-

branes are those which have such an SU(3)× SU(3) structure group, and further, that the

minimum for the potential, where the D3-branes are BPS, occurs exactly on the loci where

the two spinors become parallel, yielding a ‘local’ SU(3)-structure.4 This general result

was checked for the particular case of D7 gaugino condensation in [23] which confirmed

that their backreaction indeed changes the structure group from SU(3) to SU(3)× SU(3).

It was also confirmed to some extent in [24, 25] for the case of D3-potentials induced by

non-Imaginary-Self-Dual background flux, specifically by showing that the backreaction of

D7 gaugino-condensation can locally be viewed as such a background flux.5

One aim of this paper is to develop analogous relations between structure groups and

M2-brane potentials in M-theory. The relation between structure groups and non-vanishing

spinors in 8 dimensions is rather different from the more familiar 6 and 7 dimensions. Con-

sider a compactification on an 8-dimensional manifold X8. A requirement for preserving

some supersymmetry in 3-dimensions is the existence of a nowhere vanishing Majorana

spinor on X8. This is so that the 11-dimensional M-theory supersymmetry spinor decom-

poses into a product of a 3-dimensional and 8-dimensional Majorana spinor. However,

the existence of a nowhere vanishing Majorana spinor in 8 dimensions does not imply a

reduction of the structure group.6 This only occurs in the presence of nowhere vanish-

ing Majorana-Weyl spinors: a single such spinor implies Spin(7)-structure, while two such

spinors imply G2 or SU(4)-structure if they have the opposite or same relative chirality

respectively. Now the number of supersymmetries preserved by an M2-brane in a back-

ground is given by the number of independent covariantly constant Majorana-Weyl spinors

of fixed chirality [27]. Since the manifolds with fixed structure group have a fixed number

of Majorana-Weyl spinors of fixed chiralities M2-branes are BPS over the whole space and

preserve the supersymmetries of the background. Therefore a connection between structure

groups and M2 potentials for 8-dimensional manifolds is not obvious.

There is a useful way to think about the M2-potential in terms of 8-dimensional local

structure groups, i.e. submanifolds of X8 over which the spinors satisfy certain properties

3See also the analogous dynamical SU(2)-structure type II backgrounds [29].
4We will use the notion of a ‘local’ structure group often in the paper. We define it as the structure

group that would result should the properties of the spinors on a local submanifold where the local structure

group is defined be extended to the full space.
5See also [26] for further investigations along this direction.
6The stabiliser group of a Majorana spinor is G2. However we use the notion of a global structure group

as maximal over the manifold, while the G2 stabiliser may enhance over certain loci.
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such as being non-vanishing. In this paper we are interested in N = 2 vacua and so require

two covariantly constant, and therefore nowhere vanishing, Majorana spinors. The require-

ment of Majorana spinors rather than Majorana-Weyl spinors leads to the most general

8-dimensional backgrounds that preserves N = 2 in three dimensions from M-theory, in

this sense they are the analogs of SU(3) × SU(3) structure 6-dimensional backgrounds in

IIB. The two nowhere vanishing Majorana spinors can be decomposed into 4 Majorana-

Weyl spinors, but any of these four may vanish on certain loci. In the generic point on X8

all four are non-vanishing and we have a local SU(3)-structure on X8, over certain loci one

of the Majorana-Weyl components in each Majorana spinor may vanish so that we are left

with two Majorana-Weyl spinors of same or opposite chirality leading to local SU(4) or

G2-structures. M2-branes are calibrated by a Killing Majorana-Weyl spinor of fixed chi-

rality and therefore on the generic SU(3)-structure loci they preserve no supersymmetry,

on G2 loci they preserve N = 1 supersymmetry and on SU(4) loci they preserve N = 2

supersymmetry. They therefore feel a potential in such backgrounds with minima at SU(4)

and G2-structure loci. Such backgrounds are therefore of interest following our original

motivation and much of this paper is dedicated to exploring their properties.

In [28] it was shown that one can induce a connection between the existence of a

Majorana spinor on X8 and global G-structures by defining an auxiliary 9-dimensional

manifold, Y9, which is just the product of the 8-dimensional one with a circle Y9 = X8×S1.

Now the existence of an 8-dimensional nowhere vanishing Majorana spinor on X8 induces

a nowhere vanishing Majorana spinor on Y9 and this is known to imply a reduction of the

structure group of Y9 to Spin(7). Therefore it is quite natural to work with this auxiliary

9-dimensional manifold when studying the supersymmetry properties of the background.

As with the case of one spinor, two nowhere vanishing Majorana spinors do not induce a

reduction of the structure group in 8 dimensions. It is possible to consider again an uplift

to Y9, but although the structure group is reduced to at least Spin(7), there is in general no

further reduction on Y9 due to the second spinor. Nonetheless, the 9-dimensional approach

is useful for treating the 8-dimensional local structure groups in a unified way and we will

utilise it in this work.

So far we have discussed only the geometry part of the compactification and not the

energy-momentum tensor that sources it. In this work we will study the background

flux that can source M2-brane potentials. In relation to the previous discussion of physics

sources for a D3-potential in IIB, this flux can be thought of either as non-trivial background

flux or, in the spirit of [24, 25], as flux that is accounting for the backreaction of localised

sources. We will be able to give the form of the most general flux that generates an

M2-potential in terms of 8-dimensional SU(3)-structure geometric objects and two real

one-forms that parameterise the flux. For the simple case where only this type of flux and

four-form flux with one leg in the internal directions, which we henceforth refer to as 1-form

flux, are present the supersymmetry equations simplify considerably and we are able to

present them as differential relations on the SU(3)-structure forms and extract some key

properties. We find that for this limited flux configuration the compactification must be

to 3-dimensional Minkowski space. If we further impose the vanishing of the 1-form flux

we find that the M2-potential is only along the directions parameterised by the two singlet
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vectors of the 8-dimensional SU(3)-structure. The torsion classes are such that on the

generic SU(3)-structure locus the manifold can be described as a 6-dimensional Calabi-Yau

fibered over a 2-dimensional base which is spanned by the singlet vectors, and over which

the M2-branes have a non-trivial potential. While over the special SU(4) and G2-structure

loci the flux vanishes. The more involved background where we also allow for non-vanishing

1-form flux leads to a similar configuration but the 6-dimensional fibre is not Calabi-Yau

but has non-vanishing torsion classes (which satisfy the relation 2W4 = −W5). We will

also present the supersymmetry equations in differential form for the most general flux

configurations that have other, non M2-potential inducing, fluxes turned on. Though this

substantially more complicated system is difficult to analyse in as much detail.

The outline of the paper is as follows. In section 2 we study the geometric properties

of the background using G-structures. In particular we describe 8-dimensional manifolds

with varying structure groups and M2-potentials. In section 3 we study the supersymmetry

equations and formulate them in a way compatible with the 9-dimensional geometry. In

particular we identify the flux which is responsible for the M2-potentials, and parameterise

it in terms of SU(3)-structure objects. In section 4 we study the implication of the super-

symmetry equations for backgrounds supporting such a flux. We summarise our results in

section 5.

Note 1: the results presented in this paper rely on quite lengthy calculations. Although

most of these calculations can be done by hand we made extensive use of symbolic calcula-

tion applications which are able to manipulate tensors and/or gamma matrices, in order to

check and derive some of our results. We acknowledge the use of the following resources:

Mathematica [30], MathTensor [31], Cadabra, [32, 33], Gamma [34] and xTensor [35].

Note 2: this paper has some overlap with a project which was initiated together with

M. Babalic, I. Coman and C. Lazaroiu to whom we thank for insights in the subject of

M-theory compactifications to three dimensions.

2 N=2, D=3 M-theory compactifications and G-structures

2.1 Supersymmetric compactification of M-theory

The effective action of M-theory is described by eleven dimensional supergravity consist-

ing of the following fields: metric gMN , three-form potential C with corresponding field

strength G = dC and gravitino ΨM . The action can then be written in the following

way [36]

S11 =
1

2

∫

d11x
√−g

(

R− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G

)

. (2.1)

We shall be interested in supersymmetric flux backgrounds. They correspond to fluxes for

which the background gravitino vanishes together with its supersymmetry variation with

11-dimensional (Majorana) spinor parameter ǫ

δΨM = ∇M ǫ− 1

288

(

ΓM
NPQR − 8δNMΓPQR

)

GNPQRǫ = 0 . (2.2)

The matrices ΓM are taken to satisfy the eleven-dimensional Clifford algebra with metric

signature (−,+, . . . ,+).
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The supersymmetry equations should be supplemented by the Bianchi identity and

equations of motion for G which read7

dG = 0 , (2.3)

d ⋆ G = −1

2
G ∧G+ 2πT6X8 . (2.4)

The last term in (2.4) corresponds to a higher derivative gravitation correction [40], where

T6 is the M5-brane tension and X8 is a known combination of the first and second Pon-

trjagin forms. This correction is important as it allows the support of solutions to three-

dimensional Minkowski space in the presence of background flux for compact smooth man-

ifolds. Equation (2.4) is usually imposed as integrated over the manifold in which case the

first term vanishes and the last term gives the Euler number of the manifold, This leads to

the familiar D3/M2 tadpole cancellation constraint.8

The compactification Ansatz is chosen by imposing a 3-8 split of the 11 dimensional

manifold. We choose a metric which is a warped product of 3-dimensional space-time and

an 8-dimensional Euclidean manifold.

ds211 = e2∆
(

ds22,1 + ds28
)

. (2.5)

The 11-dimensional index M decomposes into an external 3-dimensional index µ = 1, 2, 3,

and an internal 8-dimensional index α = 1, . . . , 8. For the 4-form field strength G we choose

the most general ansatz compatible with Lorentz invariance

G = e3∆
(

f̃ ∧Vol3 + F
)

, (2.6)

where f̃ is a one-form and F is a 4-form on the internal manifold, while Vol3 is the volume

element of the external space-time.

The eleven-dimensional Clifford algebra is decomposed according to the following

equations

Γµ = e∆ (γµ ⊗ γ9) ,

Γα = e∆ (1⊗ γα) , (2.7)

with the 2×2 matrices {γµ ; µ = 1, 2, 3} generating the three-dimensional Clifford algebra

Cl(2, 1). An explicit representation can be given in terms of the Pauli matrices. The 16×16

matrices γα are taken to be real and symmetric. They generate the eight-dimensional

Clifford algebra Cl(8, 0).

We can decompose the 11-dimensional supersymmetry parameter ǫ, which is an

11-dimensional Majorana spinor, according to the 3-8 split as

ǫ = e−
∆

2 η ⊗ ξ , (2.8)

7It is usually the case that the equations of motion and the supersymmetry equations imply the Einstein

equations, though we will not prove it here for the particular class of backgrounds under consideration.
8Note that for manifolds with 8-dimensional G2-structure the Euler number is forced to vanish [41].

– 6 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
6

where η is a 3-dimensional Majorana spinor, while ξ is an 8-dimensional Majorana spinor.

Each non-vanishing spinor ξ defines by the relation above one spinor η in three dimensions.

Therefore for N = 2 supersymmetry we need two spinors ξi on the internal manifold.

Note that in 8 dimensions there exist Majorana-Weyl spinors. However we do not impose

any chirality condition on the internal spinors as from the supersymmetry equation it is

clear that only the Majorana condition is necessary. Imposing the Weyl property is an

additional constraint. In most studies of M-theory compactifications to 3 dimensions so

far the Majorana-Weyl condition was imposed for simplicity but, as emphesised in [28, 37],

this is not the most general case.

2.2 General 8-dimensional manifolds preserving N = 2 supersymmetry

In this section we present a detailed description of the manifolds on which we compactify

M-theory. As explained before, such manifolds admit two independent, nowhere vanishing

Majorana spinors ξ1,2. We shall see further that the supersymmetry conditions imply that

the norm of these spinors is constant [37] and therefore without loss of generality we shall

assume that the two spinors are orthonormal

ξTi ξj = δij , i, j = 1, 2 . (2.9)

Since in 8 dimensions the Majorana and Weyl conditions are compatible, we can split the

two spinors into spinors of definite chirality

ξi = (ξ+)i + (ξ−)i . (2.10)

However, the Majorana-Weyl components (ξ±)i are no longer required to have constant

norm and moreover they can even vanish at certain points. The only requirement is the

unit norm of the spinors ξi

||(ξ+)i||2 + ||(ξ−)i||2 = 1 . (2.11)

In the case that all Majorana-Weyl components are everywhere non-vanishing we are

actually dealing with an 8-dimensional manifold with SU(3) structure which preserves

(a maximum of) N = 4 supersymmetry in 3 dimensions. If some of the Majorana-Weyl

components vanish identically over the entire internal manifold, while the others are non-

vanishing, then we are dealing with manifolds with G2 structure or manifolds with SU(4)

structure depending on the relative chirality of the non-vanishing spinors. We see that the

fact that the Majorana-Weyl components are allowed to vanish at certain points implies

that such manifolds do not admit a global reduction of the structure group. At generic

points they look like SU(3) structure manifolds, while at special points they look like G2

or SU(4) structure manifolds.9

Note that we did not consider the case where only one of the four Majorana-Weyl

components vanishes. This is because on an 8-dimensional manifold once we are given

three linearly independent, non-vanishing, Majorana-Weyl spinors which are not of the

9It would be interesting to explore connections between these backgrounds and SU(4) × SU(4) back-

grounds as studied in [42, 43], as well as the Spin(8)× Spin(8) backgrounds of [44].
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same chirality, one can define a fourth spinor such that we end up with two spinors of one

chirality and two of the other. To prove this, suppose that we have an eight-dimensional

manifold which has two spinors, ξ1 and ξ2 of positive chirality and one, χ1 of negative

chirality. The two spinors of positive chirality define a SU(4) structure and therefore one

finds an almost complex structure which is given by

Jαβ = ξT1 γαβξ2 . (2.12)

We can define a fourth spinor χ2 which is of negative chirality

χ2 =
1

2
Jαβγαβχ1 , (2.13)

and which has non-vanishing norm. This spinor is obviously orthogonal to ξ1,2 and because

the matrix γαβ is antisymmetric in its spinorial indices, it is also orthogonal to χ1. There-

fore, in this way we have 4 non-vanishing Majorana-Weyl spinors, two of positive and two

of negative chirality, which define a SU(3) structure in 8 dimensions.

2.2.1 9-dimensional uplifts to Y9 = X8 × S1

It was pointed out in [28] that we can associate the existence of a nowhere vanishing Majo-

rana spinor on X8 to a reduced structure group by uplifting it to an auxiliary 9-dimensional

manifold, Y9, defined as the direct product of the 8-dimensional manifold under consider-

ation X8 and a circle Y9 = X8 × S1. For the case of 2 Majorana spinors this procedure is

not as effective since, as we will show, the structure group does not reduce further on Y9.

However, uplifting to 9-dimensions is still a useful procedure because it will allow us to

describe the local structure groups of X8 in a unified way. In particular the 8-dimensional

structure groups, and the related M2 potential, will be mapped to an angle between two

9-dimensional vectors.

We therefore go on to study 9-dimensional manifolds supporting two nowhere vanishing

Majorana spinors. It is most common to study such manifolds from the perspective of

spinor bilinears which can be constructed out of the spinors. Since 9-dimensional Euclidean

gamma matrices can be chosen real (and therefore symmetric) the only spinor bilinears

which can be defined are the following

(V1)m = ξT1 γmξ1 , (V2)m = ξT2 γmξ2 , (V3)m = ξT1 γmξ2 = ξT2 γmξ1 ,

Kmn = ξT1 γmnξ2 = −ξT2 γmnξ1 , Ψmnp = ξT1 γmnpξ2 = −ξT2 γmnpξ1 ,

(Φ1)mnpq = ξT1 γmnpqξ1 , (Φ2)mnpq = ξT2 γmnpqξ2 , (Φ3)mnpq = ξT1 γmnpqξ2 . (2.14)

Here γm are 9-dimensional gamma matrices, or generators of Cl(9, 0), with m = 1, . . . , 9.

These forms are not independent as certain products of such bilinears can be expressed in

terms of linear combinations of these bilinears. The complete set of relations which the

forms above satisfy is given in appendix A.

For an efficient description of such manifolds it is important to know the number of

independent vectors. The forms defined above include three vectors. The Fierz relations
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for the vectors imply

||V1||2 = ||V2||2 = 1 , ||V3||2 =
1

2
(1− α) , (2.15)

V1 · V2 ≡ α , V1 · V3 = V2 · V3 = 0 . (2.16)

Here we define the usual contraction V ·U = V mUm. Therefore the number of independent

vectors is governed by a real parameter α which is the scalar product of the vectors V1 and

V2. Since the vectors V1 and V2 are of unit norm, this parameter α is in fact the cosine of

the angle between these vectors and therefore can take values in the interval [−1, 1]. At

generic values of this parameter, all the three vectors are independent and of non-vanishing

norm. This is the case of a local SU(3) structure. We denote this a ‘local structure’ because

α varies over X8 and so particular values of it define certain submanifolds. Of course the

notion of structure group only has a global meaning. However the terminology of a local

structure is well defined by the properties of the spinors over the submanifold and will be

used extensively in this work. For α = −1 the vectors V1 and V2 are no longer independent

(they are anti-parallel) while V3 has unit norm. Therefore we are left with two independent

unit vectors. This is the case of a G2 structure. Finally, if α = 1, the vectors V1 and V2 are

parallel while V3 vanishes. This is the case of an SU(4) structure. These local 9-dimensional

structure groups dictated by the parameter α are directly inherited by the 8-dimensional

manifold. In particular the physics we are interested in, which is the potential for a probe

space-filling M2-brane, is therefore directly related to the variation of α over the internal

manifold. We will show this in more detail in section 3.3.

Before going into more details about these manifolds it will be useful to understand

the special cases of α = ±1.

2.2.2 Loci of G2 structure: α = −1

On such loci, the Fierz relations presented in appendix simplify and we find

V1 = −V2 = V , ||V ||2 = ||V3||2 = 1 , (2.17)

K = V ∧ V3 , (2.18)

V yΨ = V3yΨ = 0 , (2.19)

Φ1 = −V3 ∧Ψ− ∗(V ∧ V3 ∧Ψ) , (2.20)

Φ2 = V3 ∧Ψ− ∗(V ∧ V3 ∧Ψ) , (2.21)

Φ3 = V ∧Ψ . (2.22)

This description looks much like a G2 structure in 7-dimensions (which is given in terms

of the 3-form Ψ) and two additional vectors which lift this G2 structure to 9-dimensions.

This is expected from the decomposition of the fundamental of SO(9) under G2

9 → 7⊕ 1⊕ 1 . (2.23)

A linear combination of these vectors gives the direction along the auxiliary circle used to

uplift to 9-dimensions.
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2.2.3 Loci of SU(4)-structure: α = +1

The Fierz relations for the case α = 1 read

V1 = V2 = V , ||V ||2 = 1 , ||V3||2 = 0 , (2.24)

Ψ = K ∧ V , Φ+ = −K ∧K , Km[n (Φ−)
m
pq] = 2 (Φ3)npq , (2.25)

where we define Φ± = Φ1 ± Φ2. Moreover it can be shown that when restricted to the

subspace which is orthogonal to V , K is an almost complex structure and it is clear that

we can organise this orthogonal space as a space of SU(4) structure with Φ− and 2Φ3

playing the role of the real and imaginary parts of the complex four-form. The additional

vector field should be understood as the direction which we added to go to the auxiliary

nine-dimensional manifold.

2.3 Parametrisation in terms of a SU(3)-structure

The most interesting case is of when the angle α, between the vectors V1 and V2 varies.

This occurs over the generic patch on the manifold which manifests a local SU(3)-structure.

Over this locus we have that α 6= ±1, and we will assume this in our present analysis and

return to the limit points later. In dealing with the more complicated SU(3)-structure case

we are guided by the idea that, analogous to the SU(4) and G2-structure loci, we expect

to be able to describe it in terms of an (uplifted) 6-dimensional SU(3)-structure. In order

to unveil this structure let us first define

V± = V1 ± V2 . (2.26)

Clearly V+ and V− are mutually orthogonal and, since both V1 and V2 are orthogonal to

V3, they are also orthogonal to V3. However, these vectors no longer have unit norm but

we find

||V±||2 = 2(1± α) . (2.27)

The next step is to decompose all the forms in (2.14) into forms of lower or equal rank

forms which are orthogonal to these vectors. Let us use as an example the decomposition

of K. We write

K = J + aV+ ∧ V− + bV+ ∧ V3 + cV− ∧ V3 , (2.28)

where a, b and c are coefficients which should be derived from imposing that J satisfies

V±yJ = V3yJ = 0. From the Fierz relations with one free index we see that V+ is already

orthogonal to K and therefore a = b = 0. In order to find the coefficient c we contract

with V− and use the Fierz relations with one free index and obtain

K = J +
1

1− α
V− ∧ V3 . (2.29)

The other cases work in a similar way. However, when considering forms of higher rank,

the number of terms that can be written on the right hand side increases rendering the
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calculation rather tedious. We find, eventually, the following equations

Ψ = ϕ+
1

1 + α
J ∧ V+ +

1

2(1− α)
V+ ∧ V− ∧ V3 , (2.30)

Φ+ = − 2

1 + α
J ∧ J − 2

1 + α
ρ ∧ V+ − 2

1− α
J ∧ V− ∧ V3 , (2.31)

Φ− =
4

1− α
ϕ ∧ V3 +

2

1− α
ρ ∧ V− +

2

1 + α
J ∧ V+ ∧ V3 , (2.32)

Φ3 = − 1

1− α
ϕ ∧ V− +

2

1− α
ρ ∧ V3 −

1

2(1 + α)
J ∧ V+ ∧ V− . (2.33)

In the above the three-form ρ is not independent, but can be expressed as

ρmnp = Jrmϕnp
r . (2.34)

Using the Fierz relation which involves K and Ψ one can check that the r.h.s. of the above

equation is indeed antisymmetric in all three indices as should be for the components of a

3-form (see eq. (B.2)). Note also that ρ and ϕ are orthogonal to the vectors Vi.

Using the Fierz relations in appendix A it is not very hard to check the parametrisation

above. The terms which contain at least one vector field can be immediately verified by

projecting the entire relation on the corresponding vector and using the fact that vectors

V± and V3 are orthogonal. The only remaining problem is to determine the top forms which

are orthogonal to the vectors. There are two different cases above. In (2.30), we denote

this top form by ϕ and we shall further discuss its properties. In the remaining relations,

the top form is no longer an independent form, but is given in terms of J , as in (2.31), or

it simply vanishes as in (2.32) and (2.33). The way to decide whether or not one can write

additional terms in (2.31)–(2.33) is by computing the norms of the r.h.s. and l.h.s. of these

relations. It is not difficult to check that these norms precisely agree, and therefore if we

were to add some arbitrary form to these relations, such forms would automatically have

zero norm and thus vanish on an Euclidean space.

Naively the equations (2.29)–(2.33) diverge at the special points α = ±1. To show

that actually there are no divergences in the SU(3) parameterisation in the SU(4) or G2

loci limits, we can extract the leading behaviour with respect to (1 ± α) of the relevant

SU(3)-structure forms

V3 ∼ (1− α)
1

2 , V− ∼ (1− α)
1

2 , V+ ∼ (1 + α)
1

2 ,

ρ ∼ [(1− α) (1 + α)]
1

2 , ϕ ∼ (1− α)
1

2 , J ∼ (1 + α)
1

2 . (2.35)

These relations can be inferred from the norms of these objects which we compute in

appendix. The objects that define the geometry are the 9-dimensional bilinears. These are

perfectly smooth over the full range of α, though they take particular, different, forms over

the SU(3), SU(4) and G2 loci.

Note that apart from J , ϕ and ρ, which satisfy (2.34), no other form orthogonal to

the vectors appears. We can in principle use in the parametrisation only ϕ and J , but it

is more intuitive to consider also ρ as these forms are used in general to describe a SU(3)
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structure. Indeed, the results obtained agree precisely with what is expected from a SU(3)-

structure in six dimensions plus three additional directions orthogonal to it. However, in

order to establish the SU(3)-structure behind we still have to check a few more relations

which the forms J and ϕ satisfy. Using the symmetric relation for K given in eq. (A.67)

of the appendix we can compute the similar identity for J

JmnJ
n
p = −1

2
(1 + α)δmp +

1

4
(V+)m(V+)p +

1 + α

4(1− α)
(V−)m(V−)p +

1 + α

1− α
(V3)m(V3)p

=
1

2
(1 + α) [−δmp + (P+)mp + (P−)mp + (P3)mp] , (2.36)

where P±,3 denote the projectors on the directions +, − and 3 respectively. It follows that

by an appropriate normalisation J can be indeed viewed as the almost complex structure

on the 6-dimensional subspace orthogonal to V± and V3.

Making use of the Fierz identities listed in the appendix and of the eqs. (2.29)–(2.33)

one can show that the following identities must hold

Jyϕ = Jyρ = 0 , (2.37)

J ∧ ϕ = J ∧ ρ = 0 , (2.38)

ϕ ∧ ρ = ∗(V+ ∧ V− ∧ V3) , (2.39)

J ∧ J ∧ J =
3(1 + α)

2(1− α)
∗ (V+ ∧ V− ∧ V3) . (2.40)

Furthermore, it is possible to show that eqs. (2.29)–(2.40) together with eq. (B.28) imply

all the Fierz identities for the bilinear forms listed in the appendix. By construction, the

converse is also true.

It is useful to construct from ϕ and ρ the following holomorphic and anti-holomorphic

(with respect J) three-forms

Ω = ϕ+ i

√

2

1 + α
ρ , Ω̄ = ϕ− i

√

2

1 + α
ρ . (2.41)

Indeed, it is easy to see that these forms obey the relations

Jm
nΩnpq = i

√

1 + α

2
Ωmpq , Jm

nΩ̄npq = −i

√

1 + α

2
Ω̄mpq , (2.42)

and therefore, up to some normalisation, Ω can be seen as a (3, 0) form with respect to the

almost complex structure J . It should now be clear that following a suitable normalisation

the forms J and Ω (or its real components ϕ and ρ) can be seen as the forms defining

an SU(3)-structure on the space orthogonal to the vectors V± and V3. Note that the

normalisation we have depends on the parameter α and care must be taken over the α = ±1

points where a reparameterisation in terms of SU(4) or G2 structures is more suitable.

3 Supersymmetry conditions

The G-structure technology introduced in the previous section is ideal for studying the su-

persymmetry equations (2.2). In this section we rewrite the supersymmetry constraints as

differential constraints on the appropriate forms and use these to extract general properties

of any solutions, in particular with respect to supporting a background with varying α.
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The supersymmetry variation of the gravitino (2.2) splits into internal and external

components which read [37–39]

Dαξ = ∇αξ +Aαξ = 0 , Qξ = 0 , (3.1)

where we defined

Aα = λγαγ9 +
1

24
Fαβγδγ

βγδ +
1

4
f̃βγα

βγ9 , (3.2)

Q = −λγ9 +
1

2
∂α∆γα − 1

288
Fαβγδγ

αβγδ − 1

6
f̃αγ

αγ9 , (3.3)

and the covariant derivative ∇α is taken now with respect to the 8-dimensional metric de-

fined in (2.5). The parameter λ is the cosmological constant for the 3-dimensional external

space. These equations are valid for spinors ξ which live on an 8-dimensional manifold.

As discussed previously we are interested in studying the background on a 9-dimensional

manifold Y9 = X8×S1. To do this we uplift on a circle by adding a ninth direction so that

now we have an index range m = 1, . . . , 9. We uplift the gamma matrices by considering

γ9 together with the other gamma matrices γα, as the generators of the Clifford algebra

Cl(9, 0). The analysis of the geometry and G-structures performed above does not identify

a particular direction and so we would like to rewrite the uplifted supersymmetry equations

also in an SO(9) covariant way. We therefore introduce a constant vector field θ such that

γ9 = θmγm , m = 1, . . . , 9 . (3.4)

With this the supersymmetry equations (3.1) have the same form where now

Am = λθnγmn +
1

24
Fmnpqγ

npq +
1

4
f̃nθpγm

np , (3.5)

Q = −λθmγm +
1

2
∂n∆γn − 1

288
Fmnpqγ

mnpq − 1

6
f̃mθnγ

mn , (3.6)

and we must impose the independence of physics quantities on the ninth direction

θ · f̃ = 0 , θyF = 0 , θ · d∆ = 0 . (3.7)

These equations now hold after an arbitrary SO(9) rotation which no longer identifies θ

with the index value m = 9.

Note the following simple consequences of the above. Firstly, the restrictions on the

fluxes imply that one component of A, i.e. θmAm, identically vanishes. This means that also

the spinor ξ does not depend on this direction. Secondly, since we chose the 8-dimensional

gamma matrices to be real and symmetric (this also holds for γ9), Am is a totally antisym-

metric matrix. Contracting (3.1) with ξT from the left we find

0 = ξT∇mξ =
1

2
∇m

(

ξT ξ
)

=
1

2
∂m||ξ||2 , (3.8)

and therefore the supersymmetry equations impose that the internal spinors must have

constant norms as we already anticipated in the previous section.
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The auxiliary uplift direction should be given by a linear combination of the

9-dimensional vectors. This can be seen from the analysis of the various particular cases.

In particular for the SU(4) case, in 8-dimensions we expect no singlet vector field and so

the vector field which survives should be interpreted as the additional ninth direction. In

the G2 case in 8 dimensions, we expect a single vector field which is a singlet under the

structure group. In 9 dimensions we found two such vector fields and therefore a certain

linear combination of them should be interpreted as the additional direction. Finally, in

the case of a SU(3) structure we expect two singlet vector fields in eight dimensions, while

we found three of them in 9 dimensions. Again, one combination of them should precisely

give the additional direction. Thus we can write

θ =
1

2(1 + α)
(θ · V+)V+ +

1

2(1− α)
(θ · V−)V− +

2

1− α
(θ · V3)V3 . (3.9)

Finally it is worth noting the practical matter that uplifting to 9-dimensions does

not add any further complexity to the equations. This is because we are working with

Majorana, rather than Majorana-Weyl, spinors in 8 dimensions which implies that they

do not have any nice properties under γ9. Therefore including it in a higher dimensional

Clifford algebra is useful, in particular because the complete set of gamma matrices means

the Hodge star acts simply allowing us to write all the bilinears in terms of forms of degree

4 or less.

3.1 Equations for N = 2 supersymmetry in 3D

For N = 2 supersymmetry in 3 dimensions, the supersymmetry equations (3.1) have to

be satisfied by two spinors on the internal manifold, ξ1,2. In order to see what sort of

constraints these equations impose on the 9-dimensional manifolds discussed in the previous

section we should first rewrite them in terms of the spinor bilinears (2.14). Using the

definitions (2.14) and (3.1) we can compute the derivatives of all the spinor bilinears to

find [39]

∇mVi n = 2λθnVi m − 2λ(θ · Vi)δmn − 1

12
FmpqrΦi n

pqr +
1

2
Φi mnpqf̃

pθq (3.10)

∇mKnp = −4λKm[nθp] + 4δm[nKp]qθ
q +

1

2
Fm[n

qrΨp]qr +Ψm[n
qθp]f̃q

−Ψm[n
qf̃p]θq + δm[nΨp]qrf̃

qθr (3.11)

∇mΨnpr = 6λΨm[npθr] − 6λδm[nΨpr]qθ
q +

1

12
Fm

stu(∗Ψ)nprstu

+
3

2
Fm[np

qKr]q −
1

2
(∗Ψ)mnprstf̃

sθt − 3Km[nf̃pθr] (3.12)

+ 3δm[nf̃pKr]qθ
q − 3δm[nθpKr]qf̃

q ,

∇mΦi npqr = −8λΦi m[npqθr] + 8λδm[nΦi pqr]sθ
s + Fm[n

st(∗Φi)pqr]st

− 2Fm[npqVi r] + 2(∗Φi)m[npq
sθr]f̃s − 2(∗Φi)m[npq

sf̃r]θs (3.13)

+ 2δm[n(∗Φi)pqr]stf̃
sθt − 12δm[nVi pf̃qθr] ,

where the subscript i stands for any of 1, 2, 3,+ or −. It is interesting to note that the equa-

tions above imply that the derivatives along θ vanish identically upon using the condition

on the fluxes (3.7).
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We should now consider the constraints which come from the external gravitino vari-

ation. These equations should be projected on a basis of spinors in order to find an

equivalent set of equations. In 8 dimensions it is easy to find a basis of spinors in terms

of Majorana-Weyl singlet spinors, but since the Majorana-Weyl components of the spinors

we consider may vanish at certain points, we will not be able to use a basis constructed in

such a way globally. Instead we shall project the supersymmetry equations on a larger set

of spinors — not linearly independent — which are constructed by multiplying the spinors

ξ1,2 by arbitrary elements of the Clifford algebra. Specifically we shall project the spinor

equations (3.1) on spinors of the form

ξi A = γAξi , i = 1, 2 , γA ∈ Cl(9, 0) . (3.14)

In practice we shall see that taking γA = 1, γm is enough and the other constraints are

just consequences of these ones. Therefore we shall use the following equations

−λ(θ · Vi) +
1

2
(Vi · d∆)− 1

12
FyΦi = 0 (3.15)

f̃mθnK
mn = 0 (3.16)

−2λθ + d∆− 1

12
∗ (F ∧ Φ+) +

1

6
V+y(f̃ ∧ θ) = 0 (3.17)

− 1

12
∗ (F ∧ Φ− ,3) +

1

6
V− ,3y(f̃ ∧ θ) = 0 (3.18)

2λθyK − d∆yK +
1

6
ΨyF − 1

3
(f̃ ∧ θ)yΨ = 0 (3.19)

while the ones corresponding to other Clifford elements can be found in appendix C.

3.2 Flux induced variations of α

The key property of the backgrounds that we are interested in is the variation of the pa-

rameter α, since this is the property that signals an M2-brane potential. We will explain

this relationship in more detail in section 3.3. In this section we are interested in deter-

mining which flux is responsible for inducing such a variation. In general not any flux will

induce this variation, for example we know that (2, 2) primitive flux as studied in the case

of SU(4)-structure compactifications [7] will not induce such a variation. We will determine

the flux which is relevant by using the supersymmetry equations to directly evaluate the

variation of α.

The form of the supersymmetry equations as given in section 3.1 carries redundancies

because the bilinears (2.14) are not independent, but satisfy various relations coming from

the Fierz relations. In order to find a more tractable set of equations we should use a

parametrisation for the forms (2.14) which already makes use of the Fierz relations. A

particular parameterisation is the one given in (2.29)–(2.33) which is valid for the SU(3)-

structure loci. We claim that this parameterisation is sufficient to capture all the variation

of α. This follows from the simple reasoning that over the patches where it breaks down,

the SU(4) and G2 loci, α is constant by definition. Further it is also at a maximum

or minimum value over these loci so that derivatives along directions leading away from

the loci also vanish. Therefore over such loci dα = 0 and all the variation is within the

SU(3)-structure locus.
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Using the supersymmetry equations (3.10), the variation of α can be generally com-

puted as

∇mα =
1

2
∇
(

V n
+V+ n

)

= V n
+∇mV+ n = − 1

12
V n
+FmpqrΦ+ n

pqr +
1

2
Φ+ mnpqf̃

pθqV n
+ . (3.20)

Making use of the SU(3) parametrisation of the form Φ+, (2.31), and of the fact that the

forms J , ρ, V− and V3 are all orthogonal to V+, together with the fact that θ should be a

combination of the vector fields V± and V3, we find that the second term above does not

contribute to the variation of the parameter α and so

∇mα = −1

3
ρpqrFm

pqr . (3.21)

Given again all the orthogonality properties of the SU(3)-structure forms we find that the

flux which is responsible for the variation of α can be written as

F = h̃ ∧ ρ+ g̃ ∧ ϕ , (3.22)

where at this stage h̃ and g̃ are arbitrary one-forms on the internal manifold that parame-

terise the flux.

Note that ρ and ϕ are (depending on the conventions) the real and imaginary part of

the holomorphic 3-form which can be defined on a manifold with SU(3)-structure. Over

the SU(4) locus the flux therefore lifts to either (4, 0)+(0, 4) or (3, 1)+(1, 3) flux. Note

that both these fluxes are forbidden by supersymmetry in the case of pure SU(4)-structure

where only (2,2) primitive fluxes are allowed [7], which is consistent with the understanding

that the variation of α vanishes over that locus.

3.3 M2-brane potentials and supersymmetry

At this stage it is worth going into some more detail regarding the relation between a

potential for probe space-time filling M2-branes and the background geometry. In type

IIB compactified on manifolds with SU(3) × SU(3) structure, we know that space-time-

filling D3 branes become supersymmetric at points where the manifold locally looks like a

manifold with SU(3) structure (i.e. the two spinors defining the SU(3) × SU(3) structure

are parallel) [21, 22]. In this section we will find similar results for M2-branes in terms of

local structure groups.

Let us briefly recall some well-known facts about supersymmetry and M2 branes. We

will utilise the form of the M2-brane action given in [47]

SM2=−TM2

∫

d3ζ
√
−G−TM2

6

∫

d3ζǫijkAkji+i
TM2

2

∫

d3ζ
√
−Gȳ(1−ΓM2)Γ

iD̃iy , (3.23)

where Gij is the induced metric on the brane, TM2
is the tension of the brane, Aijk is the

pull-back of the supergravity 3-form on the brane, D̃i is the pull-back of the supercovariant

derivative and y is an 11-dimensional Majorana spinor. ΓM2 is the brane chirality operator

which is given by

ΓM2 =
1

6
√
−G

ǫijkΓiΓjΓk . (3.24)
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Note that Γ2
M2 = 1 so that its eigenvalues are ±1 and we can define projectors on the

corresponding subspaces as

P± =
1

2
(1± ΓM2) . (3.25)

The action (3.23) is invariant under local κ transformations [47]

δκy = (1 + ΓM2)κ+O
(

y2
)

, δκX
M =

i

2
ȳΓM (1 + ΓM2)κ+O

(

y3
)

(3.26)

where κ is a 32-component spinor which may depend on the coordinates on the worldvolume

of the M2 brane, ζi.

For a background with Killing spinor ǫ satisfying (2.2), supersymmetry transformations

act as

δǫy = ǫ+O
(

y2
)

, δǫX
M = − i

2
ȳΓM ǫ+O

(

y3
)

. (3.27)

A bosonic brane configuration (y = 0) is supersymmetric only if δǫy = 0 and we see that

this can not be satisfied unless ǫ = 0. However δǫy = ǫ is compatible with supersymmetry

only if this transformation can be compensated by a κ transformation [27]. Therefore the

only supersymmetry generators which are not broken by the bosonic brane configuration

are those which can be written as

ǫ = δκy = (1 + ΓM2)κ = 2P+κ . (3.28)

This is equivalent to requiring [27]

P−ǫ = (1− ΓM2)ǫ = 0 . (3.29)

For the compactification to 3 dimensions with space-time-filling M2-branes, the M2 brane

chirality operator decomposes according to the the split of gamma matrices (2.7), as

ΓM2 = 1⊗ γ9 (3.30)

where γ9 is the chirality operator on the 8d manifold. Using the spinor decomposition

for the compactification to 3 dimensions (2.8) we find we find that the condition above is

equivalent to

γ9ξ = ξ . (3.31)

We see that the condition that the M2 brane is supersymmetric requires Killing spinors of

definite chirality.

With this result in mind consider probe M2 branes in our supergravity background

at the different local SU(3), SU(4) or G2-structure loci. Generally we have that there

are 2 Majorana Killing spinors. Over G2 loci, α = −1, these become Majorana-Weyl

Killing spinors of opposite chirality. Therefore M2 branes preserve N = 1 supersymmetry

on these loci. Over SU(4) loci, α = +1, the Killing spinors are Majorana-Weyl of same

chirality and so M2 branes either preserve N = 2 supersymmetry or no supersymmetry.

However, for a given fixed chirality of the two Majorana-Weyl spinors either M2 or anti-

M2 branes preserve N = 2 supersymmetry, and we define M2 branes as the objects which
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preserve the supersymmetries over SU(4) loci.10 Over the SU(3) loci, −1 < α < 1, we have

two Killling Majorana spinors which contain 4 non-vanishing Majorana-Weyl component

spinors. We have three possibilities: either all of the Majorana-Weyl components are

Killing individually, in which case the M2 branes preserves N = 2 supersymmetry, or two

Majorana-Weyl components of one Majorana spinor are Killing while the components of

the other are not, in which case the M2 preserves N = 1 supersymmetry, or none of the

components are Killing in which case an M2 brane is non-supersymmetric. In appendix D

we show that the flux which induces a varying α (3.22) precisely implies that the last

possibility is realised and M2 branes preserve no supersymmetry. Indeed it is rather simple

to see that this should be the case for any background which does not have a global

SU(3) or G2-structure since if any Majorana-Weyl components were covariantly constant

by themselves their norm could be set to unity over the full manifold, thereby implying

that they are nowhere vanishing and induce a global SU(3) or G2-structure.

On general grounds we expect that supersymmetric loci are minima of the potential.

This means that on the generic (non-supersymmetric) locus a probe M2 brane should feel

a potential which drives it to a supersymmetric locus.

Let us be more explicit about the condition for N = 2 supersymmetry of the M2 brane.

The condition (3.31) has to be satisfied for two spinors ξ1 and ξ2, which means that the

two spinors are actually Majorana-Weyl of positive chirality and therefore define a SU(4)

structure. In the language used in section 2.2 this means that the vectors V1 and V2 are

equal and therefore

V− = V3 = 0 . (3.32)

Conversely, the condition V− = V3 = 0 implies that we are dealing with a SU(4) point

and therefore the two spinors are Majorana-Weyl.11 Finally, it is interesting to note that,

in the spirit of the analysis in [21, 22] of D3 superpotentials, the condition (3.32) hints

that some combination of the 1-forms V− and V3 may be associated to the derivative of a

world-volume potential.

4 Analysis of the special flux

In the previous section we identified the particular flux that sources the variation of α. In

this section we study backgrounds that can support this flux. As an initial investigation

we restrict the 4-form flux F to be solely composed of the flux of interest so that it takes

the form (3.22), while the warp-factor ∆ and 1-form flux f are unconstrained. We leave a

complete investigation allowing also for other types of 4-form fluxes in the background for

future work.

10Note that there exists the interesting possibility of multiple SU(4) loci with different chiralities in

which case neither M2 or anti-M2 can preserve supersymmetry on all of loci. We will not consider such

configurations in detail in this work.
11In principle the chirality of the spinors can not be determined. However, if this is negative, and therefore,

the condition (3.31) is not satisfied, this would be a point where anti M2 branes are supersymmetric.
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It is useful to decompose the 4-form flux along the three vectors as

F = h ∧ ρ+ g ∧ ϕ

+
1

2(1 + α)
h+V+ ∧ ρ+

1

2(1− α)
h−V− ∧ ρ+

2

(1− α)
h3V3 ∧ ρ

+
1

2(1 + α)
g+V+ ∧ ϕ+

1

2(1− α)
g−V− ∧ ϕ+

2

(1− α)
g3V3 ∧ ϕ .

(4.1)

In the above we defined

hi = Vi · h̃ ≡ V m
i h̃m , gi = Vi · g̃ ≡ V m

i g̃m , i = ±, 3 , (4.2)

while g and h are defined as the components of g̃ and h̃ orthogonal to the vectors V± and

V3. We therefore decompose the fluxes h, g and f̃ as

h̃ = h+
1

2(1 + α)
h+V+ +

1

2(1− α)
h−V− +

2

(1− α)
h3V3 , (4.3)

g̃ = g +
1

2(1 + α)
g+V+ +

1

2(1− α)
g−V− +

2

(1− α)
g3V3 , (4.4)

f̃ = f +
1

2(1 + α)
f+V+ +

1

2(1− α)
f−V− +

2

(1− α)
f3V3 , (4.5)

where f , f± and f3 are defined in analogy with g and h by their relation to the vectors.

Note that there are no divergences at α = ±1 in the expressions above, which can be seen

using the limits (2.35). Recall that we are still formally working on a nine-dimensional

manifold and in order not to alter the physics we have to impose (3.7) on the fluxes above.

Since θ is a linear combination of the vectors, this condition imposes the orthogonality of

the one-form fluxes h̃, g̃ and f̃ on θ

θyh̃ = θyg̃ = θyf̃ = 0 . (4.6)

With these definitions, and using the various relations in appendix B, we find that (3.21)

yields

dα = −(1−α)(1+α)h− 2(1−α)gyJ − (1−α)h+V+ − (1+α)h−V− − 4(1+α)h3V3 (4.7)

Note that, as expected, dα = 0 on the SU(4) and G2 loci.

To analyse the supersymmetry conditions for this particular flux Ansatz we shall start

with the constraints (3.15)–(3.19). Inserting the SU(3) parametrisation (2.30)–(2.33) and
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the flux Ansatz above, by using the relations in appendix B we find

0 = −λ(θ · V+) +
1

2
(V+ · d∆)− 1

6
(1− α)h+ , (4.8a)

0 = −λ(θ · V−) +
1

2
(V− · d∆) +

1

6
(1 + α)h− +

2

3
g3 , (4.8b)

0 = −λ(θ · V3) +
1

2
(V3 · d∆) +

1

6
(1 + α)h3 −

1

6
g− , (4.8c)

0 = (θ · V3)f− − f3(θ · V−) , (4.8d)

0 = d∆− 2λθ − 1

3
(g−V3 − g3V−) +

1

6
f+θ −

1

6
(θ · V+)f̃ , (4.8e)

0 = −h+V− + h−V+ − 2g+V3 + 2g3V+ + f−θ − (θ · V−)f̃ , (4.8f)

0 = −2h+V3 + 2h3V+ + g+V− − g−V+ + 2f3θ − 2(θ · V3)f̃ , (4.8g)

0 =
2λ

1− α
(θ · V−)V3 −

2λ

1− α
(θ · V3)V− − d∆yJ − 1

1− α
(d∆ · V−)V3 +

1

1− α
(d∆ · V3)V−

+
1

6
(1− α)h̃yJ − 1

6
(1− α)g̃ − 1

12

1− α

1 + α
g+V+ − 1

3
g3V3 −

1

12
g−V−

+
(θ · V+)

3(1 + α)
f̃yJ − 1

6(1− α)

(

f̃ ∧ θ
)

y(V+ ∧ V− ∧ V3) . (4.8h)

Let us look more carefully at equation (4.8f). Contracting it with V− we immediately find

that h+ = 0. By contracting with V3 and using (4.8d) we find that g+ = 0. Furthermore,

projecting equations (4.8f) and (4.8g) on V+ and on the 6-dimensional space orthogonal to

the vectors V± and V3 one obtains the following equations

g3 = −1

2
h− − 1

4(1 + α)
f−(θ · V+) +

1

4(1 + α)
(θ · V−)f+ , (4.9)

g− = 2h3 +
1

1 + α
f3(θ · V+)−

1

1 + α
(θ · V3)f+ , (4.10)

and

(θ · V−)f = 0 , (θ · V3)f = 0 . (4.11)

Now, using (3.9), the relations coming from the orthogonality of θ on the fluxes f̃ and g̃

become

h−(θ · V−) + 4h3(θ · V3) = 0 , (4.12)

h3(θ · V−)− h−(θ · V3) = 0 , (4.13)

where we used (4.9), (4.10) and (4.8d). These equations can be viewed as a linear system for

h− and h3 which has a non-trivial solution only if the corresponding determinant vanishes.

Therefore, there are two cases to consider. One of them must have θ · V− = θ · V3 = 0 and

the other one has to satisfy h− = h3 = 0 and, following (4.11), f = 0. We shall focus on

the first solutions as we want to study loci with dα 6= 0. Indeed, it is easy to show that in

the latter case one must have that dα = 0. In order to prove it one needs also the identity

gyJ +
1

2
(1 + α)h = 0 , (4.14)

resulting from eq. (4.8h) after contraction with J .
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Let us continue with the case θ · V− = θ · V3 = 0. Making use of eq. (3.9) we obtain

that θ has to be in the direction of V+. We can therefore write

θ =
(θ · V+)

2(1 + α)
V+ , (4.15)

and the fact that the physics should not depend on θ now transfers to V+. Notice that this

is consistent with the expectation that the flux should vanish over G2 structure loci since

in this case we have V+ = 0 but the auxiliary direction θ must be non-vanishing.

Together with equation (4.8a), (4.15) immediately implies that λ = 0, and there-

fore all such compactifications are to 3-dimensional Minkowski space. Furthermore, equa-

tions (4.8b), (4.8c), (4.8f) and (4.8g) allow to solve for the projections of d∆ on V− and V3

in terms of f− and f3. Altogether the equations (4.8) become

0 = λ = f+ = g+ = h+ = d∆ · V+ , (4.16a)

d∆ · V− =
1− α

3
h− +

θ · V+

3(1 + α)
f− , d∆ · V3 =

1− α

3
h3 +

θ · V+

3(1 + α)
f3 , (4.16b)

g3 = −1

2
h− − θ · V+

4(1 + α)
f− , g− = 2h3 +

θ · V+

1 + α
f3 , (4.16c)

0 = d∆− 1

3
(g−V3 − g3V−)−

1

6
(θ · V+)f̃ , (4.16d)

0 = −d∆yJ +
1

6
(1− α)(hyJ − g) +

(θ · V+)

3(1 + α)
fyJ . (4.16e)

Contracting (4.16d) with J we find

d∆yJ =
(θ · V+)

6
fyJ , (4.17)

and then (4.16e) becomes

g − hyJ =
(θ · V+)

1 + α
fyJ . (4.18)

4.1 The case f̃ = 0

At this point we split the analysis to two cases, the simpler case f̃ = 0 is studied in this

section, while the more general case is studied in section 4.2. For this section we therefore

set f = f+ = f− = f3 = 0.

Let us analyse more closely equation (4.18). Since J , up to normalisation, acts like

an almost complex structure on the 6-dimensional space orthogonal to the vectors V± and

V3, this equation tell us that a particular combination of the fluxes g and h is holomorphic

with respect to the almost complex structure J . It is not hard to see that the complex flux

defined as

h = h+ i

√

2

1 + α
g , h̄ = h− i

√

2

1 + α
g (4.19)

is holomorphic in that it obeys

Jm
n
hn = i

√

1 + α

2
hm , Jm

n
h̄n = −i

√

1 + α

2
h̄m . (4.20)
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It is useful to use this flux combination together with objects which again have well-defined

behavior when contracted with J . In particular, we can construct a (4, 0) form by taking

the exterior product of (2.41) with (4.19). Since J only acts on a 6-dimensional subspace, a

(4, 0) form in the sense defined above must identically vanish. In particular we have (B.34)

0 = h ∧ Ω = h ∧ ϕ− 2

1 + α
g ∧ ρ+ i

√

2

1 + α
(h ∧ ρ+ g ∧ ϕ) = 0 . (4.21)

Note that the imaginary part is proportional to the projection of the flux F orthogonal to

the vectors. The fact that this part of the flux vanishes implies that the variation of α only

depends on the projection of the h̃ and g̃ fluxes along the vectors V− and V3.

The equations (4.16) now become

d∆ · V− =
1− α

3
h− , d∆ · V3 =

1− α

3
h3 , g3 = −1

2
h− , g− = 2h3 , hyJ − g = 0

(4.22)

with all the rest of the flux components being zero. All the above relations greatly simplify

the differential equations which now become

dα = −(1 + α)h−V− − 4(1 + α)h3V3 (4.23)

dV+ =
1

2
h−V+ ∧ V− + 2h3V+ ∧ V3 , dV− = 2h3V− ∧ V3 , dV3 = −1

2
h−V− ∧ V3 , (4.24)

dK = −h−J ∧ V− − 4h3J ∧ V3 , (4.25)

dΨ =
2

1 + α
J ∧ V+ ∧

(

1

4
h−V− + h3V3

)

− 2

1− α
ρ ∧ (h−V3 − h3V−)

+
1− 5α

1− α
ϕ ∧

(

1

4
h−V− + h3V3

)

, (4.26)

where we made extensive use of the relations (B.33) for k = h which, in the case f̃ = 0,

implies k̃ = g. Note that the exterior derivative of J is the same as the derivative of K

above, while for the derivative of ϕ we find

dϕ =
2

1− α
ρ ∧ (h3V− − h−V3) +

1− 5α

1− α
ϕ ∧

(

1

4
h−V− + h3V3

)

. (4.27)

In the above formula the term which is in the direction of V+ in dΨ drops out. This is

precisely as it should be, as ϕ has no components along V+ and moreover its derivative

along θ (which is identified with V+ in this case) vanishes. With a bit of more work one

can compute the exterior derivative of ρ as well. We find

dρ =
3− 7α

1− α
ρ ∧

(

1

4
h−V− + h3V3

)

+
1 + α

1− α
ϕ ∧ (h−V3 − h3V−) . (4.28)

At a first glance it seems that dϕ and dρ do not combine nicely into dΩ, but one has to take

into account that dΩ contains an additional term of the form dα∧ρ due to the α-dependent

factor in front of ρ in the definition of Ω. With this we find

dΩ =
1− 5α

1− α
Ω ∧

(

1

4
h−V− + h3V3

)

+ i
1 + α

1− α

√

2

1 + α
Ω ∧ (h−V3 − h3V−) . (4.29)
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It is important to notice that the exterior derivatives of the SU(3)-structure forms do not

have components strictly orthogonal to the vectors. Therefore one can conclude that the

intrinsic torsion classes for the 6-dimensional manifold orthogonal to the vectors vanish

and therefore this is a Calabi-Yau manifold. We conclude that in the case f̃ = 0 the

supersymmetry equations require that, over the SU(3) locus, the 8-dimensional manifold

is a fibration of a 6-dimensional CY manifold over a 2-dimensional base spanned by the

vectors V− and V3. While over any G2 or SU(4) loci the flux vanishes.

For the equations (4.23)–(4.26) to be nilpotent we must impose a constraint on the

derivative of the flux to be along the vectors V− and V3 and to satisfy

dh− ∧ V− + 4dh3 ∧ V3 = 0 . (4.30)

Further to this the Bianchi Identity (2.3) imposes the constraint

dh3 ∧ V− − dh− ∧ V3 = − 7 + α

4(1− α)

(

h2− + 4h23
)

V− ∧ V3 . (4.31)

It is simple to solve the first order differential equations (4.30) and (4.31) which fixes the

form of the two independent flux components in terms of α

hi = ci (1− α) (1 + α)−
3

4 , i = −, 3 . (4.32)

Here the ci are some undetermined constants.12

Finally let us note that using the normalisation of V+ we can write

V+ =
√

2(1 + α)θ , (4.33)

taking θ to be constant we derive

dV+ =
1

2(1 + α)
dα ∧ V+ , (4.34)

which precisely agree with dV+ found in (4.23). This is consistent with the interpretation

that the auxiliary 9-dimensional manifold is a direct product of the original 8-dimensional

manifold and a circle.

4.2 The case f̃ 6= 0

Let us now return to the study of the f̃ 6= 0 case. Compared to the case f̃ = 0 we see that

now the complex fluxes (4.19) are no longer (anti)holomorphic. Rather one should replace

h → h+ (θ·V+)
1+α

f in order to obtain a holomorphic combination. This means that following

the same argument of constructing a (4, 0) form on the space orthogonal to the vectors

introduced in the previous section, we now find

h ∧ ρ+ g ∧ ϕ = −(θ · V+)

1 + α
f ∧ ρ , (4.35)

and so the flux F has also a component which is orthogonal to the vectors.

12We expect them to be fixed within string theory through requiring flux quantisation.
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For the variation of α we find

dα = (1− α)(θ · V+)f − (1 + α)(h−V− + 4h3V3) . (4.36)

One can compute again the derivatives of the forms and we find

dV+ =
1− α

2(1 + α)
(θ · V+)f ∧ V+ + 2h3V+ ∧ V3 +

1

2
h−V+ ∧ V− , (4.37)

dV− =
2(θ · V+)

(1− α)(1 + α)
f3V− ∧ V3 + 2h3V− ∧ V3 −

1

2
(θ · V+)f ∧ V− , (4.38)

dV3 = − (θ · V+)

2(1− α)(1 + α)
f−V− ∧ V3 −

1

2
h−V− ∧ V3 −

1

2
(θ · V+)f ∧ V3 , (4.39)

dK = −h−J ∧ V− − 4h3J ∧ V3 −
α

1 + α
(θ · V+)f ∧ J − θ · V+

2(1− α)
f ∧ V− ∧ V3

− θ · V+

2(1 + α)(1− α)
f−J ∧ V− − 2

θ · V+

(1 + α)(1− α)
f3J ∧ V3 . (4.40)

dΨ can again be computed directly from its covariant derivative. Again, when deriving dϕ

the terms in the direction of V+ cancel and we are left with

dϕ =
3

2
(θ · V+)ϕ ∧ f +

(θ · V+)

2(1− α)
(fyρ) ∧ V− ∧ V3 +

1− 5α

1− α
ϕ ∧

(

1

4
h−V− + h3V3

)

+
3(θ · V+)

(1− α)(1 + α)
ϕ ∧

(

1

4
f−V− + f3V3

)

− 2

1− α
ρ ∧ (h−V3 − h3V−) (4.41)

− (θ · V+)

2(1− α)(1 + α)
ρ ∧ (f−V3 − f3V−) .

dρ can be computed from various combinations of spinor bilinears (e.g. dρ = 1
4(V+yΦ+))

and we find

dρ =
2α+ 1

1 + α
(θ · V+)ρ ∧ f +

(θ · V+)

2(1− α)
(fyϕ) ∧ V− ∧ V3 +

3− 7α

1− α
ρ ∧

(

1

4
h−V− + h3V3

)

+
3(θ · V+)

(1− α)(1 + α)
ρ ∧

(

1

4
f−V− + f3V3

)

+
1 + α

1− α
ϕ ∧ (h−V3 − h3V−) (4.42)

+
(θ · V+)

4(1− α)
ϕ ∧ (f−V3 − f3V−) .

Again, taking into account the factors which multiply ρ in the definition of Ω we find for

the latter

dΩ =
3

2
(θ · V+)Ω ∧ f + i

√

2

1 + α

(θ · V+)

2(1− α)
(fyΩ) ∧ V− ∧ V3 +

1− 5α

1− α
Ω ∧

(

1

4
h−V− + h3V3

)

+
3(θ · V+)

(1− α)(1 + α)
Ω ∧

(

1

4
f−V− + f3V3

)

+ i

√

2

1 + α

1 + α

1− α
Ω ∧ (h−V3 − h3V−) (4.43)

+ i

√

2

1 + α

(θ · V+)

2(1− α)(1 + α)
Ω ∧ (f−V3 − f3V−) .
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As in the case of f = 0 it will be instructive to find the torsion classes of the manifold with

SU(3)-structure which is orthogonal to the vectors. Projecting on the 6-dimensional space

the above derivatives become

P6(dJ) = − α

1 + α
(θ · V+)J ∧ f , (4.44)

P6(dΩ) =
3

2
(θ · V+)Ω ∧ f . (4.45)

We see that now these derivatives are non-zero and in order to read off the torsion classes

of the 6-dimensional manifold with SU(3)-structure we need to first normalise the forms J

and Ω. First we normalise J to be a proper almost complex structure (i.e. its square to

be −1). This is achieved with the following rescaling

J ′ =

√

2

1 + α
J , (4.46)

Furthermore we define

ϕ′ =

√

2

1− α
ϕ , (4.47)

thus the rescaling of ρ is the following

(ρ′)mnp = J ′

rm(ϕ′)npr =
2

√

(1− α)(1 + α)
ρ . (4.48)

We then find the following expressions for the projections of dJ ′ and dϕ′ on the 6 dimen-

sional space orthogonal to the vectors

P6(dJ
′) = −(θ · V+)

2
J ′ ∧ f , (4.49)

P6(dϕ
′) = (θ · V+)ϕ

′ ∧ f . (4.50)

According to [45] this means that the only non-vanishing torsion classes are W4 and W5

which are given by

W4 =
1

2
J ′
y(dJ ′) = −1

2
(θ · V+)f , (4.51)

W5 =
1

2
ϕ′
y(dϕ′) = (θ · V+)f , (4.52)

and therefore satisfy 2W4+W5 = 0. Note that this relation also featured in the conditions

found in [46] for non-Kähler backgrounds in heterotic string compactifications.

5 Summary

In this paper we studied N = 2 compactifications of M-theory to three dimensions which

have the defining property that a potential is induced for probe space-time filling M2-

branes. Such backgrounds are specifically relevant for many model building applications,

ranging from moduli stabilisation to flavour physics, all of which rely on backgrounds that

involve potentials for space-time filling probe D3-branes on the F-theory side, which by

the F-theory/M-theory duality implies an M2-potential. We showed that it is possible

to translate the requirement of an M2-potential to a specific property of the background

geometry. Specifically, that the 8-dimensional background should uplift over a trivial circle

fibration to a 9-dimensional manifold in which the M2-potential can be related to variations
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of the angle α between two vectors. In terms of 8-dimensional geometry the variation of α

implies that one can define a varying ‘local’ structure group, so that over a generic point

the manifold exhibits an 8-dimensional SU(3)-structure, while over special loci this changes

to SU(4)-structure or G2-structure.

We studied the supersymmetry equations over such backgrounds and wrote them as

differential constraints on the 9-dimensional forms. We identified a specific 4-form flux

that sources variations of the angle α over the space, and showed that it vanishes over the

special SU(4)-structure and G2-structure loci, while over the generic SU(3)-structure locus

it is parameterised by two real one-forms h and g. We went on to study backgrounds which

support this particular 4-form flux as well as a further possible four-form flux with one leg in

the internal directions, but no other 4-form fluxes. We showed that in this restricted case,

over the generic SU(3)-structure locus the background takes the form of a 6-dimensional

SU(3)-structure manifold with torsion classes W4 and W5, satisfying 2W4 = −W5, fibered

over a 2-dimensional base. In the case where the additional 1-leg flux is turned off we

showed that the geometry is a 6-dimensional Calabi-Yau fibered over a 2-dimensional base

which supports the flux and over which α varies. Since a major motivation for our work

is an application to F-theory, and this requires that the background supports an elliptic

fibration, it is encouraging that the simplest solutions are based on a Calabi-Yau fibration

since it is well known how to construct elliptically fibered Calabi-Yau threefolds.

The analysis of the supersymmetry equations performed in this work can form a guide

for finding full explicit solutions of M-theory. This would involve also solving, if they are not

automatically implied, Einstein’s equations. Further, although we found solutions to the

Bianchi identity for the simplified flux backgrounds, one would need to solve the equations

of motions for the C3 field. It may be that imposing the full set of requirements for a stable

solution on an explicit background, and possibly a realistic vacuum, would imply the need

to also incorporate further fluxes, perhaps the analogs of the primitive (2, 2) flux. Note

that the backgrounds that arise in the simplified flux cases discussed above are naturally

similar to the backgrounds studied in [48], and the approach presented in that work of a

two-stage reduction may be useful for finding full solutions. We plan to return to these

aspects in future work [49].

As discussed in the introduction, M2 potentials can be sourced by non-perturbative

effects and it would be interesting, perhaps along the lines of [24, 25], to develop a map

between such non-perturbative effects and the flux presented in this work. A related

extension of our work would be a more detailed understanding of the full form of the

potential that is induced for the M2 branes. Along the same lines, a more detailed study

of the applications to the phenomenological aims presented: moduli stabilisation, inflation,

flavour physics, would be interesting.
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A Fierz identities

Fierz relations represent identities of products of gamma matrices with reshuffled indices.

They emerge as a direct consequence of the the fact that the elements of the Clifford algebra

in d-dimensions form a basis for the square matrices
(

2[
d

2 ] × 2[
d

2 ]
)

. Thus any square matrix

M can be expanded in a basis of gamma matrices in the following way

M =
1

2[
d

2 ]

∑

A

Tr
(

MγA
)

γA . (A.1)

Fierz identities take a simpler form in the case of Majorana spinors. We restrict to this

case and assume that the gamma matrices are real and symmetric. In order to write the

general quadratic Fierz identity one can define the following matrix

Mcd = (γA)ac(γB)bd (A.2)

for arbitrary fixed spinorial indices a, b and use eq. (A.1) to obtain

(γA)ac(γB)bd =
1

2[
d

2 ]

∑

C

(

γAγCγ
T
B

)

ab

(

γC
)

cd
. (A.3)

The equation above can be used to generate all the necessary Fierz identities. For instance,

by taking γA = γB = 1 one obtains the well-known completeness relation for gamma

matrices. Above, we have chosen to reshuffle the indices b and c. Similarly one can obtain

relations with other indices reshuffled.

We shall use the tensor form of the Fierz identities in eq. (A.3) which is obtained by

contracting with the invariant spinors on the nine-dimensional manifold. The relations we

obtain are exhaustive as γA, γB run over all the basis elements of the Clifford algebra.

An equivalent approach is to start with the completeness relation for the gamma

matrices

(1)ac(1)bd =
1

2[
d

2 ]

∑

C

(γC)ab
(

γC
)

cd
(A.4)

and contract with arbitrary spinors. In our case the spinors are chosen as the invariant

spinors on the nine-dimensional manifold multiplied by arbitrary elements of the Clifford

algebra. These spinors do not form a basis on the space of spinors as they are not all linearly

independent, but it is clear that they form a generating set. Therefore, the relations we

obtain are exhaustive and they are equivalent to the original statement that the gamma

matrices form a basis.

In this appendix we summarize the results obtained by performing a linear analysis of

the system of equations generated in the way described above. We list the Fierz identities

according to the number of space-time free indices. We also split the results into identities

which have completely antisymmetric free indices and the ones which have symmetries

corresponding to other Young tableaux. For the antisymmetric identities, the maximum

number of free indices which produces new results is four, as other relations with more

antisymmetric free indices can be obtained by contracting with the nine-dimensional ǫ

symbol. For identities which have other symmetries of the free indices, we also stop at four

indices as in our calculations we do not need further relations.

– 27 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
6

A.1 Completely antisymmetric Fierz identities

No free indices.

||V1||2 = 1 〈V1, V2〉 = α (A.5)

||V2||2 = 1 〈V1, V3〉 = 0 (A.6)

||V3||2 =
1

2
(1− α) 〈V2, V3〉 = 0 (A.7)

||K||2 = 1

2
(5 + 3α) (A.8)

||Ψ||2 = 1

2
(11− 3α) (A.9)

||Φ1||2 = 14 〈Φ1,Φ2〉 = −1− α (A.10)

||Φ2||2 = 14 〈Φ1,Φ3〉 = 0 (A.11)

||Φ3||2 =
1

2
(15 + α) 〈Φ2,Φ3〉 = 0 . (A.12)

Notice that the real parameter α can take values only in the interval

α ∈ [−1, 1] . (A.13)

One free index.

V m
1 Km

r = V r
3

1

3!
Ψmnp(Φ1)mnp

r = 7V r
3 (A.14)

V m
2 Km

r = −V r
3

1

3!
Ψmnp(Φ2)mnp

r = −7V r
3 (A.15)

V m
3 Km

r =−1

2
(V r

1 −V r
2 )

1

3!
Ψmnp(Φ3)mnp

r =−7

2
(V r

1 −V r
2 ) (A.16)

1

2!
KmnΨmn

r = 2 (V r
1 + V r

2 ) (A.17)

1

4!
(Φ1)

mnpq(∗Φ1)mnpq
r = 14V r

1

1

4!
(Φ1)

mnpq(∗Φ2)mnpq
r = −(V r

1 + V r
2 ) (A.18)

1

4!
(Φ2)

mnpq(∗Φ2)mnpq
r = 14V r

2

1

4!
(Φ1)

mnpq(∗Φ3)mnpq
r = 7V r

3 (A.19)

1

4!
(Φ3)

mnpq(∗Φ3)mnpq
r = 4 (V r

1 + V r
2 )

1

4!
(Φ2)

mnpq(∗Φ3)mnpq
r = 7V r

3 . (A.20)

Two free indices.

V m
1 Ψm

rs = Krs − 2V
[r
1 V

s]
3

1

2
Kmn(Φ1)mn

rs=−3Krs+6V
[r
1 V

s]
3 (A.21)

V m
2 Ψm

rs = Krs + 2V
[r
2 V

s]
3

1

2
Kmn(Φ2)mn

rs=−3Krs−6V
[r
2 V

s]
3 (A.22)

V m
3 Ψm

rs = −V
[r
1 V

s]
2

1

2
Kmn(Φ3)mn

rs= 3V
[r
1 V

s]
2 (A.23)

1

3!
Ψmnp(∗Φ1)mnp

rs =−3Krs−8V
[r
1 V

s]
3 (A.24)

1

3!
Ψmnp(∗Φ2)mnp

rs =−3Krs+8V
[r
2 V

s]
3 (A.25)

– 28 –



J
H
E
P
0
4
(
2
0
1
4
)
0
2
6

1

3!
Ψmnp(∗Φ3)mnp

rs =−4V
[r
1 V

s]
2 (A.26)

1

3!
(Φ1)

mnp[r(Φ1)mnp
s] = 0

1

3!
(Φ1)

mnp[r(Φ2)mnp
s]= −V

[r
1 V

s]
2 (A.27)

1

3!
(Φ2)

mnp[r(Φ2)mnp
s] = 0

1

3!
(Φ1)

mnp[r(Φ3)mnp
s]= 4Krs−V

[r
1 V

s]
3 (A.28)

1

3!
(Φ3)

mnp[r(Φ3)mnp
s] = 0

1

3!
(Φ2)

mnp[r(Φ3)mnp
s]=−4Krs−V

[r
2 V

s]
3 (A.29)

Km[rKm
s] = 0 (A.30)

Ψmn[rΨmn
s] = 0 . (A.31)

Three free indices.

V m
1 (Φ1)m

rst=0 V m
2 (Φ1)m

rst=6V
[r
3 Kst]+2Km[rΨm

st] (A.32)

V m
1 (Φ2)m

rst=−6V
[r
3 Kst]+2Km[rΨm

st] V m
2 (Φ2)m

rst=0 (A.33)

V m
1 (Φ3)m

rst=Ψrst − 3V
[r
1 Kst] V m

2 (Φ3)m
rst=−Ψrst + 3V

[r
2 Kst] (A.34)

V m
3 (Φ1)m

rst=−Ψrst + 3V
[r
1 Kst] 1

2
Kmn(∗Φ1)mn

rst=−Ψrst − 6V
[r
1 Kst] (A.35)

V m
3 (Φ2)m

rst=Ψrst − 3V
[r
2 Kst] 1

2
Kmn(∗Φ2)mn

rst=−Ψrst − 6V
[r
2 Kst] (A.36)

V m
3 (Φ3)m

rst=−Km[rΨm
st] 1

2
Kmn(∗Φ3)mn

rst=−6V
[r
3 Kst] (A.37)

1

2
Ψmn[r(Φ1)mn

st] = −2Ψrst + 3V
[r
1 Kst] (A.38)

1

2
Ψmn[r(Φ2)mn

st] = −2Ψrst + 3V
[r
2 Kst] (A.39)

1

2
Ψmn[r(Φ3)mn

st] = 3V
[r
3 Kst] (A.40)

1

3!
(Φ1)

mnp[r(∗Φ1)mnp
st] = 0

1

3!
(Φ1)

mnp[r(∗Φ2)mnp
st] = 4V

[r
3 Kst] (A.41)

1

3!
(Φ2)

mnp[r(∗Φ2)mnp
st] = 0

1

3!
(Φ1)

mnp[r(∗Φ3)mnp
st] = 2Ψrst + 2V

[r
1 Kst] (A.42)

1

3!
(Φ3)

mnp[r(∗Φ3)mnp
st] = 0

1

3!
(Φ2)

mnp[r(∗Φ3)mnp
st] = −2Ψrst − 2V

[r
1 Kst] (A.43)

1

3!
(Φ2)

mnp[r(∗Φ1)mnp
st] = −4V

[r
3 Kst] (A.44)

1

3!
(Φ3)

mnp[r(∗Φ1)mnp
st] = −2Ψrst − 2V

[r
1 Kst] (A.45)

1

3!
(Φ3)

mnp[r(∗Φ2)mnp
st] = 2Ψrst + 2V

[r
2 Kst] . (A.46)

Four free indices.

V m
1 (∗Φ1)m

rsuv = (Φ1)
rsuv (A.47)

V m
1 (∗Φ2)m

rsuv = −(Φ1)
rsuv − 8V

[r
3 Ψsuv] − 6K [rsKuv] (A.48)

V m
1 (∗Φ3)m

rsuv = (Φ3)
rsuv − 4V

[r
1 Ψsuv] (A.49)
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V m
2 (∗Φ1)m

rsuv = −(Φ2)
rsuv + 8V

[r
3 Ψsuv] − 6K [rsKuv] (A.50)

V m
2 (∗Φ2)m

rsuv = (Φ2)
rsuv (A.51)

V m
2 (∗Φ3)m

rsuv = (Φ3)
rsuv + 4V

[r
2 Ψsuv] (A.52)

V m
3 (∗Φ1)m

rsuv = 4V
[r
1 Ψsuv] (A.53)

V m
3 (∗Φ2)m

rsuv = −4V
[r
2 Ψsuv] (A.54)

V m
3 (∗Φ3)m

rsuv =
1

2
(Φ1 +Φ2)

rsuv + 3K [rsKuv] (A.55)

Km[r(Φ1)m
suv] = (Φ3)

rsuv − 3V
[r
1 Ψsuv] (A.56)

Km[r(Φ2)m
suv] = −(Φ3)

rsuv − 3V
[r
2 Ψsuv] (A.57)

Km[r(Φ3)m
suv] = −1

2
(Φ1 − Φ2)

rsuv − 3V
[r
3 Ψsuv] (A.58)

1

2
Ψmn[r(∗Φ1)mn

suv] = (Φ3)
rsuv + 2V

[r
1 Ψsuv] (A.59)

1

2
Ψmn[r(∗Φ2)mn

suv] = −(Φ3)
rsuv + 2V

[r
2 Ψsuv] (A.60)

1

2
Ψmn[r(∗Φ3)mn

suv] = −1

2
(Φ1 − Φ2)

rsuv + 2V
[r
3 Ψsuv] (A.61)

1

2
Kmn(∗Ψ)mn

rsuv = −1

2
(Φ1 +Φ2)

rsuv + 3K [rsKuv] (A.62)

Ψm[rsΨm
uv] = −1

2
(Φ1 +Φ2)

rsuv − 2K [rsKuv] (A.63)

1

2
(Φ1)

mn[rs(Φ1)mn
uv]=−2(Φ1)

rsuv 1

2
(Φ1)

mn[rs(Φ2)mn
uv]=−2K [rsKuv]

(A.64)

1

2
(Φ2)

mn[rs(Φ2)mn
uv]=−2(Φ2)

rsuv 1

2
(Φ1)

mn[rs(Φ3)mn
uv]=−(Φ3)

rsuv

(A.65)

1

2
(Φ3)

mn[rs(Φ3)mn
uv]=−1

2
(Φ1 +Φ2)

rsuv +K [rsKuv] 1

2
(Φ2)

mn[rs(Φ3)mn
uv]=−(Φ3)

rsuv .

(A.66)

A.2 Fierz identities with symmetric part

We list here the Fierz identities which can have a symmetric part, that is the ones which lie

in the tensorial algebra. We restrict only to necessary identities, that is the ones involving

the forms V3, K, Ψ and Φ3. The rest can be obtained from these ones making also use

of the antisymmetric identities already given earlier in the appendix.

Two indices.

KmrKm
s =

1

2
(1 + α)δrs − V

(r
1 V

s)
2 + V r

3 V
s
3 (A.67)

ΨmnrΨmn
s = (4− 2α)δrs + 6V

(r
1 V

s)
2 − 6V r

3 V
s
3 (A.68)

(Φ3)
mnpr(Φ3)mnp

s = 3(7 + α)δrs − 24V
(r
1 V

s)
2 − 18V r

3 V
s
3 . (A.69)
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Three indices.

KmrΨm
st = δr[s

(

V
t]
1 + V

t]
2

)

+Km[rΨm
st] (A.70)

Ψmnr(Φ3)mn
st = −6δr[s

(

V
s]
1 − V

s]
2

)

+ 12V
[r
3 Kst] − 6V r

3 K
st (A.71)

1

3!
(Φ3)

mnpr(∗Φ3)mnp
st = 4δr[s

(

V
t]
1 + V

t]
2

)

. (A.72)

Four indices.

ΨmrsΨmuv = (1− α)δrsuv + 2δ
[r
[u

(

V
s]
1 V2v] + V1v]V

s]
2 − 2V

s]
3 V3v]

)

(A.73)

− 1

2
(Φ1 +Φ2)

rs
uv − 3K [rsKuv] +KrsKuv (A.74)

1

2
(Φ3)

mnrs(Φ3)mnuv = (3 + α)δrsuv − 4δ
[r
[u

(

V
s]
1 V2v] + V1v]V

s]
2 + V

s]
3 V3v]

)

(A.75)

− 1

2
(Φ1 +Φ2)

rs
uv + 3K [rsKuv] − 2KrsKuv . (A.76)

B Relations satisfied by the SU(3) structure forms

In the main text we derived the parametrisation of the spinor bilinears (2.14) in terms of

forms defining a SU(3) structure in six dimensions and three additional vectors V± and

V3. Here we shall give more details about the relations which these forms satisfy, including

also brief indications on how to derive such relations. The crucial relation which we shall

use almost everywhere is the symmetric relation obtained by contracting J with itself over

one index which can be derived from (A.67)

JmnJ
n
p = −1

2
(1 + α)δmp +

1

4
(V+)m(V+)p +

1 + α

4(1− α)
(V−)m(V−)p +

1 + α

1− α
(V3)m(V3)p

=
1

2
(1 + α) (−δmp + (P+)mp + (P−)mp + (P3)mp) . (B.1)

In the main text we claimed that ρ defined as in (2.34) is totally antisymmetric. Using the

Fierz relations (with 3 free indices) which give the contractions of the vectors V1,2 with the

forms Φ1,2 we can construct the object V+yΦ+. Using (2.31) we find

Jmnϕ
m

pq = Km[nΨ
m

pq] . (B.2)

Let us continue by computing the norms of the SU(3) forms. Note that since we

have done an orthogonal decomposition in terms of the vector fields, the terms on the

r.h.s. of (2.29)–(2.33) are independent, in the sense that total contractions of different

terms vanish by definition. Using the norms of the vector fields which were listed at the

beginning of this appendix, we can immediately derive the norm of J as

JyJ =
1

2
JmnJ

mn =
3

2
(1 + α). (B.3)

Taking the square of (2.30) we find in a similar way the norm of ϕ

ϕyϕ =
1

6
ϕmnpϕ

mnp = 2(1− α) . (B.4)
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From (2.34) and using (B.1) we find

ρyρ =
1

6
ρmnpρ

mnp = (1− α)(1 + α). (B.5)

Using the Fierz relation involving the contraction of K and Ψ over two indices, we imme-

diately find

Jyϕ = 0 = Jyρ (B.6)

where the second equality holds due to the fact that ρ in (2.34) is totally antisymmetric.

Using the above relation and the Fierz identity involving the contraction of Ψ and Φ1,2

over three indices, we obtain

ϕyρ = 0 . (B.7)

Most of the other relations we shall need involve a Hodge ∗ operation and are somehow

more complicated. Let us look at the Fierz relation which gives the contraction of Φ3 with

∗Φ3 over four indices. This can be rewritten in form notation as

∗ (Φ3 ∧ Φ3) = 4V+ . (B.8)

Using (2.33) we find

4

(1− α)2
ϕ ∧ ρ ∧ V− ∧ V3 −

2

(1− α)(1 + α)
ρ ∧ J ∧ V+ ∧ V− ∧ V3 = 4 ∗ V+ . (B.9)

Clearly, the second term on the l.h.s. must vanish, as it contains V+ while on the r.h.s.

we only find ∗V+. J and ρ are orthogonal to the vectors, and the only way this term can

vanish is if

ρ ∧ J = 0 . (B.10)

The remaining relation can be rewritten, by contracting V− and V3, as

ϕ ∧ ρ = ∗(V+ ∧ V− ∧ V3) . (B.11)

From Fierz identities involving the contraction of Φ1,2 with Φ3 we find similar relations,

and again, by contracting the appropriate vectors we find

J ∧ J ∧ J =
3

2

1 + α

1− α
∗ (V+ ∧ V− ∧ V3) . (B.12)

Further relations with Hodge star can be derived form these ones by contracting with

appropriate forms and making use of the orthogonality conditions and of the norms of the

various quantities. We find

∗J =
1

2(1 + α)(1− α)
J ∧ J ∧ V+ ∧ V− ∧ V3 (B.13)

∗ϕ =
1

(1 + α)(1− α)
ρ ∧ V+ ∧ V− ∧ V3 (B.14)

∗ρ = − 1

2(1 + α)
ϕ ∧ V+ ∧ V− ∧ V3 . (B.15)
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Other useful relations which can be derived easily from the ones already written so far are

∗(J ∧ V+ ∧ V− ∧ V3) = (1− α)J ∧ J (B.16)

∗(J ∧ V− ∧ V3) =
(1− α)

2(1 + α)
J ∧ J ∧ V+ (B.17)

∗(J ∧ V+ ∧ V3) = −1

2
J ∧ J ∧ V− (B.18)

∗(J ∧ V+ ∧ V−) = 2J ∧ J ∧ V3 (B.19)

and

∗(ρ ∧ V+ ∧ V3) =
1

2
(1 + α)ϕ ∧ V− ∗(ρ ∧ V3) =

1

4
ϕ ∧ V+ ∧ V− (B.20)

∗(ρ ∧ V− ∧ V3) = −1

2
(1− α)ϕ ∧ V+ ∗(ρ ∧ V+) =

1 + α

1− α
ϕ ∧ V− ∧ V3 (B.21)

∗(ρ ∧ V+ ∧ V−) = −2(1 + α)ϕ ∧ V3 ∗(ρ ∧ V−) = −ϕ ∧ V+ ∧ V3 . (B.22)

One can also compute the Hodge duals of the original spinor bilinear forms and express

them in terms of the SU(3) parametrisation

∗K =
1

2(1 + α)(1− α)
J ∧ J ∧ V+ ∧ V− ∧ V3 +

1

2(1 + α)(1− α)
ϕ ∧ ρ ∧ V+ (B.23)

∗Ψ =
1

(1+α)(1−α)
ρ ∧ V+∧V−∧V3+

1

(1+α)(1−α)
J∧J∧V− ∧ V3+

1

2(1−α)
ϕ ∧ ρ (B.24)

∗Φ+ = − 2

(1 + α)(1− α)
J ∧ V+ ∧ V− ∧ V3 −

2

1− α
ϕ ∧ V− ∧ V3 −

1

1 + α
J ∧ J ∧ V+ (B.25)

∗Φ− = − 2

(1 + α)(1− α)
ρ ∧ V+ ∧ V− − 2

1− α
ϕ ∧ V+ ∧ V3 −

1

1 + α
J ∧ J ∧ V− (B.26)

∗Φ3 = − 2

(1 + α)(1− α)
ρ ∧ V+ ∧ V3 +

1

2(1− α)
ϕ ∧ V+ ∧ V− − 1

1 + α
J ∧ J ∧ V3 . (B.27)

From the symmetric Fierz identity (A.68) involving the contraction of Ψ with itself

over one index we can derive a similar relation for ϕ

ϕmrsϕmtu= (1− α)δrstu + 2
1− α

1 + α
Jr

[tJu]
s − 1− α

1 + α
δ
[r
[t V+u]V

s]
+ − δ

[r
[t V−u]V

s]
− − 4δ

[r
[t V3u]V

s]
3

+
1

2(1 + α)
V+[tV−u]V

[r
+ V

s]
− +

2

1+α
V+[tV3u]V

[r
+ V

s]
3 +

2

1−α
V−[tV3u]V

[r
− V

s]
3 . (B.28)

By contracting this relation with J we can find similar relations for ρ or ρ and ϕ

ρm
rsϕm

tu = 2(1− α)δ
[r
[t Ju]

s] +
1− α

1 + α
J [r

[tV+u]V
s]
+ + J [r

[tV−u]V
s]
− + 4J [r

[tV3u]V
s]
3 (B.29)

ρmrsρmtu =
1

2
(1−α)(1+α)δrstu+(1−α)Jr

[tJu]
s− 1

2
(1−α)δ

[r
[t V+u]V

s]
+ − 1

2
(1+α)δ

[r
[t V−u]V

s]
−

−2(1+α)δ
[r
[t V3u]V

s]
3 +

1

4
V+[tV−u]V

[r
+ V

s]
− +V+[tV3u]V

[r
+ V

s]
3 +

1+α

1−α
V−[tV3u]V

[r
− V

s]
3 .

(B.30)
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Finally, by contracting a pair of indices in the above relations it is easy to find

ϕmnrϕ
mns = 2(1− α)δsr −

1− α

1 + α
V+rV

s
+ − V−rV

s
− − 4V3rV

s
3 ;

ϕmnrρ
mns = 2(1− α)Jr

s (B.31)

ρmnrρ
mns = (1− α)(1 + α)δsr −

1− α

2
V+rV

s
+ − 1 + α

2
V−rV

s
− − 2(1 + α)V3rV

s
3 .

Before we end this section, let us note the following fact which is useful during the

calculations. Consider a 1-form k which is orthogonal to all the vector fields, i.e. k ·Vi = 0,

and define k̃ = kyJ . By contracting J we find the equivalent relation

k̃yJ = −1 + α

2
k . (B.32)

Furthermore, by contracting with ϕ and taking into account the definition of ρ from (2.34)

we find

k̃yϕ+ kyρ = 0 ,
1 + α

2
kyϕ− k̃yρ = 0 . (B.33)

Taking now the exterior product with ρ and ϕ we find

k̃ ∧ ϕ+ (kyϕ) ∧ J = 0 , k̃ ∧ ρ+ (kyρ) ∧ J = 0

−
(

k̃yρ
)

∧ J +
1 + α

2
k ∧ ρ = 0 , −

(

k̃yϕ
)

∧ J +
1 + α

2
k ∧ ϕ = 0

where we used the identity (kyϕ)∧J−ϕ∧(kyJ) = ky(ϕ∧J) = 0 and similar ones for ρ and

k̃. Adding up the equations in the same column in such a way to obtain the combinations

in (B.33) we find

k̃ ∧ ϕ+ k ∧ ρ = 0 , k̃ ∧ ρ− 1 + α

2
k ∧ ϕ = 0 . (B.34)

These relations can be intuitively understood in a simple way. From the 1-forms k and k̃

we can construct a complex (1, 0) form

k = k + i

√

2

1 + α
k̃ . (B.35)

Then the expressions in (B.34) are nothing but the real and imaginary components of

the (4,0) form k ∧ Ω. But this form should vanish identically since it only lives on the

6-dimensional space orthogonal to the vectors and this gives the relations in (B.34).

C Supersymmetry equations

We summarize in this appendix the supersymmetry algebraic constraints arising from the

variation of the external components of the gravitino. For the N = 2 flux background that

we consider one has to satisfy the equations

Qξj = 0 j = 1, 2 (C.1)
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where the operator Q is given in eq. (3.6) for the auxiliary 9d manifold Y9. We translate

the equations above into constraints on the fluxes f̃ and F involving the spinor bilinears

defined in eq. (2.14). Specifically, we contract eq. (C.1) with the following generating set

of the spinorial representation

γAξi i = 1, 2 and γA ∈ {1, γm, γmn, γmnp, γmnpq} . (C.2)

It is then convenient to represent the algebraic constraints in eq. (C.1) in the the following

equivalent form

ξTi
[

QγA ± γTAQ
T
]

ξj = 0 i, j = 1, 2 . (C.3)

After inserting the expression of Q given in eq. (3.6) and expanding the products of gamma

matrices one can express the resulting equations in terms of the spinor bilinears in eq. (2.14).

The result is the following (a number of these expressions first appeared in [39])

−λ(θ · Vi) +
1

2
(Vi · d∆)− 1

12
FyΦi = 0 ; f̃mθnK

mn = 0 (C.4)

−2λθ + d∆− 1

12
∗ (F ∧ Φ+) +

1

6
V+y

(

f̃ ∧ θ
)

= 0 (C.5)

− 1

12
∗ (F ∧ Φ− ,3) +

1

6
V− ,3y

(

f̃ ∧ θ
)

= 0 (C.6)

2λθyK − d∆yK +
1

6
ΨyF − 1

3

(

f̃ ∧ θ
)

yΨ = 0 (C.7)

2λθ[mV+ n] − ∂[m∆V+ n] +
1

36
F[m

pqrΦ+ n]pqr −
1

6
Φ+ mnpqf̃

pθq +
2

3
f̃[mθn] = 0 (C.8)

2λθ[m(V− 3)n] − ∂[m∆(V− 3)n] +
1

36
F[m

klp(Φ− 3)n]klp −
1

6
(Φ− 3)mnklf̃

kθl = 0 (C.9)

−2λθyΨ+ d∆yΨ+
1

6
∗ (F ∧Ψ) +

1

6
KyF +

1

3
(θyK) ∧ f̃ − 1

3

(

f̃yK
)

∧ θ = 0 (C.10)

−λθkΦi mnpk +
1

2
∂k∆Φi mnpk −

1

24
F[p

klq(∗Φi)mn]klq +
1

12
FmnpkV

k
i

−1

6
∗
(

Φi ∧ f̃ ∧ θ
)

mnp
+

1

6

(

Vi ∧ f̃ ∧ θ
)

mnp
= 0 (C.11)

−2λ(K ∧ θ)mnp +K ∧ d∆mnp +
1

6
∗ (F ∧K)mnp +

1

4
Ψ[m

klFnp]kl

−1

3

[

(θyΨ) ∧ f̃
]

mnp
+

1

3

[(

f̃yΨ
)

∧ θ
]

mnp
= 0 (C.12)

−λ ∗ (Φ+ ∧ θ)mnpq +
1

2
∗ (Φ+ ∧ d∆)mnpq −

1

12
∗ (F ∧ V+)mnpq

+
1

4
F[mn

rs(Φ+)pq]rs −
1

6
Fmnpq +

1

6
(θyΦ+) ∧ f̃ − 1

6

(

f̃yΦ+

)

∧ θ = 0 (C.13)

−λ ∗ (Φ−3 ∧ θ)mnpq +
1

2
∗ (Φ−3 ∧ d∆)mnpq −

1

12
∗ (F ∧ V−3)mnpq

+
1

4
F[mn

rs(Φ−3)pq]rs +
1

6
(θyΦ−3) ∧ f̃ − 1

6

(

f̃yΦ−3

)

∧ θ = 0 (C.14)

−2λ(Ψ ∧ θ)mnpq + (Ψ ∧ d∆)mnpq +
1

9
(∗Ψ)[mnp

rstFq]rst

+
2

3
K[m

rFnpq]r +
1

3
∗
(

Ψ ∧ f̃ ∧ θ
)

mnpq
+

1

3

(

K ∧ f̃ ∧ θ
)

mnpq
= 0 . (C.15)
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Notice that since we are using a set of generators {γAξi} instead of a basis, the equations

above are not independent. In fact, as it is done explicitly for the special flux analysed in

the paper, one only needs the constraints arising from contraction with ξi and γmξi.

D Killing properties of the Majorana-Weyl components

Given that a background supports a covariantly constant Majorana spinor ξ, the require-

ment for its Majorana-Weyl components to also solve the Killing spinor equation is

[Dm, θrγr]ξ = 0 , (D.1)

[Q, θrγr]ξ = 0 . (D.2)

Here Dm and Q are defined in (3.1), and we recall that the eight-dimensional chirality

matrix γ9 was given in terms of the 9-dimensional basis as γ9 = θrγr. One can easily show

that the commutators with γ9 are expressed as

[Am, θrγr] = 2λ (γm − θmθnγn) +
1

12
Fmnpqθrγnpqr , (D.3)

[Q, θrγr] = ∂n∆θrγnr +
1

36
Fmnpqθ[mγnpq] +

2

3
f̃mθnθ[mγn] . (D.4)

We now impose the orthogonality of the auxiliary direction θ on the fluxes and the fact

that λ = 0 for our specific choice of flux

[Am, θrγr] =
1

12
Fmnpqθrγnpqr , (D.5)

[Q, θrγr] = ∂n∆θrγnr −
1

3
f̃mγm . (D.6)

Let us examine further the first condition. For this we multiply it by θsγs from the left

and find after some simple gamma matrix manipulations

Fmnpqγnpqξ = 0 , (D.7)

where ξ can be any (or both) of the Majorana spinors ξ1,2, which define our background.

For definiteness we shall consider that this equation is valid for ξ = ξ1. Multiplying this

from the left with ξT2 and using (2.14) we obtain

FmnpqΨnpq = 0 . (D.8)

Using (2.30), the fact that for backgrounds which admit varying parameter α the ninth

direction θ is parallel to V+ and the independence of the flux on this ninth direction (V+),

we find

ϕyF = 0 . (D.9)

This relation however can only be compatible with (3.21) if F = 0 and therefore we

conclude that for backgrounds in which the parameter α varies, none of the Majorana-

Weyl components can satisfy by itself the Killing spinor equation.
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