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1 Introduction

One of the striking predictions of quantum field theory (QFT) is that virtual charged

particle-antiparticle fluctuations in the quantum vacuum can induce nonlinear interactions

among electromagnetic fields [1–3]; for reviews emphasizing various theoretical aspects

as well as prospects for the experimental detection of such effects, see [4–13]. Aiming at

probing the vacuum of the Standard Model of particle physics with classical electromagnetic

fields and low energy photons, the dominant effective interactions are governed by quantum

electrodynamics (QED).

For the macroscopic electromagnetic fields presently attainable in the laboratory, the

effects of QED vacuum nonlinearities are rather small, making their experimental detection

challenging [9, 11]. These effective interactions have no tree-level analogue, but are medi-

ated by at least one electron-positron loop. For electromagnetic fields which vary on scales

much larger than the Compton wavelength of the electron λ̄ = 3.86 · 10−13m and are weak

in comparison to the critical electric field strength Ecr ≡ m2c3

e~ ' 1.3 · 1018V/m [2, 14, 15],
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i.e., fulfill {| ~E|, c| ~B|} � Ecr, this results in a parametric suppression of the effective inter-

action by inverse powers of the electron mass. Most of the electromagnetic fields available

in the laboratory meet this criterion.

The effective interactions can in particular impact photon propagation and give rise to

remarkable effects such as vacuum birefringence experienced by probe photons traversing

a classical electromagnetic field [16–19]; for ongoing experimental efforts aiming at the

verification of vacuum birefringence using macroscopic fields, see [20–25]; for theoretical

proposals advocating dedicated high-intensity laser experiments, see [26–35]. Recently,

indications have been reported for the relevance of QED vacuum birefringence for optical

polarimetry of a neutron star [36]. Other theoretical proposals for optical signatures of

quantum vacuum nonlinearity have focused on photon-photon scattering in the form of

laser-pulse collisions [37–40], interference effects [41–44], quantum reflection [45, 46], photon

merging [47–51], photon splitting [19, 52–60], and higher-harmonic generation from laser

driven vacuum [61–64]. Finally, and perhaps most strikingly, strong electric fields can

facilitate the spontaneous formation of real electron-position pairs from the QED vacuum

via the Schwinger effect [2, 14, 15].

It is a fascinating aspect of this plethora of phenomena that they manifest the effec-

tive interactions of electromagnetic fields beyond Maxwell’s linear theory, which can be

summarized elegantly by an effective action that dates back to the early days of quantum

field theory [2, 3]: the Heisenberg-Euler effective action. Its matured embedding into the

modern language of field theory is due to Schwinger [15], who gave a nonperturbative def-

inition of this action by means of the vacuum persistence amplitude, i.e., the Schwinger

functional. Nowadays, QFT is often defined in terms of generating functionals for correla-

tion functions, with the concept of the effective action being identified with the generating

functions of one-particle irreducible (1PI) correlators (proper vertices).

In this article, we emphasize that the Heisenberg-Euler effective action is different from

— though related to — the 1PI effective action. This fact has, of course, been well known

in the specialized literature [4, 65] but is sometimes confused in textbooks. We detail

the construction of the Heisenberg-Euler effective action from the standard definition of

QED in terms of the partition function in the present work. The difference between the

two effective actions is manifested by one-particle reducible (1PR) contributions to the

Heisenberg-Euler action. In a perturbative loop expansion, such 1PR contributions occur

at and beyond the two-loop order. At two-loop order, we find that there is a finite 1PR

contribution to the Heisenberg-Euler effective action in constant electromagnetic fields,

which was previously believed to vanish.

Using a locally constant field approximation (LCFA), we also study in detail the effec-

tive theory of slowly varying classical background fields and low-frequency photon fields in

the QED vacuum. The photon polarization tensor derived within the latter contains 1PI,

1PR, as well as disconnected contributions, all of which can be understood as generated

by the 1PI effective action.

As higher-loop diagrams are typically suppressed in comparison to the one-loop dia-

gram, a proper inclusion of the previously neglected 1PR diagrams is expected to impact

the proposed experimental signatures of quantum vacuum nonlinearities only at subleading
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order. In fact, most of the theoretical studies listed above exclusively limit themselves to

one-loop order. For instance for vacuum birefringence in weak fields, the two-loop contri-

bution represents only a 1% correction [66].

Our article is organized as follows. Section 2 is devoted to an in-depth discussion of the

Heisenberg-Euler effective action. Here, we elaborate differences and common ground with

respect to the standardized 1PI effective action and show how the Heisenberg-Euler effective

action emerges from the microscopic theory of QED. Finally, we explicitly sketch its dia-

grammatic expansion up to two-loop order. In section 3 we focus on the Heisenberg-Euler

effective action in constant fields. Here, we provide the weak- and strong-field asymptotics

of the Heisenberg-Euler effective Lagrangian at one- and two-loop order. Their explicit

derivation is relegated to appendix B. Thereafter, in section 4 we introduce the LCFA and

show how it can be employed to construct an effective theory describing the interactions of

slowly varying electromagnetic fields and low-frequency photon fields in the QED vacuum.

Here, we mainly concentrate on fluctuation-induced effective interactions at two-loop order.

Finally, we end with conclusions and an outlook in section 5.

2 1PI effective action and Heisenberg-Euler effective action — Differ-

ences and common ground

2.1 Partition function and vacuum persistence amplitude in an external field

The Heisenberg-Euler action ΓHE [2] is often viewed as the prototype of an effective action

Γ, the latter having become a canonized central object in QFT. Effective actions Γ have a

precise meaning as the generating functional of 1PI correlators (proper vertices) and follow

from a standardized QFT construction via the Legendre transform of the partition function1

Z[J ] =

∫
DϕeiS[ϕ]+i

∫
Jϕ, (2.1)

⇒ Γ[φ] = sup
J

[
−
∫
Jφ− i lnZ[J ]

]
. (2.2)

Here, S denotes the classical action of the theory to be quantized, ϕ summarizes the

fluctuation fields such as electrons/positrons and photons in QED, and J is a source that

can be used to generate correlation functions from the partition function. The above

definition (2.2) guarantees the 1PI property of Γ, making it a convenient and elegant tool

for many purposes of QFT.

As it is of particular relevance for understanding our novel results obtained below, we

wish to emphasize that the Heisenberg-Euler action does not fall into the class of effective

actions as constructed from eq. (2.2). This statement holds both from the perspective of

its historical construction as well as from its modern use in strong-field physics.

The physical difference is, for instance, apparent from the fact that the 1PI effective

action (2.2) depends on the so-called classical field φ. The supremum prescription in

1In order to keep the notation compact, we employ the shorthand forms
∫
x
≡

∫
d4x and

∫
k
≡

∫
d4k
(2π)4

for

the integrations over position and momentum space, respectively. Besides, we simply use
∫

if the integration

can be performed in position or momentum space.
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eq. (2.2) relates φ to the expectation value of the fluctuating quantum field,

φ =
1

i

1

Z[J ]

δZ[J ]

δJ
= 〈ϕ〉, (2.3)

(a relation that can be considered both at J = 0 or for a nonvanishing source). In turn,

the field φ is obviously the result of a full quantum averaging process.

By contrast, Heisenberg and Euler [2] as well as Weisskopf [3] have been interested in

the response of the quantized electron-positron field to a non-quantized external electro-

magnetic field Ā which is considered to be given from the outside. In absence of quan-

tum fluctuations, this external field would obey an action principle with action Sext[Ā] =

−1
4

∫
F̄µνF̄

µν , where F̄µν = ∂µĀν − ∂νĀµ. Contrarily, in the presence of quantum fluctua-

tions, the dynamics of the external field Ā is governed by the Heisenberg-Euler action,

ΓHE[Ā] = Sext[Ā] +W [Ā]. (2.4)

The additional contribution W [Ā] arising from quantum fluctuations has been formalized

by Schwinger in terms of the vacuum persistence amplitude [15],

〈0+|0−〉Ā = eiW [Ā], (2.5)

parametrizing the probability amplitude for the vacuum to persist in the presence of an

external field Ā (“the prescribed field” [15]). The Schwinger functional W [Ā] is considered

to be a functional of the external field (and not of a source coupled to a quantum field).

It can be written as a path integral over fluctuating fields,

eiW [Ā] =

∫
Dq ei

∫
(− 1

4
QµνQµν)eiSψ [Ā+q], (2.6)

where we employed the shorthand notation

eiSψ [Ā+q] =

∫
Dψ̄Dψ ei

∫
ψ̄(−i /D[Ā+q]+m)ψ. (2.7)

For a proper comparison with the literature, we point out that our phase conventions agree

with those of [4] and thus do not include the Maxwell term for the Ā field in W [Ā] (contrary

to Schwinger’s conventions [15]).2

In eq. (2.6), we have distinguished between the external background Ā and the fluc-

tuating photon field q, the latter being equipped with a kinetic term involving the field

strength Qµν = ∂µqν − ∂νqµ. The external field couples to the fermions ψ, ψ̄, and hence

the result of the path integral depends parametrically on Ā.

We emphasize that eq. (2.6) contains no information about the dynamics that creates

Ā in the first place. This has to be provided by a separate theory for the external field,

which is conventionally assumed to obey an action principle with action Sext[Ā]. In absence

2More precisely, our conventions agree with those of the defining equations (1.45) and (1.48) of [4]; these

are slightly different from those of chapter 7 of [4] where W [Ā] denotes the electron-positron loop.
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of quantum fluctuations, Ā would be a solution of this external theory and its equations

of motion given by
δSext[Ā]

δĀµ
= −J̄µ, (2.8)

where J̄ is a classical source for the external field. Upon the inclusion of quantum fluc-

tuations, the dynamics of Ā is modified such that ΓHE[Ā] governs the dynamics of the

external field.

To one-loop order, the photon fluctuations ∼ Dq can be ignored in eq. (2.6) and one

obtains the historic answer [2, 3, 15]. At higher loops, starting from two loop on, W [Ā] also

contains one-particle reducible diagrams [4, 65, 67], as is obvious from its definition (2.6)

and will be recalled explicitly below. Hence, ΓHE does not correspond to the standard 1PI

effective action.

From a fundamental viewpoint, the concept of a non-quantized external field Ā seems

somewhat redundant, as the world is fully quantum. Moreover, a separation into internal

and external fields might seem purely academic. Nevertheless, this concept is perfectly

adjusted to our perception of a real experiment in terms of classically controlled sources

and detectors. In the remainder of this section, we detail how this useful concept can be

extracted from the full quantum theory.

2.2 From QED to the Heisenberg-Euler effective action

In order to develop the formalism, it is useful to envisage a typical physical system where

the external field Ā is generated by suitable sources J̄ . The sources (lasers, magnets,

etc.) are macroscopically separated from an interaction region of volume VI (focal volume,

interaction cavity, etc.). We consider physical situations where quantum vacuum nonlin-

earities, i.e., higher-order effective couplings of electromagnetic fields mediated by quantum

fluctuations of charged particles, become sizable only within VI.

Then, the physics inside VI can create signals (induced field components, signal pho-

tons, etc.) which are ultimately observed in detectors macroscopically separated from the

interaction region VI. Due to the smallness of the nonlinear effective couplings among

electromagnetic fields induced by quantum fluctuations of virtual charged particles, the

signal may often be of quantum nature, as it is, e.g., the case for a single-photon signal

to be measured in a single-photon detector. Still, it is useful to think of the signal as a

contribution to the external field Ā, because it is ultimately measured far away from the

region VI .

In order to distinguish between applied fields Āapplied (e.g., the fields provided by lasers,

or magnets) and the signal photons Āsignal, one may decompose the external field as

Ā = Āapplied + Āsignal. (2.9)

As the signal Āsignal is eventually induced by Āapplied, the two components of Ā will typically

exhibit a causal ordering in time. Similarly, it is possible to distinguish between the source

parts J̄ that are responsible for creating Āapplied and those that interact with Āsignal within

the detectors.
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Now, the quantitative success of classical electrodynamics heuristically implies that the

effective self-interactions as well as mutual couplings of Āsignal and Āapplied mediated by

quantum fluctuations (ψ, ψ̄, q) are dramatically suppressed and essentially vanish outside

the interaction volume VI. From the viewpoint of QED, this is a consequence of the locality

of the theory and the smallness of its coupling. This establishes an operational definition of

Ā in the outside region, where it is related to the sources J̄ which control both the creation

of Āapplied and the detection of Āsignal. For the following formalism, it suffices to just refer

to the combined field Ā. From a conceptual point of view, the details of the choice of VI

do not really matter. It is the possibility of a partitioning of the system into an internal

interaction and external Maxwellian region that matters (cf. below). Correspondingly, there

is no need to consider (Casimir-like) effects due to the finite volume of VI: the interaction

volume can always be chosen large enough to render such effects negligible. In fact, as not

even a physical boundary is necessary, the transition between internal and external regions

can be fuzzy.

Apart from the effects of quantum corrections, we expect Ā to satisfy a classical

Maxwell equation δSext/δĀ ' −J̄ . More precisely, we assume Ā to be defined as the

solution of the following equation,

∂µF̄
µν + Cν [Ā] = −J̄ν , (2.10)

where Cν [Ā] parameterizes quantum corrections which should be negligible in the outside

region, i.e., approximately fulfill Cν [Ā] = 0 outside VI. By contrast, Cν [Ā] can become

relevant in the interaction region VI, where however J̄ = 0. In QED, Cν [Ā] is perturbatively

of O(α) and nonlinear and nonlocal in the field, with the nonlinearities and nonlocalities

being controlled by the Compton scale.

With these prerequisites, let us turn to the standard partition function for QED,

Z[J ] =

∫
DAei

∫
[− 1

4
FµνFµν+JµAµ]eiSψ [A]. (2.11)

Concentrating on correlation functions of the electromagnetic field, we only include a source

term for the gauge field. Of course, the generalization to sources for the fermions is straight-

forward. In a next step, we employ the variable substitution

A = Ā+ q, (2.12)

in order to rewrite eq. (2.11) as

Z[J ] = ei
∫
[− 1

4
F̄µν F̄µν+JµĀµ]

∫
Dq ei

∫
[− 1

4
QµνQµν+(∂µF̄µν+Jν)qν ]eiSψ [Ā+q]. (2.13)

We emphasize that — despite its explicit appearance on the right-hand side — this partition

function of course does not depend on Ā but is a functional of the source J only. Contrary

to the standard QFT treatment where J often plays the role of an auxiliary variable, the

source is needed here to sustain the external field. Still, let us not simply reduce J → J̄ ,

but keep it slightly more general.

– 6 –
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As a next step, we classicalize the external field Ā: for this, we assume that the

fluctuation field q only couples to the electron-positron field, i.e., any direct coupling to

the background field should vanish. More precisely, we choose J such that∫
d4x(∂µF̄

µν + Jν)qν = 0 ↔ Jν = −∂µF̄µν =: −(∂F̄ )ν . (2.14)

Let us emphasize that for any violation of eq. (2.14), i.e., ∂µF̄
µν + Jν = J ν 6= 0, the

remnant source J ν could potentially induce a nonvanishing expectation value 〈qν〉 =

(1/iZ)(δZ/δJ ν) 6= 0. Such an expectation value could mix with Ā and thereby lead

to inconsistencies with the concept of Ā being an external field.

For sources fulfilling eq. (2.14), we have

Z[J ]
∣∣
J=−(∂F̄ )

= ei
∫
(+ 1

4
F̄µν F̄µν)

∫
Dq ei

∫
(− 1

4
QµνQµν)eiSψ [Ā+q]. (2.15)

A comparison with Schwinger’s vacuum persistence amplitude (2.6) shows that

Z[J ]
∣∣
J=−(∂F̄ )

= ei
∫
(+ 1

4
F̄µν F̄µν)eiW [Ā]. (2.16)

This suggests introducing the Heisenberg-Euler action by

ΓHE[Ā] :=

[
−
∫
JµĀ

µ − i lnZ[J ]

]∣∣∣∣
J=−(∂F̄ )

= −
∫

1

4
F̄µνF̄

µν +W [Ā]. (2.17)

Note that eq. (2.17) does not constitute a Legendre transform, since J is subject to the

constraint (2.14).

Since the field Ā is ultimately created by the classical source J̄ , we demand for

− J̄µ !
=
δΓHE[Ā]

δĀµ
= ∂νF̄

νµ +
δW [Ā]

δĀµ
, (2.18)

which implies that the correction term in eq. (2.10) is given by Cµ[Ā] = δW [Ā]/δĀµ. Hence

the correction term can be viewed as a shift in the source term

J̄ → J̄ + C[Ā] = J, (2.19)

which is needed in eq. (2.14) to inhibit that the background as well as J̄ provide a source

for the fluctuation field q. If we had defined the field F̄ in terms of the source J̄ in

combination with the classical field equation ∂µF̄
µν = −J̄ν , we would have arrived at

the same definition (2.17) for the Heisenberg-Euler action. However, this definition of the

external field would have been inconsistent with the quantum equation of motion (2.18)

from order α on.

This concludes our derivation of the Heisenberg-Euler effective action ΓHE from the

standard QFT partition function of QED. The result (2.17) is in perfect agreement with

Schwinger’s definition by means of the vacuum persistence amplitude (2.5). Our derivation
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, whereΓ
1-loop
HE [Ā] =

= + + + · · ·

Figure 1. Diagrammatic representation of the one-loop Heisenberg-Euler effective action. The

double line denotes the dressed fermion propagator accounting for arbitrarily many couplings to

the external field Ā, represented by the wiggly lines ending at crosses.

underpins once more that ΓHE is decisively different from the standard effective action Γ,

as it also contains one-particle reducible contributions which contribute to the equations

of motion of the external field.

We end this section with the remark that once ΓHE is obtained, it can be used for

determining Ā both by purely classical means or by describing Ā in terms of a Fock space

in a quantum optical setting. Both treatments of Ā are useful as well as legitimate. In

particular, it is natural to treat applied macroscopic fields Āapplied classically and the

induced weak signal fields Āsignal by means of Fock space states, as has been suggested in

the vacuum emission picture [63].

2.3 Diagrammatic expansion of the Heisenberg-Euler effective action

Apart from the classical Maxwell term, the Heisenberg-Euler effective action (2.17) is given

by the Schwinger functional W [Ā], which can be defined in terms of a functional integral, see

eq. (2.6). The latter encodes quantum corrections giving rise to effective self-interactions of

the external electromagnetic field; for ~→ 0 we have W [Ā]→ 0. It can be perturbatively

expanded by standard techniques, cf., e.g., [4]. Generically, this expansion can be organized

in the number of loops,

W [Ā] =

∞∑
l=1

Γl-loop
HE [Ā] , (2.20)

with Γl-loop
HE ∼ (απ )l−1, where α = e2

4π ' 1
137 is the fine-structure constant; we use the

Heaviside-Lorentz System with c = ~ = 1. At each loop order l, Γl-loop
HE =

∫
x L

l-loop
HE accounts

for an infinite number of couplings to the external field, and thus is fully nonperturbative

in the parameter eĀ. For completeness, we sketch the expansion to two-loop order in the

following. We begin by noting that the fermionic integral in eq. (2.7) can be written as a

functional determinant,

iSψ[Ā+ q] = ln det
(
−i /D[Ā+ q] +m

)
. (2.21)

If evaluated at q = 0, this quantity amounts to the one-loop Heisenberg-Euler effective

action in the external field Ā, i.e., Γ1-loop
HE [Ā] = Sψ[Ā]; for a graphical representation, cf.

figure 1. Since Sψ is a one-loop expression, the two-loop order of the Schwinger functional

is already obtained by performing the photonic fluctuation integral ∼ Dq to Gaußian order.

– 8 –
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For this, we expand Sψ about the external field Ā,

Sψ[Ā+ q] = Sψ[Ā] +

∫ (
S

(1)
ψ [Ā]

)µ
qµ +

1

2

∫∫
qµ
(
S

(2)
ψ [Ā]

)µν
qν +O(q3), (2.22)

where we employed the shorthand notation

(
S

(n)
ψ

)σ1...σn [Ā] :=
δnSψ[A]

δAσ1 . . . δAσn

∣∣∣∣
A=Ā

. (2.23)

The first-order term corresponds to a one-loop photon current induced by the field Ā, and

the Hessian is related to the one-loop photon polarization tensor Πµν [Ā] :=
(
S

(2)
ψ

)µν
[Ā]

evaluated in the external field Ā; for completeness note that this definition of the photon

polarization tensor differs from that of [68] by an overall minus sign. To Gaußian order,

we ignore the terms of O(q3) in the exponent, resulting in

eiW [Ā] ' eiSψ [Ā]

∫
Dq ei

∫ (
S
(1)
ψ [Ā]

)µ
qµ− i

2

∫∫
qµ
(
D−1−Π[Ā]

)µν
qν . (2.24)

In principle, terms of O(q3) in the exponent can, of course, be treated perturbatively to

any desired order. The quantity
(
D−1

)µν
arises from the Maxwell term for the fluctuations

and denotes the inverse photon propagator. E.g., in momentum space and accounting for

a gauge-fixing term (generalized Lorenz gauge), we have

Dµν(p) =
1

p2 − iε

(
gµν − (1− ξ) pµpν

p2 − iε

)
, (2.25)

where ξ = 1 in the Feynman gauge. Performing the integration over q in eq. (2.24), we

arrive at

eiW [Ā] ' eiSψ [Ā]e
i
2

∫∫ (
S
(1)
ψ [Ā]

)
µ

[(
D−1−Π[Ā]

)−1
]µν(

S
(1)
ψ [Ā]

)
ν det−1/2

(
D−1 −Π[Ā]

)
. (2.26)

To Gaußian order in the photon fluctuations, we thus obtain for the Schwinger functional

W [Ā] ' Sψ[Ā]− 1

2
ln det

(
D−1 −Π[Ā]

)
+

1

2

∫∫ (
S

(1)
ψ [Ā]

)
µ

[(
D−1 −Π[Ā]

)−1
]µν(

S
(1)
ψ [Ā]

)
ν
.

(2.27)

The first term on the right-hand side corresponds to the one-loop contribution to the

Heisenberg-Euler effective action (called W (1)[Ā] in [4, 15]). The other two terms contain

the complete two-loop order contribution as well as subclasses of diagrams to arbitrarily

high loop order. To make this manifest, we expand the ln det term as follows,

ln det
(
D−1 −Π[Ā]

)
= Tr ln(1−DΠ[Ā]) + Tr lnD−1

= −Tr(DΠ) +
1

2
Tr(DΠDΠ) +O(Π3), (2.28)

where in the last step, we have dropped field-independent constants. The Tr(DΠ) term

corresponds exactly to the two-loop contribution to the Heisenberg-Euler action that has

first been computed in [65]; see also [4, 69–71]. This contribution as well as all higher order

terms in eq. (2.28) are one-particle irreducible from a diagrammatic viewpoint; see figure 2.
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+ + + . . .

Figure 2. Diagrammic representation of eq. (2.28). The wiggly line is the photon propagator; for

the definition of the double line, cf. figure 1.

+ + + . . .

Figure 3. One-particle reducible diagrams constituting the last term in eq. (2.26). For the defini-

tion of the double line, cf. figure 1.

Γ
2-loop
HE [Ā] = +

Figure 4. Diagrams constituting the two-loop Heisenberg-Euler effective action. Obviously, we

have Γ2-loop
HE = Γ2-loop

HE

∣∣
1PI

+ Γ2-loop
HE

∣∣
1PR

. Note that the first diagram amounts to the leftmost one

in figure 2, where it is drawn in a slightly different way; for the definition of the double line, cf.

figure 1.

The last term in eq. (2.26), however, contains(
D−1 −Π[Ā]

)−1
= D −DΠD +DΠDΠD + . . . , (2.29)

corresponding to the Dyson series of the full one-loop resummed photon propagator. In

the last term of eq. (2.26), this resummed propagator interconnects two one-loop photon

currents ∼
(
S

(1)
ψ [Ā]

)
. All the diagrams arising when adopting the expansion (2.29) in the

last term in eq. (2.26) are one-particle reducible; see figure 3.

In turn, the two-loop Heisenberg-Euler effective action consists of a 1PI and a 1PR

diagram and is given by

Γ2-loop
HE [Ā] =

1

2
Tr(DΠ[Ā])︸ ︷︷ ︸

=:Γ2-loop
HE

∣∣
1PI

+
1

2

∫∫ (
S

(1)
ψ [Ā]

)
µ
Dµν

(
S

(1)
ψ [Ā]

)
ν︸ ︷︷ ︸

=:Γ2-loop
HE

∣∣
1PR

. (2.30)

The existence as a matter of principle of the 1PR term in eq. (2.30) has been known

for a long time. It has, however, been argued that this term vanishes for constant external

fields [4, 65]. Let us reproduce this argument for reasons of completeness: a crucial building

block of the 1PR term is
(
S

(1)
ψ [Ā]

)
ν
, which corresponds to the one-loop photon current

which will be called jµ1-loop[Ā] below. For a constant external field, jµ1-loop[Ā] does not

depend on any spacetime point x either. On the other hand, jµ1-loop[Ā] is a Lorentz 4-

vector. The vector index of the current can only be generated from the building blocks F̄ ,

∂ and x. However, for constant fields ∂µF νκ = 0 and for an x independent current, all

conceivable combinations with one vector index vanish and so does the current (an explicit

verification of this fact in momentum space is given below).
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While this part of the argument holds true in the full analysis, it does not necessarily

imply that the 1PR diagram in figure 4 vanishes. In fact, the two currents in the 1PR

diagram are convoluted with a photon propagator, describing a long-range force with an IR

singularity ∼ 1/p2 in the propagator. Hence, it is a quantitative question as to whether the

currents approaching zero are outbalanced by the IR singularity of the photon propagator.

In the subsequent sections, we give proof that the result is finite.

Heuristically, it is clear that the above-mentioned argument for the vanishing of the

current no longer holds as soon as the external field supports a slightest inhomogeneity

somewhere in spacetime. So, jµ[Ā] = 0 strictly relies on ∂µF νκ = 0 for all x. On the

other hand, the existence of massless long-range fluctuations in QED is independent of

the constant-field assumption. Therefore, the 1PR term is expected to be finite for any

realistic field.

3 The Heisenberg-Euler effective action in constant electromagnetic

fields

In the following, we first summarize some of our explicit results for the Heisenberg-Euler

effective action, concentrating on fully analytic expressions in asymptotic field-strength

limits for spinor QED. This provides for a first glance at the parametric dependence of the

various contributions, and elucidates the regime of relevance of the two-loop 1PR term.

Details of the calculations are deferred to the subsequent sections.

For constant external electromagnetic fields, F̄µν = const., Lorentz and gauge in-

variance constrain ΓHE to depend on Ā only in terms of the two scalar invariants [1, 2]

F = 1
4 F̄µνF̄

µν = 1
2

(
~B2 − ~E2

)
and G = 1

4 F̄µν
∗F̄µν = − ~B · ~E, with dual field strength

tensor ∗F̄µν = 1
2ε
µναβF̄αβ . Here, εµναβ is the totally antisymmetric tensor (ε0123 = 1),

and our metric convention is gµν = diag(−1,+1,+1,+1). In addition, CP invariance of

QED dictates ΓHE to be even in the pseudoscalar quantity G, ΓHE[Ā] = ΓHE(F ,G2). To

keep notations compact, we also introduce the dimensionless quantities F̃ = ( e
m2 )2F and

G̃ = ( e
m2 )2G. Finally note that the action and the Lagrangian are trivially related in

constant fields, differing only by an overall volume factor, i.e., ΓHE = LHE

∫
x.

In constant external fields, L1-loop
HE and L2-loop

HE

∣∣
1PI

are known explicitly in terms of

parameter integral representations for both spinor [2, 65] and scalar [3, 67] QED; cf. [71]

for a review. For instance, the on-shell renormalized one-loop effective Lagrangian for

spinor QED is given by [2, 15],

L1-loop
HE = − 1

8π2

∫ ∞
0

dT

T 3
e−m

2T

{
(eεT )(eηT )

tan(eεT ) tanh(eηT )
− 2

3
(eT )2F − 1

}
, (3.1)

where ε =
(√
F2 + G2 − F

)1/2
and η =

(√
F2 + G2 + F

)1/2
are the secular invariants

in constant electromagnetic fields. The analogous expression for L2-loop
HE

∣∣
1PI

is given in

eq. (B.11) in the appendix for spinor QED. For completeness, we also note that mass

renormalization has to be taken into account from two loops on for diagrams involving

fermion loops ith internal radiative corrections; see, e.g., [69].

As indicated above and determined explicitly below, the 1PR contribution L2-loop
HE

∣∣
1PR

depicted in figure 4 is finite also in the constant field limit. Based on the structure of the
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LCFA, we detail below how the exact expression for L2-loop
HE

∣∣
1PR

in constant fields can be

inferred from the constant-field result for L1-loop
HE , yielding

L2-loop
HE

∣∣
1PR

=
∂L1-loop

HE

∂Fµν
∂L1-loop

HE

∂Fµν

= F
[(

∂L1-loop
HE

∂F

)2

−
(
∂L1-loop

HE

∂G

)2]
+ 2G ∂L

1-loop
HE

∂F
∂L1-loop

HE

∂G . (3.2)

In turn, L2-loop
HE

∣∣
1PR

can be expressed in terms of a double parameter integral.

For illustration, let us concentrate on the weak and strong field asymptotics of L1-loop
HE

and L2-loop
HE = L2-loop

HE

∣∣
1PI

+L2-loop
HE

∣∣
1PR

for spinor QED. In the weak field limit, characterized

by {F̃ , G̃} � 1, the well-known literature results read [1–3],

L1-loop
HE

m4
=

1

4π2

1

90

[
(4F̃2 + 7G̃2)− F̃

(
32

7
F̃2 +

52

7
G̃2

)
+O(ε8)

]
, (3.3)

and [65]

L2-loop
HE

∣∣
1PI

m4
=
α

π

1

4π2

1

90

[(
160

9
F̃2 +

1315

36
G̃2

)
− F̃

(
1219

45
F̃2 +

2164

45
G̃2

)
+O(ε8)

]
, (3.4)

where we count O( eF̄
µν

m2 ) ∼ O(ε). The terms given explicitly in eqs. (3.3) and (3.4) amount

to the 1PI diagrams depicted in figures 1 and 4 with the fermion loop featuring four and six

couplings to the external field, respectively. For the two-loop 1PR contribution, we obtain

from eq. (3.2) the new result

L2-loop
HE

∣∣
1PR

m4
=
α

π

1

4π2

1

90

[
F̃
(

32

45
F̃2 +

14

45
G̃2

)
+O

(
ε8
)]
. (3.5)

The contribution given explicitly here stems from the 1PR diagram in figure 4 with each

fermion loop exhibiting three couplings to the external field. For |F̃ | � 1 and |G̃| � 1

corresponding to the cases of strong electric or magnetic fields, we obtain (for the derivation,

see appendix B)

L1-loop
HE

m4
=

1

4π2

1

3

{
F̃
[
ln
√
F̃+O

((
1

F̃

)0)]
+

1

2
√

2

G̃2

F̃

[√
F̃+O

((
1

F̃

)0)]
+O(G̃4)

}
, (3.6)

and

L2-loop
HE

∣∣
1PI

m4
=
α

π

1

4π2

1

4

{
F̃
[
ln
√
F̃+O

((
1

F̃

)0)]
− 1

3
√

2

G̃2

F̃

[√
F̃+O

((
1

F̃

)0)]
+O(G̃4)

}
,

(3.7)

where √
F̃ =

√
|F̃ |
{

Θ(F̃)− iΘ(−F̃)

}
. (3.8)

In addition to the well-known leading-log terms [4, 65, 67, 72], eqs. (3.6) and (3.7) also

account for the strongly suppressed contribution ∼ G̃2 which is of relevance for the photon
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polarization tensor (cf. section 4.4 below). Note that this contribution is suppressed as

∼ G̃2/
√
F̃ , such that the criterion |G̃| � 1 imposed for the expansion seems actually

rather conservative, and it might be sufficient to demand G̃2/
√
F̃ � 1 instead. However,

we have not analyzed the scaling of any terms at O(G̃4). Apart from an overall parametric

suppression of L2-loop
HE

∣∣
1PI

by a factor of α
π , the weak and strong field limits of L1-loop

HE and

L2-loop
HE

∣∣
1PI

are of the same structure and only differ in the specific numerical coefficients.

By contrast, the 1PR contribution to L2-loop
HE scales as

L2-loop
HE

∣∣
1PR

m4
=
α

π

1

4π2

1

3

{
F̃
[

1

3
ln2
√
F̃ −

(
1− 8ζ ′(−1)

)
ln
√
F̃ +O

((
1

F̃

)0)]
+O(G̃2)

}
,

(3.9)

from which we infer (L2-loop
HE

∣∣
1PR

)/(L2-loop
HE

∣∣
1PI

) ∼ 4
9 ln

√
F̃ , implying that L2-loop

HE

∣∣
1PR

dom-

inates over L2-loop
HE

∣∣
1PI

in this limit. This dominance due to the occurrence of a squared

logarithm is a direct consequence of the 1PR structure. For completeness, also note that

L2-loop
HE /L1-loop

HE ∼ α
π

1
3 ln

√
F̃ . The criterion of apparent convergence of the loop expansion

hence suggests the breakdown of the perturbative loop expansion for the Heisenberg-Euler

action at exponentially large fields.

Apart from these constant-field results, only a few exact results for Γ1-loop
HE in specific

(one-dimensional) field inhomogeneities are known explicitly; cf., e.g., [73–76], and [71] for

a review. Also note that the effective action vanishes identically for the case of a single

monochromatic plane wave field [15]. On the three-loop level, first analytical results for the

1PI part of Γ3-loop
HE have been obtained in 1+1 dimensions [77, 78]. No further analytical

results for Γl-loop
HE with l > 2 as well as for more-dimensional field inhomogeneities are

available so far.

4 Effective theory of low-frequency photons in slowly varying electro-

magnetic fields

4.1 Locally constant field approximation

In the spirit of the LCFA, the Heisenberg-Euler effective action for constant fields can also

be adopted for slowly varying inhomogeneous fields. The LCFA amounts to substituting

F̄µν → F̄µν(x) in the constant-field result for the Lagrangian, such that LHE(F ,G2) →
LHE

(
F(x),G2(x)

)
. In turn, the corresponding action becomes a functional of a varying

field F̄µν(x), i.e., ΓHE

[
F(x),G2(x)

]
=
∫
x LHE

(
F(x),G2(x)

)
.

The deviations of this LCFA result from the corresponding — typically unknown —

exact result for ΓHE in the particular inhomogeneous background field profile under consid-

eration are of order O
(
( υm)2

)
, where υ delimits the moduli of the frequency and momentum

components of the considered inhomogeneous field from above [68, 79]. The reasoning to

arrive at this conclusion is as follows: as ΓHE is both a Lorentz scalar and a gauge invari-

ant quantity, and the associated Lagrangian should be “almost local” for slowly varying

fields, its dependence on the external field Āµ(x) should be expressible in terms of F̄µν(x),
∗F̄µν(x) and derivatives thereof. Any scalar quantity made up of combinations of F̄ , ∗F̄
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Γint =

...+++

Figure 5. Graphical representation of Γint =
∑∞
n=0 Γ

(n)
int . The gray bubbles symbolize the effective

couplings of n low-frequency photon fields a(x); generically they are made up of 1PI diagrams of

arbitrary loop order. In momentum space they are given by sσ1...σn

(n) (k1, . . . , kn) defined in eq. (4.5).

and ∂ is necessarily even in ∂. Canonical power-counting implies that the occurrence of any

derivative ∂ has to be balanced by a dimensionful scale. In QED and for generic laboratory

fields, this scale is provided by the electron mass m, leading to the above criterion. This

implies that the LCFA constitutes a good approximation for inhomogeneous fields fulfilling

υ � m. In position space this criterion translates to the requirement that the inhomoge-

neous fields under consideration should only vary on scales much larger than the Compton

wavelength λ̄ and time λ̄/c of the electron; cf. section 1. Explicit results for higher orders

in the derivative expansion show, that the dimensional balancing of derivatives can also be

taken over by the field strength itself for strong fields |eF̄ (x)| � m2, thereby increasing

the validity range of the LCFA in that regime [80].

4.2 Effective action for low-frequency photons

In a next step, we employ the LCFA result for the 1PI part of ΓHE as an effective action

Γeff , describing the propagation and interactions of dynamical low-frequency photon fields

in the quantum vacuum subject to the slowly varying external field. More precisely, we

define this effective action as

Γeff

[
a(x), F̄ (x)

]
:= −1

4

∫
x
fµνf

µν +

(
ΓHE

[
F(x),G2(x)

]∣∣
1PI

+

∫
x
F(x)

)∣∣∣∣
F̄→F̄+f︸ ︷︷ ︸

=:Γint[a(x),F̄ (x)]

, (4.1)

where ΓHE

∣∣
1PI

denotes the 1PI part of the Heisenberg-Euler effective action, and the field

strength tensor F̄ is understood to be shifted as follows [19, 68, 79],

F̄ (x)→ F̄ (x) + f(x) . (4.2)

After this shift, F̄ (x) describes the slowly varying external field with υ � m, and fµν(x) =

∂µaν(x)− ∂νaµ(x) is to be interpreted as the field strength tensor of a dynamical photon

field aµ(x) =
∫
p e

ipxaµ(p), with aµ(p) receiving all its relevant contributions from the

momentum regime where {|p0|, |~p|} . υ � m. In many cases of physical interest, F̄ (x)

plays the role of the applied field and a(x) that of a signal field as introduced in eq. (2.9).

It is then convenient to organize Γint in terms of interactions involving n ∈ N0 photon

fields, i.e., Γint =
∑∞

n=0 Γ
(n)
int , with Γ

(n)
int ≡ Γ

(n)
int

[
a(x),F(x),G2(x)

]
∼ an. For a graphical

representation of this expansion, cf. figure 5. More specifically, we have

Γ
(n)
int =

1

n!

∫
x

n∏
j=1

(
fµjνj (x)

∂

∂F̄µjνj (x)

)(
LHE

(
F(x),G2(x)

)∣∣
1PI

+ F(x)

)
, (4.3)
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which implies that LHE

(
F(x),G2(x)

)∣∣
1PI

generates effective photon interactions to any

order in n [79, 81]. As the LCFA results in a local Lagrangian, by construction all these

effective interactions are local with respect to fµν(x), and correspondingly in aµ(x). Let us

also emphasize that by construction we have to assume that the combination of any given

number n of low-frequency photons again gives rise to a low-frequency photon. For the

following discussion it is more convenient to turn to momentum space where the derivatives

acting on the photon fields contained in fµν(x) translate into multiplicative factors of the

associated momenta, i.e., fµν(x) = i
∫
p e

ipxaσ(p)
[
pµgνσ − pνgµσ

]
. This results in

Γ
(n)
int =

1

n!

n∏
j=1

(∫
pj

aσj (pj)

)
sσ1...σn(n) (p1, . . . , pn), (4.4)

with the effective n photon couplings sσ1...σn(n) (p1, . . . , pn) (1PI proper vertices) given by

sσ1...σn(n) (p1, . . . , pn)

= (2i)n
∫
x
eix

∑n
j=1 pj

n∏
j=1

(
p
µj
j g

νjσj
∂

∂F̄µjνj (x)

)(
LHE

(
F(x),G2(x)

)∣∣
1PI

+ F(x)

)
. (4.5)

The latter obviously fulfill the Ward identity (pj)σjs
σ1...σj ...σn
(n) (p1, . . . , pj , . . . , pn) = 0 for

any fixed value of 1 ≤ j ≤ n.

For F̄ = const. the external field cannot absorb or supply momentum, and the x

integration in eq. (4.5) can be performed right away, resulting in an overall delta function,∫
x e

ix
∑n
j=1 pj = (2π)4δ

(∑n
j=1 p

µ
j

)
, ensuring four-momentum conservation in the effective

coupling of n photons. Hence, in this limit the effective n photon interactions are of the

same momentum structure as at zero external field. However, for F̄ = const. 6= 0, also

effective couplings involving an odd number of photons are induced. This is in contrast to

the zero-field case, where fermion loops with an odd number of photon couplings of course

vanish identically because of Furry’s theorem.

The contribution sσ1(1)(p1) in eq. (4.5) constitutes a photon current [63, 82] and

sσ1σ2(2) (p1, p2) a photon polarization tensor [68]. In more conventional notations, the quan-

tum corrections to the effective action up to quadratic order in aµ are given by

Γint = Γ
(0)
int +

∫
p
aσ(p)jσ(p) +

1

2

∫
p

∫
p′
aρ(p)s

ρσ
(2)(p, p

′)aσ(p′) +O(a3), (4.6)

with jσ(p) := sσ(1)(p). The neglected higher-order terms of O(a3) correspond to effec-

tive interactions involving three or more photons, giving rise to, e.g., direct light-by-

light scattering [1, 83, 84], photon splitting [19, 52, 54, 55] and higher-harmonic gener-

ation [61, 62, 85, 86].

Obviously no real (on-shell) photons can be generated from constant external fields, as

jσ(p)
∣∣
F̄=const.

∼
∫
x
eixppσ = (2π)4δ(p)pσ. (4.7)

The physical reason for this is that a constant external field cannot supply momentum

to the virtual charged particle-antiparticle fluctuations. Still, the fields aµ can be prop-

agating fields, the free causal propagation of which is described by the usual Feynman
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propagator (2.25). Within the LCFA, we have the additional constraint that the con-

sidered momentum transfer is manifestly restricted to the soft momentum regime, i.e.,

{|p0|, |~p|} . υ � m (cf. above).

Here, we argue that this constraint will be fulfilled automatically in the evaluation of

all the Feynman diagrams that can arise as quantum corrections within the effective theory

Γeff of low-frequency photon fields in slowly varying electromagnetic fields. For this, we

first stress that Γeff already incorporates all 1PI proper vertices by definition, such that

further quantum corrections to be evaluated within the effective theory of low-frequency

photon fields must be 1PR. By construction, the virtual photons in these 1PR diagrams

mediate between slowly varying fields only, since the external lines of the 1PI building

blocks are either low-frequency photons or slowly varying electromagnetic fields. Hence,

the above kinematic constraint is indeed fulfilled automatically.

In a next step, we utilize Γeff to derive some physically relevant explicit results: as the

prime example, we compute the 1PR contribution to the Heisenberg-Euler effective action

Γ2-loops
HE

∣∣
1PR

in slowly varying external fields, introduced and discussed already in sections 2

and 3 above.

4.3 1PR contribution to the Heisenberg-Euler effective action

Let us now focus on the effective self-interactions of the external electromagnetic field

arising in this theory. At one-loop order these are encoded in Γ
(0)
int

∣∣
1-loop

= Γ1-loop
HE (cf.

figures 1 and 5). At two loops, in addition to Γ
(0)
int

∣∣
2-loop

= Γ2-loop
HE

∣∣
1PI

, also the 1PR diagram

depicted in figure 4 (right) contributes. It corresponds to the following expression:

Γ2-loop
HE

∣∣
1PR

=

∫
p
jµ1-loop(p)Dµν(p)jν1-loop(−p) , (4.8)

where jµl-loop := sµ(1)

∣∣
l-loop

. We emphasize that the integration in eq. (4.8), which is formally

over all virtual momentum transfers, exclusively receives contributions from the soft mo-

mentum regime. This is because the photon currents jµ(p) only induce low-energy modes

by construction via the LCFA. The constant-field limit in eq. (4.7) provides an obvious

example for the underlying mechanism. Inserting the explicit expressions for the currents

and the photon propagator (2.25) in the Feynman gauge, we obtain

Γ2-loop
HE

∣∣
1PR

=

∫
x

∫
x′
Gµν(x− x′)∂L

1-loop
HE

∂F̄µα
(x)

∂L1-loop
HE

∂F̄ να
(x′) . (4.9)

Here we have defined

Gµν(x̃) := 4

∫
p

pµpν

p2 − iεe
ix̃p =

2

π2

i

(x̃2 + iε)2

(
gµν − 4

x̃µx̃ν

x̃2 + iε

)
, (4.10)

which fulfills 1
4gµνG

µν(x̃) = δ(x̃) and
∫
x̃G

µν(x̃) = gµν .
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Expressing the derivatives for F̄ in terms of derivatives for F and G (cf. appendix A),

eq. (4.9) can be represented as

Γ2-loop
HE

∣∣
1PR

=

{
1

2

∫
x

∫
x′
Gαβ(x− x′)F̄αρ(x)

×
[

1

2
F̄ βρ(x′)

(
∂L
∂F (x)

∂L
∂F (x′) +

∂L
∂G (x)

∂L
∂G (x′)

)
+ ∗F̄ βρ(x′)

∂L
∂F (x)

∂L
∂G (x′)

]
−2

∫
x
F(x)

(
∂L
∂G (x)

)2}∣∣∣∣
L=L1-loopHE

, (4.11)

where we employed the identity ∗F̄αρ(x) ∗F̄ βρ(x′) = F̄ βρ(x)F̄αρ(x
′) − 1

2g
αβF̄σρ(x)F̄ σρ(x′).

The products of derivatives of L1-loop
HE in eq. (4.11) for F and G can be expressed in terms

of double integral representations which follow directly from the parameter integral repre-

sentation of L1-loop
HE .

Even though derived from a LCFA, eq. (4.11) gives rise to nonlocal interactions among

electromagnetic fields. However, for slowly varying electromagnetic fields as considered

here, these nonlocalities are expected to be very weak. Particularly for constant external

fields, the field strength tensor F̄ and thus the effective Lagrangian become independent

of x and x′, such that the integrations over position space in eqs. (4.9) and (4.11) can be

performed right away, resulting in eq. (3.2) above.

Let us finally resolve the seeming discrepancy that the constant-field limit of eqs. (4.9)

and (4.11) yields the finite result (3.2) even though the formal expression of the photon

current vanishes in constant fields; cf. eq. (4.7). The photon current (4.7) vanishes because

of the factor linear in pσ multiplying δ(p), which ensures the Ward identity pσj
σ(p) = 0

to hold. This implies that no real external photons aσ(p), exhibiting a regular behavior

for pσ → 0, can be induced from jσ(p). However, this behavior is clearly not fulfilled by

virtual photons. As the photon propagator (2.25) scales as ∼ 1
p2

, the linear momentum

dependences of the two individual currents effectively drop out upon combination with two

photon currents, leaving us with a finite contribution.

Correspondingly, the two-loop physical effective interaction among generic external

electromagnetic fields is determined by the combination Γ2-loop
HE = Γ2-loop

HE

∣∣
1PI

+ Γ2-loop
HE

∣∣
1PR

.

Of course, similar 1PR diagrams are expected to contribute to the self-interactions of the

external electromagnetic field at higher loop orders — even in constant external fields.

Besides, they obviously also need to be accounted for in determining the effective interac-

tions between any given number of photons in the quantum vacuum subject to external

electromagnetic fields.

4.4 Low-frequency photon propagation

In this section we study quantum corrections to photon propagation — i.e., photon-photon

correlators — in external electromagnetic fields up to order (απ )2. It is instructive to have

a look on the various Feynman diagrams potentially contributing to photon propagation

up to this order; see figure 5. We organize them into (a) 1PI diagrams, (b) 1PR diagrams,

and disconnected contributions which amount to (c) current-current correlators. Note that

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
8

(a) one-particle irreducible:

(b) one-particle reducible:

(c) current-current correlators:

Figure 6. Different types of Feynman diagrams contributing to photon propagation in generic

external electromagnetic fields at order α
π and (απ )2; for the definition of the double line, cf. figure 1.

Note that the presence of the current-current diagrams (c) invalidates the equivalence between

counting numbers of loops and powers of α
π .

there are just two diagrams at order α
π , namely the first one in figure 6(a) and in figure 6(c),

respectively. All the other diagrams shown are proportional to (απ )2.

The diagrams depicted in figure 6(a) constitute the 1PI part of the photon polarization

tensor at one (first line) and two loops (second line). They are contained in Γ
(2)
int , and are

given by

sρσ(2)(p, p
′)
∣∣
l-loop

= −4pµp′ν
∫
x
ei(p+p

′)x ∂2Ll-loop
HE

∂F̄µρ ∂F̄
ν
σ

(x)

∣∣∣∣
1PI

; (4.12)

cf. eqs. (4.4)–(4.6). Note that sρσ(2)

∣∣
1-loop

corresponds to the slowly varying field limit of

the one-loop polarization tensor Πρσ ≡ sρσ(2)

∣∣
1-loop

defined in section 2.3 above. The def-

inition (4.12) automatically accounts for all the topologically inequivalent 1PI diagrams

depicted in the second line of figure 6(a). Obviously, we have sρσ(2)(p, p
′)
∣∣
l-loop

∼ (απ )l.

Expressing the derivatives for F̄ in terms of derivatives for F and G, eq. (4.12) can be
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represented as [68]

sρσ(2)(p, p
′)
∣∣
l-loop

= −
∫
x
ei(p+p

′)x

[(
(pp′)gρσ − p′ρpσ

) ∂L
∂F (x) + p′µpαε

ρσµα ∂L
∂G (x)

+
(
pF̄ (x)

)ρ(
p′F̄ (x)

)σ ∂2L
∂F2

(x) +
(
p∗F̄ (x)

)ρ(
p′ ∗F̄ (x)

)σ ∂2L
∂G2

(x) (4.13)

+
[(
p ∗F̄ (x)

)ρ(
p′F̄ (x)

)σ
+
(
pF̄ (x)

)ρ(
p′ ∗F̄ (x)

)σ ] ∂2L
∂F∂G (x)

]∣∣∣∣
L=Ll-loopHE

∣∣
1PI

,

where we have employed the shorthand notations (pF̄ )µ = pνF̄
νµ, (p ∗F̄ )µ = pν

∗F̄ νµ,

(pp′) = pµp
′µ, etc. In the constant-field limit, F̄ as well as LHE do not depend on the

space-time coordinate and eq. (4.14) simplifies significantly: in this limit, the x integration

can be performed right away, giving rise to an overall delta function ensuring momentum

conservation in constant fields, and thus

sρσ(2)(p, p
′)
∣∣
l-loop

= (2π)4δ(p+ p′)
3∑
j=0

P ρσj (p) cl-loop
j (F ,G), (4.14)

where we have introduced the tensor structures

P ρσ0 (p) =
(
p2gρσ − pρpσ

)
,

P ρσ1 (p) = (pF̄ )ρ(pF̄ )σ ,

P ρσ2 (p) = (p ∗F̄ )ρ(p ∗F̄ )σ ,

P ρσ3 (p) =
[
(p ∗F̄ )ρ(pF̄ )σ + (pF̄ )ρ(p ∗F̄ )σ

]
. (4.15)

The associated coefficients cl-loop
j (F ,G) are given by

cl-loop
0 =

∂Ll-loop
HE

∂F

∣∣∣∣
1PI

, cl-loop
1 =

∂2Ll-loop
HE

∂F2

∣∣∣∣
1PI

,

cl-loop
2 =

∂2Ll-loop
HE

∂G2

∣∣∣∣
1PI

, cl-loop
3 =

∂2Ll-loop
HE

∂F∂G

∣∣∣∣
1PI

. (4.16)

Note that the tensor structure p′µpαε
ρσµα vanishes in constant fields, where p′µ = −pµ.

Let us now have a closer look on the other Feynman diagrams depicted in figure 6.

The first diagram in figure 6(b) is just an iteration of Πρσ, and the corresponding expres-

sion reads∫
k

Πρµ(p, k)Dµν(k)Πνσ(−k, p′)

= 4 pαp′β
∫
x

∫
x′
ei(xp+x

′p′)Gµν(x− x′) ∂
2L1-loop

HE

∂F̄αρ ∂F̄
µ
σ

(x)
∂2L1-loop

HE

∂F̄ σν∂F̄ βσ
(x′) . (4.17)

A similar diagram exists in the absence of external fields. Contrarily, all the other diagrams

in figure 6(b) and those in figure 6(c) do not contribute at zero field, because of Furry’s

theorem. The last two diagrams in figure 6(b) arise from saturating one leg of an effective
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three-photon coupling with j1-loop. Both diagrams yield the same result. Their combined

contribution is given by

2

∫
k
sρσµ(3) (p, p′,−k)

∣∣
1-loop

Dµν(k)jν1-loop(k)

= 8 pαp′β
∫
x

∫
x′
eix(p+p′)Gµν(x− x′) ∂3L1-loop

HE

∂F̄αρ ∂F̄
β
σ ∂F̄

µ
γ

(x)
∂L1-loop

HE

∂F̄ γν
(x′) . (4.18)

Finally, we turn to the disconnected diagrams in figure 6. The first three

diagrams in figure 6(c) correspond to ijρ1-loop(p)jσ1-loop(p′), ijρ1-loop(p)jσ2-loop(p′) and

ijρ2-loop(p)jσ1-loop(p′), where

ijρl-loop(p)jσl′-loop(p′) = −4i pαp′β
∫
x
eixp

∂Ll-loop
HE

∂F̄αρ
(x)

∣∣∣∣
1PI

∫
x′
eix
′p′ ∂L

l′-loop
HE

∂F̄ βσ
(x′)

∣∣∣∣
1PI

. (4.19)

The two diagrams depicted in the last line of figure 6(c) amount to current-current corre-

lators with one-loop quantum correction to the out- and ingoing photon line, respectively.

The left one can be expressed as

ijρl-loop(p)

∫
k
jµ1-loop(k)Dµν(k)Πνσ

1-loop(−k, p′) (4.20)

= 4i pαp′β
∫
x′′
eix
′′p∂L1-loop

∂F̄α ρ
(x′′)

∫
x

∫
x′
eix
′p′Gµν(x− x′)∂L

1-loop
HE

∂F̄µγ
(x)

∂2L1-loop
HE

∂F̄ γν∂F̄ β σ
(x′) ,

and the right one corresponds to eq. (4.20) with the replacements p↔ p′ and ρ↔ σ.

In constant electromagnetic fields, all diagrams depicted in figure 6(c) vanish if at

least one of the external photons is real; cf. the discussion in section 4.3. Of course, the

derivatives of the Lagrangian for F̄ in eqs. (4.17)–(4.20) could again be expressed in terms

of derivatives for F and G (cf. appendix A). While this would allow us to identify the various

tensor structures spanning these contributions, the resulting expressions are lengthy so that

we do not show them here.

Correspondingly, the photon polarization tensor in the presence of an external field is

not only given by 1PI diagrams, but also receives corrections from 1PR and even discon-

nected diagrams. More precisely, it is made up of all the diagrams that do not correspond

to iterations of more elementary diagrams describing quantum corrections to photon propa-

gation. The full dressed photon propagator in the external field — accounting for quantum

corrections to all orders — is then obtained by summing up all possible iterations analo-

gously to a Dyson series of this photon polarization tensor. At l loops we have

Πρσ
l-loop(p, p′) = Πρσ

l-loop(p, p′)
∣∣
1PI

+ ∆Πρσ
l-loop(p, p′) , (4.21)

where Πρσ
l-loop

∣∣
1PI

:= sρσ(2)

∣∣
l-loop

and ∆Πρσ
2-loop refers to the contributions of 1PR and discon-

nected diagrams. In a slight abuse of nomenclature, we label contributions to the photon

polarization tensor which scale as ∼ (απ )l with “l-loop”, even though ∆Πρσ
l-loop generically

also includes current-current correlators involving higher loop numbers; cf. figure 6. The

explicit expressions for ∆Πρσ
l-loop at one and two loops are

∆Πρσ
1-loop(p, p′) := ijρ1-loop(p)jσ1-loop(p′) , (4.22)
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and

∆Πρσ
2-loop(p, p′) := 2

∫
k
sρσµ(3) (p, p′,−k)

∣∣
1-loop

Dµν(k)jν1-loop(k)

+ ijρ1-loop(p)jσ2-loop(p′) + ijρ2-loop(p)jσ1-loop(p′) . (4.23)

Equations (4.22) and (4.23) account for the five distinct diagrams in figure 6(b) and 6(c)

that do not correspond to iterations of more elementary quantum corrections to photon

propagation.

In inhomogeneous electromagnetic fields, the explicit expressions for eqs. (4.22)

and (4.23) written in terms of derivatives of L1-loop
HE for the scalar field invariants F and

G are rather lengthy. The main reasons for this are the different space-time arguments of

the derivatives of L1-loop
HE . However, in constant external fields these expressions simplify

significantly, as all the current-current correlators vanish and the derivatives of L1-loop
HE

with respect to F̄ become independent of x. More specifically, in this limit, we obtain

∆Πρσ
1-loop(p, p′) = 0, and

∆Πρσ
2-loop(p, p′) = −(2π)4δ(p+ p′)8pµ1pµ2

∂3L1-loop
HE

∂F̄µ1ρ∂F̄
µ2
σ∂F̄µν3

∂L1-loop
HE

∂F̄ν3µ

= (2π)4δ(p+ p′)

3∑
j=0

P ρσj (p) ∆c2-loop
j (F ,G) , (4.24)

with the tensor structures P ρσj (p) defined in eq. (4.15). Hence, eq. (4.24) is spanned by the

same tensor structures as Πρσ
∣∣
1PI

in constant fields as listed in eq. (4.15). The coefficients

∆c2-loop
j are given by

∆c2-loop
0 = (F̄ ∂F̄L)

∂2L
∂F2

+ (∗F̄ ∂F̄L)
∂2L
∂F∂G ,

∆c2-loop
1 = (F̄ ∂F̄L)

∂3L
∂F3

+ (∗F̄ ∂F̄L)
∂3L

∂F2∂G + 2
∂L
∂F

∂2L
∂F2

− 2
∂L
∂G

∂2L
∂F∂G ,

∆c2-loop
2 = (F̄ ∂F̄L)

∂3L
∂F∂G2

+ (∗F̄ ∂F̄L)
∂3L
∂G3

+ 2
∂L
∂F

∂2L
∂G2

+ 2
∂L
∂G

∂2L
∂F∂G , (4.25)

∆c2-loop
3 = (F̄ ∂F̄L)

∂3L
∂F2∂G + (∗F̄ ∂F̄L)

∂3L
∂F∂G2

+ 2
∂L
∂F

∂2L
∂F∂G +

∂L
∂G

(
∂2L
∂F2

− ∂2L
∂G2

)
,

where L = L1-loop
HE , and we have made use of the shorthand notations (F̄ ∂F̄L) := F̄µν ∂L

∂F̄µν
=

2
(
F ∂L
∂F + G ∂L∂G

)
and (∗F̄ ∂F̄L) := ∗F̄µν ∂L

∂F̄µν
= 2
(
G ∂L∂F −F ∂L

∂G
)
.

It is instructive to compare the coefficients ∆c2-loop
j in eq. (4.25) with the coefficients

c2-loop
j in eq. (4.16). This comparison is rather straightforward in the limits of weak

and strong fields. For spinor QED, the weak-field expressions for the coefficients (4.16)

and (4.25) can be obtained with the help of eqs. (3.3) and (3.4). They are given by

c2-loop
0 =

(
α

π

)2[32

81
F̃ − 1

452

(
3657

2
F̃2 + 1082 G̃2

)
+O(ε6)

]
,

c2-loop
1 =

e2

m4

(
α

π

)2[32

81
− 3657

452
F̃ +O(ε4)

]
,
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c2-loop
2 =

e2

m4

(
α

π

)2[263

324
− 2164

452
F̃ +O(ε4)

]
,

c2-loop
3 = − e2

m4

(
α

π

)2[2164

452
G̃ +O(ε4)

]
, (4.26)

and

∆c2-loop
0 =

(
α

π

)2[ 1

452
(32 F̃2 + 56 G̃2) +O(ε6)

]
,

∆c2-loop
1 =

e2

m4

(
α

π

)2[ 32

452
F̃ +O(ε4)

]
,

∆c2-loop
2 =

e2

m4

(
α

π

)2[ 56

452
F̃ +O(ε4)

]
,

∆c2-loop
3 = − e2

m4

(
α

π

)2[ 21

452
G̃ +O(ε4)

]
. (4.27)

We infer that these coefficients fulfill ∆c2-loop
j /c2-loop

j = O(ε2) for j ∈ {0, 1, 2}, and

∆c2-loop
3 /c2-loop

3 = O(1). For |F̃ | � 1 and |G̃| � 1, the coefficients c2-loop
j follow from

eq. (3.7) by differentiation and read

c2-loop
0 =

(
α

π

)2[1

4
ln
√
F̃ +O

(
(

1

F̃
)0
)

+O(G̃2)

]
,

c2-loop
1 =

1

F

(
α

π

)2[1

8
+O(1/

√
F̃) +O(G̃2)

]
,

c2-loop
2 =

1

F

(
α

π

)2√
F̃
[
− 1

6
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

c2-loop
3 =

1

F

(
α

π

)2 G̃√
F̃

[
1

12
√

2
+O(1/

√
F̃) +O(G̃2)

]
. (4.28)

The analogous coefficients ∆c2-loop
j can be obtained from eq. (4.25) by using the expressions

assembled in eq. (B.6), yielding

∆c2-loop
0 =

(
α

π

)2[1

9
ln
√
F̃ +O

(
(

1

F̃
)0
)

+O(G̃2)

]
,

∆c2-loop
1 =

1

F

(
α

π

)2[
O(1/

√
F̃) +O(G̃2)

]
,

∆c2-loop
2 =

1

F

(
α

π

)2√
F̃
[

1

9
√

2
ln
√
F̃ +O

(
(

1

F̃
)0
)

+O(G̃2)

]
,

∆c2-loop
3 =

1

F

(
α

π

)2 G̃√
F̃

[
− 1

18
√

2
ln
√
F̃ +O

(
(

1

F̃
)0
)

+O(G̃2)

]
. (4.29)

Hence, in the strong-field limit, we read off the scalings ∆c2-loop
0 /c2-loop

0 = O(1),

∆c2-loop
1 /c2-loop

1 = O(1/
√
F̃) and ∆c2-loop

2 /c2-loop
2 ∼ ∆c2-loop

3 /c2-loop
3 ∼ −2

3 ln
√
F̃ . This

implies that the contribution of ∆c2-loop
1 is always suppressed in comparison to c2-loop

1
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for large values of |F̃ | � 1. By contrast, ∆c2-loop
j can surpass c2-loop

j in magnitude for

j ∈ {2, 3}. Physically, the c2 coefficient is responsible for the enhanced refractive proper-

ties of low-frequency photons in a strong field, affecting, e.g., the mode polarized in the

plane spanned by a magnetic field and the propagation direction in a magnetized quantum

vacuum. For completeness, also note that ∆c2-loop
2 /c1-loop

2 ∼ ∆c2-loop
3 /c1-loop

3 ∼ 1
3
α
π ln

√
F̃ ;

cf. the discussion of the analogous considerations for L2-loops
HE in constant fields in section 3.

5 Conclusions and outlook

We have taken a fresh look at the famous Heisenberg-Euler effective action ΓHE, which

has played a substantial role in the development of quantum field theory, and its relation

to the underlying microscopic theory of QED formulated in terms of the partion function.

We have paid particular attention to the differences and common ground of ΓHE and the

nowadays more conventional 1PI effective action. Most noteworthily and distinctively, ΓHE

also contains 1PR contributions implying quantitative differences to the 1PI effective action

from the two-loop level on.

For an efficient determination of these effective actions, we have constructed an ef-

fective theory of low-frequency photons in the QED vacuum subject to slowly varying

electromagnetic fields. Apart from discussing various generic features of such an effective

theory, our main focus was on the effective interactions generated at O
(
(απ )2

)
. Here, we

in particular studied the effective self-interaction of external electromagnetic fields, and

derived the photon polarization tensor in the low-frequency limit. The latter is composed

of 1PI, 1PR as well as disconnected diagrams.

One of our main findings is that the coupling of two one-loop vacuum currents via a

photon propagator gives rise to a nonvanishing 1PR contribution to Γ2-loop
HE even in the limit

of constant electromagnetic fields; cf. figure 4 (right). This contribution was previously

believed to vanish. To clarify the importance of this newly evaluated 1PR contribution

relatively to the well-known 1PI one, we have investigated the limits of perturbatively

weak and strong fields. Whereas Γ2-loop
HE

∣∣
1PR

is generically suppressed for weak fields, it can

even surpass Γ2-loop
HE

∣∣
1PI

in magnitude for strong fields. Similar results are obtained for the

two-loop photon polarization tensor. Also here, the 1PR contributions can surpass the 1PI

ones in magnitude for strong fields.

Our results can also be of relevance beyond QED, for instance, for the exotic case

of a hypothetical minicharged particle sector beyond the Standard Model of particle

physics [87]. Beyond QED, the most essential new feature of the diagram depicted in

figure 4 (right) as compared to figure 4 (left) is that the first one can induce effective in-

teractions mediated by two different fermion species (the two loops in this diagram do not

necessarily have to contain the same fermion species), while the latter one features a single

fermion loop and thus may only involve one fermion species. This implies a parametrically

different dependence of electromagnetic or optical observables on the various coupling and

mass parameters starting at two-loop level. As the considerations invoked here can also

be adopted for scalar QED, particularly in a combination of scalar and spinor QED, this

type of mixed effective interactions can also be generated when one of the loops traces over
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fermions and the other one over bosons. For 1PI diagrams, such an effective coupling of

different species can only happen at three loops or beyond.
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A Useful derivative identities

The Heisenberg-Euler effective Lagrangian can be expressed as LHE =
∑∞

l=0 L
l-loop
HE , where

L0-loop
HE = −F is the Maxwell Lagrangian of classical electrodynamics, and Ll-loop

HE with l ≥ 1

encodes quantum corrections vanishing in the formal limit ~ → 0. In constant fields, we

have Ll-loop
HE ≡ Ll-loop

HE (F ,G2); cf. the main text for more details. As Ll-loop
HE is a function of

the scalar invariants of the electromagnetic field F and G2 only, it is convenient to trade

derivatives with respect to the field strength tensor F̄ for derivatives with respect to F
and G. The explicit expressions for these transformations up to cubic order in the derivative

for F̄ are

∂Ll-loop
HE

∂F̄µν
=

1

2

(
F̄µν

∂

∂F + ∗F̄µν
∂

∂G

)
Ll-loop

HE , (A.1)

∂2Ll-loop
HE

∂F̄αβ∂F̄µν
=

1

4

[(
gαµgβν − gανgβµ

) ∂
∂F + εµναβ

∂

∂G + F̄αβF̄µν
∂2

∂F2
+ ∗F̄αβ

∗F̄µν
∂2

∂G2

+
(∗F̄αβF̄µν + F̄αβ

∗F̄µν
) ∂2

∂F∂G

]
Ll-loop

HE , (A.2)

and

∂3Ll-loop
HE

∂F̄ ρσ∂F̄αβ∂F̄µν
=

1

8

{
F̄ρσF̄αβF̄µν

∂3

∂F3
+ ∗F̄ρσ

∗F̄αβ
∗F̄µν

∂3

∂G3

+
(
F̄ρσ

∗F̄αβF̄µν + F̄ρσF̄αβ
∗F̄µν + ∗F̄ρσF̄αβF̄µν

) ∂3

∂F2∂G

+
(∗F̄ρσ∗F̄αβF̄µν + ∗F̄ρσF̄αβ

∗F̄µν + F̄ρσ
∗F̄αβ

∗F̄µν
) ∂3

∂F∂G2

+

[(
gαµgβν − gανgβµ

)
F̄ρσ +

(
gρµgσν − gρνgσµ

)
F̄αβ

+
(
gραgσβ − gρβgσα

)
F̄µν

]
∂2

∂F2

+
(
εµναβ

∗F̄ρσ + εµνρσ
∗F̄αβ + εαβρσ

∗F̄µν
) ∂2

∂G2

+

[(
εµναβF̄ρσ + εµνρσF̄αβ + εαβρσF̄µν

)
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+
(
gαµgβν − gανgβµ

)∗F̄ρσ + (gρµgσν − gρνgσµ)∗F̄αβ

+(gραgσβ − gρβgσα)∗F̄µν

]
∂2

∂F∂G

}
Ll-loop

HE . (A.3)

B Strong-field asymptotics for spinor QED

In this appendix we concentrate on constant fields and focus on the limit of |F̃ | = 1
2

∣∣( e ~B
m2 )2−

( e
~E

m2 )2
∣∣ � 1 and |G̃| =

∣∣ e ~E
m2 · e ~Bm2

∣∣ � 1, which is of relevance for either strong electric or

magnetic fields.

B.1 One-loop Heisenberg-Euler effective Lagrangian in constant external

fields

For the special case of G = 0, the one-loop Heisenberg-Euler effective Lagrangian has the

following closed-form representation [4, 71, 88],

L1-loop
HE

m4

∣∣∣∣
G=0

=
1

4π2

1

2χ2

{
ζ ′(−1, χ) +

χ

2

[(
1− χ

)
lnχ+

χ

2

]
− 1

12

(
lnχ+ 1

)}
, (B.1)

where χ = 1
2/
√

2F̃ and ζ ′(s, χ) = ∂sζ(s, χ) denotes the first derivative of the Hurwitz zeta

function; cf. eq. (3.8) for the definition of the square root of F̃ . In principle, similar closed-

form expressions can be obtained for any derivative
∂n1+n2L1-loopHE
∂Fn1∂Gn2

∣∣
G=0

with {n1, n2} ∈ N0.

Here we only provide the following explicit expressions [68],

∂L1-loop
HE

∂F

∣∣∣∣
G=0

=
α

π

{
4ζ ′(−1, χ)− χ

[
2ζ ′(0, χ)− lnχ+ χ

]
− 1

3
lnχ− 1

2

}
, (B.2)

∂2L1-loop
HE

∂G2

∣∣∣∣
G=0

=
1

2F
α

π

{
4ζ ′(−1, χ)− χ

[
2ζ ′(0, χ)− lnχ+ χ

]
− 1

6

[
2ψ(χ) +

1

χ
+ 1

]}
,

where ψ(χ) = d
dχ ln Γ(χ) is the Digamma function. Obviously, we can write

L1-loop
HE

m4
=
L1-loop

HE

m4

∣∣∣∣
G=0

+
1

2m4

∂2L1-loop
HE

∂G2

∣∣∣∣
G=0

G2 +O(G4) (B.3)

such that, upon insertion of eqs. (B.1) and (B.2), eq. (B.3) provides us with a closed-form

expression of L1-loop
HE /m4 in the limit of |G̃| � 1. Aiming at extracting the asymptotics of

eq. (B.3) for |F̃ | � 1 ↔ |χ| � 1, it is convenient to employ [89]

ζ ′(0, χ) = ln Γ(χ)− 1

2
ln(2π) , (B.4)

and eq. (1.50) of [71] (cf. also appendix D.6 of [5]),

ζ ′(−1, χ) =

∫ χ

0
dt ln Γ(t) +

χ

2
(χ− 1)− χ

2
ln(2π) + ζ ′(−1) , (B.5)

where Γ(.) is the Gamma function, and ζ ′(−1) ≈ −0.16542114 is the first derivative of

the Riemann zeta function evaluated at −1. The leading terms of an expansion of ln Γ(.)

for small arguments can then be inferred from eq. (1.53) [71]. As a result, we obtain
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eq. (3.6) in the main text. The asymptotics of the various derivatives of L1-loop
HE for F and

G determining L2-loop
HE

∣∣
1PR

, c
(n)
1-loop and ∆c

(n)
2-loop can be inferred along the same lines and read

∂L1-loop
HE

∂F =
α

π

[
1

3
ln
√
F̃ +O

((
1

F̃

)0)
+O(G̃2)

]
,

∂L1-loop
HE

∂G =
α

π

G̃√
F̃

[
1

3
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

∂2L1-loop
HE

∂F2
=

1

F
α

π

[
1

6
+O(1/

√
F̃) +O(G̃2)

]
,

∂2L1-loop
HE

∂G2
=

1

F
α

π

√
F̃
[

1

3
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

∂2L1-loop
HE

∂F∂G =
1

F
α

π

G̃√
F̃

[
− 1

6
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

∂3L1-loop
HE

∂F3
=

1

F2

α

π

[
−1

6
+O(1/

√
F̃) +O(G̃2)

]
,

∂3L1-loop
HE

∂F∂G2
=

1

F2

α

π

√
F̃
[
− 1

6
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

∂3L1-loop
HE

∂F2∂G =
1

F2

α

π

G̃√
F̃

[
1

4
√

2
+O(1/

√
F̃) +O(G̃2)

]
,

∂3L1-loop
HE

∂3G =
1

F2

α

π

G̃√
F̃

[
O
((

1

F̃

)0)
+O(G̃2)

]
. (B.6)

B.2 Two-loop effective Lagrangian in constant external fields

As detailed in the main text, the two-loop Heisenberg-Euler effective Lagrangian consists of

a one-particle irreducible and a one-particle reducible contribution, L2-loop
HE = L2-loop

HE

∣∣
1PI

+

L2-loop
HE

∣∣
1PR

; cf. also figure 4. The one-particle reducible contribution L2-loop
HE

∣∣
1PR

follows

straightforwardly from L1-loop
HE via eq. (3.2). For the special case of G = 0, it has the

following closed-form representation:

L2-loop
HE

∣∣
1PR

m4

∣∣∣∣
G=0

=
α

π

1

4π2

1

2χ2

{
2ζ ′(−1, χ)− χ

2

[
2ζ ′(0, χ)− lnχ+ χ

]
− 1

6

(
lnχ+

3

2

)}2

;

(B.7)

cf. also appendix B.1.

Closed-form expression exists for L2-loop
HE

∣∣
1PI

only for the simplified case of self-dual

fields [90], but not for the cases of interest here, not even for the special case of G = 0.

However, the leading strong-field behavior of L2-loop
HE

∣∣
1PI
/m4 for |F̃ | � 1 and |G̃| � 1 is

known explicitly [65] (cf. also [4] for an independent verification). For F̃ > 0, it is given by

L2-loop
HE

∣∣
1PI

m4
∼ α

π

1

4π2

η̃2

8

(
ln η̃ + constant

)
+ . . . , (B.8)
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where η̃ is one of the secular invariants of the electromagnetic field, defined as

η̃ =
(√
F̃2 + G̃2 + F̃

)1/2
and ε̃ =

(√
F̃2 + G̃2 − F̃

)1/2
. (B.9)

The analogous expression for F̃ < 0 follows from eq. (B.9) by the transformation η̃ ↔ −iε̃.
Note that for F̃ � 1, we have

η̃ =
√

2F̃
(

1 +O
(( G̃2

F̃2

)2))
and ε̃ =

|G̃|√
2F̃

(
1 +O

(( G̃2

F̃2

)2))
. (B.10)

Aiming at determining the leading strong-field asymptotics of Πµν
2-loops(p, p

′)
∣∣
const.

, we

need the complete scaling of the leading contribution ∼ G̃2, for which the terms given in

eq. (B.9) are not sufficient.

For this, we have to consider the exact double integral representation of L2-loop
HE

∣∣
1PI

in

constant external fields [65]. In the notation of [65], but adopting the sequential substitu-

tions s′ → sν, eηs → −iτ , introducing the dimensionless parameters η̃ = eη
m2 , ε̃ = eε

m2 and

defining κ ≡ ε̃
η̃ , L2-loop

HE

∣∣
1PI

is given by

L2-loop
HE

∣∣
1PI

m4
=
α

π

η̃2

16π2

∫ ∞
0

dτ

∫ 1

0
dν

{
K(τ, ν)−K0(τ)

ν
+K0(τ)

[
ln

(
τ

η̃

)
+γ− 5

6

]}
, (B.11)

with

K0(τ) = e
− τ
η̃

(
4

η̃
− ∂τ

)[
κ

tanh(τ) tan(κτ)
− 1

τ2
− 1− κ2

3

]
, (B.12)

and

K(τ, ν) = e
− τ
η̃

(1+ν)
{
κ2

PP ′

[
4

η̃
(SS′ + PP ′)I0 + 2I

]
τ

− 1

ν(1 + ν)τ3

[
4

η̃
τ +

2

1 + ν
− 1− κ2

3
τ2

(
2

η̃

(
ν − 2− 2ν2

)
τ +

5ν

1 + ν

)]}
. (B.13)

Here, we have used

S(τ) = cosh(τ) cos(κτ) , P (τ) = sinh(τ) sin(κτ) ,

S′ = S(ντ) , P ′ = P (ντ) ,

I0 =
1

(b− a)
ln

(
b

a

)
, I =

(q − p)
(b− a)2

ln

(
b

a

)
− 1

(b− a)

(
q

b
− p

a

)
,

a = coth(τ) + coth(ντ) , b = κ
[
cot(κτ) + cot(κντ)

]
,

p =
cos[κ(1− ν)τ ]

sinh(τ) sinh(ντ)
, q =

κ2 cosh[(1− ν)τ ]

sin(κτ) sin(κντ)
. (B.14)

Without loss of generality, we subsequently focus on the limit of 1
η̃ → 0; the opposite

limit of 1
ε̃ → 0 can be easily obtained by the transformation η̃ ↔ −iε̃. Due to the over-

all exponential suppression of both K0 and K with e
− τ
η̃ , the dominant contributions to
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L2-loop
HE

∣∣
1PI

in the limit of 1
η̃ → 0 stem from large values of τ . In a first step we infer that

K0(τ) = e
− τ
η̃

{
∂τ

[
1

τ2
− κ

tanh(τ) tan(κτ)
+

1− κ2

3

]
+O

((
1

η̃

)1)}
(B.15)

and

K(τ, ν) = e
− τ
η̃

(1+ν)
{
κ2

PP ′
2Iτ − 1

(1 + ν)2

[
2

ν

1

τ2
− 5

1− κ2

3

]
1

τ
+O

((
1

η̃

)1)}
. (B.16)

We have explicitly checked that the terms denoted by O
(
( 1
η̃ )1
)

in eqs. (B.15) and (B.16)

do not increase with τ for τ → ∞, but scale at least as O
(
( 1
τ )0
)

at any given order

in an expansion in κ → 0. Moreover, note that at any fixed order in κ → 0, we have

limτ→∞
∣∣ I
PP ′ τ

∣∣ ∼ τ le−τ(1+2ν) → 0, with l ∈ Z0. Herewith, we obtain

∫ ∞
0

dτ K0(τ) = O
((

1

η̃

)0)
O(κ0), (B.17)

and ∫ ∞
0

dτ K(τ, ν) =
5

(1 + ν)2

1− κ2

3
ln η̃ +O

((
1

η̃

)0)
O(κ0) . (B.18)

Moreover, we are interested in the following integral:∫ ∞
0

dτ K0(τ)

[
ln

(
τ

η̃

)
+ γ − 5

6

]
=

∫ ∞
0

dτ

τ
e
− τ
η̃

[
coth(τ)

τ
− 1

τ2
− 1

3

]
+
κ2

3

∫ ∞
0

dτ e
− τ
η̃

[
1

τ
− coth(τ)

]
+O

((
1

η̃

)0)
O(κ0) +O(κ4) . (B.19)

In order to arrive at this result we have made use of eq. (B.15) for K0(τ) and performed an

integration by parts. Thereafter, we have employed an expansion in κ→ 0, keeping terms

up to order κ2 only. The integrals in eq. (B.19) can be carried out with formulae 3.381.4

and 3.551.3 of [91]:
∫∞

0
dτ
τ τ

ν e−βτ = β−ν Γ(ν) and
∫∞

0
dτ
τ τ

ν e−βτ coth(τ) =
[
21−νζ(ν, β2 )−

β−ν
]
Γ(ν), valid for <(β) > 0 and under certain conditions on ν, which are rendered

irrelevant upon combination of these formulae in performing the manifestly finite integrals

in eq. (B.19). Such integral expressions are common in strong-field QED; cf., e.g., [4, 5,

68, 88, 92, 93]. We infer∫ ∞
0

dτ e−βτ
[

1

τ
− coth(τ)

]
= ψ

(
β

2

)
+

1

β
− ln

β

2
= − 1

β
− lnβ +O(β0) , (B.20)

where ψ(χ) is the Digamma function (cf. section B.1), and∫ ∞
0

dτ

τ
e−βτ

[
coth(τ)

τ
− 1

τ2
− 1

3

]
=

1

3

(
ln
β

2
+1

)
− β ln

β

2
− 4ζ ′

(
− 1,

β

2

)
+
β2

2

(
ln
β

2
− 1

2

)
=

1

3
lnβ +O(β0) , (B.21)
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where ζ ′(−1, χ) is the first derivative of the Hurwitz zeta function (B.5). Using eqs. (B.20)

and (B.21) in eq. (B.19), we finally obtain∫ ∞
0

dτ K0(τ)

[
ln

(
τ

η̃

)
+ γ − 5

6

]
= −1

3

[
(1− κ2) ln η̃ + κ2η̃

]
+O

((
1

η̃

)0)
O(κ0) +O(κ4) .

(B.22)

Putting everything together, we hence have

L2-loop
HE

∣∣
1PI

m4
=
α

π

η̃2

32π2

{
(1− κ2) ln η̃ − 2

3
κ2η̃ +O

((
1

η̃

)0)
O(κ0) +O(κ4)

}
. (B.23)

In a last step, we employ [cf. eq. (B.10)]

κ2 =
G̃2

(2F̃)2
+O

(( G̃2

F̃2

)2)
and η̃ =

√
2F̃
(

1 +O
(( G̃2

F̃2

)1))
(B.24)

to write eq. (B.23) in the form of eq. (3.7) in the main text.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[3] V. Weisskopf, Über die Elektrodynamik des Vakuums auf Grund der Quanthentheorie des

Elektrons, Kong. Dans. Vid. Selsk. Mat.-fys. Medd. XIV (1936) 6.

[4] W. Dittrich and M. Reuter, Effective lagrangians in quantum electrodynamics, Lect. Notes

Phys. 220 (1985) 1 [INSPIRE].

[5] W. Dittrich and H. Gies, Probing the quantum vacuum. Perturbative effective action

approach in quantum electrodynamics and its application, Springer Tracts Modern Physicis

volume 166, Springer, Germany (2000).

[6] M. Marklund and J. Lundin, Quantum vacuum experiments using high intensity lasers, Eur.

Phys. J. D 55 (2009) 319 [arXiv:0812.3087] [INSPIRE].

[7] G.V. Dunne, New strong-field QED effects at ELI: nonperturbative vacuum pair production,

Eur. Phys. J. D 55 (2009) 327 [arXiv:0812.3163] [INSPIRE].

[8] T. Heinzl and A. Ilderton, Exploring high-intensity QED at ELI, Eur. Phys. J. D 55 (2009)

359 [arXiv:0811.1960] [INSPIRE].

[9] A. Di Piazza, C. Muller, K.Z. Hatsagortsyan and C.H. Keitel, Extremely high-intensity laser

interactions with fundamental quantum systems, Rev. Mod. Phys. 84 (2012) 1177

[arXiv:1111.3886] [INSPIRE].

[10] G.V. Dunne, The Heisenberg-Euler effective action: 75 years on, Int. J. Mod. Phys. A 27

(2012) 1260004 [Int. J. Mod. Phys. Conf. Ser. 14 (2012) 42] [arXiv:1202.1557] [INSPIRE].

– 29 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/BF01493898
http://inspirehep.net/search?p=find+J+%22Naturwiss.,23,246%22
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1007/BF01343663
https://arxiv.org/abs/physics/0605038
http://inspirehep.net/search?p=find+EPRINT+physics/0605038
http://inspirehep.net/search?p=find+J+%22Lect.Notes%20Phys.,220,1%22
http://dx.doi.org/10.1140/epjd/e2009-00169-6
http://dx.doi.org/10.1140/epjd/e2009-00169-6
https://arxiv.org/abs/0812.3087
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3087
http://dx.doi.org/10.1140/epjd/e2009-00022-0
https://arxiv.org/abs/0812.3163
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3163
http://dx.doi.org/10.1140/epjd/e2009-00113-x
http://dx.doi.org/10.1140/epjd/e2009-00113-x
https://arxiv.org/abs/0811.1960
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1960
http://dx.doi.org/10.1103/RevModPhys.84.1177
https://arxiv.org/abs/1111.3886
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.3886
http://dx.doi.org/10.1142/S2010194512007222
http://dx.doi.org/10.1142/S2010194512007222
https://arxiv.org/abs/1202.1557
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1557


J
H
E
P
0
3
(
2
0
1
7
)
1
0
8

[11] R. Battesti and C. Rizzo, Magnetic and electric properties of quantum vacuum, Rept. Prog.

Phys. 76 (2013) 016401 [arXiv:1211.1933] [INSPIRE].

[12] B. King and T. Heinzl, Measuring vacuum polarisation with high power lasers, High Power

Laser Science and Engineering 4, Cambridge University Press, Cambridge U.K. (2016),

arXiv:1510.08456 [INSPIRE].

[13] F. Karbstein, The quantum vacuum in electromagnetic fields: from the Heisenberg-Euler

effective action to vacuum birefringence, arXiv:1611.09883 [INSPIRE].
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