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Defects, super-Poincaré line bundle and fermionic

T-duality

Shmuel Elitzur,a Boaz Karni,a Eliezer Rabinovicia,c and Gor Sarkissiana,b

aThe Racah Institute of Physics, The Hebrew University,

Givat Ram, 91904 Jerusalem, Israel
bDepartment of Theoretical Physics, Yerevan State University,

Alex Manoogian 1, 0025 Yerevan, Armenia
cCERN,

1211 Geneva 23, Switzerland

E-mail: elitzur@vms.huji.ac.il, boazkarni@gmail.com,

eliezer@vms.huji.ac.il, gor.sarkissian@ysu.am

Abstract: Topological defects are interfaces joining two conformal field theories, for which

the energy momentum tensor is continuous across the interface. A class of the topological

defects is provided by the interfaces separating two bulk systems each described by its own

Lagrangian, where the two descriptions are related by a discrete symmetry. In this paper

we elaborate on the cases in which the discrete symmetry is a bosonic or a fermionic T-

duality. We review how the equations of motion imposed by the defect encode the general

bosonic T- duality transformations for toroidal compactifications. We generalize this anal-

ysis in some detail to the case of topological defects allowed in coset CFTs, in particular to

those cosets where the gauged group is either an axial or vector U(1). This is discussed in

both the operator and Lagrangian approaches. We proceed to construct a defect encoding

a fermionic T-duality. We show that the fermionic T-duality is implemented by the Super-
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1 Introduction

Interfaces in two-dimensional conformal field theories are playing a role in various topics,

see e.g. [1–33].

Interfaces are oriented lines separating two different quantum filed theories. In this

paper we consider special class of interfaces, for which the energy-momentum tensor is

continuous across the defect. Denoting the left- and right- moving energy-momentum

tensors of the two theories by T 1, T 2, and T̄ 1, T̄ 2, this condition takes the form:

T (1) = T (2) , T̄ (1) = T̄ (2) (1.1)
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Inserting a defect/interface in the path integral is equivalent in the operator language

to the insertion of an operator D which maps the Hilbert space of CFT 1 to that of CFT 2.

Thus a defect can be described by such an operator. Condition (1.1) should be considered

as implying also that the corresponding operator D commutes with the Virasoro modes:

DL1
m = L2

mD and DL̄1
m = L̄2

mD (1.2)

where Lim and L̄im act on the state space Hi, i = 1, 2, and therefore the interface can be

continuously deformed without affecting the value of correlators as long it does not cross

any field insertion point. These interfaces are called topological defects [9]. Topological

defects have the following properties.

• Two topological defects can be moved and merged with each other to create a new

defect. In the operator language the defect fusion corresponds to the composition of

the defect operators [2–4, 10].

• Similarly a topological defect can be moved to the boundary and fused with it, pro-

ducing new boundary conditions [3, 8, 11]. The new boundary state is given by the

action of the defect operator on the boundary state. Remembering that in String

theory boundary states correspond to D-branes, one arrives to the conclusion that

topological defects induce D-brane transformations. On the other hand D-branes

are classified by their Ramond-Ramond or K-theory charges. Therefore topological

defects should induce also transformations in cohomology or K-theory groups. It is

expected that this transform should be of the Fourier-Mukai type [14, 16, 17, 25, 29].

Let us now take a closer look at the equations (1.1) and (1.2).

As follows from the above discussion D maps an eigenstate |a〉 of the L1
0 to the eigen-

state of L2
0, with the same eigenvalue, if |a〉 is not in the null space of D. Hence the left and

right Hamiltonians of the two theories coincide on the pair of states (|a〉, D|a〉), where |a〉 is
an eigenstate of the left or right Hamiltonian of the first theory belonging to H1/Null(D).

Thus the theories admitting a topological defect to join them, have the same spectra once

restricted to the subspace {(|a〉, D|a〉) | |a〉 ∈ H1/Null(D)}.
In this paper we will analyze the defects also in the Lagrangian formalism. In the

Lagrangian approach to defects, one has besides the bulk equation of motion, also defect

equations of motion [15, 17]. The defect equations of motion schematically have the form

F (Φ1,Φ2,Ψ) = 0, where F is some function, Φi is a collective notation for the fields of the

first and the second theories, and Ψ is a collective notation for fields on the defect that

are not inherited from the bulk. The energy-momentum tensors coincide when the defect

equations of motion are imposed. Comparing this with the operatorial picture, we see that

the defect equations of motion capture the information on the structure of the defect.

Presently we are not aware of a complete classification of theories that can be joined

by a topological defect, aside from the necessary condition that the theories must have the

same central charges. We would like, however, to mention some typical situations where

that is possible.
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The defects with a trivial null space describe theories with the same spectra. Hence

these defects exploit and uncover various symmetries of the theory. In particular such de-

fects connect different duality pictures of the same CFT, like those related by T-duality [34]

and mirror symmetry [12, 13, 17, 24, 29]. Let us note the following properties of these

defects. As explained above the defect relates eigenstates of the Hamiltonians with the

coinciding values of the Hamiltonians. Therefore the defect equations of motion should

produce the corresponding duality relations [17, 24]. We demonstrate this point in this

paper in some new instances.

There are several examples of theories connected by defects with a non-trivial null

space. Among them are

• Scalars compactified on circles at the rationally related radii [12, 13].

• Torus compactifications related by O(d, d|Q) semi-group transformations with ratio-

nal entries [29].

• Theories related by orbifold constructions [10, 12, 17].

• different modular invariants constructed out of the same chiral data [21, 33].

In the case of defects in rational conformal field theory a relation between the corresponding

theories in the terms of the underlying modular tensor categories was suggested in [30].

In this paper we

• Discuss topological defects joining axial and vector gaugings of G/U(1) gauged WZW

models.

• Generalize the construction of defects joining theories related by bosonic T-duality

to the case of superspace target spaces related by a fermionic T-duality.

The paper is organized in the following way.

In section 2 we review topological defects implementing bosonic T-duality [34].

In section 3 we construct defects between axial and vector gauging of G/U(1) gauged

WZW models [35–38] for a general group G. For the case of G = SU(2) [39] the geometrical

construction is translated to the algebraic parafermionic language. We show that for level k

parafermions there are k+1 topological defects mapping axially gauged SU(2)/U(1) cosets

to the vectorially gauged SU(2)/U(1) coset, labeled by the integrable spin j = 0, . . . , k2 .

We construct them in both the Lagrangian approach, and algebraic one, in the latter by

identifying the appropriate operators in the parafermion Hilbert space. We show that the

defect corresponding to j = 0 implements Zk orbifolding together with T-duality. These

defects project Aj,n Cardy branes in SU(2)/U(1) coset to the Bj branes constructed in [40].

In section 4 we study the defect performing the fermionic T-duality [41]. It is es-

tablished that the defect implementing bosonic T-duality is given by the Poincaré line

bundle [14, 17]. We show that the defect inducing the fermionic T-duality is given by the

fermionic generalization of the Poincaré line bundle, which we denote as Super-Poincaré

line bundle. We demonstrate that the defect equations of motion reproduce the fermionic

T- duality transformation rules found in [41]. Using the exponent of the gauge invariant

flux on this defect as a kernel of the Fourier-Mukai transform with a pushforward map
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given by the fiberwise integration on supermanifold, we derive the transformation of the

Ramond-Ramond fields under the fermionic T-duality.

In four appendices A, B, C and D some calculations and constructions are explained

in more detail.

2 Topological defects and bosonic T-duality

In this section we review some basic facts concerning topological defects and their relation

to T-duality. We first use the definition of the topological defects in the simple example of

a scalar field compactified on a circle to demonstrate how the defect equations of motion

together with the requirement to be topological reproduce the appropriate duality transfor-

mations. In the next subsection we generalize this to the factorized T-duality in non-linear

sigma models with isometries. In these cases the null space of the defects is trivial and

the defects are invertible. We then go on to discuss cases where the null space is non triv-

ial. We present a defect generating a combined action of the Zk orbifolding together with

a T-duality transformation. Then we review defects implementing generators of the full

O(d, d|Z) duality group in the case of toroidal compactification. These defects are invert-

ible as well. We conclude this section explaining how the T-duality transformation of the

Ramond-Ramond charges can be written as the Fourier-Mukai transform with the kernel

given by the exponent of the gauge invariant flux on the corresponding topological defect.

2.1 Preliminaries

Defects in two-dimensional quantum field theory are oriented lines separating different

quantum field theories, labeled (in this paper) by 1 and 2. Conformal defects are required

to satisfy [5]

T (1) − T̄ (1) = T (2) − T̄ (2) (2.1)

Topological defects satisfy [2]

T (1) = T (2) , T̄ (1) = T̄ (2) (2.2)

Since the stress-energy tensor is a generator of diffeomorphisms, condition (2.2) implies

that the defect is invariant under a distortion of the line to which it is attached. A notion

of fusion between a defect and a boundary can be expected in the case of topological

defects, since the latter can be moved to the boundary without changing the correlator [3].

We review the construction of an action with defects [14, 17]. We locate the defect

at the vertical line S defined by the condition σ = 0. Denote by Σ1 the left half-plane

(σ ≤ 0), and by Σ2 the right half-plane (σ ≥ 0), and a pair of maps X : Σ1 → M1 and

X̃ : Σ2 →M2, where M1 and M2 are the target spaces for the two quantum field theories.

Suppose we have a submanifold Q of the cartesian product of target spaces: Q ⊂M1×M2,

with a connection one-form A, and a combined map:

Φ : S → M1 ×M2 (2.3)

s 7→ (X(s), X̃(s))

which takes values in the submanifold Q. Q is called the world-volume of the defect.

– 4 –



J
H
E
P
0
4
(
2
0
1
3
)
0
8
8

In this setup we can write the action:

I =

∫

Σ1

dx+dx−L1 +

∫

Σ2

dx+dx−L2 +

∫

S
Φ∗A (2.4)

where

L1 = E(1)
mn∂X

m∂̄Xn, (2.5)

L2 = E(2)
mn∂X̃

m∂̄X̃n, (2.6)

x± = τ ± σ, (2.7)

with E
(i)
mn being the components of two second rank tensors. The tensors E(i) are split as

E(i) = G(i) +B(i). (2.8)

where G(i) are the symmetric target space metrics of the two sigma models and B(i) are

the corresponding NS antisymmetric two-forms.

As a warm-up exercise we work out the following simple example, when we have on

both sides free scalars compactified on circles S1
X and S1

X̃
of radii R1 and R2:

L1 = R2
1∂X∂̄X (2.9)

and

L2 = R2
2∂X̃∂̄X̃. (2.10)

The world-volume of the defect is a product of the target spaces S1
X ×S1

X̃
with the connec-

tion A = −XdX̃. The curvature of this connection is F = dX̃∧dX. This forms a Poincaré

bundle P [42]. The equations of motion on the defect line are:

R2
1(∂X − ∂̄X)− ∂τ X̃ = 0 (2.11)

R2
2(∂X̃ − ∂̄X̃)− ∂τX = 0 (2.12)

For R2 =
1
R1

, (2.11) and (2.12) take the form:

R2
1(∂X − ∂̄X)− (∂X̃ + ∂̄X̃) = 0 (2.13)

(∂X̃ − ∂̄X̃)−R2
1(∂X + ∂̄X) = 0 (2.14)

Equations (2.13) and (2.14) imply

R2
1∂X = ∂X̃ (2.15)

R2
1∂̄X = −∂̄X̃ (2.16)

which are the T-duality relations. Equations (2.15) and (2.16) also show that the defect

given by the Poincaré bundle P for R2 = 1
R1

is topological. If this is not the case, then

from equations (2.11) and (2.12) one can derive equation (2.1) and the defect is conformal,

but not topological.

– 5 –



J
H
E
P
0
4
(
2
0
1
3
)
0
8
8

One generalization that comes to mind is a defect Pk with the same world-volume but

with k units of the flux above: F = kdX̃ ∧ dX. In the same way it is possible to show that

this defect is topological when the radii satisfy the relation

R1R2 = k (2.17)

and instead of (2.15) and (2.16) one obtains:

R2
1∂X = k∂X̃ (2.18)

R2
1∂̄X = −k∂̄X̃ (2.19)

These relations imply that the defect Pk combines the actions of the Zk orbifolding

and T-duality.

All this is in agreement with [12, 13], where more general submanifolds Q are con-

sidered. There the worldvolume Q of the defect is either two dimensional with flux

F = k1dX̃ ∧ dX, but allowed to wrap the product S1
X × S1

X̃
torus k2 times, or Q is

made one dimensional winding around the cycles (k1, k2) times. Then the existence of the

topological defect is proved for the radii satisfying the relations:

R1R2 =

∣

∣

∣

∣

k1
k2

∣

∣

∣

∣

or
R2

R1
=

∣

∣

∣

∣

k1
k2

∣

∣

∣

∣

(2.20)

where k1, k2 ∈ Z.

2.2 Factorized T-duality in non-linear sigma model

Let us turn to the defect description of the T-duality arising when one has action

I =

∫

Σ
dx+dx−Emn∂X

m∂̄Xn, (2.21)

on a target space with the isometry [34, 43]. Here, and in the following, repeated indices

are summed over. Suppose that the coordinate X1 is chosen in the direction of the isome-

try. This means that Gij and Bij do not depend on X1. It is known that in this situation

the action with the background matrix E is equivalent to the action with the background

matrix Ẽ, where

Ẽ11 =
1

E11
(2.22)

Ẽ1M =
E1M

E11

ẼM1 = −EM1

E11

ẼMN = EMN − EM1E1N

E11

In components one has:

G̃11 =
1

G11
(2.23)

G̃1M =
B1M

G11
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B̃1M =
G1M

G11

G̃MN = GMN − 1

G11
(GM1G1N +B1NBM1)

B̃MN = BMN − 1

G11
(GM1B1N +G1NBM1)

The capital latin indices run from 2 to dimM .

The dual coordinate X̃1 is related to the original X1 by the relations:

∂X̃1 = E11∂X
1 + EM1∂X

M and ∂̄X̃1 = −(E11∂̄X
1 + E1M ∂̄X

M ) (2.24)

The rest of the coordinates remains unchanged.

Consider the action (2.4) with a defect as in the situation above, where M and M̃ are

related by the equations (2.22), Q is the correspondence space, given by the equations

XN = X̃N , N = 2 . . . dimM (2.25)

with the connection

A = −X1dX̃1 (2.26)

and the curvature

F = dX̃1 ∧ dX1. (2.27)

In this case the action (2.4) yields

Ej1∂X
j − E1j ∂̄X

j − ∂τ X̃
1 = 0 (2.28)

EjN∂X
j − ENj ∂̄X

j − ẼjN∂X̃
j + ẼNj ∂̄X̃

j = 0, N = 2 . . . dimM (2.29)

Ẽj1∂X̃
j − Ẽ1j ∂̄X̃

j − ∂τX
1 = 0. (2.30)

The index j runs from 1 to dimM . Additionally the conditions (2.25) imply

∂τX
N = ∂τ X̃

N , N = 2 . . . dimM (2.31)

or in the coordinates (2.7):

∂XN + ∂̄XN = ∂X̃N + ∂̄X̃N , N = 2 . . . dimM (2.32)

Solving the equations (2.28), (2.29), (2.30) and (2.32) one obtains:

∂̄X̃N = ∂̄XN N = 2, . . . dimM (2.33)

∂X̃N = ∂XN N = 2, . . . dimM

∂X̃1 = E11∂X
1 + EM1∂X

M

∂̄X̃1 = −(E11∂̄X
1 + E1M ∂̄X

M )

The details of calculations appear in appendix A. We see that equations (2.33) coincide

with the T-duality relations (2.24). Therefore the defect given by the Poincaré bundle on

the correspondence space induces T-duality.

– 7 –
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One can check that (2.23) and (2.33) imply

T = Gij∂X
i∂Xj = T̃ = G̃ij∂X̃

i∂X̃j (2.34)

and

T̄ = Gij ∂̄X
i∂̄Xj = ˜̄T = G̃ij ∂̄X̃

i∂̄X̃j (2.35)

which means that the defect is topological.

In this general set-up one can also consider the defect with the same world-volume

given by equations (2.25) but with the flux

F = kdX̃1 ∧ dX1. (2.36)

Repeating the calculations above one can show that this defect is topological if E and Ẽ

are related by the equations

Ẽ11 =
k2

E11
(2.37)

Ẽ1M =
kE1M

E11

ẼM1 = −kEM1

E11

ẼMN = EMN − EM1E1N

E11

Again the effects of the Zk orbifolding of the first coordinate and the T-duality are com-

bined.

All this can be generalized to T-dualizing of several coordinates. Suppose we T-dualize

the first n coordinates, indexed by Greek letters. The matrix E is broken to four pieces:

E =

(

Eαβ EαN
EMβ EMN

)

(2.38)

The transformed background has the form

Ẽ =

(

E−1
αβ E−1

αβEβN

−EMαE
−1
αβ EMN − EMαE

−1
αβEβN

)

(2.39)

Now we should consider the defect, with the world-volume

XN = X̃N , N = n+ 1, . . . dimM, (2.40)

with the connection

A = −
n
∑

1

XαdX̃α (2.41)

and the curvature

F =
n
∑

1

dX̃α ∧ dXα. (2.42)
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In the same way it can be shown that for M and M̃ related by equations (2.39) this defect

is topological and implies the defect equations:

∂̄X̃N = ∂̄XN N = n+ 1, . . . dimM (2.43)

∂X̃N = ∂XN N = n+ 1, . . . dimM

∂X̃α = Eβα∂X
β + EMα∂X

M

∂̄X̃α = −(Eαβ ∂̄X
β + EαM ∂̄X

M )

We have obtained again T-duality relations for several T-dualized coordinates.

2.3 Dualities of toroidal compactifications

Dualities of the toroidal compactification form the O(n, n,Z) group. The generators of this

group are factorized dualities, integer shifts of the flux of B fields and the integer basis

changes [34, 44, 45]. Defects inducing factorized dualities were discussed in the previous

subsection. For completeness let us mention defects inducing the B-flux shift and the

integer basis change symmetries.

Consider diagonal defect

Xi = X̃i i = 1, . . . , dimM (2.44)

with flux F . In this case equations of motion for the defect take the form:

Eji∂X
j − Eij ∂̄X

j − Ẽji∂X̃
j + Ẽij ∂̄X̃

j + Fij∂τX
j = 0 (2.45)

and additionally

∂Xi + ∂̄Xi = ∂X̃i + ∂̄X̃i (2.46)

It can be seen that if the matrices E and Ẽ differ only in the B field and the difference is

equal to F :

G̃ = G (2.47)

B̃ = B − F

this defect is topological and implies:

∂̄X̃i = ∂̄Xi (2.48)

∂X̃i = ∂Xi

This example was considered in [17].

Another interesting example is given by a defect with world-volume given by a linear

embedding:

Xi = AikX̃
k (2.49)

and with no flux. The defect equations of motion are:

(Eij∂X
j − Eij ∂̄X

j)Aik − Ẽjk∂X̃
j + Ẽkj ∂̄X̃

j = 0 (2.50)
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and additionally

∂Xi + ∂̄Xi = Aik(∂X̃
k + ∂̄X̃k) (2.51)

One can verify that if E and Ẽ satisfy the relation:

Ẽmk = EjiA
i
kA

j
m (2.52)

this defect is topological and the defect equations of motion are solved by

∂Xi = Aik∂X̃
k (2.53)

∂̄Xi = Aik∂̄X̃
k

For the torus compactifications the Dirac’s quantization condition of the flux Fij and the

quantization imposed on the matrix Aik by the compactness of the defect bring to the

appropriate integer B-flux shifts and the integer basis change transformations [34, 44, 45].

Considering multiply wrapped defects leads to the extended semi-group O(d, d,Q) of the

defects [12, 29]

2.4 Defects and Fourier-Mukai transform

As explained at the beginning, a topological defect can be fused with a boundary, producing

a new boundary condition from the old one. On the other hand boundary conditions

correspond to D-branes, which can be characterized by their Ramond-Ramond charges or

more precisely by an element of the K-theory. Therefore an action of the defect on the RR

charges and K-theory elements should be defined. The form of this action on RR charges

turns out to be connected to the flux on the corresponding defect. Mathematically this

flux serves as a kernel of an operation known as Fourier-Mukai transformation [46, 47].

Consider for example the T-duality transformation of the Ramond-Ramond fields.

It is found in [48] that the T-duality transformation of the Ramond-Ramond fields RR

fields [49, 50] of the theory on Tn ×M and those of the T-dual theory on T̂n ×M are

related by a Fourier-Mukai transform:

Ĝ =

∫

Tn

eB̂−B+
∑n

i=1
dt̂i∧dt

iG (2.54)

Here B is the Neveu-Schwarz B-field and G =
∑

p Gp+2 is the sum of gauge invariant RR

field strength where the sum is over p = 0, 2, 4, . . . for Type IIA and p = −1, 1, 3, . . . for Type

IIB. The integrand in (2.54) is considered as a form on the spaceM×Tn×T̂n and the fiber-

wise integration
∫

Tn , maps forms onM×Tn×T̂n to forms onM×T̂n. The integral operates
on the forms of the highest degree n in dti and sets to zero forms of lower degree in dti [51]:

f(x, t̂i, t
i)p∗ω ∧ dti1 ∧ . . . dtir 7→ 0, r < n (2.55)

f(x, t̂i, t
i)p∗ω ∧ dt1 ∧ . . . dtn 7→ ω

∫

Tn

f(x, t̂i, t
i)dt1 . . . dtn

Here p is the projection M × Tn × T̂n →M × T̂n, ω is a form on M × T̂n, f(x, t̂i, t
i) is an

arbitrary function and x denotes a point in M . The fiberwise integration (2.55) is actually
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the Berezin integration, which is not surprising when one remembers that the one-forms

dti anticommute.

Note that the kernel of the Fourier-Mukai transform (2.54) is indeed the exponent of

the gauge invariant combination of the B fields and the flux of the T-duality defect

eF = eB̂−B+
∑n

i=1
dt̂i∧dt

i

(2.56)

Let us check that in the simple case of T-dualizing of one coordinate and without a

B field, that formula (2.54) yields the known map of Dp to D(p± 1) branes. In this case

eq. (2.54) takes the form

Ĝ =

∫

S1

Gedt∧dt̂ =
∫

S1

G(1 + dt ∧ dt̂) (2.57)

Suppose that the Dp-brane is transverse to the coordinate t and therefore the volume- form

G does not contain dt. In this case (2.57) according to (2.55) implies

Ĝ = G ∧ dt̂ (2.58)

and thus Ĝ describes D(p + 1)-brane as expected. Now consider the case when Dp-brane

contains the coordinate t and therefore the volume-form G has the form G = ω ∧ dt. In

this case eq. (2.57) yields

Ĝ = ω (2.59)

and represents D(p− 1)-branes again in agreement with T-duality.

3 Defects between vectorially and axially gauged WZW models

In this section we construct topological defects mapping the axially gauged G
U(1)axial

WZW

model to the vectorially gauged G
U(1)vectorial

WZW model for a general group G. For the

case G = SU(2) we analyze the corresponding operators acting in the Hilbert space of

parafermions and find that for the level k parafermions there are k + 1 such topological

defects, labeled by the integrable spin j = 0, . . . , k2 . This is another example of the case of a

non trivial null space for the defect. The object is to realize these defects in the Lagrangian

approach as a line separating axially and vectorially gauged WZW models. This problem is

solved in this section. First we present the geometrical ansatz for the defects (formula (3.14)

below) and check that it leads to the action that glues axially and vectorially gauged models.

Then we study in detail the defect given by j = 0 and show that it coincides with the defect

with the flux (2.36), studied in the previous section, and implements Zk orbifolding together

with the T-duality. In the rest of the section we construct defects as operators in the Hilbert

space of the parafermions. In appendix B, we calculate the overlap of these operators with

the eigen-position state and show that they have the geometry of the ansatz (3.14).

3.1 Geometry and flux of the defects gluing axially-vectorially gauged models

The action of the gauged WZW model is [35–38]:

SG/H(g,A) = SWZW + Sgauge , (3.1)
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where

SWZW(g) =
k

4π

∫

Σ
Tr(∂+g∂−g

−1)dx+dx− +
k

4π

∫

B

1

3
tr(g−1dg)3 (3.2)

≡ k

4π

[
∫

Σ
dx+dx−Lkin +

∫

B
ωWZ

]

,

Sgauge =
k

2π

∫

Σ
Lgauge
v dx+dx− , (3.3)

Lgauge
v (g,A) = tr[−g−1∂+gA− + ∂−gg

−1A+ +A−g
−1A+g −A+A−] . (3.4)

Here H is subgroup of G, g ∈ G and B is a 3-manifold such that ∂B = Σ and A is a gauge

field taking values in the H Lie algebra.

Using the Polyakov-Wiegmann identities:

Lkin(gh) = Lkin(g) + Lkin(h)−
(

Tr
(

g−1∂+g∂−hh
−1
)

+Tr
(

g−1∂−g∂+hh
−1
))

, (3.5)

ωWZ(gh) = ωWZ(g) + ωWZ(h)− d
(

Tr
(

g−1dgdhh−1
)

)

, (3.6)

it is possible to verify that the action (3.1) is invariant under the gauge transformation:

g → hgh−1 , A→ hAh−1 + dhh−1 (3.7)

for h : Σ → H. This is a vectorially gauged model.

For the case of H = U(1) considered here there exists the system is axially gauge

invariant under the transformations

g → hgh , A→ A+ dhh−1 (3.8)

for h : Σ → U(1). In the axially gauged model the gauge field dependent term is

Lgauge
a (g,A) = tr[g−1∂+gA− + ∂−gg

−1A+ −A−g
−1A+g −A+A−] . (3.9)

There are several steps needed in order to write a well defined action on the defect, with

an image in the submanifold Q ⊆ G×G

S → G×G : s 7→ (g1(s), g2(s)) ∈ Q, (3.10)

with a defect line S separating vectorially and axially gauged models, in the presence of a

WZW form [14].

First, there should exist a two-form ̟ satisfying the relation

d̟(g1, g2) = ωWZ(g1)|Q − ωWZ(g2)|Q (3.11)

Second, one should introduce an auxiliary disc D satisfying the conditions:

∂B1 = Σ1 ∪D and ∂B2 = Σ2 ∪ D̄, (3.12)

where the unions are such that ∂Σ1 = ∂D = S and ∂Σ2 = ∂D̄ = S̄, but the orientations

of the gluing are opposite.
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The fields g1 and g2 are extended to this disc while holding the condition (3.10). After

this preparations the topological part of the action takes the form [14]

Stop−def =
k

4π

∫

B1

ωWZ(g1) +
k

4π

∫

B2

ωWZ(g2)−
k

4π

∫

D
̟(g1, g2) (3.13)

One should choose an appropriate Q. One of the requirements is that Q would be invariant

under the vector and axial transformations. We suggest the following ansatz:

(g1, g2) = (Cµp, L1pL2) (3.14)

Here p ∈ G, L1 ∈ U(1), L2 ∈ U(1) and Cµ is a conjugacy class

Cµ = le2iπµ/kl−1, l ∈ G (3.15)

where µ ≡µ · H is a highest weight representation integrable at level k, taking value in

the Cartan subalgebra of the G Lie algebra. This condition is a consequence of global

issues [14]. Note that under the full gauge transformation

g1 7→ h1g1h
−1
1 and g2 7→ h2g2h2 (3.16)

the parameters in (3.14) transform as

Cµ 7→ h1Cµh
−1
1 (3.17)

p 7→ h1ph
−1
1

L1 7→ L1h
−1
1 h2

L2 7→ L2h1h2

Using the Polyakov-Wiegamann identity (3.6) one can check that the condition (3.11) is

satisfied with the following two-form

̟(Cµ, p, L1, L2) = ωµ(Cµ)− Tr(C−1
µ dCµdpp

−1) + Tr(p−1dpdL2L
−1
2 ) + (3.18)

+Tr(L−1
1 dL1dpp

−1)+Tr(L−1
1 dL1pdL2L

−1
2 p−1)−Tr(L−1

1 dL1L
−1
2 dL2)

where ωµ(Cµ) = Tr(l−1dle2iπµ/kl−1dle−2iπµ/k). Now the full action can be written as

SA−V = Skin−def + Sgauge−def + Stop−def (3.19)

here

Skin−def =
k

4π

∫

Σ1

dx+dx−Lkin(g1) +
k

4π

∫

Σ2

dx+dx−Lkin(g2) (3.20)

and

Sgauge−def =
k

2π

∫

Σ1

Lgauge
v (g1, A1)dx

+dx− +
k

2π

∫

Σ2

Lgauge
a (g2, A2)dx

+dx− (3.21)

It is cumbersome but possible to check that the action (3.19) is invariant the gauge trans-

formations:

g1 7→ h1g1h
−1
1 , A1 7→ A1 + dh1h

−1
1 (3.22)

g2 7→ h2g2h2 , A2 7→ A2 + dh2h
−1
2

where h1 : Σ1 → U(1) and h2 : Σ2 → U(1).
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3.2 Duality defect for the parafermion disc SU(2)/U(1)

Specialize now to the case of G = SU(2) [39].

We write the group elements using the Euler coordinates:

g = eiχ
σ3
2 eiθσ1eiϕ

σ3
2 = ei(φ̃+φ)

σ3
2 eiθσ1ei(φ̃−φ)

σ3
2 (3.23)

The ranges of the variables are 0 ≤ θ ≤ π
2 , 0 ≤ ϕ ≤ 2π, 0 ≤ χ ≤ 4π, −π ≤ φ, φ̃ ≤ π.

The axially gauged model SU(2)
U(1) axial

is derived by the gauging of the U(1) symmetry

corresponding to shifting of φ̃ and has the target space MA with the following metric and

dilaton field [34, 40]:

ds2 = k(dθ2 + tan2 θdφ2) (3.24)

eΦ =
gs

cos θ
φ ∼ φ+ 2π

Using the T-duality rules of the previous section one can see that T-dual background to

the axially gauged model is

d̃s
2
= k

(

dθ̃2 +
dφ̃2

tan2 θ̃

)

(3.25)

eΦ̃ =
gs√
k sin θ̃

φ̃ ∼ φ̃+
2π

k

Vectorially gauged model SU(2)
U(1) vec

is derived by the gauging of the U(1) symmetry cor-

responding to the shifting of φ and has the target spaceMV with the metric and the dilaton:

d̃s
2
= k

(

dθ̃2 +
dφ̃2

tan2 θ̃

)

(3.26)

eΦ̃ =
gs

sin θ̃

φ̃ ∼ φ̃+ 2π

Comparing (3.25) and (3.26) one can see that the background T-dual to the axially gauged

model is the Zk orbifold of the vectorially gauged model.

According to the results of the previous section the world-volume of the T-duality

defect DT
A between backgrounds (3.24) and (3.25) is the submanifold θ = θ̃ of the product

MV ×MA with the flux F = dφ ∧ dφ̃. The defects between backgrounds (3.24) and (3.26)

DV−A has the same world volume but the flux is F = kdφ ∧ dφ̃.
Consider the defects given by equation (3.14). The conjugacy class takes the form

Cj = le
2πijσ3

k l−1, j = 0, 12 . . .
k
2 , (since we are working in the specific case of G = SU(2), the

general subscript µ was changed to j, which is standard for this group) and therefore we
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have a family of the defects labelled by j. Now we show that the T-duality defect above,

DV−A, corresponds to j = 0.

Let us examine this defect in more detail. Parameterizing L1 = eiα1σ3/2 and L2 =

eiα2σ3/2 and writing p using the Euler coordinates, we obtain for this special defect:

(g1, g2) =
(

ei(κ̃+κ)
σ3
2 eiθσ1ei(κ̃−κ)

σ3
2 , ei(κ̃+κ+α1)

σ3
2 eiθσ1ei(κ̃−κ+α2)

σ3
2

)

(3.27)

From (3.27) it can be seen that this defect satisfies the condition θ = θ̃. To project down

this defect to the product space MV ×MA we impose gauge fixing conditions κ = 0 for the

first vectorially gauged model and

(κ̃+ κ+ α1) + (κ̃− κ+ α2) = 0 (3.28)

for the axially gauged model. From (3.28) one obtains:

κ̃ = −α1 + α2

2
(3.29)

Therefore the angles φ and φ̃ of the target spaces are related to the defect parameters

by equations:

φ̃ = κ̃ = −α1 + α2

2
(3.30)

φ =
α1 − α2

2
(3.31)

Let us evaluate the two-form (3.18). For j = 0 it simplifies to:

̟(p, L1, L2) = Tr(p−1dpdL2L
−1
2 ) + Tr(L−1

1 dL1dpp
−1) + (3.32)

+Tr(L−1
1 dL1pdL2L

−1
2 p−1)− Tr(L−1

1 dL1L
−1
2 dL2)

This implies

Tr(p−1dpdL2L
−1
2 ) = −(dκ̃ cos2 θ − dκ sin2 θ)dα2 (3.33)

Tr(L−1
1 dL1dpp

−1) = −dα1(dκ̃ cos
2 θ + dκ sin2 θ)

Tr(L−1
1 dL1pdL2L

−1
2 p−1) = −dα1dα2

(

cos2 θ − 1

2

)

−Tr(L−1
1 dL1L

−1
2 dL2) =

dα1dα2

2

Using that κ = 0 and (3.29), (3.30) and (3.31) one obtains that the θ dependent terms

drop and we end up with

k

4π
̟(p, L1, L2) =

k

4π
dα1dα2 =

k

2π
dφ̃dφ (3.34)

This is the flux on the defect DV−A and as demonstrated in section 2, this defect is

topological.

It is shown in appendix B that a generic defect has a geometry given by the inequality

cos 2(θ − θ̃) ≥ cos
4πj

k
(3.35)
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3.3 Axial-vectorial defects as operators in the parafermion Hilbert space

It has been shown that the backgrounds (3.24) and (3.26) correspond to the parafermion

theory, and therefore the defects above can be realized as operators in the parafermions

Hilbert space.

To construct the corresponding operator one should start with the Cardy defect in the

parafermion theory [2]:

Xĵ,n̂ =
∑

j,n

SPF
(ĵ,n̂);(j,n)

SPF
(0,0);(j,n)

PPF
j,n P̄

PF
j,n (3.36)

Here SPF
(ĵ,n̂);(j,n)

is the parafermion matrix of the modular transformation

SPF
(ĵ,n̂);(j,n)

=

√

2

k
S
SU(2)

ĵj
e

iπnn̂
k (3.37)

PPF
j,n and P̄PF

j,n are projectors

PPF
j,n =

∑

N

|j, n,N〉0 ⊗1 〈j, n,N | (3.38)

P̄PF
j,n =

∑

M

|j, n,M〉0 ⊗1 〈j, n,M | (3.39)

where the sums over M and N are over orthonormal bases of the parafermion state spaces.

Subscriptes 0 and 1 distinguish between the theories on the two sides of the defect. Here

j ∈ {0, 12 , . . . k2} and n ∈ Z/2kZ satisfy the constraint 2j + n = 0 mod 2. The pairs (j, n)

and (k/2−j, k+n) have to be identified. We need to construct a defect mapping A- branes

to B- branes. This can be done along the lines used in [40] for the parafermion B- branes

construction. Recall that the Zk orbifold of the parafermion theory at level k is T-dual to

the original theory. To get a defect mapping A- branes to B- branes one should sum over

Zk images of Xĵ,n̂ and perform T-duality. In order to circumvent the fixed point problem,

we consider the case of odd k.1 Summing over images leaves in (3.36) only the n = 0 term

and T-duality exchanges P̄PF
j,n with its B-type version, which can be derived in the following

way. Define also corresponding projectors for SU(2):

P
SU(2)
j =

∑

N

|j,N〉0 ⊗1 〈j,N | (3.40)

P̄
SU(2)
j =

∑

M

|j,M〉0 ⊗1 〈j,M | (3.41)

where the sums over N and M are over orthonormal bases of the SU(2) state spaces, and

rational U(1) scalar:

P
U(1)
r± = exp

[

±
∞
∑

n=1

α0
−nα

1
n

n

]

∑

l∈Z

|r + 2kl√
2k

〉0 ⊗1 〈±
r + 2kl√

2k
| (3.42)

1In the case of an even k, the primary field k
4
has the non-trivial stabilizator Z2, which requires the

fixed point resolution procedure. As a consequence the formulae for branes and defects derived in this way

get modified. See for details [40, 52, 53].
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P̄
U(1)
r′± = exp

[

±
∞
∑

n=1

ᾱ0
−nᾱ

1
n

n

]

∑

l∈Z

| ± r′ + 2kl′√
2k

〉
0

⊗1 〈
r′ + 2kl′√

2k
| (3.43)

Using the decomposition of SU(2)k as a product of parafermion and scalar theories one can

write

P̄
SU(2)
j =

∑

r

P̄PF
j,r P̄

U(1)
r+ (3.44)

To define the T-dual projector BP
PF
j,n we rotate the SU(2) projector P̄

SU(2)
j with operator

eiπJ̄
1

0 , satisfying

eiπJ̄
1

0 J̄3
0 e

−iπJ̄1

0 = −J̄3
0 (3.45)

and afterwards decompose it again as a product of the parafermion and scalar theories:

1⊗ eiπJ̄
1

0 P̄
SU(2)
j =

∑

r

BP
PF
j,r P̄

U(1)
r− (3.46)

Combining the orbifolding and the T duality procedures results is:

Y AB
ĵ

=
√
k
∑

j

S
SU(2)

ĵ,j

S
SU(2)
0,j

PPF
j,0 BP

PF
j,0 (3.47)

It is shown in the appendix that in the large k limit Y AB
j has the geometry given with the

overlap

〈θ, φ|Y AB
ĵ

|θ̃, φ̃〉 ∼ (3.48)

∼ k

π2

∫ 2θ+2θ̃

|2θ−2θ̃|

Θ(cos γ − cos 2ψ̂)
√

cos γ−cos 2ψ̂

sin γdγ
√

[cos γ−cos 2(θ+θ̃)][cos 2(θ−θ̃)−cos γ]

where ψ̂ = (2ĵ+1)π
k+2 and Θ is the Heavyside step function. Eq. (3.48) shows that the world-

volume of the defect should satisfy the inequality

cos 2(θ − θ̃) ≥ cos ψ̂ (3.49)

which in the large k limit coincides with the inequality (3.35), defining the geometry of a

generic defect.

Note that in the defect Y AB
0 , the relation of the elements of the matrix of the mod-

ular transformation drops, and it is a sum of projectors, projecting down to the n = 0

subspace and performing T-duality, thus mapping the Aj,n Cardy branes to the Bj branes

constructed in [40]. For generic ĵ one derives a linear combination of the Bl branes with

coefficients given by the fusion numbers N l
ĵj
.

4 Fermionic T-duality

In this section we show how do defects generate T-duality on fermionic coordinates. We

show here that the fermionic T-duality is implemented by the defect, given by the fermionic
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analogue of the Poincaré line bundle, which we call Super-Poincaré line bundle. This defect

is invertible.

Then we define the super Fourier-Mukai transform, as in the bosonic case, as an integral

with an appropriate kernel given by the exponent of the flux of a super Poincare line bundle.

4.1 Pseudodifferential forms integration

The technical details can be found in appendix C, the result [54–56] is presented here. Pseu-

dodifferential forms, defined on a supermanifold of p bosonic and q fermionic coordinates,

are of the form

f =
∑

v,u

fv,u(x, dθ)θ
vdxu (4.1)

Where: v = v1, . . . , vq; u = u1, . . . , up; vi, ui ∈ 0, 1; x = x1, . . . xp; dθ = dθ1, . . . dθq; θ
v =

θv11 ·. . .·θvqq ; dxu = dxu11 ·. . .·dxupp , and the sum is over all possible values of u and v. Such an

object can be integrated over the bundle on which it is defined. The integration is defined as

∫

B
f =

∫

B
f1,1,...,1 (4.2)

Where B is the cotangent bundle of the supermanifold and B is its underlying bundle, with

just the bosonic coordinates. The dθs are coordinates along the bundle, and unlike the case

of the fibrewise integration presented above, they are bosonic. For that reason one needs f

to be sufficiently rapidly decreasing in them in order for the integral to converge. As will

be demonstrated bellow, this is indeed the case for the super Fourier-Mukai transform.

4.2 Review of the fermionic T-duality

Consider the action (2.21) for the case when one has fermionic as well as bosonic variables,

and Gij and Bij are graded-symmetric and graded -antisymmetric tensors respectively.

Suppose that Gij and Bij do not depend on the fermionic variable θ1 [41]. Separating the

variable θ1 one has

S =

∫

dx+dx−(B11∂θ
1∂̄θ1 + E1N∂θ

1∂̄XN + EM1∂X
M ∂̄θ1 + EMN∂X

M ∂̄XN ) (4.3)

Replacing derivatives of θ1 by fermionic vector (A, Ā) and introducing a Lagrange multi-

plier field θ̃1 one gets

S =

∫

dx+dx−(B11AĀ+E1NA∂̄X
N+EM1∂X

M Ā+EMN∂X
M ∂̄XN+θ̃1(∂Ā−∂̄A)) (4.4)

Integrating out θ̃1 imposes that

A = ∂θ1 and Ā = ∂̄θ1. (4.5)

Integrating out (A, Ā) results in:

Ā =
1

B11

(

(−)sME1M ∂̄X
M + ∂̄θ̃1

)

and A = − 1

B11

(

EM1∂X
M − ∂θ̃1

)

(4.6)
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Inserting (4.6) in (4.4) one obtains fermionic T-dual background:

B̃11 = − 1

B11
(4.7)

Ẽ1M =
E1M

B11

ẼM1 =
EM1

B11

ẼMN = EMN − E1NEM1

B11

or in the components:

B̃11 = − 1

B11
(4.8)

G̃1M =
G1M

B11

B̃1M =
B1M

B11

G̃MN = GMN − 1

B11
(G1NBM1 +B1NGM1)

B̃MN = BMN − 1

B11
(G1NGM1 +B1NBM1)

Equating (4.5) and (4.6) one gets:

∂θ̃1 = B11∂θ
1 + EM1∂X

M and ∂̄θ̃1 = B11∂̄θ
1 − (−)sME1M ∂̄X

M (4.9)

The rest of the coordinates remains unchanged.

4.3 Defects implementing the fermionic T-duality and the Super Poincaré line

bundle

We now consider the action with defect, with target spaces related by the equations (4.7),

and the defect given again by the correspondence space

XN = X̃N , N = 2 . . . dimM (4.10)

and connection

A = θ1dθ̃1 (4.11)

with curvature

F = dθ1 ∧ dθ̃1. (4.12)

We will call this super line bundle by analogy with the bosonic case a Super-Poincaré

bundle. Now the defect equations of motion take the form:

Ej1∂X
j − (−)sjE1j ∂̄X

j − ∂τ θ̃
1 = 0 (4.13)

EjN∂X
j−(−)sjsNENj ∂̄X

j−ẼjN∂X̃j+(−)sjsN ẼNj ∂̄X̃
j = 0, N = 2 . . . dimM (4.14)

Ẽj1∂X̃
j − (−)sj Ẽ1j ∂̄X̃

j + ∂τθ
1 = 0 (4.15)
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Additionally as before we have:

∂XN + ∂̄XN = ∂X̃N + ∂̄X̃N , N = 2 . . . dimM (4.16)

Solving (4.13), (4.14), (4.15), (4.16) we obtain

∂̄X̃N = ∂̄XN , N = 2 . . . dimM (4.17)

∂X̃N = ∂XN , N = 2 . . . dimM

∂θ̃1 = B11∂θ
1 + EM1∂X

M

∂̄θ̃1 = B11∂̄θ
1 − (−)sME1M ∂̄X

M

The details of the calculation can be found in appendix D. The relations (4.17) coincide

with the equations (4.9). Therefore the defect given by the Super-Poincare bundle on the

super-correspondence space induces the fermionic T-duality.

One can check that equations (4.8) and (4.17) imply:

T = Gij∂X
i∂Xj = T̃ = G̃ij∂X̃

i∂X̃j (4.18)

and

T̄ = Gij ∂̄X
i∂̄Xj = ˜̄T = G̃ij ∂̄X̃

i∂̄X̃j (4.19)

which means that the defect is topological.

All this again can be generalized to the T-dualizing of several coordinates. Suppose

we T-dualize the first n coordinates, indexed by Greek letters.

The transformed background has the form

Ẽ =

(

−E−1
αβ E−1

αβEβN

EMαE
−1
αβ EMN − EβNEMαE

−1
αβ

)

(4.20)

Now we should consider the defect with the worldvolume

XN = X̃N , N = n+ 1 . . . dimM (4.21)

and connection

A =
n
∑

α=1

θαdθ̃α. (4.22)

It has the curvature

F =
n
∑

α=1

dθα ∧ dθ̃α. (4.23)

In the same way as above we can show that for M and M̃ related by equations (4.20) this

defect is topological and implies the defect equations of motion:

∂̄X̃N = ∂̄XN , N = n+ 1 . . . dimM (4.24)

∂X̃N = ∂XN , N = n+ 1 . . . dimM

∂θ̃α = Eβα∂θ
β + EMα∂X

M

∂̄θ̃α = Eαβ ∂̄θ
β − (−)sMEαM ∂̄X

N

We have obtained again T-duality relations for several T-dualized fermionic coordinates.
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4.4 Super Fourier-Mukai transform

We now elaborate the Fourier-Mukai transform for fermionic T-duality. It has the form:

e−B̂Ĝ =

∫

dηe−BGeηη̃ (4.25)

with G and B as in (2.54), where we set η = dθ1. As we explained η is a bosonic variable,

so we have a usual integration over η. From (4.8) one obtains:

B̂ −B = − 1

2B11
η̃2 − 1

2
B11η

2 (4.26)

− 1

2B11
(G1NGM1+B1NBM1)dX

MdXN+
B1M

B11
η̃dXM −B1MηdX

M

Suppose that G does not depend on η. Using the formula for the Gaussian integral

∫

dxe−
1

2
ax2+Jx =

√
2π√
a
e

J2

2a (4.27)

we obtain that the terms in (4.25) containing B1M and the first quadratic term are canceled

and, we end up with

Ĝ =

√
2π√
B11

Ge−
1

2B11
G1NGM1dX

MdXN

(4.28)

Note that G1N and B1N have parity (−)sN+1. Hence if dXM and dXN are differentials of

the bosonic coordiantes, the product G1NGM1 contains fermionic coordinates and drops if

we consider the lowest θ = 0 components, in agreement with the observation [41] that the

fermionic T-duality does not modify D-brane dimensionality. Note that the lowest θ = 0

components of (4.28) coincide with the homogeneous part of the transformation of the

Ramond-Ramond forms in [41].

Using the transformations rules (4.20) equation (4.28) can be generalized to the case of

the T-dualization of several fermionic variables θα. Keeping in mind that eventually we are

going to project to the θ = 0 component we can set Gαβ = 0, since Gαβ = ηabEαaE
β
b , and

taking into account that a and b are bosonic and α and β are fermionic, one sees that Eαa
and Eβb are odd. With this simplification the Fourier-Mukai transform for G independent

on θα can be computed to yield:

Ĝ =

√
2π

√

det||Bαβ ||
Ge−

1

2
B−1

αβ
GαNGMβdX

MdXN

(4.29)

The lowest component of (4.29) again coincides with the homogeneous part of the trans-

formation of Ramond-Ramond forms in [41] for the fermionic T-dualization of the n coor-

dinates.

5 Discussion

It is shown in [57] that the generalization of the SO(d, d) duality group for the sigma mod-

els with a super target space is the orthosymplectic group OSp(d, d|2n). As in the bosonic
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case this group is generated by the superspace field redefinitions, the super B-field shift and

the bosonic and fermionic dualities. Therefore the corresponding defects are given by the

bosonic and fermionic dualities defects, constructed in sections 2.2 and 4.3 correspondingly,

and the superspace analogue of the diagonal defects constructed in section 2.3. Some of

these defects, as in the bosonic case considered in [29], can be non-invertible. Their study

can lead to a new class of interfaces and is left for future work. The entries of the (semi)-

group of defects should be found from the analysis of the admissibility of the corresponding

fields and angles of the defects.

It is also an interesting problem to find operator realization of the defect given by the

Super-Poincaré line bundle implementing the fermionic T-duality.

Another open problem is to identify the possible connection between topological defects

and the so called T folds [58] and generalize their construction.
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A Solution of the defect equations of motion in the bosonic case

In subsection 2.2 we obtained the following defect equations of motion:

Ej1∂X
j − E1j ∂̄X

j − ∂τ X̃
1 = 0 (A.1)

EjN∂X
j − ENj ∂̄X

j − ẼjN∂X̃
j + ẼNj ∂̄X̃

j = 0 (A.2)

Ẽj1∂X̃
j − Ẽ1j ∂̄X̃

j − ∂τX
1 = 0. (A.3)

∂XN + ∂̄XN = ∂X̃N + ∂̄X̃N (A.4)

The index j runs from 1 to dimM . The capital latin indices run from 2 to dimM .

To solve these equations we perform the following steps.

Separating the first coordinate in (A.1) and (A.3) we obtain

E11(∂X
1 − ∂̄X1) + EM1∂X

M − E1M ∂̄X
M − ∂X̃1 − ∂̄X̃1 = 0 (A.5)

−E11(∂X
1 + ∂̄X1)− EM1∂X̃

M − E1M ∂̄X̃
M + ∂X̃1 − ∂̄X̃1 = 0 (A.6)

Taking sum and difference of (A.5) and (A.6) and taking into account (A.4) one gets

E11∂X
1 − ∂X̃1 + EM1∂X̃

M +GM1(∂̄X̃
M − ∂̄XM ) = 0 (A.7)

−E11∂̄X
1 − ∂̄X̃1 − E1M ∂̄X̃

M +GM1(∂̄X̃
M − ∂̄XM ) = 0 (A.8)
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Separating the first coordinate in (A.2) and again using (A.4) we receive

E1N

E11

(

E11∂X
1 − ∂X̃1 + EM1∂X̃

M
)

+ (A.9)

−EN1

E11

(

E11∂̄X
1 + ∂̄X̃1 + E1M ∂̄X̃

M
)

+ 2GMN

(

∂̄X̃M − ∂̄XM
)

= 0

Combining (A.7), (A.8) and (A.9) finally we reach the equations

∂̄X̃N = ∂̄XN N = 2, . . . dimM (A.10)

∂X̃N = ∂XN N = 2, . . . dimM

∂X̃1 = E11∂X
1 + EM1∂X

M

∂̄X̃1 = −(E11∂̄X
1 + E1M ∂̄X

M )

B Geometry of the vector-axial duality defects for SU(2)/U(1) cosets

Here we provide details of the computation of the geometry of the defects considered in

section 3. It is interesting to note that geometrically ( but not the flux and the symmetries!

) they coincide with some folded brane considered in [59], and one can use the results there.

For reader convenience we collected the necessary stuff in this appendix.

(g1, g2) =
(

Cµp, e
iα1

σ3
2 peiα2

σ3
2

)

(B.1)

The conjugacy class is Cj = le
2πijσ3

k l−1.

Equation (B.1) implies

Tr(g1e
iα2

σ2
2 g−1

2 eiα1

σ2
2 ) = 2 cos

2jπ

k
(B.2)

Consider (B.2) as an equation in α1 and α2. The question is, which condition g1 and g2
should satisfy, in order that (B.2) has solutions in α1 and α2. To answer this question we

introduce a new element F = g1e
iα2

σ2
2 g−1

2 and analyze first for which F there exists an α1

solving the equation

Tr(Feiα1

σ2
2 ) = 2 cos

2jπ

k
(B.3)

Denoting the Euler coordinates of F by θF , φ̃F and φF , this equation takes the form

cos θF cos(φ̃F + α1/2) = cos
2jπ

k
(B.4)

eq. (B.4) has solution in α1 only if the inequality

cos 2θF ≥ cos
4jπ

k
(B.5)

is satisfied. Using the formula for the Euler angles of the product of two elements [60]

cos 2θ̂ = cos 2θ1 cos 2θ2 − sin 2θ1 sin 2θ2 cos(χ2 + ϕ1) (B.6)
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we obtain:

cos 2θ1 cos 2θ2 + sin 2θ1 sin 2θ2 cos(ϕ1 − ϕ2 + α2) ≥ cos
2jπ

k
(B.7)

For the inequality (B.7) to have solution in α2, the maximum value of the left hand side

should be greater than cos 2jπ
k . The maximum value of the left hand side is cos 2(θ1 − θ2).

Therefore for (B.7) to have solutions the inequality

cos 2(θ1 − θ2) ≥ cos
4jπ

k
(B.8)

should be satisfied.

Now we turn to the calculation of the geometry of the defect corresponding to the

operator (3.47).

The matrix of the modular transformation of the SU(2) WZW model at the level k is

S
SU(2)

ĵj
=

√

2

k + 2
sin

(

(2ĵ + 1)(2j + 1)

k + 2

)

(B.9)

In the large -k limit the ratio of the S matrix elements appearing in the defect operator

simplifies to

S
SU(2)

ĵj

S
SU(2)
0j

∼ k

π(2j + 1)
sin[(2j + 1)ψ̂] (B.10)

where we have introduced ψ̂ = (2ĵ+1)π
k+2 . To compute the overlap of the defect with the eigen-

position state, we should remember that the coordinate wave functions of the parafermion

theory are given by a gauge invariant wave function on SU(2). Gauge invariance means

here that the wave functions are independent of the Euler angle φ or φ̃ in the axially or

vectorilally gauged models correspondingly. On the other hand wave functions on SU(2)

are given by the normalized Wigner functions
√
2j + 1Dj

nm [40]. Therefore in the axi-

ally gauged model the wave functions are
√
2j + 1Dj

m,−m and in the vectorially gauged

model they are
√
2j + 1Dj

mm. In the defect (3.47) only modes with m = 0 are present.

Remembering that Dj
00 are the Legendre polynomials, finally we obtain at the large k level:

〈θ, φ|Y AB
ĵ

|θ̃, φ̃〉 =
∑

j

k

π
sin[(2j + 1)ψ̂]Pj(cos 2θ)Pj(cos 2θ̃) (B.11)

where Pj are the Legendre polynomials. Using the formula [60]:

Pj(cos θ1)Pj(cos θ2) = (B.12)

=
1

π

∫ θ1+θ2

|θ1−θ2|
Pj(cos γ)

sin γdγ
√

[cos γ − cos(θ1 + θ2)][cos(θ1 − θ2)− cos γ]

we obtain:

〈θ, φ|Y AB
ĵ

|θ̃, φ̃〉 = (B.13)

=
k

π2

∫ 2θ+2θ̃

|2θ−2θ̃|

∑

j

sin[(2j+1)ψ̂]Pj(cos γ)
sin γdγ

√

[cos γ−cos 2(θ+θ̃)][cos 2(θ−θ̃)−cos γ]
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Now let us evaluate [40]

∑

j

sin[(2j + 1)ψ̂]Pj(cos γ) =
eiψ̂

2i

∑

j

e(2j)iψ̂Pj(cos γ)−
e−iψ̂

2i

∑

j

e−(2j)iψ̂Pj(cos γ) (B.14)

Using the generating function for Legendre polynomials:

∑

n

tnPn(x) =
1√

1− 2tx+ t2
(B.15)

one obtains for (B.14):

eiψ̂

2i

1
√

e2iψ̂
(

e−2iψ̂ − 2 cos γ + e2iψ̂
)

+ c.c. = − 1

2
√
2

1
√

cos γ − cos 2ψ̂

+ c.c. (B.16)

and introducing the Heavyside step function Θ one gets:

∑

j

sin[(2j + 1)ψ̂]Pj(cos γ) ∼
Θ(cos γ − cos 2ψ̂)
√

cos γ − cos 2ψ̂

(B.17)

Inserting (B.17) in (B.13) one derives

〈θ, φ|Y AB
ĵ

|θ̃, φ̃〉 ∼ (B.18)

∼ k

π2

∫ 2θ+2θ̃

|2θ−2θ̃|

Θ(cos γ − cos 2ψ̂)
√

cos γ − cos 2ψ̂

sin γdγ
√

[cos γ − cos 2(θ + θ̃)][cos 2(θ − θ̃)− cos γ]

eq. (B.18) shows that the world-volume of the defect should satisfy the inequality

cos 2(θ − θ̃) ≥ cos 2ψ̂ (B.19)

For ĵ = 0 in the large k limit it yields θ = θ̃.

C Some super geometry

Here we review some of the definitions and results of super geometry, necessary for our

needs, and in particular fibre-wise integration on super fibre bundles. We denote by Λ(m)

the exterior algebra in m variables over a field F . This algebra is generated by an or-

thonormal basis θ1, . . . , θm of Fm and the relations θiθj = −θjθi.
Next we need to define the notion of a sheaf of objects in a category C on a space X.

First, a presheaf, F , of objects in a category C on a topological space X is defined such

that for every open set U ⊆ X there is an object F ∈ obj(C) and for every V ⊆ U there is

a morphism rU,V ∈MorC(F(U),F(U)), called restriction, with the following conditions:

1. F(∅) = 0 (∅ being the null set, and 0 is a trivial object in obj(C)).

2. rU,U is the identity map between F(U) and itself.

3. For W ⊆ V ⊆ U , rW,U = rW,V ◦ rV,U .
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Now a sheaf is a presheaf with the following added conditions:

1. For any open set U and a covering of it Ui, if s ∈ F(U) such that rU,Ui
(s) = 0 for all

i, then s = 0.

2. For any open set U and a covering of it Ui, if there exists elements si ∈ F(Ui) for

any i, such that for any i, j, rUi,Ui∩Uj
(si) = rUj ,Ui∩Uj

(sj), then there exists s ∈ F(U)

such that rU,Ui
= si

One can verify that the algebra of C∞ function on a metric space X is a sheaf on it.

For a metric space X, the sheaf of C∞ functions on X is denoted by OX . The ring of

functions restricted to a subset U ⊂ X is denoted by OX(U).

A smoothed superspace, Kp,q = (kp,Okp,q) is defined as a vector space kp with a sheaf

Okp,q that is defined by Okp,q(U) = Okp(U)⊗ Λ(q).

For a domain U ⊂ kp one defines a superdomain Up,q = (U,Okp,q |U ). U is called the

underlying domain of Up,q. If (x1, . . . , xp) are the coordinates of U and (θ1, . . . , θq) are the

generators of Λ(q), we say that (x1, . . . , xp, θ1, . . . , θq) are the coordinates of Up,q.
A supermanifold, M, is a ringed space (M,OM), where OM is a sheaf of commutative

superalgebras and the following conditions are satisfied:

1. M is a Hausdorf space with a countable base.

2. Every point m in M has a neighborhood U, such that the ringed space (U,OM|U ) is
isomorphic to a superdomain U .

A smooth function on a supermanifold can be written as

f =
∑

v

fv(x)θ
v (C.1)

Where x = x1, . . . , xp, v = v1, . . . vq, vi ∈ 0, 1, θv = θv11 · . . . · θvqq and the sum is over all

possible values of v. An integral of a function f on a supermanifold M is defined as

∫

M
f =

∫

M
f1,1,...,1 (C.2)

A derivative of a function of even and odd coordinates is defined as:

∂xif =
∑

v

∂xi(fv(x))θ
v; ∂θif =

∑

v

vi(−1)
∑i−1

j=1(fv(x)) · θ1 · . . . · θi−1 · θi+1 · . . . · θq (C.3)

Note that a derivative with respect to the even variables are even (commuting), whereas

that with respect to the grassmanian variables is odd. With this the tangent space at a

point m of (the underlying manifoldM of) a supermanifold M is the space spanned by the

derivatives at m. As shown above, it is a super vector space of dimension (p, q). It should

be noted that a more rigorous definition of the tangent space exists, but it is very technical,

and the definition used here suffices. Having defined the tangent space, the tangent bundle,

TM is defined in the usual manner. It is a (2p, 2q) dimensional supermanifold.

– 26 –



J
H
E
P
0
4
(
2
0
1
3
)
0
8
8

More important to us than the tangent space is the cotangent space. It is a space

derived from the tangent space by flipping the parity of all the generators. We denote

the generators of the cotangent space by dx1, . . . , dxp, dθ1, . . . , dθq. Note again that now

the dθ’s are even, commuting variables, whereas the dx’s are grassmanian. The cotangent

bundle, denoted by ΠTM is, in a manner similar to the purely even case, a (p + q, p + q)

dimensional manifold.

A pseudodifferential form on a supermanifold M is a function on ΠTM . In a fashion

akin to (C.1), such a function can be written as

f =
∑

v,u

fv,u(x, dθ)θ
vdxu (C.4)

Integration of a pseudodifferential form is defined just like in (C.2), and integrating only

the variables along the cotangent space is called integration along a fibre, or fibrewise in-

tegration. Notice that the dx’s are grassmanian and therefore pose no problem for the

integration. The dθ’s, however, are even variables, and the fibre is a linear space, and

so for the integral along the fibre to converge we need f1,1,....,1 to be rapidly decreasing in

those variables, i.e. for fixed x that function decreases to zero faster than any polynomial in

the dθ’s. In our analysis we use fibrewise integration when doing a ”super Fourier-Mukai”

transformation, and this condition would be satisfied.

D Solution of the defect equations of motion in the fermionic case

In section 4 we obtained the defect equations of motion for the defect implementing

fermionic T-duality:

Ej1∂X
j − (−)sjE1j ∂̄X

j − ∂τ θ̃
1 = 0 (D.1)

EjN∂X
j−(−)sjsNENj ∂̄X

j−ẼjN∂X̃j+(−)sjsN ẼNj ∂̄X̃
j = 0, N = 2 . . . dimM (D.2)

Ẽj1∂X̃
j − (−)sj Ẽ1j ∂̄X̃

j + ∂τθ
1 = 0 (D.3)

∂XN + ∂̄XN = ∂X̃N+∂̄X̃N , N = 2 . . . dimM (D.4)

Writing separately terms with θ1 in (D.1) and with θ̃1 in (D.3) and using (4.7) we get

EM1∂X
M − (−)sME1M ∂̄X

M +B11(∂θ
1 + ∂̄θ1)− (∂θ̃1 + ∂̄θ̃1) = 0 (D.5)

EM1∂X̃
M − (−)sME1M ∂̄X̃

M − (∂θ̃1 + ∂̄θ̃1) +B11(∂θ
1 + ∂̄θ1) = 0 (D.6)

Taking sum and difference of (D.5) and (D.6) we obtain:

(EM1 + (−)sME1M )(∂̄X̃M − ∂̄XM ) = 0 (D.7)

and

EM1∂X̃
M +B11∂θ

1 − ∂θ̃1 − (∂̄θ̃1 −B11∂̄θ
1 + (−)sME1M ∂̄X̃

M ) = 0 (D.8)

Separating terms with θ1 and θ̃1 also in (D.2) we obtain

E1N

B11

(

EM1∂X̃
M +B11∂θ

1 − ∂θ̃1
)

(D.9)

+
EN1(−)sN

B11

(

∂̄θ̃1−B11∂̄θ
1+(−)sME1M ∂̄X̃

M
)

+(EMN+(−)sMsNENM)
(

∂̄X̃M−∂̄XM
)

=0
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Collecting all we get:

∂̄X̃N = ∂̄XN , N = 2 . . . dimM (D.10)

∂X̃N = ∂XN , N = 2 . . . dimM

∂θ̃1 = B11∂θ
1 + EM1∂X

M

∂̄θ̃1 = B11∂̄θ
1 − (−)sME1M ∂̄X

M
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[48] K. Hori, D-branes, T duality and index theory, Adv. Theor. Math. Phys. 3 (1999) 281

[hep-th/9902102] [INSPIRE].

[49] E. Bergshoeff, C.M. Hull and T. Ort́ın, Duality in the type-II superstring effective action,

Nucl. Phys. B 451 (1995) 547 [hep-th/9504081] [INSPIRE].

[50] E. Eyras, B. Janssen and Y. Lozano, Five-branes, K K monopoles and T duality,

Nucl. Phys. B 531 (1998) 275 [hep-th/9806169] [INSPIRE].

[51] R. Bott and L.W. Tu, Differential forms in algebraic topology, Graduate Texts in

Mathematics 82, Springer-Verlag, New York U.S.A. (1982).

[52] I. Brunner and V. Schomerus, D-branes at singular curves of Calabi-Yau compactifications,

JHEP 04 (2000) 020 [hep-th/0001132] [INSPIRE].

[53] J. Fuchs et al., Boundary fixed points, enhanced gauge symmetry and singular bundles on

K3, Nucl. Phys. B 598 (2001) 57 [hep-th/0007145] [INSPIRE].

[54] J.N. Bernstein and D.A. Leites, How to integrate differential forms on supermanifolds,

Funkts. Anal. Pril. 11 (1977) 70 [Funct. Anal. Appl. 11 (1977) 219].

– 30 –

http://dx.doi.org/10.1016/0550-3213(88)90470-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B299,151
http://inspirehep.net/search?p=find+R+UCD-88-02
http://dx.doi.org/10.1007/BF01218579
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,118,241
http://dx.doi.org/10.1016/0550-3213(89)90015-1
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B320,625
http://dx.doi.org/10.1016/0550-3213(90)90365-K
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B344,344
http://dx.doi.org/10.1088/1126-6708/2001/07/046
http://arxiv.org/abs/hep-th/0105038
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105038
http://dx.doi.org/10.1088/1126-6708/2008/09/062
http://arxiv.org/abs/0807.3196
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3196
http://dx.doi.org/10.1016/0370-2693(88)90602-8
http://inspirehep.net/search?p=find+J+Phys.Lett.,B201,466
http://dx.doi.org/10.1016/0550-3213(89)90489-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B322,167
http://dx.doi.org/10.1016/0550-3213(94)00426-F
http://arxiv.org/abs/hep-th/9409011
http://inspirehep.net/search?p=find+EPRINT+hep-th/9409011
http://dx.doi.org/10.1007/b11801
http://arxiv.org/abs/hep-th/9902102
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902102
http://dx.doi.org/10.1016/0550-3213(95)00367-2
http://arxiv.org/abs/hep-th/9504081
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504081
http://dx.doi.org/10.1016/S0550-3213(98)00575-6
http://arxiv.org/abs/hep-th/9806169
http://inspirehep.net/search?p=find+EPRINT+hep-th/9806169
http://dx.doi.org/10.1088/1126-6708/2000/04/020
http://arxiv.org/abs/hep-th/0001132
http://inspirehep.net/search?p=find+EPRINT+hep-th/0001132
http://dx.doi.org/10.1016/S0550-3213(00)00779-3
http://arxiv.org/abs/hep-th/0007145
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007145
http://dx.doi.org/10.1007/BF01079468


J
H
E
P
0
4
(
2
0
1
3
)
0
8
8

[55] J.N. Bernstein and D.A. Leites, Integral forms and the Stokes formula on supermanifolds,

Funkts. Anal. Pril. 11 (1977) 55 [Funct. Anal. Appl. 11 (1977) 45].

[56] P. Lavaud, Equivariant cohomology and localization formula in supergeometry,

math.DG/0402068.
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