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Abstract: Localized bulk excitations in AdS/CFT are produced by operators which mod-

ify the pattern of entanglement in the boundary state. We show that simple models —

consisting of entanglement swapping operators acting on a qubit system or a free field the-

ory — capture qualitative features of gravitational backreaction and reproduce predictions

of the Ryu-Takayanagi formula. These entanglement swapping operators naturally admit

multiple representations associated with different degrees of freedom, thereby reproducing

the code subspace structure emphasized by Almheiri, Dong, and Harlow. We also show

that the boundary Reeh-Schlieder theorem implies that equivalence of certain operators

on a code subspace necessarily breaks down when non-perturbative effects are taken into

account (as is expected based on bulk arguments).
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1 Introduction

A central outstanding problem in holography is understanding how observables in N = 4

SU(N) Super Yang-Mills map to observables in classical gravity in the low energy and

large N (i.e. semiclassical) limit. Recently a great deal of attention has been paid to the

fact that certain operators which are distinct at finite energies and finite N become nearly

indistinguishable in the semiclassical limit [1–6]. Careful study of these operators has lead

to the construction of several qubit models of holographic states [7–9]. These models also

build off of the connection between tensor network states and the Ryu-Takayanagi formula

originally put forward by Swingle [10, 11].

Like all models, the qubit models [7–9] capture some features of holography and fail to

capture others. For example, the HaPPY code [7] contains a natural map between sets of

“bulk” and “boundary” legs of a tensor network that is analogous to the map between bulk

entanglement wedges and boundary regions in holography [12–14]. The HaPPY code also

contains local bulk operators associated with a particular bulk leg which can be “pushed”

through the tensor network to any boundary region which contains the original leg in its

entanglement wedge. This latter feature does not exist in holography at large but finite N

and small but finite energy due to the gravitational dressing of bulk operators, as explained

in [1] and reviewed in section 2 below.

The purpose of this note is to present a simple model of holography which incorpo-

rates qualitative features of the gravitational dressing of bulk excitations. In particular

this means that different representations of a bulk operator must each be supported on the

region where the gravitational dressing is anchored to the boundary (e.g. the region B in

figure 1). Additionally, the focussing effects of gravitational flux and the Ryu-Takayanagi

formula imply that the entanglement entropy of this overlap region must decrease. We will

show below that a model of holography where bulk excitations are created by swapping

entanglement between boundary degrees of freedom naturally reproduces both of these
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Figure 1. Schematic diagram of a bulk excitation localized around the point P with gravitational

dressing (dashed lines) focused into the boundary region B. The entire bulk excitation — including

gravitational dressing — extends beyond the entanglement wedge of B but is contained in the

entanglement wedges of AB and BC. The boundaries of the entanglement wedges are indicated

with solid lines.

features. We also show that the inevitable breakdown of the code subspace picture due

to non-perturbative effects is a natural consequence of the boundary Reeh-Schlieder theo-

rem [15, 16] in the continuum limit.

The prominent role that entanglement entropy plays in these models of holography

is reminiscent of the connection between boundary entanglement and bulk dynamics de-

veloped in [17–22]. We leave it to future work to fully implement these entanglement

swapping operators in AdS/CFT and extract further lessons about the connection between

entanglement and bulk physics.

2 Bulk excitations in holography

In this section we collect some well know facts about holography which will be important

below. In particular we review several features of perturbative bulk dynamics at large N .

To zeroth order in Newton’s constant G the bulk dynamics reduce to a non-

gravitational field theory in which we can construct localized wave packets. At leading

order in G these “bare” wave packets are “dressed” by the gravitational field. As is always

the case, the gravitational field contains both gauge and physical data. Part of the physical

data is the boundary stress tensor, which is determined by the asymptotic fall off of the

field and is equal to the expectation value of the CFT stress tensor 〈Tµν〉. For our purposes

we will be interested in solutions for which 〈Tµν〉 = 0 outside of some ball shaped region B

(see figure 1). When the bulk excitation extends beyond the entanglement wedge of B, as

in figure 1, then the gravitational flux will reduce the area of the Ryu-Takayanagi surface.1

1I am not aware of a rigorous, non-perturbative proof of this claim in the classical bulk thoery, but it is

true in simple cases and (as we will see in the next paragraph) it is a consequence of the Ryu-Takayanagi

formula.
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Therefore, the bulk predicts that any operator which takes the vacuum to the state shown

in figure 1 must decrease the entanglement entropy SB.

This story can be reproduced in the boundary theory using the HKLL construction [23–

35]. Certain smeared boundary operators produce localized bulk excitations, which by

virtue of disturbing the vacuum, ensure that 〈Tµν〉 6= 0 somewhere on the boundary. By

adding additional smeared operators it is possible modify the gravitational dressing order by

order in 1/N [29, 30, 33, 34] to ensure that 〈Tµν〉 6= 0 only in region B. It then follows from a

straightforward calculation that acting on the vacuum with this operator reduces SB, since

∆SB = ∆SAC = ∆〈HAC〉 − S(ρAC |ρvac
AC) < 0 . (2.1)

The first equality follows because both the initial and final states are pure and the second

equality follows from the definition of the modular Hamiltonian H and the relative entropy

S(σ|ρ)

H = − log(ρ) , S(ρ|σ) = Tr[H(ρ− σ)]− [S(ρ)− S(σ)] . (2.2)

Since AC is the complement of a ball shaped region, the modular Hamiltonian ∆HAC is a

smeared integral of 〈Tµν〉 over AC [36–38], which vanishes by construction. Therefore the fi-

nal inequality in (2.1) follows because ∆〈HAC〉 = 0 and the relative entropy is positive. The

inequality is strict because we have assumed ρAC 6= ρvac
AC , which implies S(ρAC |ρvac

AC) > 0.

It was argued in [1] that bulk configurations like that in figure 1 have multiple bound-

ary representations. In particular such a representation exists on any boundary region

which contains the entire bulk excitation (including gravitational dressing) in its entan-

glement wedge. For example in the situation of figure 1, there exists unitary operators

Uglobal, UAB, UBC supported on the entire boundary, the region AB, and the region BC

respectively such that

Uglobal|Ω〉 ∼ UAB|Ω〉 ∼ UBC |Ω〉 , (2.3)

where |Ω〉 is the vacuum state and here ∼ means “equal to all orders in perturbation

theory.” This perturbative equality is expected to break down when non-perturbative

effects are included, since the spacetime picture on which (2.3) is based is no longer reliable.

One thing that (2.3) makes clear is that the reduced density matrices ρA and ρC are

not perturbatively affected by acting on the vacuum with any of any of the operators

Uglobal, UAB, UBC . This is manifest because ρA is not modified by UBC , but UAB and UBC
are perturbatively equivalent. On the other hand, because the bulk excitation extends

beyond the entanglement wedge of B the operator UAB must somehow act non-trivially on

A, even at finite order in perturbation theory.2 The central insight of this paper is that

UAB acts on A by modifying how the degrees of freedom in A are entangled with the rest

of the state. In section 4 we will construct models that realize this idea.

3 Quantum effects

In the previous section we argued that the boundary result (2.1) is consistent with the

classical bulk theory. Since (2.1) is an exact result it should also hold in the bulk when

2Otherwise we would have ∆SB = 0, contradicting (2.1).
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we include quantum effects. In the semi-classical limit the entanglement entropy can be

expanded in the form

∆S = ∆Sclassical + ∆Sone-loop + . . . , (3.1)

where the dots indicate higher loop corrections. ∆Sone-loop was compute in [39] and shown

to be

∆Sone-loop =
∆〈Â〉
4G

+ ∆Sbulk , (3.2)

where ∆Sbulk is the change in the entanglement entropy of the associated bulk entanglement

wedge and Â is a linear operator with expectation value equal to the area of the classical

Ryu-Takayanagi surface.3

Now consider a quantum perturbation to the vacuum state of the type depicted in

figure 1. For such a perturbation (∆SB)classical = 0 and therefore (2.1) implies that

∆Sbulk < −
∆〈Â〉
4G

, (3.3)

for the bulk entanglement wedge and Ryu-Takayanagi surface associated with the boundary

region B. As luck would have it (3.3) follows immediately from the Quantum Bousso

bound derived in [40]. The Quantum Bousso bound applies here because ∆Sbulk can be

computed on any Cauchy surface of the bulk entanglement wedge, including the past light

sheet emanating from the Ryu-Takayanagi surface. Evidently the bulk semiclassical theory

knows (at least at one-loop order) that it must obey (2.1).4

4 Entanglement swapping

We now construct two simple models that reproduce the features of holography described

in section 2. The first model is a qubit model and the second is a free field theory model

which in principle could be adapted to apply to real holographic systems, though the details

will not be worked out here. Both models will rely on entanglement swapping operator

that leave the reduced density matrix of a particular subsystem unchanged.

4.1 Qubit model

Consider the six qubit system depicted in figure 2. The subsystems A, B, and C represent

spatial regions in the boundary theory and the dashed lines signify Bell pairs, indicating

that the initial state of the system is

|Ω〉 := (|0a0b〉 + |1a1b〉)⊗ (|0c0d〉 + |1c1d〉)⊗
(
|0e0f 〉 + |1e1f 〉

)
. (4.1)

This state will represent the vacuum state of the boundary CFT.

3In certain cases 〈Â〉 includes additional “Wald-like” terms, see [39] for details. Here we focus on the

case where 〈Â〉 gives the area.
4I thank an anonymous referee for suggesting that I consider quantum effects.
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Figure 2. (Left) Diagram of the qubit “vacuum state” (4.1) with dotted lines signifying Bell paris.

(Right) The resulting state after any of the three unitary operators (4.2) act on the vacuum state.

Note that the resulting state can be obtained by swapping qubits a and c or b and d. In this diagram

the entanglement entropy of any region is equal to log(2) times the number of dotted lines crossing

the boundary of the associated entanglement wedge.

In this model, we represent the operator Uglobal, UAB, and UBC from (2.3) with the

operators

Uqubit
global :=

[
|1001〉〈0011|+ |0110〉〈1100|+ (h.c.)

]
abcd

⊗ Ief + I⊥

Uqubit
AB :=

[
(|100〉〈001|+ |011〉〈110|)⊗ Id + (h.c.)

]
abcd

⊗ Ief + I⊥

Uqubit
BC :=

[
Ia ⊗ (|110〉〈011|+ |110〉〈100|) + (h.c.)

]
abcd

⊗ Ief + I⊥ , (4.2)

where in each line I⊥ is the identity operator on the kernel of the first term and (h.c.)

denotes the Hermitian conjugate. The choice of I⊥ is arbitrary and it could be replaced by

any unitary U⊥ (and Ief could similarly be replaced with some Uef ).

Right away it is trivial to verify that all three operators are unitary, inequivalent, and

yet produce the same state when acting on the vacuum. We can easily see that all three

operators are inequivalent by evaluating specific matrix elements, for example〈
100α

∣∣∣Uqubit
global

∣∣∣001α
〉

= δα,1Ief〈
100α

∣∣∣Uqubit
AB

∣∣∣001α
〉

= Ief〈
100α

∣∣∣Uqubit
BC

∣∣∣001α
〉

= 0 , (4.3)

and a simple calculation gives

Uqubit
global|Ω〉 = Uqubit

AB |Ω〉 = Uqubit
BC |Ω〉

= (|0a0d〉 + |1a1d〉)⊗ (|0b0c〉 + |1b1c〉)⊗
(
|0e0f 〉 + |1e1f 〉

)
. (4.4)

Examining figure 2, it is clear that swapping qubits a ↔ c or b ↔ d results in exactly the

same final state, and this is the reason why the final state can be created by acting on AB or

BC. For this reason we will refer to the operators (4.2) as entanglement swapping operators.

– 5 –
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The exact equality in (4.4) is stricter than the perturbative equality we required

in (2.3). We will see below that this discrepancy is naturally taken care of when we

pass to the continuum limit.

Finally while the reduced density matrices of ρA and ρC are unchanged by the

operators (4.2), ρB is clearly altered. In fact the subsystem B is now in a pure state,

which means that

∆SB = −2 log 2 , (4.5)

reproducing the fact that ∆SB < 0 derived in section 2. To make the model slightly more re-

alistic we could replace each Bell pair in (4.1) with O(N2) Bell pairs and have the entangle-

ment operators act on a single pair of qubits as in (4.2). In this model we would have SB ∼
N2 and ∆SB ∼ N0, as expected when we add a single bulk particle to vacuum of AdS/CFT.

The above qubit model is reminiscent of the qutrit model of local bulk operators in [1],

however there are several qualitative differences. Most importantly, the operators (4.2)

have a common overlap region B and it is impossible to create the final state Uqubit
global|Ω〉

without acting on B. This is in contrast to the qutrit model of [1] where any excited state

can be created by acting on any two regions, including AC. A second (related) difference

is that in the qutrit model there are no single subsystem measurements which indicate

that the state has changed, one must perform a joint measurement on at least two regions.

Here, the excitation can be detected (though not fully reconstructed) by making local

measurements on B. These local measurements are analogous to measuring 〈Tµν〉 in the

boundary theory, and it is necessary that some measurement in B distinguish the final

state from the vacuum in order to have ∆SB < 0.

4.2 Free field theory model

Consider a free CFT on a sphere. Let B be a ball centered on the north pole. The vacuum

state can be be decomposed with respect modes on the region B and the complementary

region B̄ in the form

|Ω〉 = Z−1
⊗
k

( ∞∑
n=0

e−En,k/2|nB, nB̄〉k

)
, (4.6)

where k runs the eigenmodes of the “boost” Hamiltonian, nB, nB̄ are the mode occupation

numbers, En,k are the associated energies, and Z is a normalization constant [41].

To recreate the essential features of the qubit model, it will be useful to pick out two

modes k and l and to identify the four associated occupation numbers with the labels

a, b, c, d as follows

|Ω〉 = Z−1

(∑
n

e−En,k/2|na, nb〉k

)
⊗

(∑
m

e−Em,l/2|mc,md〉l

)
⊗ . . . , (4.7)

where, as in figure 2, b and c are localized in subsystem B while a and d are not. Unlike

in figure 2, the modes a and d are not localized into separate spatial regions A and C, but

rather are each supported on the whole of AC.

– 6 –
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Now consider the three operators

U f.f.
global :=

∑
n 6=m
|m,n, n,m〉〈n, n,m,m|+ (h.c.)


abcd

⊗ Irest + I⊥

U f.f.
AB :=

∑
n 6=m
|m,n, n〉〈n, n,m| ⊗ Id + (h.c.)


abcd

⊗ Irest + I⊥

U f.f.
BC :=

∑
n 6=m

Ia ⊗ |m,m, n〉〈n,m,m|+ (h.c.)


abcd

⊗ Irest + I⊥ (4.8)

where Irest is the identity operator on all degrees of freedom other than a, b, c, d and, as be-

fore, I⊥ is defined in each line to be the identity operator on the kernel of the first term. For

now the labels AB and BC are aspirational and don’t refer to any particular spatial region.

As before, it is trivial to verify that the operators are unitary, inequivalent, and yet

produce the same state when acting on the vacuum. We can see that they are inequivalent

by considering the matrix elements〈
m,n, n, p

∣∣∣U f.f.
global

∣∣∣n, n,m, p〉 = δp,mIrest〈
m,n, n, p

∣∣∣U f.f.
AB

∣∣∣n, n,m, p〉 = Irest〈
m,n, n, p

∣∣∣U f.f.
BC

∣∣∣n, n,m, p〉 = 0 , (4.9)

for p 6= n and n 6= m, and a simple calculation gives

U f.f.
global|Ω〉 = U f.f.

AB|Ω〉 = U f.f.
BC |Ω〉

= Z−1

(∑
n,m

e−(En,k+Em,l)/2|ma, nb〉k ⊗ |nc,md〉l

)
⊗ . . . . (4.10)

As before it is straightforward to verify that ρA and ρC (defined for now by tracing out all

degrees of freedom except a and d respectively) are unchanged by the operators (4.8). On

the other hand ρB (defined by tracing out all degrees of freedom except b and c) has been

modified and the entanglement entropy SB has decreased. This follows from observing

that the modes b and c are now in a pure state, whereas before they were completely

uncorrelated.

As in the qubit model, (4.10) is exact even though we only needed perturbative equal-

ity, however this time we have an explanation. For simplicity we have so far worked

with eigenstates of the modular Hamiltonian, which allowed us to write |Ω〉 in the simple

form (4.6). For that reason the modes a and d are not restricted to any particular spatial

region within AC. However we could have chosen to work with a spatially localized set

of modes restricted to non-overlapping spatial regions. This would have made (4.6) more

complicated, but the modes would still be entangled and entanglement swap operators

could still be constructed. However, as long as the combined spatial support of UAB and

UBC is not the entire boundary — as would be the case if both operators were supported in

– 7 –
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the interior of their respective spatial regions — then a corollary to Reeh-Schlieder theorem

(theorem 5.3.2 of [16]) states that

(UAB − UBC)|Ω〉 6= 0 . (4.11)

That means the best we can possibly do is

UAB|Ω〉 ∼ UBC |Ω〉 . (4.12)

Thus the non-perturbative breakdown mentioned above is a generic feature of continuum

quantum field theories and does not require any special properties of the field theory or

operators. It would be interesting to try to formulate an approximate Reeh-Schlieder

theorem and place a lower bound on the size of non-perturbative effects.

5 Discussion

Modeling of qasilocal bulk operators in AdS/CFT as entanglement swapping operators

in the boundary theory provides a simple framework that ties together the existence of

multiple boundary representations of a single bulk operator, basic features of gravitational

backreaction, and the Ryu-Takayanagi formula. Throughout we have focused on pertur-

bations about the vacuum state primarily because special properties of the vacuum state

allow us to derive the useful inequality (2.1) and the decomposition (4.6) (which both are

due to the simple form of the modular Hamiltonian of ρB). Obviously it would be desirable

to model non-vacuum states, and there is no obvious obstruction to doing so. However

without (2.1) and (4.6) such models are even more schematic and harder to verify even

qualitatively, thus we leave thinking about non-AdS spacetimes for future work.

Still the question remains, can the HKLL operators in AdS/CFT actually be under-

stood as swapping entanglement between different spatial regions of the boundary? On

some level the answer must be yes by the argument given in the last paragraph of section 2

above. On the other hand, it would be valuable to understand how this works in detail

in a strongly interacting, large N CFT. One obstacle is that it is difficult to explicitly

write down HKLL operators with tightly collimated gravitational dressing (as in figure 1),

though it may be possible to make progress in AdS3/CFT2 since the gravitational field has

no propagating degrees of freedom (see [42]).

The goal of this program would be to develop a non-perturbative framework for think-

ing about quasilocal bulk operators. This would be valuable because, while the connection

between entanglement and bulk dynamics is well understood to leading order in perturba-

tion theory [17, 18], new tools are needed to understand non-linear, classical gravity in the

bulk.
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