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1 Introduction

Holography has evolved into an indispensable tool to study the dynamics of strongly cou-

pled quantum field theories. In addition, this duality can be used to learn new lessons

about the structure of black holes. For a long time, an important outstanding question in

black hole physics has been to account microscopically for the entropy of asymptotically

AdS black holes in more than three dimensions.1 While this problem still remains open

for black holes in five or more dimensions, recently there has been a rapid progress in un-

derstanding the microstate counting for supersymmetric black holes in AdS4 [1–6]. These

developments were triggered by employing the tools of supersymmetric localization (see [7]

for a recent review) to define and compute a suitable partition function, called “topologi-

cally twisted index” [8–10], which can be used to count the microstates of these black holes.

The basic idea of the recent work is to engineer a black hole in M-theory2 which is

asymptotic to an AdS4×M7 solution, where M7 is a Sasaki-Einstein manifold. The horizon

of such four-dimensional black holes is a compact Riemann surface, Σg. This gravitational

background in turn is holographically dual to a three-dimensional N = 2 SCFT of the

ABJM type [15–17] placed on R × Σg with a partial topological twist. For such twisted

three-dimensional SCFTs the supersymmetric partition function was studied in [8–10] and

it reduces to a matrix model due to supersymmetric localization. In the planar limit of a

large number, N , of coincident M2-branes, one can solve this matrix model and obtain the

free energy of the twisted SCFT to leading order in N .3 This in turn reproduces the entropy

of the black hole. This procedure is best studied for black holes in eleven-dimensional

supergravity compactified on S7 [1, 2], i.e. for the ABJM theory at k = 1, 2, but it can also

be generalized to other manifolds M7 [3, 4, 6]. The black holes in AdS4 can also be viewed as

holographic duals of RG flows across dimensions in the spirit of Maldacena-Nuñez [21–23].

In this work we will follow a slightly different approach. Our starting point is the well-

known observation that the ABJM theory admits a mass deformation that preserves N = 2

supersymmetry and leads to an interacting SCFT in the IR [24] (see also [25]). We refer to

this SCFT as mABJM. Although this theory is strongly coupled, some information about its

1Here we are focusing on black holes and do not discuss higher-dimensional black branes.
2See also [6, 11–14] for an extension of these results to asymptotically AdS4 black holes in massive IIA

string theory.
3See [18–20] for recent attempts to account for subleading corrections in N .
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physics can be obtained using symmetries and supersymmetric localization. For example,

the partition function of the theory on S3 was computed in [26] (see, in particular, section

5). In addition, mABJM has a holographic dual which was constructed in four-dimensional

gauged-supergravity by Warner (W) in [27, 28] (see also [29, 30]) and uplifted to eleven

dimensions in [31]. The situation here is akin to the well-known N = 1 Leigh-Strassler

fixed point arising from a supersymmetric mass-deformation of four-dimensional N = 4

SYM [32]. The gravity dual of this four-dimensional N = 1 SCFT was studied in [33, 34]

There are two main objectives that we have in mind. On one hand, we are interested

in studying the topologically twisted index of [8–10] for the mABJM N = 2 SCFT. On the

other hand we want to construct new four-dimensional supersymmetric black holes that

are asymptotic to the AdS4 Warner vacuum [27, 28] (or alternatively the CPW solution

of eleven-dimensional supergravity [31]) and have a near-horizon AdS2 region. The large

N limit of the topologically twisted index should then reproduce the Bekenstein-Hawking

entropy of these black holes. It is worth emphasizing that the CPW AdS4 solution in eleven-

dimensional supergravity is not of the usual Freund-Rubin type and thus the class of black

holes that we study is different from the ones explored recently in the literature [1–4, 6].

The calculation of the topologically twisted index in the planar limit proceeds similarly

as in [1–4, 6]. However, there are several subtle points related to the electric charge

parameters of the index, which we emphasize and clarify along the way.

The construction of the new black hole solutions is more involved. We start with

the maximal SO(8) gauged supergravity in four-dimensions [35], which is a consistent

truncation to the lowest-lying KK modes of the eleven-dimensional supergravity on S7 [36,

37]. The three-dimensional mABJM SCFT of interest is dual to the N = 2 AdS4 vacuum

discovered by Warner [27, 28]. It has the usual U(1)R R-symmetry along with an SU(3)F
flavor symmetry which is manifested on the supergravity side by the presence of a massless

SU(3) × U(1) gauge field in the AdS4 Warner vacuum. The supersymmetric black hole

solutions of interest are similar to the ones found in [38–40]. In particular, they have

non-vanishing gauge fields lying in the Cartan subalgebra of SU(3) × U(1). This allows

us to simplify the construction by focusing on an U(1)3-invariant consistent truncation of

the maximal supergravity. In addition to the metric and three Abelian gauge fields, the

bosonic sector of that truncation contains also eight real scalars. By analyzing the BPS

equations and the equations of motion, we construct a plethora of magnetic and dyonic

supersymmetric black holes in this truncated theory.

The U(1)3-invariant truncation can be embedded into a larger U(1)2-invariant trun-

cation of the four-dimensional N = 8 supergravity. The advantage of doing that is that

the resulting theory is a fully-fledged four-dimensional N = 2 gauged supergravity coupled

to three vector multiplets and one hypermultiplet. The ten real scalars in this truncation

parametrize the coset

MV ×MH =

[
SU(1, 1)

U(1)

]3

× SU(2, 1)

SU(2)×U(1)
. (1.1)

Recasting our black hole solutions in the N = 2 language offers some additional insights

and allows us to use the existing results on black holes in four-dimensional N = 2 gauged

supergravity, see [41–46] for a non-exhaustive list of references.
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FABJM
S3 (∆α) FmABJM

S3 (∆i)

IABJM
M (nα; ∆α) ImABJM

M (ni; ∆i)

IABJM
M (nα) ImABJM

M (ni)

SSTU
BH (nα) SW

BH(ni)

MD(∆1)

TT(nα) TT(ni)

MD(n1;∆1)

CE(∆α|λ1,λ2)CE(∆α|λ) CE(∆i|λ)

BHZ [1] Section 5.1.2

Figure 1. Magnetically charged AdS4 black holes: formal relations between the free energy, FS3 ,

the twisted topological index, IM , and the black hole entropy, SBH. The operations along the

arrows are: MD — mass deformation, TT — topological twist, CE — constrained extremization.

We note that our current set-up is very similar to the one in [47], where a partial

topological twist of the Leigh-Strassler theory [32] placed on R2 × Σg led to a holographic

RG flow from the four-dimensional N = 1 SCFT to a two-dimensional (0, 2) SCFT. The

holographic dual to this setup is a family of black string solutions with an AdS3 near-

horizon region which are asymptotic to the AdS5 fixed point of the five-dimensional N = 8

gauged supergravity found in [48].

1.1 Synopsis

Since the paper is rather long and technical, let us highlight some of the main results first.

We begin in section 2 with a discussion of the field theory side of the duality, specifically

the mABJM theory that is obtained from the ABJM theory by a mass deformation (MD),

formally captured by a constraint on the R-charge,4 ∆1. The main object of interest is

the topologically twisted index, which is a partition function on R × Σg that depends

on electric charges and magnetic fluxes as well as complex fugacities for the continuous

global symmetries of the theory. The calculation of this observable in mABJM proceeds

in several steps and has been schematically summarized in figures 1 and 2. It parallels a

similar calculation in ABJM [1, 2], see the right and left columns in the figures, respectively.

First we compute the “magnetic index,” IM (n; ∆), which depends on the magnetic

topological twist parameters nα/i and the real fugacities ∆α/i. We use the observation

in [3] that the index, IM (n; ∆), is directly related by a topological twist (TT) to the

supersymmetric partition function, FS3 , of the CFT on S3, where the fugacities, ∆α/i, are

4The ABJM theory has a global symmetry group of rank 4 and thus the magnetic fluxes, R-charges and

fugacities are labelled by α = 1, 2, 3, 4. The mass deformation in mABJM reduces the rank of the symmetry

group to 3 and the parameters are labelled by i = 2, 3, 4.
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D (ni, qi;ui)

IABJM
D (nα, qα) ImABJM

D (ni, qα|ν) ImABJM
D (ni, qi)

SSTU
BH (nα, qα) SW

BH(ni, qα) SW
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MD(n1;∆1)

LT(qi)

MD(n1,q1;∆1)

CER(uα|λ1,λ2)CER(uα|λ) CER(ui|λ)

BHZ [2]

ν→ν∗

ν→0 Section 4.2.1

Figure 2. Dyonic AdS4 black holes. Formal relations between the topological twisted index,

IM , the dyonic twisted index, ID, and the black hole entropy, SBH. The operations along arrows

are: MD — mass defomration, LT — Legendre transform, CER — constrained extremization with

reality conditions.

identified with the R-charges on S3. The topologically twisted index, IM (n), which is a

function of the magnetic fluxes, nα/i, only, is then obtained from IM (n; ∆) by extremization

(CE) with respect to the fugacities, ∆α/i, subject to an algebraic constraint (with the

corresponding real Lagrange multiplier, λ) that is imposed by supersymmetry [1]. We

show that the end result for the magnetic index, ImABJM
M (ni), in the mABJM theory is

the same irrespective of whether one first applies the mass deformation to the ABJM

twisted index, IABJM
M (nα; ∆α), to obtain the corresponding twisted index, ImABJM

M (ni; ∆i),

which is then extremized with respect to its fugacities, or, equivalently, one extremizes

IABJM
M (nα; ∆α) while imposing simultaneously two constraints on the fugacities: the one

for the mass deformation and the one for the topological twist. The resulting extremized

index, ImABJM
M (ni), is shown in section 5.1.2 to match the entropy of the new family of

magnetic black holes that we construct in section 5.1.1.

In general, the topologically twisted index is dyonic, it depends on both electric charges,

qα/i, and magnetic fluxes, nα/i, as well as complex fugacities, uα/i. To include these extra

parameters we follow the approach in [2] which is summarized in figure 2. We start with

IM (n; ∆), analytically continue it from real fugacities, ∆α/i, to complex fugacities, uα/i,

and introduce the electric charges, qα/i, by a Legendre transformation (LT). This yields

the dyonic index, ID(n, q;u), which is then extremized (CER) with respect to constrained

fugacities, uα/i.

This calculation is more subtle than for the purely magnetic index in figure 1. The

reason is that there should be a linear relation between the electric charges to ensure
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supersymmetry, however, it is not entirely clear how to find it. It was proposed in [2] that

to reproduce correctly the entropy of a macroscopic black hole, the imaginary part of the

dyonic index, ID(n, q), should vanish. This provides exactly one additional constraint that

serves as the expected relation between the electric charges.

It is straightforward to implement this procedure in the ABJM theory, see [2] and sec-

tion 2.4.1, as summarized by the left column in figure 2. In mABJM there is a further sub-

tlety at which step of the calculation one should impose the massive deformation that elimi-

nates one of the global U(1) symmetries. One possibility, see section 2.4.2, is to perform the

mass deformation first. This leaves three U(1) global symmetries the corresponding electric

charges, qi, magnetic fluxes, ni, and fugacities, ui. Then the extremization with respect to

those fugacities together with the reality constraint yields an unambiguous result for the

dyonic twisted index, ImABJM
D (ni, qi), that matches the entropy of the new dyonic black

holes constructed in section 3.3. The other possibility, suggested by the corresponding cal-

culation of the magnetic index, is to extremize the ABJM dyonic index, IABJM
D (nα, qα;uα),

while imposing two constraints on the fugacities using two complex Lagrange multipliers,

λ1 and λ2, see the diagonal arrow in figure 2. Indeed, in section 2.4.3 we find the extrem-

ized dyonic index and the magnetic fluxes are the same as above. However, unlike before,

this extremization does not yield a unique result for the electric charges because of a shift

symmetry that involves the imaginary parts of the Lagrange multipliers. In sections 2.4.3

and 4.2.3 we show that this symmetry can be fixed consistently in two ways: (i) one can set

the electric charge q1 to zero, thus reducing the calculation to the one in the mABJM theory

above, and (ii) set the imaginary parts of both Lagrange multipliers to zero, which gives a

consistent match with the dyonic black holes in the dual supergravity with four vector fields.

Throughout the paper we work with a consistent truncation of the maximal SO(8)

gauged supergravity, which is discussed in section 3 and appendices B and C. We use the

truncation to construct supersymmetric AdS2×Σg solutions which should be thought of as

the near-horizon geometry of a class of dyonic black holes asymptotic to the AdS4 Warner

vacuum. In section 4, we show explicitly that the Bekenstein-Hawking entropy of these

black holes is the same as the topologically twisted index. In section 5, we study the

magnetically charged black holes in more detail. We conclude in section 6 with a short

discussion and some open questions for future work. In appendix A we summarize our

notation and conventions. In appendix B we also show how to formulate our truncation in

the canonical language of four-dimensional N = 2 gauged supergravity. In appendix C we

present some details on the derivation of the near-horizon BPS equations used in section 3.

Finally, in appendix D we show how these BPS equations can be written in a form similar

to the “attractor mechanism” equations discussed in [41, 42].

2 Field theory

2.1 ABJM and a mass deformation

Here we offer a short summary on the ABJM SCFT [15] and a particular supersymmetric

mass deformation studied in [24] (see also [25, 26]). The ABJM theory is a double Chern-

Simons theory with gauge group U(N) × U(N) and equal and opposite levels for the two

– 5 –
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gauge groups (k,−k). This theory describes the low-energy dynamics of N coincident M2-

branes probing a C4/Zk singularity in M-theory. The dual holographic description at large

N is in terms of an AdS4 × S7/Zk solution in M-theory. For k > 2 the theory has only

N = 6 supersymmetry which gets enhanced to N = 8 for k = 1, 2. In the following we

will focus on k = 1 where there is no orbifold singularity and the gravitational solution

is well-described by eleven-dimensional supergravity.5 For k = 1 the theory has an SO(8)

R-symmetry which, however, is not manifest at the level of the ABJM Lagrangian.

The ABJM theory can be succinctly described using the N = 2 superspace formalism.

In addition to the two vector multiplets, there are four chiral multiplets denoted by Aa and

Bc, a, c = 1, 2, transforming in the (N,N) and (N,N) representation of U(N)k ×U(N)−k,

respectively, with the superpotential

W ∼ Tr
(
εabεcdAaBcAbBd

)
. (2.1)

The R-charges of these chiral superfields,6 R[Aa] ≡ ∆Aa and R[Bc] ≡ ∆Bc , must satisfy

the constraint

∆A1 + ∆A2 + ∆B1 + ∆B2 = 2 , (2.2)

so that the total R-charge of the superpotential (2.1) is equal to 2.

In this formulation only an U(1)R × SU(2) × SU(2) × U(1)b subgroup of the global

symmetry is manifest. It is enhanced to SU(4)R × U(1)b when the Lagrangian is written

in components, see for example [26]. The U(1)b global symmetry has a topological nature

characteristic of three-dimensional QFTs and is generated by the current ∗3Tr(F + F̃ ),

where F and F̃ are the field strengths of the two U(N) gauge fields and ∗3 is the Hodge star

in three dimensions. Due to this topological current there are gauge invariant monopole

operators, T (q), in the theory, which turn on q units of flux for the topological current

through an S2 surrounding the insertion point. When k = 1 the operator T (1) transforms

in the (N,N) and the operator T (−1) transforms in the (N,N) representation of the gauge

group. This is ultimately responsible for the enhancement of the supersymmetry to N = 8

and of the R-symmetry to SO(8)R. In the dual holographic description for k = 1, given

by the AdS4 × S7 solution of M-theory, the SO(8)R is realized as the isometry group of

S7. The metric of S7 can be written as a circle fibration over CP3, then the SU(4)R is the

isometry group of CP3 and U(1)b is realized as the isometry of the fibre.

The S3 free energy of the ABJM SCFT can be computed using supersymmetric local-

ization and is given by the following function of the R-charges:7

FS3 =
4
√

2π

3
N3/2

√
∆A1∆A2∆B1∆B2 . (2.3)

5We expect that most of our results should hold for more general values of k.
6As usual, the R-charge of an N = 2 chiral supermultiplet is defined as the R-charge of its lowest

component which is a complex scalar.
7See [49] where a discussion on FS3 for the ABJM theory as a function of ∆a can be found, as well

as [50] for a derivation of the N3/2 scaling of FS3 for the ABJM theory. Note also that we define the free

energy as FS3 = − logZS3 , where ZS3 is the supersymmetric partition function of the theory on S3.

– 6 –
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Using F -maximization [51, 52] while satisfying the second relation in (2.2), one finds the

values of the R-charges at the superconformal point,

∆A1 = ∆A2 = ∆B1 = ∆B2 =
1

2
, (2.4)

so that the free energy on S3 for ABJM reads

FABJM
S3 =

√
2π

3
N3/2 . (2.5)

Note that the values of ∆A1,2 and ∆B1,2 in (2.4) can also be obtained as a condition

for enhanced supersymmetry of the SCFT. When the ABJM theory is placed on S3, for

values of ∆A1,2 and ∆B1,2 that obey (2.2), but not (2.4), the theory preserves N = 2

supersymmetry but is not conformal, see [49] for a discussion.

The ABJM superpotential (2.1) can be deformed by a mass term that preserves N = 2

supersymmetry

∆W ∼ Tr(T (1)A1)2 . (2.6)

Adding this deformation triggers an RG flow from the ABJM theory in the UV to an

interacting N = 2 SCFT in the IR. This was studied in [24] (see also [25, 26]) from a

field theory perspective. The holographic description of this mABJM SCFT is given by

the Warner vacuum of four-dimensional maximal SO(8) gauged supergravity [27, 28] (see

also [53]) which was uplifted to eleven-dimensional supergravity in [31]. There have been

several consistency checks of this proposed duality including a match between the spectrum

of protected operators [25] (see also [53] for earlier work) as well as the free-energy to leading

order in N [26]. It is worth pointing out that, while the ABJM theory is parity invariant, the

N = 2 SCFT obtained by the mass deformation in (2.6) breaks parity. In the supergravity

description this breaking of parity is manifested by the fact that one of the four-dimensional

N = 8 supergravity pseudoscalars has a non-vanishing value at the Warner vacuum.

The mABJM SCFT has the following symmetries: the four chiral superfields of the

ABJM theory, ordered as (A1, A2, B1, B2), transform in the 41 of SU(4)R × U(1)b (see,

e.g., [49] for a summary). The superpotential (2.6) breaks SU(4)R to SU(3)F and only

a linear combination of the U(1)c commutant of SU(3)F inside of SU(4) and the U(1)b
is preserved. We will call that linear combination U(1)W

R since it is the superconformal

R-symmetry of the mABJM conformal fixed point, which in turn is dual to the Warner

vacuum in supergravity. The SU(3)F symmetry does not act on the supercharges and thus

deserves the name flavor symmetry. The linear combination of U(1)b and U(1)c orthogonal

to U(1)W
R is broken by the quadratic superpotential (2.6) and corresponds to the massive

U(1)m vector field in the supergravity discussion below.

The superpotential deformation (2.6) modifies the R-charge assignments in the theory.8

In particular, the value of the R-charge for A1 is set to unity. Combining this with (2.2)

one finds

∆A1 = 1 , ∆A2 + ∆B1 + ∆B2 = 1 . (2.7)

8One can always choose a gauge in which the monopole operators have vanishing R-charge, see for

example [26] for a discussion on this.
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The S3 free energy for general values of the three R-charges can be computed by local-

ization [26]. The final result can be obtained by formally setting ∆A1 = 1 in (2.3) and

reads

FS3 =
4
√

2π

3
N3/2

√
∆A2∆B1∆B2 . (2.8)

Applying F -extremization to (2.8) and enforcing the constraint in (2.7), we find that at

the mABJM fixed point

∆A2 = ∆B1 = ∆B2 =
1

3
. (2.9)

This is compatible with the SU(3)F flavor symmetry of the model and leads to the following

S3 free energy of the mABJM SCFT:

FmABJM
S3 =

4
√

2π

9
√

3
N3/2 . (2.10)

Thus one finds that the UV (ABJM) and IR (mABJM) SCFTs have the following relation

between their S3 partition functions

FmABJM
S3 =

4

3
√

3
FABJM
S3 . (2.11)

As expected this is compatible with the F -theorem, namely FABJM
S3 > FmABJM

S3 [26, 54].

2.2 The topologically twisted index

A three-dimensional N = 2 SCFT can be placed on the manifold R × Σg, where Σg is a

closed Riemann surface of genus g,9 while preserving at least two supercharges by employing

the topological twist of Witten [55]. The procedure amounts to turning on a background

gauge field for the U(1) R-symmetry of the SCFT with a finely tuned magnitude so as

to cancel the curvature of the Riemann surface. In addition, one is free to turn on any

appropriately quantized flux for the background gauge fields that couple to the continuous

flavor symmetry currents in the CFT. This procedure can be applied to both the ABJM

and the mABJM theories discussed above.

An interesting supersymmetric observable which captures non-trivial information

about a topologically twisted three-dimensional N = 2 SCFT on R×Σg is the topologically

twisted index

I(ni; ∆i) ≡ logZR×Σg(∆i, ni), (2.12)

defined in [8–10]. This is a supersymmetric partition function that depends on the theory

at hand, the genus, g, of the Riemann surface, the magnetic fluxes, ni, for the background

magnetic fields as well as the fugacities, ∆i, for those global symmetries. We use the same

notation for the fugacities and the R-charges in (2.2) since they obey formally the same con-

straint [3]. The general form of this partition function is quite complicated, but it simplifies

dramatically in an appropriate large N limit which will be the focus of our discussion.

The large N limit of the twisted index was first studied in [1] for g = 0. Here we use

mostly the results of [3], combined with the ones in section 6 of [9], which are applicable

9See, appendix A for our conventions.
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for the large N limit of the so called non-chiral quiver gauge theories that include both the

ABJM and mABJM theories. The resulting formula for the twisted index can be expressed

in terms of the partition function on S3 and the background magnetic fluxes ni,
10

I(ni; ∆i) = (g− 1)

(
FS3(∆i) +

rG∑
i=1

[(
ni

g− 1
−∆i

)
1

2

∂FS3(∆i)

∂∆i

])
, (2.13)

where rG is the rank of the continuous global symmetry group. For the ABJM theory,

rG = 4 since the global symmetry is SO(8). For the mABJM theory, the global symmetry

is SU(3)F ×U(1)W
R and thus rG = 3. As argued in [1], the topologically twisted index can

be found by extremizing (2.13) with respect to ∆i, subject to the constraint (2.2) for ABJM

and (2.7) for mABJM. This means that to use the formula in (2.13) one should first fix the

background fields (the genus, g, and the magnetic fluxes, ni), then solve the constrained

extremization problem to find the extremal values ∆i(n) that are finally plugged back

into (2.13) to obtain the topologically twisted index as a function of the background fields.

2.2.1 The ABJM twisted index

Let us illustrate this procedure in some detail for the ABJM theory. We begin by turning

on background magnetic fields along the four Cartan generators, Tα, of the SO(8) global

symmetry,

F = F (α)Tα , F (α) = nαvolΣg , α = 1, . . . , 4 . (2.14)

To preserve supersymmetry we have to impose the following relation between the magnetic

fluxes:

n1 + n2 + n3 + n4 = 2(g− 1) , (2.15)

which implements the topological twist. In addition, we must ensure the proper flux

quantization for the magnetic fields piercing the Riemann surfaces. In our conventions this

amounts to nα ∈ Z.

The general formula for the topologically twisted index in (2.13), after using the explicit

expression for the free energy on S3 in (2.3), is

IM (nα; ∆α) =

√
2π

3
N3/2

√
∆1∆2∆3∆4

(
n1

∆1
+

n2

∆2
+

n3

∆3
+

n4

∆4

)
. (2.16)

One should extremize it as a function of ∆α subject to the constraint in (2.2). To this end

we introduce the Lagrange multiplier, λ, and extremize

I(nα; ∆α|λ) = IM (nα; ∆α) + πλ(∆1 + ∆2 + ∆3 + ∆4 − 2) . (2.17)

This yields the system of equations

∂IM
∂∆α

+ πλ = 0 , α = 1, . . . , 4 , (2.18)

10We use the shorthand notation ∆A1,A2 → ∆1,2 and ∆B1,B2 → ∆3,4.
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which can be solved for the magnetic charges

nα = − 3λ

2
√

2N3/2

∑
β σαβ∆α∆β√
∆1∆2∆3∆4

, (2.19)

where

σαβ =

{
−1 for α = β ,

1 for α 6= β .
(2.20)

Plugging this back into (2.16) and using (2.2), we find

I(nα; ∆α|λ) = −2πλ . (2.21)

Imposing the topological twist condition (2.15) on the magnetic fluxes (2.19), we solve

for the Lagrange multiplier,

λ = −2(g− 1)
2
√

2N3/2

3

√
∆1∆2∆3∆4∑
α,β σαβ∆α∆β

. (2.22)

Then (2.19) can be rewritten as

nα = 2(g− 1)

∑
β σαβ∆α∆β∑
γ,δ σγδ∆γ∆δ

, (2.23)

and the topologically twisted index as a function of extremal fugacities, ∆α = ∆ext
α , is

I(nα(∆); ∆α) =
8
√

2π

3
(g− 1)N3/2

√
∆1∆2∆3∆4∑
α,β σαβ∆α∆β

. (2.24)

To find the final expression for the topologically twisted index as a function of the

magnetic fluxes, nα, one has to solve the algebraic equations in (2.23) for ∆α(n) and plug

the result in (2.24) to obtain, IM (nα). Clearly, given the nonlinearity of (2.23), this is in

general a complicated algebraic problem that one would rather avoid. So, instead we will

work with the implicit formulae above for the magnetic fluxes and the twisted topological

index as functions of the extremal fugacities.

There is a special topological twist, the so-called universal twist [6, 23, 56], for which

one can perform the algebraic calculations above explicitly. This twist is characterized by

having background magnetic fields that extend only along the unique N = 2 supercon-

formal R-symmetry of the ABJM theory. In our conventions this amounts to setting11

n1 = n2 = n3 = n4 = (g−1)/2. Solving (2.23) for these values of the background fluxes one

finds ∆α = 1/2 which in turn leads to the following simple expression for the topologically

twisted index

IABJM
univ = (g− 1)

√
2π

3
N3/2 = (g− 1)FABJM

S3 , (2.25)

where we have used (2.5). Note that only for g > 1 one finds a positive topologically

twisted index at leading order in N .

11Note that due to the quantization condition nα ∈ Z, the universal twist is well defined only on Riemann

surfaces for which g is odd.
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2.2.2 The mABJM twisted index

Now we apply the same procedure to the mABJM theory obtained by a mass deformation

of the ABJM superpotential in (2.6). As we discussed in section 2.1, this breaks the

global SO(8) symmetry to SU(3)F ×U(1)W
R . In terms of the SO(8) Cartan generators, Tα,

α = 1, . . . , 4, the Cartan subalgebra of the new global symmetry group is spanned by

T (1) =
1

2
(T2−T3) , T (2) 1

2
√

3
(T2 +T3−2T4) , T (R) =

1

3
(3T1 +T2 +T3 +T4) , (2.26)

where the first two are Cartan generators of SU(3)F and the third one is the generator

of the new R-symmetry, U(1)W
R . If we start with a general SO(8) magnetic field (2.14),

the symmetry breaking along the RG-flow restricts it to the Cartan subalgebra of the new

global symmetry, which is enforced by the condition

n(m) ≡ n1 − n2 − n3 − n4 = 0 , (2.27)

while the topological twist along the new R-symmetry generators gives

n(R) ≡ 1

2
(3n1 + n2 + n3 + n4) = 2(g− 1) . (2.28)

It is illuminating to rewrite the two constraints as

n1 = g− 1 , n2 + n3 + n4 = g− 1 , (2.29)

which is analogous to the condition (2.7) on the R-charges. Using (2.8) and (2.13) we then

find the following expression for the topologically twisted index

I(ni; ∆i) =

√
2π

3
N3/2

√
∆2∆3∆4

(
g− 1 +

n2

∆2
+

n3

∆3
+

n4

∆4

)
, (2.30)

which must be extremized as a function of ∆2,3,4 satisfying the constraint (2.7). Introducing

a Lagrange multiplier and extremizing as above, we obtain the following relations between

the extremal values ∆i = ∆ext
i and the magnetic fluxes:

n2 = (g− 1)∆2

[
∆3 + ∆4

∆2∆3 + ∆3∆4 + ∆4∆2
− 1

]
,

n3 = (g− 1)∆3

[
∆2 + ∆4

∆2∆3 + ∆3∆4 + ∆4∆2
− 1

]
,

n4 = (g− 1)∆4

[
∆2 + ∆3

∆2∆3 + ∆3∆4 + ∆4∆2
− 1

]
.

(2.31)

Finding the twisted index as a function of n2,3,4 again amounts to solving the algebraic

equations in (2.31) for ∆i and plugging the result in (2.30) which is difficult. Hence, we

proceed as previously and express the final result in terms of the extremal values ∆i = ∆ext
i ,

I(ni(∆); ∆i) =
2
√

2π

3
(g− 1)N3/2

√
∆2∆3∆4

[
1

∆2∆3 + ∆3∆4 + ∆4∆2
− 1

]
. (2.32)
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We have obtained (2.30) for mABJM from (2.13) for ABJM by imposing the con-

straints (2.7) and (2.29) on ∆1 and n1, respectively. However, implementing those con-

straints does not commute with the extremization of the topologically twisted index. In-

deed, (2.32) differs from the result one would have obtained by evaluating the topologically

twisted index for ABJM in (2.24) with n1 and ∆1 set to their mABJM values. If one wants

to start with the ABJM index (2.16), the correct procedure is to extremize it with both

constraints in (2.7).

2.3 Explicit examples

It is instructive to discuss two examples in which we can solve the algebraic equations

in (2.31) and obtain the twisted index in a compact form as an explicit function of the

magnetic fluxes.

Our first example is the universal twist which amounts to turning on the magnetic flux

only along the R-symmetry generator in (2.26). This leads to the following values for n2,3,4
12

n2 = n3 = n4 =
1

3
(g− 1) . (2.33)

Plugging this in (2.31) one finds the solution ∆2 = ∆3 = ∆4 = 1/3. As expected on

general grounds, see [6, 23], the topologically twisted index is then

ImABJM
univ = (g− 1)

4
√

2π

9
√

3
N3/2 = (g− 1)FmABJM

S3 , (2.34)

where for the second equality we used (2.10).

The second example is more involved. We impose the following relation between the

magnetic fluxes:

n2 = n3 ≡ (g− 1) n . (2.35)

The remaining magnetic fluxes are then fixed by (2.29). Solving the equations in (2.31)

with these restrictions leads to the following four branches of solutions for ∆2,3:

Branch 1±: ∆2 =
1− n±

√
(1 + n)(1− 3n)

2
, ∆3 =

1− n∓
√

(1 + n)(1− 3n)

2
,

Branch 2±: ∆2 = ∆3 =
1− n±

√
(1 + n)(n− 1/3)

2
.

(2.36)

Note that ∆4 is fixed uniquely by the linear relation in (2.7) once a choice of a branch of

solutions in (2.36) has been made. The corresponding twisted index reads:

Branch 1±: I(n) =
3
√

3n(1−n)

2
(g−1)FmABJM

S3 ,

Branch 2±: I(n) =
3

2
√

2

(1−2n)
(

1+3n2±(1−3n)
√

(1+n)
(
n− 1

3

))√
(1−2n)

(
1−3n2∓(1−3n)

√
(1+n)

(
n− 1

3

))(g−1)FmABJM
S3 ,

12Due to the quantization condition ni ∈ Z, we find that the universal twist for the mABJM theory is

well defined only on Riemann surfaces for which g is a multiple of 4.
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where once again we have expressed the result in terms of the mABJM free energy on

S3, see (2.10). Interestingly, we find that the two branches of solutions 1± have the same

twisted index.

The extremized values ∆i play the role of R-charges in the one-dimensional quantum

mechanical system arising at low energies after the twisted compactification on Σg. We

thus have to impose that ∆i are real. In addition the twisted index is expected to reproduce

the entropy of the black hole that describes this twisted compactification holographically.

For that reason we also have to find I > 0. Imposing these two constraints in the expres-

sion (2.3) restricts the value of the magnetic flux for Branch 1± to the range 0 < n < 1/3

and for Branch 2± to 1/3 < n < 1/2. At the special value n = 1/3, the R-charges reduce to

∆i = 1/3 and one should recover the universal twist. Indeed, when evaluated at n = 1/3,

the twisted index (2.3) reduces to the universal relation (2.34) for all branches. In addition

we find that the Riemann surface has to be hyperbolic, i.e. g > 1.

2.4 Dyonic generalization

So far we have limited ourselves to turning on a background metric and magnetic fluxes

on the Riemann surface Σg. There are, however, more background parameters that can be

turned on while preserving the supersymmetry of the topologically twisted index [2, 8, 9].

In the context of holography, these additional parameters correspond to electric charges

that can be in general non-vanishing in the dual supersymmetric AdS4 black holes, see [2]

and references therein.

A generalization of the topologically twisted index to include electric charges has been

proposed in [2]. The new “dyonic” index is defined as a Legendre transform of the “mag-

netic” index discussed in the previous sections and is explicitly given by

ID(ni, qi;ui) ≡ IM (ni;ui)− iπ

rG∑
i=1

uiqi , (2.37)

where ni and qi are the background magnetic fluxes and electric charges, respectively, while

ui are complex fugacities replacing the real fugacities ∆i. The magnetic index, IM (ni;ui),

as a function of the complex ui is defined by an analytic continuation. As usual, the

magnetic fluxes, ni, satisfy the topological twist condition that preserves supersymmetry,

such as (2.15) or (2.29). However, it is a priori not known how to impose the corresponding

supersymmetry constraint on the electric charges qi.

It was argued in [2] that in order to obtain the leading saddle point approximation to

the dyonic topologically twisted index in the limit of large N , one must first fix the values

of the electric and magnetic charges (qi, ni) and then extremize ID(ni, qi;ui) with respect

to the complex variables ui, subject to the same constraints as the corresponding ∆i. The

entropy of the dual dyonic black hole, SBH(q, n), should then be identified with the real part

of the dyonic index at this extremum. Furthermore, it was conjectured in [2] that when

the index scales with N such that there is a classical dual AdS4 black hole with a regular

horizon, i.e. N3/2 for the ABJM and mABJM SCFTs, the supersymmetry constraint on

the electric charges is equivalent to ID(ni, qi;ui) being real after the extremization.
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In the following subsections we will illustrate this procedure in detail for the two

theories of interest and obtain explicit formulae for the twisted index that can be compared

directly with the entropy of the dual black holes.

2.4.1 The ABJM dyonic twisted index

We start by specializing (2.37) to the ABJM theory. Using (2.16),

ID(nα, qα;uα) =

√
2π

3
N3/2√u1u2u3u4

(
n1

u1
+

n2

u2
+

n3

u3
+

n4

u4

)
− iπ

4∑
α=1

uαqα , (2.38)

where the magnetic fluxes satisfy the supersymmetric twist condition (2.15) while the

complex fugacities are constrained by, cf. (2.2),

u1 + u2 + u3 + u4 = 2 . (2.39)

The extremization equations now read

∂IM
∂uα

− iπ qα + πλ = 0 , α = 1, . . . , 4 , (2.40)

where λ = µ+ i ν is a complex Lagrange multiplier. Solving (2.40) for the electric charges,

qα, and substituting the result back into (2.38), one finds that the extremized index is

simply given by

ID(nα, qα;uα)

∣∣∣∣
uα=uext

α

= −2πλ(nα, qα;uext
α ) . (2.41)

Hence, by imposing the reality condition on the extremal index, we conclude that λ must

be real.

Next, we go back to (2.40) and decompose the equations into their real and imaginary

parts. This yields eight real equations that are linear in the magnetic fluxes, nα, and

the electric charges, qα, but highly nonlinear with respect to the complex fugacities, uα.

Hence, just as before, determining the extremal fugacities, uext
α , as functions of nα and qα

is a daunting task. Instead, we solve the linear system (2.40) for the magnetic fluxes and

electric charges.

To present the result in a compact form, it is convenient to set

uα = ∆α e
i θα , θα ∈ (−π, π) , (2.42)

and
√
u1u2u3u4 =

√
∆1∆2∆3∆4 e

i
2

(θ1+θ2+θ3+θ4) , (2.43)

which fixes the analytic continuation we are working with.13 Let us define the following

linear combinations of the phases:

θαβ = θα − θβ , θ∗αβ =
1

2
εαβγδθγδ , (2.44)

13The restriction used in [2] to avoid the square-root sign ambiguity in (2.41) is 0 < Reuα < 2.
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and

ϑα =
1

2
(4θα − θ1 − θ2 − θ3 − θ4) . (2.45)

The solution to the linear system (2.40) can be simplified using the constraint (2.39).

This yields

nα = − 3
√

2

N3/2

µ

C(ϑ)

∆α√
∆1∆2∆3∆4

4∑
β=1

σαβ∆β cos θ∗αβ , α = 1, . . . , 4 , (2.46)

and

qα = − µ

C(ϑ)

[
S(ϑ) +

2

∆α

4∑
β=1

σαβ∆β sin
1

2
(ϑα + ϑβ)

]
, α = 1, . . . , 4 , (2.47)

where

C(ϑ) = cosϑ1 + cosϑ2 + cosϑ3 + cosϑ4 ,

S(ϑ) = sinϑ1 + sinϑ2 + sinϑ3 + sinϑ4 ,
(2.48)

and σαβ is defined in (2.20). We can now use the topological twist condition (2.15) to

determine the Lagrange multiplier λ = µ and the twisted index as a function of extremal

fugacities,

IABJM
D (nα(u), qα(u);uα) =

2
√

2π

3
N3/2(g− 1)C(ϑ)

√
∆1∆2∆3∆4∑

α,β σαβ∆α∆β cos θ∗αβ
. (2.49)

Finally, one can use (2.41) to eliminate µ from (2.46) and (2.47), to obtain a complete

solution to the extremization problem.

It should be clear that the reality of the index provided the “missing equation” needed

to determine the Lagrange multiplier and hence the electric charges. Somewhere within

the solution (2.47) there is a hidden supersymmetric twist condition one should impose

ab initio on the electric charges. Identifying this condition more clearly within the field

theory remains a puzzle. We will return to this issue in section 4.1 when we discuss the

corresponding supergravity calculation.

It is straightforward to check that in the pure magnetic limit, θα → 0, the electric

charges (2.47) vanish, while the magnetic fluxes (2.46) and the extremized index (2.49)

reduce to (2.23) and (2.24), respectively.

2.4.2 The mABJM dyonic twisted index

The extremization of the twisted dyonic index for mABJM proceeds similarly as for the

ABJM index above. We start with

ID(ni, qi;ui) =

√
2π

3
N3/2√u2u3u4

(
g− 1 +

4∑
i=2

ni
ui

)
− iπ

4∑
i=2

uiqi , (2.50)

that follows from (2.38) and (2.29), the constraint

u2 + u3 + u4 = 1 , (2.51)
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and the corresponding Lagrange multiplier λ = µ+ i ν. The extremization equations have

the same form as in (2.40). Using them to simplify (2.50) yields the following relation

between the extremized index and the Lagrange multiplier,

ID(ni, qi;ui) =
2

3

√
2πN3/2(1− g)

√
u2u3u4 − 2πλ+ iπ(u2q2 + u3q3 + u4q4) , (2.52)

where ui = uext
i . The more complicated form of this equation in comparison with (2.41)

is due to the fact that unlike the ABJM index (2.41), the mABJM index (2.50) is not

a homogenous function of ui. Still, the reality of the extremal index (2.52) provides an

additional equation that leads to a unique solution for the magnetic fluxes, ni, the electric

charges, qi, and the index as functions of the fugacities.

It is convenient to use the polar parametrization (2.42) and the following linear com-

binations of the phases:14

θij = θi − θj , θ∗i =
1

2
εijkθjk , θ∗ij = εijkθk , (2.53)

and

τi = 3θi − θ2 − θ3 − θ4 . (2.54)

Let15

C(τ) ≡
4∑
i=2

cos
1

2
(τi + θi) + cos

1

2
(θ2 + θ3 + θ4) ,

S(τ) ≡
4∑
i=2

sin
1

2
(τi + θi)− sin

1

2
(θ2 + θ3 + θ4) .

(2.55)

Then

ni = (1−g)∆i cos θ∗i +µ
3
√

2

N3/2

1

C(τ)

∆i√
∆2∆3∆4

[
2∆i−

4∑
j=2

∆j(cos θ∗ij+cos θ∗i cos θ∗j )

]
, (2.56)

and

qi =

√
2

3
N3/2(1− g)

√
∆2∆3∆4

∆i
sin

1

2
(τi − θi)

+ µ
∆i(sin θi + sin τi)−

∑
j ∆j sin(τi − θij)

∆i(cos θi + cos θ∗i )
+ ν .

(2.57)

Substituting (2.56) into the topological twist condition (2.29), we can evaluate the real

part of the Lagrange multiplier, µ, and from the reality of the extremized index (2.52), the

imaginary part ν. A tedious algebra yields the following result for the extremized index:

ImABJM
D (ni(u), qi(u);ui) = −

√
2π

3
(g− 1)N3/2C(τ)

√
∆2∆3∆4

×
1 +

∑
i ∆i cos θ∗i −

∑
i<j ∆i∆j [cos θ∗ij + cos(θi − θj)]∑

i ∆2
i sin2 θ∗i −

∑
i<j ∆i∆j [2 cos θ∗ij + cos(θ∗i − θ∗j ) + cos(θi − θj)]

,

(2.58)

which has been further simplified using the constraint (2.51).

14In this section, the indices i, j, . . . run over the set 2, 3, 4. In particular, ε234 = 1, etc.
15C(τ) = C(ϑ)|θ1=0 and S(τ) = S(ϑ)|θ1=0.
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2.4.3 The mass deformed twisted dyonic ABJM index

At the end of section 2.2.2, we have observed that the extremized mABJM twisted in-

dex (2.32) could be obtained by starting with the ABJM index (2.16) and extremizing it

under two constraints (2.7). This is equivalent to using the ABJM constraint (2.2) together

with the first constraint in (2.7), where the latter formally imposes the mass deformation

from ABJM to mABJM. In this section we discuss this extremization in more detail for

the dyonic index, which is also more subtle.

We start with

ID(nα, qα;uα|λr) =

√
2π

3
N3/2√u1u2u3u4

(
n1

u1
+

n2

u2
+

n3

u3
+

n4

u4

)
− iπ

4∑
α=1

uαqα

+ πλ1(u1 − 1) + πλ2(u2 + u3 + u4 − 1) ,

(2.59)

where the first line is the ABJM index (2.38) and the second line are the constraints with

the corresponding Lagrange multipliers, λr = µr + i νr, r = 1, 2. In addition we impose

two conditions (2.29) on the magnetic fluxes.

The same calculation as previously shows that the extremized index is

ID(nα, qα;uα|λr) = −π(λ1 + λ2) , (2.60)

and hence the reality condition sets,

ν1 + ν2 = 0 . (2.61)

The subtlety, which does not arise in any of the previous examples, is that the extrem-

ization does not lead to a unique solution for the electric charges. This comes about from

the flat direction in (2.59). If we shift the electric charges by δqα and the imaginary parts

of the Lagrange multipliers by δν1 and δν2, respectively, then (2.59) and (2.61) remain

invariant provided

δq1 = −δq2 = −δq3 = −δq4 = δν1 = −δν2 . (2.62)

Differentiating (2.61) with respect to uα and solving the imaginary parts of the result-

ing equations for the electric charges we find

q1 = ν1 −
2

3
µ1

1

C(τ)

4∑
j=2

[
sin θj cos

1

2
(τj − θj)− sin

1

2
(τj − θj) cos θ∗j

]

− 2µ2
1

C(τ)

4∑
i=2

∆i sin
1

2
(τi − θi) ,

qi = ν2 − 2µ1
1

C(τ)

1

∆i
sin

1

2
(τi − θi)

− µ2
1

C(τ)

[
S(τ)− 4 sin

1

2
(τi + θi) +

2

∆i

4∑
j=2

∆j sin
1

2
(θi + τj + θij)

]
,

(2.63)
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where the various angles are the same as in section 2.4.2, see (2.53) and (2.54). Substitut-

ing (2.63) into the real part of the extremization equations we solve for the magnetic fluxes,

n1 =
3
√

2

N3/2

1

C(θ)

1√
∆2∆3∆4

(
µ1 − µ2

4∑
i=2

∆i cos θ∗i

)
,

ni =
3
√

2

N3/2

1

C(θ)

∆i√
∆2∆3∆4

[
− µ1 cos θ∗i + µ2

(
2∆i −

4∑
j=2

∆j cos θ∗ij
)]
.

(2.64)

Those depend only on the real parts of the Lagrange multipliers, µ1 and µ2, which in turn

are determined using (2.29),

µ1 =

√
2

6
(g− 1)N3/2 C(θ)

D(∆, θ)

√
∆2∆3∆4

( 4∑
i=2

∆i (∆i + cos θ∗i )− 2
∑
i<j

∆i∆j cos θ∗ij

)
,

µ2 =

√
2

6
(g− 1)N3/2 C(θ)

D(∆, θ)

√
∆2∆3∆4

(
1 +

4∑
i=2

cos θ∗i ∆i

)
, (2.65)

where

D(∆, θ) =
4∑
j=2

sin2 θ∗j∆
2
j −

∑
i<j

∆i∆j

[
2 cos θ∗ij + cos

(
θ∗i − θ∗j

)
+ cos θij

]
. (2.66)

In the formulae above, we have implemented explicitly the constraint uext
1 = 1. One

can check that as functions of the extremal fugacities, uext
i , i = 2, 3, 4, subject to the

constraint (2.51), the magnetic fluxes, n2, n3, n4, in (2.64) reproduce exactly the magnetic

fluxes (2.56) in mABJM in section 2.4.2. Similarly, the extremized twisted index (2.60),

that depends only on the real parts of the Lagrange multipliers, is the same as the dy-

onic twisted index (2.58). In fact, the present calculation yields (2.58) without using the

constraint (2.51) to simplify intermediate expressions, which is much simpler.

The electric charges (2.63) remain undetermined due the shift symmetry (2.62). One

way to fix it, is to compare the four electric charges, qα, in (2.63) with the electric charges,

q̃i, in (2.57), where we have introduced the “tilde” to avoid any confusion. By direct

calculation, one can check that qi = q̃i for that value of ν1 = −ν2 for which q1 = 0,

precisely the result one would expect.

To summarize, we have shown that the extremization of the ABJM index with two

constraints reproduces exactly the mABJM extremized dyonic twisted index and the cor-

responding magnetic fluxes and electric charges provided, in addition to (2.29), we also

impose the condition

q1 = 0 , (2.67)

on the electric charges. However, one also has the option to fix the shift symmetry dif-

ferently, which then results in four, typically non-vanishing, electric charges. As we will

see in section 4.2, this freedom will be crucial for matching our field theory results with

supergravity calculations.
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3 Supergravity

We expect that the holographic dual description of the twisted compactification of the

mABJM SCFT on Σg discussed in the previous section is provided by asymptotically AdS4

supersymmetric black holes. In this section we study these black hole solutions within the

maximal SO(8) gauged supergravity theory of de Wit and Nicolai [35], which is a consistent

truncation of eleven-dimensional supergravity compactified on S7 [36, 37]. In particular,

this means that our solutions can be uplifted to M-theory.

3.1 The truncation

The four-dimensional N = 8 supergravity has many bosonic fields, but to construct the

black hole solutions of interest it is sufficient to work within a subsector of the theory that

is invariant under the symmetry of the dual topologically twisted mABJM theory.

The topological twist breaks the SU(3)F symmetry of the mABJM SCFT, and the

corresponding AdS4 Warner vacuum, to the Cartan subgroup U(1)2. It is natural to

impose this U(1)2-invariance on the N = 8 supergravity, which then yields a consistent

truncation to a four-dimensional N = 2 supergravity coupled to three vector multiplets

and one hypermultiplet. The bosonic fields of the resulting theory are the metric, the

graviphoton gauge field along with three U(1) gauge fields in the vector multiplets. The

ten real scalars in the truncation parametrize the manifold (1.1) and combine into three

complex scalars, zi, i = 1, 2, 3, in the vector multiplets and two complex scalars, ζ1 and ζ2,

in the hypermultiplet. The details of the truncation and the geometric data of the resulting

N = 2 supergravity are presented in appendix B.16

The recasting of our truncation into the canonical formalism of N = 2 gauged super-

gravity lets us draw on some standard identities (see, e.g., [58]) and may prove useful for a

general analysis of black hole solutions using the results of [40–42, 45]. However, given the

simplicity of the truncation, we also opt for a more direct approach whenever possible.

In particular, we observe that the topological twists in section 2.2 have additional

invariance, namely U(1)W
R . Imposing this symmetry on our supergravity theory at the

level of the bosonic fields amounts to truncating half of the hypermultiplet by setting

ζ1 = 0. The remaining complex scalar, ζ2, in the hypermultiplet will be denoted by z ≡ ζ2.

The four Abelian gauge fields, Aαµ, α = 0, 1, 2, 3, are related to the standard Cartan

gauge fields in SO(8) by

A12 =
1

2
(A0 +A1 −A2 −A3) , A34 =

1

2
(A0 −A1 +A2 −A3) ,

A56 =
1

2
(A0 −A1 −A2 +A3) , A78 =

1

2
(A0 +A1 +A2 +A3) .

(3.1)

16A four-dimensional N = 2 supergravity with the same mater content was recently used in [13, 14, 57]

to construct asymptotically AdS4 black holes which admit uplifts to massive type IIA supergravity. The

supergravity theory we study here differs from the one in [13, 14, 57] by the type of gauging performed on

the vector multiplets.
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The bosonic Lagrangian for the truncated fields comprises of the usual Einstein-Hilbert

term, kinetic terms for the scalars, a Maxwell term and a scalar potential17

e−1L =
1

2
R+ Lkin + LMax − g2P . (3.2)

The details of the derivation can be found in appendix B and here we present only the final

result.

The scalar kinetic term is given by

Lkin = −
3∑
i=1

∂µzi∂
µz̄i

(1− |zi|2)2
−
[
∂µz − igA

(m)
µ z

][
∂µz̄ + igA

(m)
µ z̄

]
(1− |z|2)2

, (3.3)

where

A(m)
µ ≡ A0

µ −A1
µ −A2

µ −A3
µ . (3.4)

The scalars parametrize the coset manifold

M =

[
SU(1, 1)

U(1)

]3

× SU(1, 1)

U(1)
. (3.5)

From (3.3) we read-off the diagonal metrics,

gziz̄j =
δij

(1− |zi|2)2
, gzz̄ =

1

(1− |z|2)2
, (3.6)

that come from the Kähler potentials,

KV = − log
[
(1− |z1|2)(1− |z2|2)(1− |z3|2)

]
, KH = − log(1− |z|2) , (3.7)

respectively.

The contribution from the complex scalar fields to the Lagrangian, LMax, for the gauge

fields is quite complicated. To write it in a compact form it is convenient to use the standard

scalar tensors from the N = 2 formalism [58] as summarized in appendix B. To this end

we introduce the holomorphic sections, Xα,

X0 ≡ 1

2
√

2
(1− z1)(1− z2)(1− z3) , X1 ≡ 1

2
√

2
(1− z1)(1 + z2)(1 + z3) ,

X2 ≡ 1

2
√

2
(1 + z1)(1− z2)(1 + z3) , X3 ≡ 1

2
√

2
(1 + z1)(1 + z2)(1− z3) ,

(3.8)

and the prepotential

F ≡ −2 i
√
X0X1X2X3 . (3.9)

The Maxwell Lagrangian is then18

LMax =
1

4

(
IαβFαµνF β µν −RαβFαµνF̃ β µν

)
, (3.10)

17The four dimensional metric, gµν , has signature (−+ ++) and e =
√
− det gµν .

18The dual field strength is F̃αµν = 1
2
ηµν

λσFαλσ, where η0123 = e.
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where Rαβ and Iαβ are the real and imaginary parts of Nαβ = Rαβ + i Iαβ ,

Nαβ ≡ Fαβ + 2 i
(ImFαγ)(ImFβδ)X

γXδ

(ImFγδ)XγXδ
, Fαβ ≡

∂2F

∂Xα∂Xβ
. (3.11)

The potential for the scalars is

P =
2

(1− |z|2)2

(
3−

3∑
i=1

2

1− |zi|2

)

+
2 |z|2

(1− |z|2)2

( 3∏
i=1

1

1− |zi|2

)[
4 + 4|z1|2|z2|2|z3|2 − (z1 + z̄1)(z2 + z̄2)(z3 + z̄3)

− (1 + |z1|2)(z2 − z̄2)(z3 − z̄3)− (1 + |z2|2)(z1 − z̄1)(z3 − z̄3)

− (1 + |z3|2)(z1 − z̄1)(z2 − z̄2)
]
. (3.12)

Let us define the N = 1 “holomorphic” superpotential,

V =
|z|2

1− |z|2
(1− z1)(1− z2)(1− z3) +

2

1− |z|2
(z1z2z3 − 1) . (3.13)

Then

P =
1

2
eKV

[
gziz̄j ∇ziV∇z̄jV + 4gzz̄ ∂zV∂z̄V − 3VV

]
, (3.14)

where

∇ziV = ∂ziV + (∂ziKV )V , (3.15)

is a covariant derivative.

There are two supersymmetric AdS4 solutions in this truncation corresponding to the

critical points of the potential (3.12) and the superpotential (3.13).19 The first one is the

SO(8)-invariant vacuum at

zi = 0 , z = 0 , P∗ = −6 , (3.16)

where P∗ is the value of the potential at the critical point, which uplifts to the AdS4 × S7

solutions of the eleven dimensional supergravity. This solution is dual to the conformal

vacuum of the ABJM theory.

The second supersymmetric AdS4 solution was found by Warner [27] and is dual to

the mABJM theory. In our parametrization of the potential, it is at

z = ± i√
3
, z1 = z2 = z3 =

√
3− 2 , P∗ = −9

√
3

2
. (3.17)

It has an N = 2 supersymmetry and is invariant under the SU(3) × U(1)WR subgroup of

SO(8).

19In the sense that ∇ziV = ∂zV = 0.
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The scale of AdS4 is set by P∗. Hence we have

L2
AdS4

= − 3

g2P∗
=


1

2g2
for SO(8) ,

2

3
√

3g2
for W .

(3.18)

This four-dimensional background uplifts to the CPW solution [31] of the eleven-

dimensional supergravity. A more detailed discussion of these (and other) AdS4 vacua

in this truncation as well as the spectrum of scalar excitations around them can be found

in [59].

A crucial fact that motivates much of the discussion in this paper is that there exists

a supersymmetric gravitational domain wall solution which connects the two AdS4 vacua

described above [29, 60]. This domain wall is the holographic dual realization of the RG

flow described in section 2.1, which connects the ABJM SCFT to the mABJM SCFT.

There are two further consistent truncations of the supergravity model described above

that are of interest for our discussion. The first one is the STU-model obtained by setting

the hyperscalar, z, to zero and retaining the three complex scalars, zi, and the four Abelian

gauge fields, Aα. For a discussion of this model in the present context, see for example [1].

The second truncation is to the SU(3)×U(1)R-invariant sector originally studied in [27]

and recently discussed in [59]. It is obtained by setting

z1 = z2 = z3 = −z̄BHPW , z = ζBHPW
2 . (3.19)

The superscript BHPW refers to the scalars in [59], where one also has to set ζBHPW
1 = 0.

In addition, one must impose A1 = A2 = A3, which leaves only two Abelian fields in the

truncation.

3.2 The BH Ansatz

Our goal is to study supersymmetric black hole solutions in the supergravity model pre-

sented above that are dual descriptions of the partial topological twists of the mABJM

SCFT discussed in section 2. These solutions should interpolate between one of the two

supersymmetric AdS4 vacua, the SO(8)-invariant vacuum in (3.16) or the SU(3) × U(1)-

invariant vacuum (3.17) and a near horizon region with the metric of the form AdS2×Σg,

where Σg is a Riemann surface. As in other known examples of black holes solutions in

AdS4 (see, e.g., [40–42]), we need to turn on both scalar fields with nontrivial profiles, as

well as non-vanishing gauge fields carrying the dyonic charges of the black hole at asymp-

totic infinity. In the presence of both the magnetic and electric charges, this turns out to

be a difficult problem in general.

Fortunately, the entropy of these black holes can be determined by a much simpler set-

up, namely by studying the solutions in the near horizon region only. This is what we will do

in the remainder of this section. We will return to the more difficult problem of constructing

full black hole solutions in section 5, where we present both analytic and numerical solutions

for magnetically charged black holes, but with vanishing electric charges.
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To construct the near horizon AdS2×Σg solutions of interest, we take the scalar fields,

zi and z, to be constant and the metric of the form,

ds2 = e2f0ds2
AdS2

+ e2h0ds2
Σg
, (3.20)

where the unit radius metric on AdS2 is

ds2
AdS2

=
1

r2
(−dt2 + dr2) , (3.21)

and f0 and h0 are real constants. Given the results of the analysis in [61], we expect that

without a loss of generality we can use a constant curvature metric on Σg given in (A.1).

The gauge field fluxes, Fα = dAα, and their (local) potentials, Aα, are

Fα = eαvolAdS2 +mαvolΣg , Aα = eα ωAdS2 +mα ωΣg , α = 0, . . . , 3 . (3.22)

One can now plug this Ansatz into the supersymmetry variations and the equations of

motion of maximal N = 8 gauged supergravity and derive a system of algebraic equations

between the metric constants, the scalar fields and the magnetic and electric charges. This

is a straightforward but tedious calculation summarized in appendix C. There we also show

that the black holes we construct preserve 2 real supercharges which are enhanced to 4 in

the near horizon AdS2 region.

3.3 Dyonic BH near horizon BPS equations

The truncation of the equations of motion and the supersymmetry variations of N = 8

d = 4 gauged supergravity discussed in appendix C yields four types of algebraic equations

for the supersymmetric near horizon dyonic black holes:20

(i) Four real equations for the electric and magnetic parameters, eα and mα:

e0 = 0 , (3.23)

e0 − e1 − e2 − e3 = 0 , (3.24)

m0 = − κ

2g
, (3.25)

m0 −m1 −m2 −m3 = 0 , (3.26)

where κ = 1, 0 or −1 is the normalized curvature of the Riemann surface.

(ii) Four complex equations for the scalar dressed components, Φα, of the fluxes:

Φ0 = −2gW , (3.27)

Φi = −2g(1− |zi|2)DziW , i = 1, . . . , 3 , (3.28)

where, cf. (3.13),

W = eKV /2 V , (3.29)

20See, the following equations in appendix C: (i) (C.7), (C.19) and (C.25); (ii) (C.15) and (C.20);

(iii) (C.24); (iv) (C.18). We set ξ = −1.
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The fluxes Φα are defined by

SαβΦβ = e−2h0mα + i e−2f0eα , (3.30)

where

Sα0 =
1√
2
Lα ,

Sαi = − 1√
2

(1− |zi|2)DziL
α .

(3.31)

Here Lα = eKV /2Xα are the symplectic sections, cf. (B.16). The Kähler covariant

derivative in (3.28) and (3.31) is defined as21

Dzi = ∂zi +
1

2
∂ziKV . (3.32)

Note that DziL
α = fzi

α, see (B.18).

(iii) One complex equation for the metric constant, f0, and the phase Λ,

e−f0−i Λ =
√

2 i gW . (3.33)

(iv) A complex cubic constraint for the scalars, zi,

C ≡ z1z2z3 + z1z2 + z2z3 + z3z1 − z1 − z2 − z3 − 1 = 0 . (3.34)

Note that

C =
√

2
(
X0 −X1 −X2 −X3

)
, (3.35)

where Xα are the holomorphic sections (3.8).

An indirect check of the consistency of these equations with the ones obtained for

general dyonic black holes using the formalism of N = 2 gauged supergravity [41, 42, 44]

is to rewrite them as “attractor equations.” This is briefly summarized in appendix D.

Our task here is to solve the equations (i)-(iv) so that we can compare directly the

black hole entropy

SBH =
Area

4G
(4)
N

=
π|g− 1|
G

(4)
N

e2h0 , (3.36)

with the twisted topological index (2.58). The strategy is to solve for the metric parameters,

the magnetic and electric parameters, and the hyperscalar in terms of the three scalars, zi,

which then will be mapped onto the fugacities, ui, of the mABJM theory.

We start by acting with the matrix Sαβ on (3.27) and (3.28). Using (3.30), this yields

e−2h0mα + i e−2f0eα = −
√

2g

[
LαW−

3∑
i=1

gziz̄i DziL
αDziW

]
. (3.37)

21Note that Dzi = e−KV /2∂zie
KV /2 = eKV /2∇zie−KV /2, see (3.15).
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The next step is to project these equations onto the real and imaginary part and then

use (3.23)–(3.26).

To this end, first note that W given in (3.29) can be rewritten entirely in terms of the

symplectic sections, Lα,

W = −2
√

2L0 +

√
2

1− |z|2
(L0 − L1 − L2 − L3) , (3.38)

where the second term is proportional to the cubic constraint (3.35),

W = −2
√

2L0 +
1

1− |z|2
G , G ≡ eKV /2 C . (3.39)

We can use this to simplify the first term in the square bracket in (3.37).

Next, we have the “useful relation” [62]

3∑
i=1

gziz̄iDziL
αDziL

β = −1

2
(I−1)αβ − LαLβ , (3.40)

where Iαβ is real, the imaginary part of Nαβ in (3.11). Using those identities in (3.37), we

find

e−2f0eα = −4 i g
(
L0Lα − L0Lα

)
, (3.41)

and

e−2h0mα = 4 g
(
L0Lα + L0Lα

)
+ 2g(I−1)0α − g

1− |z|2
[
(I−1)0α − (I−1)1α − (I−1)2α − (I−1)3α

]
.

(3.42)

The solution (3.41) is consistent with the equations (3.23) and (3.24) for the electric

parameters. Indeed, the first one is satisfied manifestly, while the left hand side in the

second one is proportional to the cubic constraint (3.35). Substituting (3.42) for α = 0

in (3.25), we solve for e−2h0 and then similarly (3.26) for |z|. Finally, from (3.41) and (3.42)

we obtain an explicit solution for all electric parameters and magnetic fluxes.

This shows that the equations (3.23)–(3.33) have a unique solution for all the dyonic

black hole parameters in terms of the scalars, zi, that are constrained by (3.34). The

problem is that the expressions such as (3.42) are quite difficult to use because of the

complicated form of the inverse matrix, I−1.

To obtain simpler explicit expressions for e−2h0 and |z|, we go back to (3.37). Taking

a linear combination of these equations such that the left hand side vanishes using (3.24)

and (3.26) and observing that the first terms on the right hand side sum up to the con-

straint, we are left with

2
√

2

3∑
i=1

gziz̄i DziGDziL
0 − 1

1− |z|2
3∑
i=1

gziz̄i DziGDziG = 0 . (3.43)

Note that by the “useful relation,” the first term above is real. Let us introduce the

shorthand notation 〈 · , · 〉 for the scalar product defined by the sums. Then we have

1

1− |z|2
= 2
√

2
〈DG, DL0〉
〈DG, DG〉

. (3.44)
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One can verify explicitly that

〈DL0, DL0〉 = 3|L0|2 . (3.45)

This allows to further simplify the solution for e−2h0 that follow from (3.42) with α = 0

after using (3.44). The result is

e−2h0 = 8g2κ

(
2|L0|2 − |〈DG, DL0〉|2

〈DG, DG〉

)
. (3.46)

Finally, one can evaluate the scalar products above explicitly and use

DziG
∣∣
C=0

= eKV /2 ∂ziC . (3.47)

Let us define

Ξ =
3∑
i=1

(1− |zi|2)
1− zi
1− z̄i

∂ziC , Γ =
3∑
i=1

(1− |zi|2)2 |∂ziC|
2 , Π =

3∏
i=1

(1− zi) . (3.48)

Then we find

e−2h0 = 8g2 κ |L0|2
(

2− |Ξ|
2

Γ

)
, (3.49)

and22

1

1− |z|2
= −Π Ξ

Γ
, (3.50)

and, from (3.33) and (3.39),

e−f0 = −4 i g ei Λ L0 . (3.51)

This completes the solution for the AdS2 × Σg near horizon black holes in our model.

3.3.1 Comments

The result of our analysis above is an explicit solution for the metric parameters and the

hypermultiplet given in (3.49)–(3.51) as functions of the constrained vector multiplets’

scalars. The solutions for the magnetic fluxes and the electric parameters can then be

read-off from (3.37) or more directly from (3.41) and (3.42). It should be noted that in this

near horizon solution the hypermultiplet scalar appears only through its absolute value |z|.
It is well known that the STU black holes with electric charges can exist only for

nontrivial axions, that is complex scalar fields, zi. The same is true in our model. Indeed,

if we set zi = z̄i to be real, the electric parameters given by (3.41) automatically vanish.

The regularity of a solution requires that the left hand sides in (3.49) and (3.51) be

strictly positive and, since |z| < 1, the left hand side in (3.50) be greater than 1. This

22One can verify explicitly that

Π Ξ−Π Ξ = 48 C +
3∑
i=1

(1− |zi|2) C∂z̄iΠ + 4
3∑
i=1

C ∂z̄i C̄ − 6
3∑

i,j=1

C ∂z̄i∂z̄j C̄ − c.c. .

Hence Π Ξ is real for C = C̄ = 0 as expected from the discussion above.
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fixes the phase Λ and the supersymmetric projectors (C.23), and excludes the possibility of

black hole solutions with toroidal (κ = 0) horizons. Then we are left with two conditions

κ

(
2− |Ξ|

2

Γ

)
> 0 , κ = ±1 , (3.52)

−Π Ξ

Γ
− 1 > 0 . (3.53)

It is easy to check numerically that both for spherical (κ = 1) and hyperbolic (κ = −1) hori-

zons, there exist constrained scalars, zi, for which both inequalities are satisfied. Once more

something interesting happens in the purely magnetic limit. One can check that for real

zi’s the ratio of the left hand sides in (3.52) and (3.53) is constant and equal to −2. Hence

− 2κ > 0 for zi = z̄i , (3.54)

which excludes spherical horizons for purely magnetic black holes. We show in section 5

that the hyperbolic near horizon solutions with only magnetic fluxes indeed give rise to

bona fide black holes with AdS4 asymptotics.

Ideally one would like to know for which values of the electric and magnetic parameters,

eα and mα, there are regular near-horizon black hole solutions. This entails finding an

explicit solution for the scalars zi, z, and the metric parameters, f0 and h0, in terms of

eα and mα. We were not able to analyze explicitly this complicated algebraic problem for

the general dyonic solutions above. However, in section 5.1.1 we show how to answer this

question for the purely magnetic black holes.

3.3.2 STU black holes

It is straightforward to extract from the supersymmetry variation in appendix C the STU-

limit of our model and reproduce the black holes studied in [1, 2, 40]. The resulting BPS

equations can be summarized as follows:

(i) The four equations (3.23)–(3.26) are replaced by two equations defining the topolog-

ical twist

e0 + e1 + e2 + e3 = 0 (3.55)

m0 +m1 +m2 +m3 = −κ
g
. (3.56)

(ii) Equations (3.27)–(3.28) remain the same, except that

WSTU ≡W
∣∣
z=z̄=0

= −
√

2(L0 + L1 + L2 + L3) . (3.57)

(iii) Equation (3.33) is the same, but with WSTU.

(iv) There is no constraint, which was due to the hypermultiplet scalar.

The equations in (ii) give rise to the analogue of (3.37). By taking the sum of those

four equations one finds that (3.55) is identically satisfied. Then from (3.55) one finds

e−2h0 = −g2κ(|WSTU|2 − 〈DWSTU, DWSTU〉) . (3.58)

Substituting (3.33) and (3.58) in (3.37) one finds e0, . . . ,m3.
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4 The duality

Our goal now is to test directly the conjecture that the topologically twisted dy-

onic/magnetic indices in section 2.2 match the entropy of the near horizon black hole

solutions above. We also compare directly the magnetic fluxes and electric charges on both

sides of the duality.

The translation between the gravitational and field theory quantities of interest is

provided by the free energy, FS3 , on both sides of the duality. On the gravity side, the free

energy of pure AdS4 with S3 as an asymptotic boundary can be computed from an on-shell

action which diverges unless properly regulated. With the correct counterterms described

in [63], one finds

FS3 =
πL2

AdS4

2G
(4)
N

, (4.1)

where G
(4)
N is the four-dimensional Newton constant and LAdS4 is the radius of AdS4. This

supergravity result agrees with the free energy of the ABJM SCFT and the mABJM SCFT

to leading order in N given in (2.5) and (2.10), respectively. Indeed, it was shown in [26]

that the ratios of these free energies and the radii of the corresponding AdS4 vacua given

in (3.18) are universal,

FS3

L2
AdS4

=
2
√

2π

3
g2N3/2 . (4.2)

Using these results and (A.3), we arrive at the following string of equalities:

SBH ≡
Area

4G
(4)
N

=
π|g− 1|
G

(4)
N

e2h0 = 2 |g− 1| FS3

L2
AdS4

e2h0 =
4
√

2π

3
|g− 1| g2N3/2 e2h0 . (4.3)

where “Area” is the area of the black hole horizon.

We have parametrized the field strengths (3.22) in terms of “bare” magnetic fluxes,

mα, and the electric parameters, eα. Those are related to the actual magnetic and electric

charges of the AdS4 black holes by (see, e.g., [2])

nα =
1

4π|g− 1|

∫
Σ
Fα , qα =

1

4π|g− 1|

∫
Σ

δLMax

δFα
, (4.4)

where LMax is the Maxwell action (3.10). Starting with the Ansatz (3.22) and evaluating

the integrals using (A.3), we find (cf. [44]),

nα = mα , qα = −e2(h0−f0)Iαβeβ +Rαβmβ . (4.5)

These are those magnetic fluxes and electric charges that should be matched with their

field theory counterparts in section 2.

4.1 The ABJM SCFT and STU supergravity

The equality between the twisted dyonic index in ABJM SCFT and the entropy of the

corresponding AdS4 black holes in STU supergravity was first shown in [2] by mapping
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the extremization problem for the index (2.38) onto the BPS equations rewritten in the

form of the “attractor equations” in [41, 42] (see also [64] for a recent development). Given

the explicit form for the extremized index derived in section 2.4.1 and the entropy given

by (4.3) and (3.58), we can now verify that equality directly.

Following [2], let us consider the map between the complex fugacities, uα, in sec-

tion 2.4.1 and the scalar fields, zi, at the black hole horizon given by

uα(z) =
2Xα−1

X0 +X1 +X2 +X3
, α = 1, . . . , 4 , (4.6)

which automatically solves the constraint (2.49). Setting

∆α = |uα| , θα = Arg(uα) , (4.7)

we find that indeed

IABJM
D (nα(u), qα(u), uα) = SSTU

BH (zi) . (4.8)

The twisted index on the left hand side is evaluated using (2.49), which corresponds to the

analytic continuation defined by (2.43).

By comparing the magnetic fluxes (2.46) and the electric charges (2.47) with the ones

obtained from (3.37) using (3.55) and (3.56) in STU supergravity, we find that

nα = 2g |g− 1|mα−1 , (4.9)

and

qα =
2
√

2

3
g |g− 1|N3/2 qα−1 , (4.10)

where α = 1, . . . , 4. The relations (4.9) and (4.10) agree with the ones proposed in [2].

This confirms the BHZ conjecture for the ABJM SCFT and the STU black holes.

We have verified (4.8)–(4.10) by evaluating both sides numerically for a large number

of randomly chosen values of the near horizon scalars, zi. The result is that the extremized

index, the magnetic fluxes and electric charges for the particular branch for the square-

root in (2.38) defined by (2.43) agree with the entropy, the fluxes and the charges on the

supergravity side in the entire domain of the scalars, |zi| < 1. This includes values of zi for

which the supergravity solution may not be regular, such as when the entropy is negative.

4.2 The mABJM SCFT and W supergravity

We have seen in sections 2.4.2 and 2.4.3 that the extremized dyonic twisted index in the

mABJM SCFT theory could be obtained in two ways. On the one hand, one can work

entirely within the mABJM theory, which yields the extremized index (2.58), the magnetic

fluxes (2.56) and the electric charges (2.57) corresponding to three gauge fields for the

unbroken U(1)3 global symmetry. On the other hand, one can start with the ABJM SCFT

and extremize the dyonic twisted index while imposing two constraints on the fugacities,

where the second constraint comes from the mass deformation from ABJM to mABJM.

This leads to the same result for the extremized index as in (2.58). However, now there

are four magnetic fluxes (2.64) and four electric charges (2.63) corresponding to the U(1)4
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global symmetry in ABJM. The mass deformation fixes one of the magnetic fluxes, which

together with the topological twist condition, can be used to determine the real parts of the

two Lagrange multipliers to find the full agreement between the remaining three magnetic

fluxes in both calculations. However, there remains an ambiguity in the solution for the

electric charges due to the shift symmetry (2.62). In this section we will compare the field

theory results with the supergravity calculations in section 3.3 and, in particular, clarify

the ambiguity of the electric charges found in section 2.4.3.

4.2.1 The dyonic twisted index and the entropy

To obtain the mapping between the fugacities u2, u3, u4 in mABJM and the near horizon

scalars, z1, z2, z3, in our supergravity model, we note that the cubic constraint (3.34) is

equivalent to u1 = 1 in (4.6). Then u2, u3, u4 automatically satisfy (2.51). One can also

arrive at this mapping by the following change of variables. Observe that the Möbius

transformation,

zi −→ z̃i =
1− zi
1 + zi

, Re z̃i > 1 , (4.11)

turns the cubic constraint (3.34) into

C̃ ≡ z̃iz̃2z̃3 − z̃1 − z̃2 − z̃3 = 0 , (4.12)

which can be rewritten in the following suggestive form,

1

z̃2z̃3
+

1

z̃1z̃3
+

1

z̃1z̃2
= 1 . (4.13)

Hence, it is natural to define

ui =
z̃i−1

z̃1z̃2z̃3
, i = 2, 3, 4 , (4.14)

which reproduces (4.6) modulo the constraint (3.34).

Using the substitution (4.14), we find that the extremized twisted index in

mABJM (2.58) and the entropy given by (4.3) and (3.49) are the same,

ImABJM
D (ni(u), qi(u);ui) = SBH(zi) for C(zi) = 0 , (4.15)

in the entire domain of the scalars, |zi| < 1, where the cubic contraint (3.34) is satisfied.

4.2.2 Duality for the magnetic fluxes and electric charges

An initial puzzle when comparing the magnetic fluxes and the electric charges in mABJM

with the ones in the dual (W-) supergravity is that the latter appears to have four vector

fields, while there are only three fluxes and three charges in (2.56) and (2.57), respectively.

The resolution is that at the W-critical point, which is the gravity dual for mABJM, one

of the vector fields,

A(m) = A0 −A1 −A2 −A3 , (4.16)
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becomes massive and must be set to zero. This leaves us with three vector fields, A1, A2

and A3 and the corresponding three magnetic fluxes, ni, and three electric charges, qi,

in (4.4) to compare.

Using the map (4.14) between the constrained scalars, zi, and the fugacities, ui, we find

the same relation (4.9) between the magnetic fluxes (2.56) in mABJM and their gravity

duals,

ni = 2g |g− 1|ni−1 , i = 2, 3, 4 . (4.17)

The comparison of the electric charges is more subtle. We must first impose the massive

condition (4.16) in the Maxwell Lagrangian to find the scalar matrices Ĩij and R̃ij for the

vector fields, Ai,

Ĩij = Iij + I00 + Ii0 + I0j , R̃ij = Rij +R00 +Ri0 +R0j , (4.18)

and then calculate the electric charges, q̃i, using (4.5). Comparing with the field theory

charges in (2.57), which we denote by q̃i, we find

q̃i =
2
√

2

3
g |g− 1|N3/2 q̃i−1 , i = 2, 3, 4 , (4.19)

which is the same as (4.10). As before, the comparison is carried out by a numerical sub-

stitution and both (4.17) and (4.19) hold for all scalars, zi, satisfying the cubic constraint.

4.2.3 More on electric charges

We have argued in section 2.4.3 that the dyonic twisted index and the magnetic fluxes in

mABJM could be obtained unambiguously by performing simultaneously the mass defor-

mation and the topological twist in ABJM. However, the resulting electric charges were

determined only up to the 1-parameter shift symmetry (2.62). One way to fix that sym-

metry was to set one of the charges to zero, see (2.67), to obtain a complete agreement

with the purely mABJM charges.

Another possibility, which we will discuss now, is to compare the four electric

charges (2.63) with the four electric charges in our supergravity model that are present

before imposing the massive constraint (4.16) on the vector fields. With all four vector

fields present, the corresponding charges, qα, are given by (4.5). By a direct substitution,

we find that

q1 − ν1 =
2
√

2

3
g |g− 1|N3/2 q0 ,

qi + ν1 =
2
√

2

3
g |g− 1|N3/2 qi−1 , i = 2, 3, 4 .

(4.20)

Hence for ν1 = 0 we find the same relation between the charges as in (4.10). Given (2.61),

which followed from the reality of the extremized twisted index (2.59), we see that a com-

plete match between mass-deformed, topologically twisted ABJM theory and our super-

gravity model requires that both Lagrange multipliers, λ1 and λ2 , in (2.59) be real. Once

again, the agreement between the field theory and the dual supergravity charges holds for

all allowed values of the near horizon scalars.
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5 Magnetic black holes

So far we have constructed a large family of supersymmetric AdS2 × Σg solutions which

can be interpreted as near horizon limits of supersymmetric dyonic black holes in our

gauged supergravity model. In addition, we have shown that the entropy associated with

these near-horizon backgrounds is the same as the large N limit of the dyonic topologically

twisted index of the mABJM SCFT. Now we try to be more explicit and focus on a class

of supersymmetric solutions of our model that do not have electric charges. This allows for

a much more explicit analysis of the BPS equations. In particular, in addition to the near-

horizon solutions discussed above, we are able to find fully-fledged black hole backgrounds.

To this end we modify the Ansatz employed in section 3.2 by setting the electric charge

parameters, eα, in (3.22) to zero. It is consistent then to take the four complex scalars z1,2,3

and z to have constant phases. As discussed around (3.54), the BPS equations impose then

that the Riemann surface is hyperbolic, so we set κ = −1 in this section.

We find it convenient to use the following reparametrization of the complex scalar

fields, cf. (B.7) and (B.8),

z = tanhχ e iψ , zi = tanhλi e
iϕi , i = 1, 2, 3 , (5.1)

where χ, λi ≥ 0, 2π > ψ,ϕi ≥ 0 are real valued fields.

Since we are interested in solutions that can be asymptotic to the SU(3)×U(1) invariant

vacuum, we choose the following phases in (B.7), cf. (3.17),

ψ =
π

2
, ϕ1 = ϕ2 = ϕ3 = π . (5.2)

The metric for the black hole solutions of interest takes the following form

ds2 = e2f(r)(−dt2 + dr2) + e2h(r)ds2
Σg
, (5.3)

with the same metric on the Riemann surface as in (3.20). The four real scalars are in

general functions of the radial variable, χ(r) and λi(r).

With this Ansatz at hand, one can analyze the supersymmetric variations (C.1)

and (C.2) of the N = 8 gauged supergravity and find BPS equations for the metric func-

tions and the scalars. To write these equations in a compact form, we find it convenient to

introduce the following positive variables:23

xi ≡ e2λi , i = 1, 2, 3 , (5.4)

as well as the “real superpotential” (see (3.13), (3.29), and (5.2))

W ≡W|2ψ=ϕi=π =
2x1x2x3 sinh2(χ)− cosh2(χ)(x1x2x3 + x1 + x2 + x3)

2
√
x1x2x3

. (5.5)

Then the potential in (3.12) can be written as

P =
1

2

(
∂W
∂χ

)2

+
1

2

3∑
i=1

(
∂W
∂λi

)2

− 3

2
W2 , (5.6)

23Notice that for real zi we have xi = z̃i where z̃i are defined in (4.11).
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and the BPS equations are given by

df

dr
=

g√
2
efW − ef−2hH , dh

dr
=

g√
2
efW + ef−2hH ,

dχ

dr
= − g√

2
ef
∂W
∂χ

,
dλi
dr

= − g√
2
ef
∂W
∂λi
− ef−2h ∂H

∂λi
,

(5.7)

where

H =
1

2
√

2x1x2x3
(m0 +m1x2x3 +m2x1x3 +m3x1x2) . (5.8)

In addition to the equations in (5.7), one has to impose the constraints (3.25) and (3.26)

on the magnetic fluxes.

Our goal is to find supersymmetric black hole solutions with regular horizons to the

BPS equations (5.7), (3.25), (3.26) and to analyze their entropy.

5.1 AdS2 × Σg solutions

We begin with a classification of the possible AdS2×Σg solutions, which should correspond

to the near-horizon limits of the supersymmetric black holes of interest. To this end, we take

the familiar Ansatz (3.20) for the metric and real, constant scalar fields, xi and χ. For that

radial dependence of the metric functions and the scalars, the BPS equations reduce to a set

of algebraic equations, which can be solved following the procedure outlined in section 3.3.

Just as before, for solutions with nonzero24 χ, the scalars must obey the cubic con-

straint (3.34), which now takes the form

x1 + x2 + x3 = x1x2x3 . (5.9)

This is the same as the constraint (4.12) for real zi, cf. (5.4).

Using (3.37), the magnetic fluxes can be expressed in terms of the scalars as follows:

m1 =
m0

x1x2 + x1x3 + x2x3

(
1 +

x2

x3
+
x3

x2

)
,

m2 =
m0

x1x2 + x1x3 + x2x3

(
1 +

x3

x1
+
x1

x3

)
,

m3 =
m0

x1x2 + x1x3 + x2x3

(
1 +

x1

x2
+
x2

x1

)
,

(5.10)

where m0 satisfies (3.25). The other constraint (3.26) on the magnetic fluxes is then

automatically satisfied modulo the cubic constraint (5.9).

Ideally, one would like to invert (5.10) to find the scalar fields in terms of the magnetic

fluxes, that should be thought of as the physical parameters specifying a solution. However,

the inversion is tedious and not very insightful, so we choose to write our solutions as above

in terms of the scalar fields.

24As discussed above, setting χ = 0 reduces our supergravity model to the STU model and thus the

supersymmetric black hole solutions with χ = 0 reduce to the ones discussed in [1].
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Figure 3. The range of magnetic fluxes giving rise to regular AdS2 × Σg solutions.

Using (5.10), we can solve for f0, h0 and the scalar, χ, in terms of the scalars, xi:

e2h0 =
1

2g2

1

x1x2 + x2x3 + x3x1

(
x1x2x3 −

1

x1
− 1

x2
− 1

x3

)
,

csch2χ = 1 +
x2

1 + x2
2 + x2

3

x1x2 + x1x3 + x2x3
,

ef0 =
1

g
√

2x1x2x3
,

(5.11)

where xi are constrained by (5.9). These equations can also be obtained directly

from (3.49), (3.50), and (3.51) by restricting the complex scalars, zi, as in (5.1) and (5.2).

5.1.1 AdS2 solution space

Although we have solved the algebraic BPS equations, we still need to analyze for what

range of the magnetic fluxes, mα, we have a regular well-defined horizon. By that we mean

a solution for which the scalars χ and λi, as well as f0 and h0, are real.

The magnetic fluxes, mα, and the scalar fields, xi, are related by (5.10). The scalar

fields must be positive, xi > 0, and are constrained by (5.9). For κ = −1, we have m0 > 0

(see (3.25)) and thus the constraint (3.26), combined with the positivity of xi, leads to the

following region in the m1,2,3 magnetic flux space:

m1 +m2 +m3 = m0 ,
mi

m0
> 0 . (5.12)

This region is the triangle shown in figure 3. As noted above, the relation between the

magnetic fluxes in (5.12) combined with (5.10) ensures that the constraint (5.9) is satisfied.

We have checked numerically that for every value of the magnetic fluxes inside the region
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specified by (5.12), there is a corresponding regular AdS2×Σg solution, that is the scalars

xi and χ, and the metric functions ef0 and eh0 are real and positive. For the magnetic

fluxes at the boundary of the triangle (both the edges and the vertices) in figure 3, one has

to analyze the regularity of the solution with more care since the relations (5.10) become

singular. By solving the algebraic BPS equations directly, we find that there are no regular

AdS2 × Σg solutions for these “boundary” values of mα.

It is instructive to compare the region of the allowed magnetic fluxes in figure 3 with

the region in which the STU model regular magnetic black holes discussed in [1] exist.

Using the results in section 3.3.2 and the positivity of the scalars, xi, one can show that

for the purely magnetic STU model black holes with hyperbolic horizons, i.e. κ = −1, the

magnetic fluxes must obey the inequality

(m0 +m1 −m2 −m3)(m0 −m1 +m2 −m3)(m0 −m1 −m2 +m3) < 0 . (5.13)

When evaluated on the surface m0 = m1 + m2 + m3 relevant for our discussion, (5.13)

reduces to the constraint m1m2m3 < 0. Given (5.12) and (3.25), we thus conclude that the

magnetic STU model black holes have magnetic fluxes that lie outside the orange region

in figure 3.

5.1.2 Black hole entropy

For general magnetic fluxes, it is a non-trivial exercise to write the entropy as a function

of the magnetic fluxes since one has to invert the algebraic equations (5.10). Therefore

we adopt a different strategy. The key observation is that one can use the relation (4.17)

between the field theory and supergravity magnetic fluxes to show that the extremized

values of the R-charges, ∆i, given in (2.31), are related to the scalars, xi, obtained by

solving (5.10), by

∆i+1 =
xi

x1x2x3
. (5.14)

This relation is the same as (4.14) evaluated for real scalars and fugacities. Thus we can

use (4.3) and (5.11) to express the entropy of the black hole in terms of the scalars, xi.

Then the relation (5.14) allows us to compare the entropy to the topologically twisted

index for the mABJM SCFT as written in (2.32). Implementing this procedure leads to

the following expression for the entropy of a general magnetic black hole in our model:

SBH =
3
√

3

2

1

x1x2 + x2x3 + x3x1

(
x1x2x3 −

1

x1
− 1

x2
− 1

x3

)
(g− 1)FS3 , (5.15)

where we used (2.10), (3.18), and (4.3). Now, we can compare (5.15) to the twisted index of

the mABJM SCFT in (2.32). Indeed, using the relation (5.14), we find that the black hole

entropy is equal to the topologically twisted index for all magnetic black hole solutions.

In section 2.3, we computed explicitly the twisted index of the mABJM SCFT for a

particular choice of magnetic fluxes. Let us now describe the supergravity dual to this

setup. To this end we set

m1 = m2 = m0 n . (5.16)
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The remaining charges m0 and m3 are then fixed in terms of the constant n by (3.25)

and (3.26). Thus, for a given choice of Σg, we are left with a one-parameter family of AdS2

solutions. The positivity constraints (5.12) imply that in order to have a regular horizon

we should have 0 < n < 1/2. Combining (5.16) with (5.10) implies that the scalar fields

should obey
x2

x3
+
x3

x2
=
x1

x3
+
x3

x1
. (5.17)

This equation has two solutions:

Branch 1: x1x2 = x2
3 , Branch 2: x1 = x2 . (5.18)

Solving (5.10) for xi in terms of n breaks each of the branches in two more branches25

which we denote by the subscript ±. For Branch 1± we find

x1 =
1− n±

√
(1 + n)(1− 3n)

2n3/2
, x2 =

1− n∓
√

(1 + n)(1− 3n)

2n3/2
, x3 =

1√
n
, (5.19)

and for Branch 2± we find

x1 = x2 =
1√

n∓
√

(1 + n)(n− 1/3)
, x3 =

2

x1 − x−1
1

. (5.20)

The scalar, χ, as well as the metric constants, f0 and h0, for each of the four branches

can be determined by plugging the expressions for xi above in (5.11). Finally we have to

impose that for each of the branches χ is real and xi, e
2f0 and e2h0 are positive. This

restricts the range of the flux parameter, n, as follows

Branch 1±: 0 < n <
1

3
, Branch 2±:

1

3
< n <

1

2
. (5.21)

Note that for each value of n, there are two corresponding near-horizon solutions. Thus

fixing n does not specify a unique black hole solution — one should additionally provide

the scalar and metric functions profiles. In the IR this amounts to selecting a ± branch,

while in the UV one should specify the falloff conditions on the scalar fields. In section 5.3

we construct numerically the full black hole solution for Branch 1+ and one can do the

same for the other branches.

Having inverted (5.10), we are ready to compute the entropy for this class of near-

horizon backgrounds. To do this we combine (5.11), (5.19), (5.20), (4.1), and (4.3) to find

Branch 1±: SBH =
3
√

3n(1− n)

2
(g− 1)FS3 , (5.22)

Branch 2±: SBH =
3

2
√

2

(1− 2n)
(

1 + 3n2 ± (1− 3n)
√

(1 + n)
(
n− 1

3

))√
(1− 2n)

(
1− 3n2 ∓ (1− 3n)

√
(1 + n)

(
n− 1

3

))(g− 1)FS3 ,

(5.23)

25The xi must be positive so we discard solutions where the xi take negative values.
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Comparing these supergravity results to the field theory computation (2.3) we find that

the black hole entropy and the twisted index agree perfectly.

One might wonder why did we venture into such an explicit analysis of this particular

class of magnetic black hole horizons when we have already shown in section 4.2 that the

topologically twisted index matches the black hole entropy for a more general class of dyonic

black holes. The key point we want to stress here is that the supersymmetric black holes

are parametrized by their electric and magnetic charges and one has to carefully study the

allowed values of these charges for which a regular black hole horizon exists. Unfortunately,

the algebraic equations that determine the supersymmetric AdS2 solutions are complicated

and do not allow for an analytic solution of this problem. The example studied in this

section reveals explicitly the somewhat involved branch structure of the space of regular

black holes parametrized by the electric and magnetic charges. The successful comparison

between the topologically twisted index and the black hole entropy in section 4.2 was

somewhat implicit and did not allow for such an insight.

5.2 The universal solution

There is a special type of solution to the BPS equations (5.7) for which the scalars do

not flow as a function of the radial coordinate. This is the supergravity dual to the

universal solution described in section 2.2, which arises from a topological twist purely

along the superconformal R-symmetry. This black hole solution was discussed in [38, 39]

in the context of minimal four-dimensional gauged supergravity and its universality was

emphasized recently in [6, 23, 56].26 The near-horizon limit of this solution is part of the

class of solutions described in section 5.1 — specifically it is obtained by setting xi =
√

3

and n = 1/3 in (5.16). Since the scalar fields do not flow, we set them at their Warner

AdS4 vacuum values (3.17). Note that this is consistent with the BPS equations in (5.7).

Using (3.25), (3.26), and (5.16) with n = 1/3 leads to the following magnetic fluxes

m0 = 3m1 = 3m2 = 3m3 = − κ

2g
. (5.24)

For these values of the scalar fields and charges, we find thatW and H take on the following

constant values:

W∗ = −33/4 , H∗ = − κ√
2 33/4g

. (5.25)

To find the metric functions it is useful to trade the radial coordinate r in (5.3) for a new

coordinate r′ implicitly defined by

e2fdr2 = e−2fdr′2 . (5.26)

In the new radial variable, the BPS equations (5.7) for the metric functions read

df

dr′
=

g√
2
e−fW − e−f−2hH , dh

dr′
=

g√
2
e−fW + e−f−2hH . (5.27)

26See also [65] for a recent discussion of this universal solution.
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One can check that

J ≡ g√
2
e−f+hW + e−f−hH , (5.28)

is a constant of motion for the system (5.27),

dJ
dr′

= 0 . (5.29)

Moreover, using (5.27), J can be written as

J =
deh

dr′
. (5.30)

Combining (5.29) and (5.30), we find that eh = c1r
′ + c0, where c1 and c0 are integration

constants. Plugging this into the BPS equation for h, (5.27), and solving for f gives

ef =
1

c1

(
g√
2
W eh +H e−h

)
. (5.31)

Finally, using those results in the metric, we find

ds2 = −
(

ρ

LAdS4

+
κLAdS4

2ρ

)2

dt′2 +

(
ρ

LAdS4

+
κLAdS4

2ρ

)−2

dρ2 + ρ2ds2
Σg
, (5.32)

where LAdS4 is the scale of the Warner AdS4 vacuum defined in (3.18), ρ ≡ c1r
′ + c0 and

t′ ≡ t/c1.

For κ = 0, i.e. g = 1, the gauge field vanishes and the solution is simply AdS4 in

Poincaré coordinates. For κ = +1, i.e. g = 0, the metric has a naked singularity at ρ = 0.

For κ = −1, we find a hyperbolic black hole with a regular horizon at ρ0 = LAdS4/
√

2.

The metric is normalized such that in the UV, i.e. ρ → ∞, it approaches AdS4 with a

hyperbolic boundary and radius LAdS4 . In the IR, i.e. ρ→ ρ0, the metric approaches

ds2 =
L2

AdS4

4

(
ds2

AdS2
+ 2ds2

Σg

)
. (5.33)

This near-horizon solution is part of the larger class of AdS2 × Σg solutions described

in section 5.1. The entropy for the hyperbolic black hole (5.32) can thus be obtained

from (5.22) by setting n = 1/3. Then one finds

SBH = (g− 1)FmABJM
S3 , (5.34)

where FmABJM
S3 , the free energy for the AdS4 Warner vacuum with S3 as asymptotic bound-

ary, is given in (4.1). Thus we find an exact match between the universal results: (5.34)

from supergravity and (2.34) from field theory.

5.3 Numerical black hole solutions

In this section we present a numerical analysis of the BPS equations (5.7). We will do so for

the choice of magnetic fluxes m1 = m2 = m0n discussed in section 5.1.2 and furthermore

restrict to a scalar field profile that corresponds to Branch 1+ in (5.19). There is no
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obstruction for repeating the same analysis for general choices of magnetic fluxes and

branches.

We find it useful to define p ≡ f + h and use it as the new radial variable. Taking the

sum of the BPS equations for f and h in (5.7) allows us to write

d

dr
=
dp

dr

d

dp
=
√

2 efgW d

dp
. (5.35)

The BPS equations in terms of p reduce to the following system of five first order non-linear

ODEs for the functions h(p), χ(p) and λi(p):

dh

dp
=

1

2

(
1 +
√

2
H
gW

e−2h

)
,

∂χ

∂p
= − 1

2W
∂W
∂χ

,

∂λi
∂p

= − 1

2gW

(
g
∂W
∂λi

+
√

2e−2h ∂H
∂λi

)
.

(5.36)

Once these equations are solved, the function f(p) can be found using the identity f =

p− h(p).

In order to perform the numerical analysis, it is most convenient to specify the bound-

ary conditions in the IR at the AdS2 × Σg horizon. This is where we choose to restrict

ourselves to Branch 1+ by taking the following IR boundary conditions:

λIR
1 =

1

2
log

(
1− n +

√
(1 + n)(1− 3n)

2n3/2

)
, λIR

3 =
1

2
log

(
1√
n

)
, (5.37)

λIR
2 =

1

2
log

(
1− n−

√
(1 + n)(1− 3n)

2n3/2

)
, χIR = arctanh

√
n , (5.38)

hIR =
1

2
log

(√
n(1− n)

2g2

)
, (5.39)

where we used (5.4), (5.19) (with ± → +) and (5.11). We note that in the radial coordinate

p the IR AdS2 region is at p → −∞ and the UV AdS4 is at p → ∞. We use a numerical

implementation in Mathematica by starting with these initial conditions in the IR and

numerically integrating towards the UV. To move away from the near-horizon solution we

perturb the scalar fields slightly from their IR values. However, arbitrary perturbations

will generally result in singular solutions.

To find the allowed perturbations that produce regular asymptotically AdS4 solutions

let us define the fields φn as

λi = λIR
i + φλi , χ = χIR + φχ , h = hIR + φh , (5.40)

and expand the BPS equation to first order in φn. This produces the following set of linear

equations
∂φn
∂p

= Mnmφm , m, n ∈ {λ1, λ2, λ3, χ, h} , (5.41)
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Figure 4. Eigenvalues, Λm, of Mnm as a function of n.

where Mnm is a matrix that depends on the IR values of the scalar and metric fields.

Negative eigenvalues of the matrix Mnm correspond to directions in field space which lead

to singular solutions. Therefore we have to choose the deformation in (5.40) in the direction

along the positive eigenvalues. The matrix Mmn always has two negative and three positive

eigenvalues in the allowed range of n, i.e. 0 < n < 1/3, as shown in figure 4. Note that

two eigenvalues degenerate at n =
√

5 − 2. Since this is an irrational number it cannot

correspond to a properly quantized magnetic flux and we do not discuss it further. This

leads us to set up the initial conditions as (5.40) with

φn = ε(1)ϕ
(1)
n + ε(2)ϕ

(2)
n + ε(3)ϕ

(3)
n , (5.42)

where ε(1), ε(2), ε(3), are small parameters, i.e. ε(a) � 1 for a = 1, 2, 3, and ϕ
(1)
n , ϕ

(2)
n , ϕ

(3)
n ,

are orthonormal eigenvectors corresponding to the three positive eigenvalues.

Figures 5 and 6 showcase the numerical analysis for n = 1/4, |ε(a)| ≈ 10−4, the IR

value of the radial coordinate pIR = −10 and the UV value at around pUV = 28. The

Warner point is numerically unstable, but by finely tuning ε(a), one can get very close

to the Warner fixed point as indicated in figure 6 and figure 5. Figure 5 shows that the

scalar fields take on the Warner values (3.17) and stay there longer as we tune more finely

towards the Warner AdS4 vacuum. Eventually however, the flow will always move back to

the SO(8) AdS4 vacuum which is numerically stable. As visible from figure 6, the solutions

shown in figure 5 lie very close to the Warner fixed point. Rather than keeping n fixed and

taking different initial conditions, we can also vary n to produce figure 7.

For the sake of brevity of the presentation here we focused on a detailed analysis of the

numerical solutions that asymptote to the 1+ branch. However, we have also found similar

numerical solutions for the 1− and 2± branches discussed in section 5.1.2. In fact, the

solutions for the 1− branch are identical to the ones for the 1+ branch upon an interchange

of the scalar fields λ1 and λ2.

It is clear from figure 6 that for a fixed AdS2 × Σg near horizon geometry there is

a one real parameter family of black hole solutions that asymptote to the SO(8) AdS4

vacuum of the four-dimensional supergravity. Only a single member of that family of

solutions, illustrated by the red curve in figure 6, asymptotes to the Warner AdS4 vacuum.
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Figure 5. Examples of scalar profiles for n = 1/4 fine tuned to approach the Warner AdS4 fixed

point. The dashed lines correspond to the fixed point values for the scalars given in (3.17).
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Figure 6. Examples of scalar profiles for n = 1/4 projected onto the χ, λ1 plane. The parameters

correspond to those of figure 5.
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Figure 7. Examples of scalar profiles for various values of n ranging from n = 1
3 to n = 1

30 ,

projected onto the χ, λ1 plane. The dashed line corresponds to χIR(λIR1 ) using (5.37) and (5.38).
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This may be viewed as a violation of black hole uniqueness and is a feature absent in the

known asymptotically black holes solutions of four-dimensional N = 2 gauged supergravity

without hypermultiplets. We believe that the violation of black hole uniqueness is due to

the presence of the hypermultiplet scalar field that has a non-trivial profile in the black

hole solution and is charged under the U(1)m gauge field.

A different perspective on this continuous family of solutions is offered by the dual

holographic QFT. The SO(8) AdS4 vacuum is dual to the ABJM SCFT. In the field theory

setup discussed in section 2 we are deforming this SCFT in two ways. We turn on the

superpotential mass term (2.6) and in addition we perform the partial topological twist

described in section 2.2. These two deformations are relevant and are thus associated with

dimensionful parameters, namely the mass, m, and the length scale, `Σ, of the Riemann

surface, Σg.
27 Therefore we should expect a one-parameter family of RG flows emerging

from the ABJM SCFT in the UV labelled by the dimensionless parameter m`Σ. The one-

parameter family of supersymmetric black holes we have constructed is the holographic

dual realization of this family of RG flows. A very similar picture was presented in [47] for

a deformation of the four-dimensional N = 4 SYM, which is a combination of a superpo-

tential mass term and a partial topological twist.

6 Conclusions

In this paper we studied the topologically twisted index of the mABJM SCFT which can

be thought of as an interacting IR fixed point arising from the ABJM theory deformed by

an N = 2 preserving mass term. We exploited the gravitational dual of the mABJM SCFT

to construct static supersymmetric black hole solutions of the maximal four-dimensional

SO(8)N = 8 gauged supergravity. In addition, we showed explicitly that the planar limit of

the topologically twisted index is equal to the entropy of these black holes to leading order

in N . Our results can be viewed as an extension of the results and conjectures in [1, 2] which

employed the topologically twisted index of the ABJM theory to account for the entropy

of supersymmetric asymptotically AdS4 black holes in the STU model of four-dimensional

N = 2 gauged supergravity. A distinct feature of our new supergravity solutions is that

they can be viewed as solutions to a particular four-dimensional N = 2 gauged supergravity

coupled to three vector multiplets and one hyper multiplet. Thus our solutions constitute

rare examples of supersymmetric asymptotically AdS4 black holes with non-trivial profiles

for hyper multiplet scalars. Our work opens several interesting avenues to explore.

We have provided an exhaustive classification of the supersymmetric dyonic AdS2 solu-

tions in our supergravity model. However we have discussed fully-fledged black holes only

when the electric charges vanish. Given that we have numerous dyonic AdS2 backgrounds

with entropy that matches exactly the topologically twisted index of the dual SCFT, it is

natural to expect that one can construct full black hole solutions that interpolate between

the AdS4 Warner vacuum and these near-horizon AdS2 geometries. Due to the complexity

of the BPS equations in our supergravity model, it is likely that such black hole solutions

can only be constructed numerically.

27We have fixed `Σ throughout this paper by normalizing the curvature of Σg to κ.
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In our analysis we focused on static solutions of the BPS equations. It is known that

there are also rotating supersymmetric black holes asymptotic to AdS4 (see, e.g., [40]). It

is natural to conjecture that our supergravity truncation also contains similar solutions and

it would be very interesting to construct them explicitly and to understand their entropy

microscopically.

Finally, it should be possible to construct non-supersymmetric black hole solutions in

our supergravity theory. A large class of such solutions was found in [66, 67] in the STU

model. One might hope that similar methods can be applied to our truncation, although

the presence of hypermultiplet scalars may complicate the construction.

It would be interesting to uplift our black hole solutions to M-theory by combining the

uplifts of the STU-model [68, 69] with the uplift of the Warner critical point [31]. Such

M-theory backgrounds may further elucidate the structure of supersymmetric wrapped M2-

branes and potentially allow for constructing generalizations of our solutions. A particular

generalization may proceed as follows. It was pointed out in [31] that the CPW AdS4

vacuum of eleven-dimensional supergravity can be generalized by changing the topology of

the internal squashed S7. The SU(3) invariance of the Warner AdS4 vacuum is realized in

eleven dimensions by an explicit CP2 submanifold of S7. It was observed in [31] that one

can substitute this four-manifold with any other Kähler-Einstein four-manifold M4 while

still preserving N = 2 supersymmetry. If this manifold has at least one U(1) isometry some

of our black hole solutions can probably be generalized. We expect that M4 = CP1 ×CP1

should be the simplest generalization to study.28 The universal flow solution discussed in

section 5.2 should be easy to find for any M4.

Finally, we would like to point out that our consistent truncation of the four-

dimensional N = 8 gauged supergravity may find other applications in the context of

holography. One potentially fruitful avenue for further study is to look for Euclidean so-

lutions that are asymptotic to the Warner AdS4 vacuum with an S3 boundary and have

non-trivial scalar profiles. These backgrounds should be generalizations of the solutions

discussed in [49] and can be viewed as a holographic analog of the F -maximization proce-

dure applied to the mABJM SCFT. More precisely, these putative supergravity solutions

should describe massive deformations of the mABJM N = 2 SCFT on S3 that break con-

formal invariance but preserve supersymmetry. It would be interesting to construct these

backgrounds explicitly.
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A Conventions

Throughout this paper we consider smooth Riemann surfaces Σg of genus g. We put a

constant curvature metric on Σg of the form

ds2
Σg

= H(x, y)2 (dx2 + dy2) , H(x, y) =


2

1 + x2 + y2
for g = 0 ,

√
2π for g = 1 ,

1

y
for g > 1 .

(A.1)

The volume form

volΣg ≡ H2 dx ∧ dy , (A.2)

integrates to: ∫
Σg

volΣg = 2πηΣ , ηΣ =

{
2|g− 1| for g 6= 1 ,

1 for g = 1 .
(A.3)

The normalized curvature of Σg is denoted by κ = 1, 0 and −1 for g = 0, g = 1, and g > 1,

respectively. We also use the following locally defined potential, ωΣg , for the volume form:

ωΣg =


2(xdy − ydx)

1 + x2 + y2
for g = 0 ,

π(xdy − ydx) for g = 1 ,
dx

y
for g > 1 ,

dωΣg = volΣg . (A.4)

The AdS2 metric is

ds2
AdS2

=
1

r2
(−dt2 + dr2) , (A.5)

with the volume form and the potential given by

volAdS2 =
dt ∧ dr
r2

, ωAdS2 =
dt

r
. (A.6)

To conform with the prevailing custom, we use different index conventions in the field

theory and the supergravity sections of the paper. In section 2, the indices labelling the

R-charges and fugacities are α, β = 1, . . . , 4 and i, j = 2, 3, 4, while in sections 3 and 5 the

range of the same indices now labelling the dual scalar fields and the vector potentials is

α, β = 0, . . . , 3 and i, j = 1, 2, 3. In other words,

αQFT = αSUGRA + 1 , iQFT = iSUGRA + 1 , (A.7)

and so on.
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B The U(1)2-invariant truncation

In this appendix we present a U(1)2-invariant truncation of the de Wit-Nicolai N = 8

gauged supergravity in four dimensions [35], where U(1)2 is the Cartan subgroup of the

standard SU(3) ⊂ SO(6) ⊂ SO(8). On the one side, this truncation can be viewed as a gen-

eralization of the SU(3)-invariant truncation originally studied in [27] and recently, in more

detail, in [59]. On the other side, it generalizes the U(1)4-invariant truncation, where U(1)4

is the Cartan subgroup of SO(8), to the STU-model [68, 70, 71]. The resulting theory is a

matter coupled N = 2 gauged supergravity specified by the geometric data that naturally

arise from the two simpler truncations. To determine those data, we use the same method as

in appendix B of [59], that is we compare judiciously chosen terms in supersymmetry varia-

tions and in the action of the truncated N = 8 theory with those in N = 2 supergravity. We

work here with the original formulation of gauged N = 2 supergravity as given in [58, 72].

Let T12, T34, T56 and T78 denote the four standard Cartan generators of SO(8), where

Tij is the generator of rotation in the (ij)-plane with charge one. Then the two symmetry

generators are
1

2
(T12 − T34) ,

1√
3

(T12 + T34 − 2T56) , (B.1)

under which the 8 gravitini, ψµ
i, and the corresponding supersymmetries, εi, of the full

theory transform with the charges

8v −→
(

1,
1√
3

)
+

(
1,− 1√

3

)
+

(
−1,

1√
3

)
+

(
−1,− 1√

3

)
+

(
0,

2√
3

)
+

(
0,− 2√

3

)
+ (0, 0) + (0, 0) .

(B.2)

The two invariant gravitini and supersymmetries are, respectively, the chiral ψ7,8 and ε7,8

and their complex conjugates ψ 7,8 and ε7,8 of opposite chirality.

The unbroken gauge symmetry is given by the commutant of the generators (B.1) in

SO(8). Clearly, it is the Cartan subgroup, U(1)4, of SO(8). The corresponding gauge fields,

Aij , are the same as in the STU-model and consist of the graviphoton and three gauge

fields in vector multiplets. We find it convenient to work in the same symplectic frame as

in [71], which is specified by the following canonical gauge fields, Aα, α = 0, . . . , 3,

A12 =
1

2
(A0 +A1 −A2 −A3) , A34 =

1

2
(A0 −A1 +A2 −A3) ,

A56 =
1

2
(A0 −A1 −A2 +A3) , A78 =

1

2
(A0 +A1 +A2 +A3) .

(B.3)

In the symmetric gauge, the scalar 56-bein of the N = 8 supergravity is given by

V ≡

(
uij

IJ vijKL
vklIJ uklKL

)
= exp

(
0 φijkl

φijkl 0

)
∈ E7(7)/SU(8) , (B.4)

where

φijkl =
1

24
εijklmnpqφ

mnpq , φijkl = (φijkl)
∗ , (B.5)
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are completely antisymmetric complex self-dual scalar fields. We find that the U(1)2-

invariant nonvanishing φijkl’s are given by

φ1278 = −1

2
λ1 e

iϕ1 , φ3478 = −1

2
λ2 e

iϕ2 , φ5678 = −1

2
λ3 e

iϕ3 ,

φ1234 = −1

2
λ3 e

−iϕ3 , φ1256 = −1

2
λ2 e

−iϕ2 , φ3456 = −1

2
λ1 e

−iϕ1 ,

φ1357 = −φ1467 = −φ2367 = −φ2457 =
1

4
(χ1 cosψ1 + iχ2 sinψ2) ,

φ1367 = φ1457 = φ2357 = −φ2467 = −1

4
(χ1 sinψ1 − iχ2 cosψ2) ,

φ1368 = φ1458 = φ2358 = −φ2468 = −1

4
(χ1 cosψ1 − iχ2 sinψ2) ,

φ1358 = −φ1468 = −φ2368 = −φ2458 = −1

4
(χ1 sinψ1 + iχ2 cosψ2) ,

(B.6)

where the five complex fields,

zi =
λi tanh |λi|
|λi|

eiϕi , i = 1, 2, 3 , (B.7)

and

ζr =
χr tanh

√
χ2

1 + χ2
2√

χ2
1 + χ2

2

eiψr , r = 1, 2 , (B.8)

parametrize the special Kähler manifold, MV , of three vector multiplets and the quater-

nionic Kähler manifold,MH , of the universal hypermultiplet, respectively. The two Kähler

manifolds are

MV ×MH =

[
SU(1, 1)

U(1)

]3

× SU(2, 1)

SU(2)×U(1)
, (B.9)

with the standard metrics

gziz̄jdzidz̄j =
dz1dz̄1

(1− |z1|2)2
+

dz2dz̄2

(1− |z2|2)2
+

dz3dz̄3

(1− |z3|2)2
, (B.10)

and

gζiζ̄jdζidζ̄j =
dζ1dζ̄1 + dζ2dζ̄2

1− |ζ1|2 − |ζ2|2
+

(ζ1dζ̄1 + ζ2dζ̄2)(ζ̄1dζ1 + ζ̄2dζ2)

(1− |ζ1|2 − |ζ2|2)2
, (B.11)

and the corresponding Kähler potentials

KV = − log
[
(1− |z1|2)(1− |z2|2)(1− |z3|2)

]
, (B.12)

KH = − log(1− |ζ1|2 − |ζ2|2) . (B.13)

Note that MV is invariant under, U(1)4, and is the scalar manifold of the STU-model. In

turn, by construction, MH is invariant under the symmetries (B.1) and in fact under the

full SU(3). It is thus the same as the hypermultiplet in the SU(3)-invariant truncation [59].

As expected, there are eight invariant chiral spin-1/2 fields:

χ127 , χ128 , χ347 , χ348 , χ567 , χ568 , (B.14)

χ135 = −χ146 = −χ236 = −χ245 , χ246 = −χ136 = −χ145 = −χ235 , (B.15)
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and their complex conjugates. By examining the supersymmetry variations of the scalar

fields,29 one can check that (B.14) belong to the three vector multiplets, while (B.15) to

the hypermultiplet.

Similarly, from the supersymmetry variations of the vector fields (B.3) into spin-3/2

fields, we read off the symplectic sections

Lα = eKV /2Xα , α = 0, . . . , 3 , (B.16)

where the holomorphic sections, Xα, are explicitly given by

X0 =
1

2
√

2
(1− z1)(1− z2)(1− z3) , X1 =

1

2
√

2
(1− z1)(1 + z2)(1 + z3) ,

X2 =
1

2
√

2
(1 + z1)(1− z2)(1 + z3) , X3 =

1

2
√

2
(1 + z1)(1 + z2)(1− z3) ,

(B.17)

and KV is the Kähler potential (B.12). The specific normalization in (B.17) is fixed by

imposing identities of the special Kähler geometry and by matching terms in the N = 8

and N = 2 actions.

As a consistency check we verify that the vectors fzj
α, that follow from the supersym-

metry variations of the vector fields into spin-1/2 fields, are indeed given by

fzj
α ≡ DzjL

α =

(
∂zj +

1

2
∂zjKV

)
Lα, (B.18)

where the derivative on the right hand side is the usual Kähler covariant derivative.

The prepotential in the STU-model as a function of the holomorphic sections (B.17) is

F = −2 i
√
X0X1X2X3 , (B.19)

It is determined by solving

F =
1

2
XαFα , Fα =

∂F

∂Xα
, (B.20)

and requiring that F be homogenous of degree two as a function of Xα’s. The overall

normalization can be verified by the matching of Maxwell actions (see, (B.25) below), in

which the coupling of the scalars, zi, to the gauge fields is given by the second derivatives

of the prepotential,

Fαβ ≡
∂2F

∂Xα∂Xβ
. (B.21)

One should note that a priori the prepotential (B.19) and its derivatives (B.20) and (B.21)

have a sign ambiguity, in particular when evaluated as functions of the scalars, zi. That

ambiguity is removed by setting

√
X0X1X2X3 =

1

8
(1− z2

1)(1− z2
2)(1− z2

3) , (B.22)

which follows from the corresponding N = 8 expressions.

29For supersymmetry variations in the N = 8 theory, see (3.1)-(3.5) and section 5 in [35]. For the

supersymmetry variations in N = 2 supergravity, see, e.g., (4.18)-(4.25) in [58].
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The gauging in the N = 2 supergravity is determined by the action of the gauge

symmetries on the scalar manifolds. As we have already noted above, there are just two

U(1)’s that act nontrivially on MH , and hence the gauging is the same as in the SU(3)-

invariant truncation. By comparing (B.3) with (2.38) and (2.40) in [59], we find the Killing

vectors, Kα, corresponding to the gauge fields Aα in (B.3),

K0 = 2 i ζ1∂ζ1 + i ζ2∂ζ2 + c.c. ,

K1 = K2 = K3 = −i ζ2∂ζ2 + c.c. .
(B.23)

The corresponding moment maps, Pα = (P 1
α, P

2
α, P

3
α), can be read-off from (B.39) and

(B.40) in [59] and become quite simple if one sets one of the hyperscalars to zero. In

particular, for ζ1 = 0 and ζ2 = z, we have

Pα = P 2
α = 0 , P 3

0 = −1− 2 |z|2

1− |z|2
, P 3

1 = P 3
2 = P 3

3 = − 1

1− |z|2
. (B.24)

This completes the list of geometric data for the N = 2 supergravity that arises from this

truncation.

As a consistency check we verify explicitly that the N = 8 bosonic action reduces to

the canonical N = 2 action for the invariant fields. The latter reads

e−1LN=2 =
1

2
R− gziz̄j∂µzi∂µz̄j − gζiζ̄j∇µζi∇

µζ̄j

+
1

4

(
IαβFαµνF β µν −RαβFαµνF̃ β µν

)
− g2 P ,

(B.25)

where

∇µζi = ∂µζi + gAαµKα
ζi , (B.26)

is the covariant derivative of the scalar fields, Rαβ and Iαβ are, respectively, the real and

imaginary part of the matrix

Nαβ = Fαβ + 2 i
(ImFαγ)(ImFβδ)X

γXδ

(ImFγδ)XγXδ
, Nαβ = Rαβ + i Iαβ , (B.27)

and30

P = 4 gabKα
aKβ

bL
α
Lβ + gziz̄jfzi

αfz̄j
βPα · Pβ − 3L

α
LβPα · Pβ . (B.28)

is the scalar potential.

For the vector fields with constant curvatures as in (3.22), the Maxwell equations

reduce to the following system of algebraic equations:

− (1 + |ζ1|2)|ζ2|2

(1− |ζ1|2 − |ζ2|2)2
m0 +

(1− |ζ1|2)|ζ2|2

(1− |ζ1|2 − |ζ2|2)2
(m1 +m2 +m3) = 0 ,

|ζ1|2(4− |ζ2|2) + |ζ2|2

(1− |ζ1|2 − |ζ2|2)2
m0 −

(1 + |ζ1|2)|ζ2|2

(1− |ζ1|2 − |ζ2|2)2
(m1 +m2 +m3) = 0 ,

(B.29)

with the same equations for the electric parameters, eα.

30The “dot” denotes the summation over the vector index of the moment maps.
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C Derivation of the near horizon BPS equations

C.1 The general set-up

In this appendix we outline the main steps of the truncation of the fermion supersymme-

try variations in N = 8 gauged supergravity [35] to the U(1)2-invariant sector, and the

derivation of the BPS equations for the dyonic black holes used in section 3.3. The main

difference with the similar truncations discussed previously, such as the STU-model in [71]

or the SU(3) × U(1)W-invariant truncation in [29] or [31], is the presence of a nontrivial

electric field, which precludes futher truncation to real scalar fields. At the same time, we

simplify our calculation by restricting to the U(1)3-invariant bosonic fields of the AdS2×Σg

near horizon black hole Ansatz in section 3.2. Hence we use the metric (3.20) with con-

stants f0 and h0, constant scalars, zi and z, i = 1, 2, 3, and constant electric and magnetic

fluxes (3.22).

The spin-1/2 and spin-3/2 supersymmetry variations of the N = 8 theory are given by:

δχijk = −Aµijklγµεl +
3

2
γµνF−[ij

µν εk] − 2gA2l
ijkεl , (C.1)

δψµ
i = 2Dµε

i +
1

4

√
2F−νρ

ijγνργµεj +
√

2gA1
ijγµεj , (C.2)

and their complex conjugates. We refer the reader to [35] for the definitions and explicit

formulae for the covariantized scalar kinetic tensor, Aµijkl, and the scalar A-tensors, A1
ij

and A2l
ijk, which are constructed from the scalar 56-bein (B.4).

The gauge fields enter the variations (C.1) and (C.2) both through the “bare” potential,

AIJ , in the scalar kinetic tensor and the covariant derivative, as well as through31 F−ij ,

which are the anti-self-dual field strengths “dressed” with the scalar fields. They can be

expressed in terms of the field strengths, F IJ , by solving the following system of equations:

F−IJ = (uij
IJ + vijIJ)F−ij , F−IJ =

1

2
(F IJ − i ∗ F IJ) . (C.3)

The symmetry of the truncation guarantees that F−ij , as an SO(8) tensor, has the same

structure as the vector potential, AIJ , in (B.3), with Aα replaced with F−α. However, in

the absence of a closed form general solution to (C.3), one has to perform the calculation

explicitly. The result simplifies if we use the following linear combinations:

F−0 + F−1 + F−2 + F−3 = − i

2
Φ0 (e2f0 volAdS2 + i e2h0 volΣg) ,

F−0 + F−1 − F−2 − F−3 = − i

2
Φ1 (e2f0 volAdS2 + i e2h0 volΣg) ,

F−0 − F−1 + F−2 − F−3 = − i

2
Φ2 (e2f0 volAdS2 + i e2h0 volΣg) ,

F−0 − F−1 − F−2 + F−3 = − i

2
Φ3 (e2f0 volAdS2 + i e2h0 volΣg) ,

(C.4)

that also arise in the supersymmetry variations below. Then the complex constants, Φα,

are related to the electric and magnetic parameters, eα and mα, in (3.22) by

SαβΦβ = e−2h0mα + i e−2f0eα , (C.5)

31Note that the “bar” here does not mean complex conjugation.
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where

Sα0 =
1

2

√
2Lα ,

Sαi = −1

2

√
2(1− |zi|2)DziL

α , α = 0, . . . , 3 , i = 1, . . . , 3 .

(C.6)

The symplectic sections, Lα, have been defined in (B.16) and their Kähler covariant deriva-

tive in (B.18).

Finally, it has been observed in [44] that the BPS equations for near horizon black

holes in N = 2 supergravity coupled to hypermultiplets must be supplemented by Maxwell

equations, which impose massive constraints on the electric and magnetic parameters. The

same holds in our model. Indeed, setting ζ1 = 0 and ζ2 = z in (B.29) we find that, cf. (4.16),

e(m) ≡ e0 − e1 − e2 − e3 = 0 ,

m(m) ≡ m0 −m1 −m2 −m4 = 0 .
(C.7)

Implementing those constraints from the start simplifies the derivation of the BPS equations

considerably.

The spinor fields, χijk and ψµ
i, and the supersymmetry parameters, εi, in (C.1)

and (C.2) are γ5-chiral. Since we are using a real representation of the γ-matrices, which

makes γ5 to be pure imaginary, the complex conjugation, which lowers/raises the SU(8)

indices i, j, k, . . ., changes the γ5-chirality, for example

γ5εj = εj , γ5εj = −εj , γ5 ≡ i γ0γ1γ2γ3 . (C.8)

In particular, (C.8) implies

γ2γ3εj = −i γ0γ1εj , γ2γ3εj = i γ0γ1εj . (C.9)

It follows from (B.2) that there are two U(1)2-invariant supersymmetry parameters, ε7 and

ε8. In the following we set

ε1 = . . . = ε6 = 0 , (C.10)

and relabel ε7 and ε8 as ε1 and ε2, respectively.

The condition for a supersymmetric solution is that (C.1) and (C.2) vanish. Here, we

are interested in solutions for which the Killing spinors, εi, of unbroken supersymmetries

are constant along the Riemann surface and the usual Killing spinors along AdS2. In the

coordinate system we are using, this means that εi do not depend on t, x and y and satisfy

∂rε
i = − 1

2r
εi , i = 1, 2 , (C.11)

along the radial coordinate, r. In addition to the spinors obeying (C.11) there are also the

“conformal Killing spinors” in AdS2 dual to the S-type supercharges in the 1d supercon-

formal quantum mechanics.
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C.2 The spin-1/2 variations

After imposing (C.10) in (C.1), the only nonvanishing variations are for the U(1)2-invariant

fields in (B.14) and (B.15). Setting the variations of (B.14) to zero and using (C.9), yields

three pairs of equations of the form

Φiε
1 + 2 i g Fi γ

0γ1ε2 = 0 ,

Φiε
2 − 2 i g Fi γ

0γ1ε1 = 0 , i = 1, . . . , 3 ,
(C.12)

where

F1 = eKS/2
[
|z|2

1− |z|2
(1− z̄1)(1− z2)(1− z3) +

2

1− |z|2
(z̄1 − z2z3)

]
, (C.13)

with F2 and F3 obtained by the other two cyclic permutations of z1, z2 and z3. Equa-

tions (C.12) reduce to the projector

γ0γ1ε1 = i ξ ε2 , γ0γ1ε2 = −i ξ ε2 , ξ = ±1 , (C.14)

and three BPS equations

Φi = −2ξg Fi , i = 1, . . . , 3. (C.15)

Using the massive constraints (C.7), the variations of (B.15) simplify to

G

[
z − z̄

1− |z|2
ε1 − i

z + z̄

1− |z|2
ε2
]

= 0 ,

G

[
z + z̄

1− |z|2
ε1 − i

z − z̄
1− |z|2

ε2
]

= 0 ,

(C.16)

where

G = eKS/2
[
(1− z1)(1− z2)(1− z3) + 2(z1z2z3 − 1)

]
. (C.17)

Clearly, (C.16) vanish identically when we turn-off the hypermultiplet and thus are absent

in the STU-model. For a nontrivial hypermultiplet, z 6= 0, they imply the BPS equation

G = 0 , (C.18)

which is a cubic constraint on the scalars, zi.

C.3 The spin-3/2 variations

We now turn to the spin-3/2 variations (C.2). Using (C.9), (C.14) and (C.7) in the varia-

tions γ2δψx
7,8 + γ3δψy

7,8, we find

m0 = κ
ξ

2g
, (C.19)

where κ = ±1 or 0 is the normalized curvature of Σg, see appendix A. The difference of

the two variations yields

Φ0 = 2gξW , (C.20)
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where

W = eKV /2
[
|z|2

1− |z|2
(1− z1)(1− z2)(1− z3) +

2

1− |z|2
(z1z2z3 − 1)

]
. (C.21)

The variations, δψ7,8
r , along the radial directions, assuming (C.11), give

γ0ε1 =
√

2 i gξ ef0W ε2 ,

γ0ε2 = −
√

2 i gξ ef0W ε1 .
(C.22)

Taken together with their complex conjugates, they yield the projector

γ0ε1 = ei Λε2 , γ0ε2 = −ei Λε1 , (C.23)

and the BPS equation

e−f0 = −
√

2 i gξ ei Λ W , (C.24)

where Λ is a constant.

Finally, using all the projectors as well as (C.20) and (C.24), the variations δψt
7,8 set

e0 = 0 . (C.25)

This concludes our truncation of the supersymmetry variations (C.1) and (C.2).

C.4 Summary and comments

We have shown that the truncation of the N = 8 supersymmetry variations and the

Maxwell equations resulted in:

(i) Four real equations (C.7), (C.19) and (C.25) for the electric and magnetic parameters

eα and mα.

(ii) Four complex equations (C.15) and (C.20) for the scalar dressed components, Φα, of

the fluxes.

(iii) One complex equation (C.24) for the metric constant, f0, and the phase Λ.

(iv) A complex cubic constraint (C.18) for the scalars, zi.

Using the geometric data of the corresponding N = 2 supergravity derived in ap-

pendix B, we have verified that our BPS equations above agree, modulo differences in

conventions, with those derived for the near horizon black holes in general N = 2 d = 4

gauged supergravities coupled to hypermultiplets in [44]. In fact, a comparison with the

N = 2 formulae suggests some simplifications. In particular, we have

Fi = −(1− |zi|2)DziW , i = 1, 2, 3 . (C.26)

Those identities turn out useful for solving the BPS equations in section 3.3 using some

standard identities of the special Kähler geometry [58, 62] and to rewrite them as attractor

equations in appendix D.

Finally, note that the equations above are invariant under [44]

(eα,mα,Λ, ξ) −→ (−eα,−mα,Λ + π,−ξ) , (C.27)

so that we may set ξ = −1 for convenience.
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D The attractor equations

In section 4, we obtained a match between the black hole entropy and topologically twisted

index by explicitly solving the BPS equations and extremization equations for the super-

gravity scalar fields and field theory fugacities, respectively. In this section we show an

alternative method to achieve a match between the twisted index and the black hole en-

tropy. In particular, we will solve a subset of the BPS equations for e2h0 as a function of

the scalar fields and the electric and magnetic charges and show that the remaining BPS

equations imply that e2h0 is extremized with respect to the scalar fields. This allows for a

comparison with the topologically twisted index and its extremization with respect to the

fugacities and Lagrange multipliers. This procedure is the same as the AdS4 black hole

attractor mechanism discussed in [2, 41–44, 73].32

It is crucial for our analysis to work with the electric charges, qα, defined in (4.5).

As explained in sections 4.2.2 and 4.2.3, equation (4.4) leads to different electric charges

depending on whether the massive condition (4.16) is imposed in the Maxwell Lagrangian

before or after varying with respect to Fα. In this appendix we choose the latter and as a

consequence we will compare the resulting entropy with the field theory in section 2.4.3.

Using (3.40) and (3.31), we can write (3.30) as

Φα = 4 i e−2h0Sβα
(
qβ −N βσmσ

)
. (D.1)

Combining (D.1) with the identity

LβNαβ = Mα ≡ eKV /2
∂F

∂Xα
, (D.2)

we can rewrite the BPS equation (3.27) as

Ẑ ≡
√

2e−2h0 (Lαqα −Mαmα) + i gW = 0 . (D.3)

With the use of the identity [58]

Dzi (LαNαβ) = (DziL
α)Nαβ , (D.4)

we can furthermore write (3.28) as

DziẐ = 0 . (D.5)

Since only W depends explicitly on z, we can similarly write (3.34) as

∂Ẑ
∂z

= 0 . (D.6)

Now, we note that the equations (D.3), (D.5) and (D.6) imply the following suggestive

set of equations

e2h0 =
√

2 i
Lαqα −Mαmα

gW
,

∂e2h0

∂zi
=
∂e2h0

∂z
= 0 , (D.7)

32See also [74] for other supersymmetric AdS2 × Σg solutions in four-dimensional gauged supergravity

coupled to hypermultiplets.
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where e2h0 is a function of the electric charges, qα, magnetic fluxes, mα, and the scalars, zi
and z. The BPS equations thus imply an extremization procedure for the metric coefficient

e2h0 as a function of the scalar fields. Using (3.38) and implementing the relation (4.6)

between Lα and uα to write

e2h0 =
1

g

∑4
α=1

√
u1u2u3u4

mα−1

uα
− iuαqα−1

2u1 − 1
1−zz̄ (u1 − u2 − u3 − u4)

. (D.8)

We are now in a position to see how our equation manipulations above pay off. Note

that it follows trivially from (4.6) that the uα’s satisfy
∑4

α=1 uα = 2. In addition the last

equation in (D.7) combined with (D.8) implements the massive constraint u1 = u2+u3+u4.

Implementing the massive constraint in (D.8) we can write

e2h0 =
1

2g

4∑
α=1

(
√
u1u2u3u4

mα−1

uα
− iuαqα−1

)
. (D.9)

After identifying the field theory and supergravity charges as in (4.17) and (4.19) we observe

that the entropy (4.3) with e2h0 replaced by (D.9) takes the same functional form as the

twisted index (2.59). Equation (D.7) then implies that the entropy is extremized with

respect to the uα, ensuring that the same extremization principle applies to both the

topologically twisted index and the black hole entropy.

We have not yet discussed the BPS constraints (3.23)–(3.26) on the charges. In su-

pergravity we start with four magnetic fluxes and four electric parameters which satisfy

the above four constraints. While the constraints act linearly on the electric parameters

eα, they act non-linearly on the electric charges qα. In field theory we start off with

four magnetic charges and four electric charges and implement the two constraints (2.27)

and (2.28) on the magnetic charges. The constraints (3.25) and (3.26) are equivalent to

the constraints (2.27) and (2.28). One more constraint is imposed on the electric charges

by imposing the index to be real. Indeed, the BPS constraints (3.23)–(3.26) are crucial to

ensure that e2h0 is real. However, there is no further constraint on the electric charges in

the field theory and there is in fact a shift symmetry which allows us to shift the electric

charges by a free parameter as in (2.62). The supergravity computation has thus fixed the

shift symmetry in a particular way. Explicit comparison shows that the shift symmetry is

fixed such that the Lagrange multipliers λ1, λ2 in section 2.4.3 are real, i.e. ν1 = ν2 = 0.

In conclusion, both in supergravity and field theory we are evaluating the same expres-

sion subject to the same extremization equations. Imposing the Lagrange multipliers to be

real then ensures that also the constraints on the charges coincide. We can thus conclude

that the black hole entropy and the extremized topologically twisted index are equal.
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