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1 Introduction

Supersymmetric field theories in flat space have been studied for decades, as a formidable

arena for advancing our theoretical understanding of quantum field theories. A systematic

study of supersymmetric field theories defined on curved manifolds was initiated in [1],

where it was pointed out that a convenient viewpoint on these theories is to construct

them as a rigid limit of certain off-shell supergravities. The method of supersymmetric lo-

calization allows us to obtain exact results for supersymmetric observables on such curved

manifolds [2, 3]. So far attention has been devoted to compact curved Riemannian man-

ifolds, where the compactness helps the convergence properties of the path integral and

simplifies the analysis of the saddle point loci. Following [3], a plethora of localization com-

putations on compact Riemannian manifolds have been performed, in dimensions ranging

from one to seven. See [4–10] for a representative list of references.

In this paper we will turn attention to supersymmetric gauge theories defined on non-

compact curved Riemannian manifolds. Some aspects of such theories have been discussed

in the literature before, in the seminal work on the Omega background for 4d N = 2

theories [2, 11], and in the context of AdS2 geometries [12–20]. A motivation for con-

sidering these backgrounds is that they provide a natural framework for attempting holo-

graphic constructions [21]. The paper [20] discussed the supersymmetry algebras preserved

in AdSp × Sq backgrounds for various p, q, and, in some (free) cases, the supersymmetric

Lagrangians and boundary conditions on the fields. It raises the interesting question of

whether it may be possible to obtain exact results for supersymmetric field theories in these

backgrounds. In this paper we discuss the computation of the exact partition function for

a broad class of N = 2 three-dimensional supersymmetric gauge theories (with matter),

defined on a quotient of Euclidean AdS3 preserving supersymmetry.

As we shall see, the challenges that arise in carrying out this computation concern the

presence of a conformal boundary at infinity. In particular, this will lead to an interesting

interplay between supersymmetry, boundary conditions, and boundary actions. We will

embrace the point of view advocated in [22], namely we will add “compensating” boundary

terms to the standard supersymmetric actions, such that their combined supersymmetry

variations vanish independently of specific boundary conditions. See also the recent [23]

for related discussions.

Supersymmetry in compact curved manifolds with boundaries has been considered in

previous works involving localization, see e.g. [24–27]. However, non-compactness of the

space, equipped with a negatively curved metric, introduces a number of novelties. We
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will deal with the additional complications borrowing ideas from holographic renormaliza-

tion, although in this paper we will not discuss any concrete holographic interpretation of

our results.

After carrying out this preliminary analysis, we will see that the standard localization

argument will go through, enabling us to reduce the computation of the exact partition

function (and certain supersymmetric Wilson loops) of the theories of interest to the eval-

uation of one-loop super-determinants around a BPS locus. Of course, computing one-loop

determinants on non-compact spaces is per se a non-trivial problem. The main tool that

has been used so far to perform these computations is the method of the heat kernel; this

was developed in the 90’s in a series of papers by Camporesi and Higuchi [28–30] and ex-

tended to (super)gravity in the background of AdS3 in [31, 32]. We should stress that the

technique of the heat kernel, is not manifestly supersymmetric, because it treats fermionic

and bosonic fields independently. In addition to this intrinsic problem, it must also be em-

phasized that the background geometries considered in [31, 32], were thermal quotients of

AdS3 and therefore manifestly not supersymmetric,1 so that we could not compare directly

our results with those presented in [31, 32]. In this paper we will propose some modifi-

cations of the heat kernel method, leading to a result for the one-loop super-determinant,

that we will also derive employing two other methods.

The first method is formal, and consists in utilising a version of the fixed point theorem

of Atiyah and Bott [33]. This method has been applied in [34, 35] to the calculation of

one-loop determinant on spheres, and in [17] in the context of AdS2. As we shall see later in

the paper, this gadget will output a result that receives the contribution from the “center”

of Euclidean AdS3, which is the fixed point of a certain symmetry acting on it. A proper

treatment of this method would require a rigorous formulation of the index theorem in the

non-compact spaces under consideration. Here we will simply assume that the boundary

conditions we will require on our fields ensure that the index theorem holds. It would be

interesting to make this mathematically rigorous.

The second method is that of the (un)pairing of modes [36, 37], that can be con-

veniently implemented through a set of twisted variables, analogous to those considered

in [38, 39]. This was previously used to compute one-loop determinant in compact spaces,

but we will see that since this is based on a local analysis of the modes contributing to

the determinants, it goes through for the case of interest, albeit with certain technical

caveats that we will explain in section 5.3. We will show that there are large cancellations

between bosonic and fermionic modes, and the remaining “unpaired” modes obey simple

first order equations, that can be solved explicitly for their eigenvalues. These unpaired

modes are not square integrable, but we need to assume that they contribute to the de-

terminant in order for the result to be consistent with the other two methods. We show

in section 5.3 that this implies an asymmetric treatment of the fields φ and φ̃, which are

Hermitian conjugates in the Lorentzian theory. We believe that this could be justified by

a first-principles treatment of the Euclidean supersymmetric theory. This is reminiscent

1As we shall see in the next section, to preserve supersymmetry in a quotient of hyperbolic space, it is

necessary to switch on a specific background R-symmetry gauge field.
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of a similar phenomenon described in [40], wherein a non-standard analytic continuation

from the Lorentzian theory is used to justify that non-square-integrable modes contribute

to the AdS2 functional determinant.

The rest of this paper is organised as follows. In section 2 we will briefly describe the

background geometry. In section 3 we write out the supersymmetry transformations and

Lagrangians of the field theories of interest. We also introduce our twisted variables, that

will be used extensively in the following sections. In section 4 we discuss the asymptotic

behaviour of the fields and actions and set up the localization computation of the partition

function. Section 5 contains the computations of the one-loop determinants around the

localization locus, using three different methods. Our results are summarized in section 6

and we conclude the paper with a discussion in section 7. Three appendices contain useful

identities and some intermediate computations.

2 Background geometry

The main focus of this paper will be the study of certain supersymmetric gauge theories

in a background geometry comprising a quotient of hyberbolic space, equipped with the

standard negatively curved Einstein metric. We begin with the hyperbolic space H3, with

metric given by

ds2(H3) = L2
(
cosh2 η dχ2 + dη2 + sinh2 η dϕ2

)
, (2.1)

where η ∈ [0,+∞) and ϕ ∼ ϕ + 2π. The coordinate χ ∈ R and one can think of this as

the analytic continuation of a time coordinate χl = iχ in AdS3 space-time in Lorentzian

signature. In our conventions this metric has constant negative curvature with Ricci scalar

given by R = −6/L2.

We regard the metric (2.1) as a background solving the Killing spinor equations of

three-dimensional Euclidean new minimal supergravity [41], namely

∇µζ − iAµζ = −H
2
γµζ − iVµζ −

1

2
εµνρV

νγρζ , (2.2)

∇µζ̃ + iAµζ̃ = −H
2
γµζ̃ + iVµζ̃ +

1

2
εµνρV

νγρζ̃ , (2.3)

where ζ, ζ̃ are complex two-component spinors and Aµ, Vµ and H are specific background

fields. In particular, choosing the orthonormal frame

e1 = Ldη , e2 = L cosh η dχ , e3 = L sinh η dϕ , (2.4)

and Aµ = Vµ = 0, and H = 1
L , we find the four Killing spinors

ζ+ = ζ̃+ =
1√
2
e
iϕ
2

+χ
2

(
e−

η
2

e
η
2

)
, ζ− = ζ̃− =

1√
2
e−

iϕ
2
−χ

2

(
e−

η
2

−e
η
2

)
. (2.5)

The spinors ζ± have R-charge +1 and the spinors ζ̃± have R-charge −1.
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Next, we consider a quotient of this space, where we compactify the χ direction, and

perform the quotient of H3 by the identification

(χ, ϕ) ∼ (χ+ 2πτ2, ϕ+ 2πτ1) , (2.6)

with τ1, τ2 real and τ2 > 0. We define τ = τ1 + iτ2 and denote the quotient space as

H3/τZ ≡ H3
τ . As can be seen from (2.5) the spinors are not well-defined in this case, and

therefore supersymmetry is broken. In order to preserve two supercharges parameterized

by well-defined spinors ζ+ ≡ ζ and ζ̃− ≡ ζ̃, we need to turn on the background gauge field

A =

(
i

2
− τ1

2τ2

)
dχ = − τ̄

2τ2
dχ . (2.7)

The Killing spinors which are preserved by the quotient are then

ζ+ =
1√
2
e
i
2

(
ϕ− τ1

τ2
χ
)(
e−

η
2

e
η
2

)
≡ ζ ,

ζ̃− =
1√
2
e
− i

2

(
ϕ− τ1

τ2
χ
)(

e−
η
2

−e
η
2

)
≡ ζ̃ . (2.8)

Note that the spinors are anti-periodic around the ϕ-circle, which is the correct behavior

for spinors around a contractible circle. They obey ζζ̃ = −ζ̃ζ = 1. Throughout the paper

we regard the Killing spinors ζ, ζ̃ as commuting (Grassmann-even) spinors.

We now construct various bilinears with these spinors, which will be useful in the

remainder of the paper. In particular, we have the three complex one-forms

K = ζγaζ̃ e
a , P = ζγaζ e

a , P̃ = ζ̃γaζ̃ e
a , (2.9)

that in the frame (2.4) read

K = cosh η e2 − i sinh ηe3 , (2.10)

P = e
i
(
ϕ− τ1

τ2
χ
) (
e1 − sinh η e2 + i cosh η e3

)
, (2.11)

P̃ = − e−i
(
ϕ− τ1

τ2
χ
) (
e1 + sinh η e2 − i cosh η e3

)
. (2.12)

The one-forms K,P and P̃ carry R-charges 0, 2 and −2 respectively. The dual complex

vector fields read

Kµ∂µ =
1

L
(∂χ − i∂ϕ) , (2.13)

Pµ∂µ =
1

L
e
i
(
ϕ− τ1

τ2
χ
)

(∂η − tanh η ∂χ + i coth η ∂ϕ) , (2.14)

P̃µ∂µ = − 1

L
e
−i
(
ϕ− τ1

τ2
χ
)

(∂η + tanh η ∂χ − i coth η ∂ϕ) , (2.15)

and give rise to six independent real Killing vectors.2 In particular, these generate the

sl(2,C) algebra of isometries of H3 given by

1

2
[K,P ] =

1

L
P ,

1

2
[K, P̃ ] = − 1

L
P̃ ,

1

2
[P̃ , P ] =

2

L
K . (2.16)

2A generic background of new minimal supergravity with two Killing spinors of opposite R-charge admits

only the complex Killing vector K [41]. However, in the special background studied in this paper, P and

P̃ also give rise to Killing vectors.
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Moreover, denoting by LX = XµDµ = Xµ(∇µ− iqRAµ) the R-symmetry covariant deriva-

tive3 along a vector Xµ, and L[X,Y ] = 1
2 (LXLY − LY LX), the following relations hold

L[K,P ] =
1

L
LP , L

[K,P̃ ]
= − 1

L
L
P̃
, L

[P̃ ,P ]
=

2

L
LK . (2.17)

Note that an arbitrary complex vector Xµ can be decomposed in the (Kµ, Pµ, P̃µ) basis as

Xµ = (KνXν)Kµ − 1

2
(P̃ νXν)Pµ − 1

2
(P νXν)P̃µ . (2.18)

Further useful relations among (Kµ, Pµ, P̃µ) are given in appendix A.

We close this section by briefly discussing the almost contact structure and the associ-

ated transversely holomorphic foliation [41]. In any generic background preserving at least

one Killing spinor ζ,

ρµ =
1

ζ†ζ
ζ†γµζ (2.19)

defines an almost contact one-form,4 normalised so that ρµρµ = 1. Together with the

Hodge dual two-form Φ = ∗ρ, these define an almost contact metric structure on the

three-dimensional space. In the case of interest we may focus on either of the two spinors

preserved by our background. On picking, without loss of generality, ζ = ζ+, we find

ρ = −L (tanh ηdη + dχ) , (2.20)

which turns out to be closed, i.e. dρ = 0. One can define a local coordinate ς such that

ρ = dς, given by e−ς/L = eχ cosh η, and a complex coordinate z on the transversally

holomorphic foliation given by ez = eiϕ−χ tanh η. In these coordinates the metric takes

the form

ds2 = (dς + hdz + h̄z̄)2 + c2dzdz̄ , (2.21)

where h = h̄ = 0 and c2 = L2 sinh2 η. The transverse two-form is Φ = − i
2c

2dz∧ dz̄. Notice

however that the frame (2.4) differs from the canonical frame associated to (2.21), and

consequently our spinors (2.8) do not take the form given in Equation (4.21) of [41].

3 Supersymmetry transformations and actions

In this section we provide the supersymmetry transformations of the vector and chiral

multiplets and the supersymmetric actions of N = 2 supersymmetric gauge theories on H3
τ ,

extracted from [41]. Throughout this paper we work in Euclidean signature. We show that

the Yang-Mills vector multiplet Lagrangian and chiral multiplet Lagrangian are Q-exact

for a certain supercharge Q, up to total derivatives that we will discuss carefully.

To address the question of the supersymmetry of the action in the presence of a bound-

ary, we introduce a radial cut-off at a finite distance from the center of H3
τ and add boundary

terms, which ensure that supersymmetry is preserved on the compact space, independently

3Later, when we introduce gauge symmetry, the derivative Dµ will be also covariant with respect to the

gauge connection.
4This is denoted ηµ in [41].
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of a choice of boundary conditions for the fields. The supersymmetric action is then ob-

tained by sending the radial cutoff to infinity. This analysis will be used in later sections

when we evaluate the various actions, to implement a supersymmetric holographic renor-

malization method.

We begin by providing the supersymmetry algebra, generated by the two complex

supercharges δζ and δ
ζ̃
, parametrized by the Killing spinors ζ of R-charge +1 and ζ̃ of

R-charge −1. The super-algebra is

{δζ , δζ} = {δ
ζ̃
, δ
ζ̃
} = 0 ,

{δζ , δζ̃} = −2i L′K + 2δgauge(σ + iKµAµ) + 2i
qR
L
, (3.1)

where L′K = LK − iqRKµ(Aµ− 1
2Vµ), with LK the Lie derivative along the vector Kµ, qR is

the R-charge of the field, Aµ is the gauge field and σ is the real scalar in the vector multiplet

(see below). The variation δgauge(Λ) denotes the infinitesimal gauge transformation with

gauge parameter Λ. For a U(1) gauge group, this is simply δgauge(Λ) = iwΛ acting on a

matter field of charge w, or δgauge(Λ) = i[Λ, . ] acting on an adjoint valued matter field.

The gauge field also has, of course, inhomogeneous terms in the gauge transformation.

When there is a flavor symmetry U(1)F , the super-algebra is deformed by a central

charge

{δζ , δζ̃} = −2i L′K + 2δgauge(σ + iKµAµ) + 2i
qR
L

+ 2iqF (m+ iKµvµ) , (3.2)

where vµ is a flavor background gauge field and m is the real mass deformation, introduced

by weakly gauging U(1)F , and qF is the flavor charge.

We now provide the supersymmetry transformations and supersymmetric actions.

3.1 Vector multiplet

We consider a gauge group G and the associated vector multiplet (Aµ, σ, λ, λ̃,D) valued in

the adjoint representation of the gauge algebra. Since we are in Euclidean signature the

bosonic fields Aµ, σ,D are taken to be complex and the spinors λ, λ̃ to be independent.

When discussing partition functions we will have to choose reality conditions reducing

the number of real independent fields to its canonical value, however when discussing the

supersymmetries we do not impose such constraints.

The supersymmetry transformations parametrized by the spinors ζ and ζ̃ are given

by [41]5

δAµ = −i
(
ζγµλ̃+ ζ̃γµλ

)
,

δσ = −ζλ̃+ ζ̃λ ,

δλ = − i
2
εµνργρζFµν + iζ(D + σH)− γµζ(iDµσ − Vµσ) , (3.3)

δλ̃ = − i
2
εµνργρζ̃Fµν − iζ̃(D + σH) + γµζ̃(iDµσ + Vµσ) ,

δD = Dµ

(
ζγµλ̃− ζ̃γµλ

)
− i Vµ

(
ζγµλ̃+ ζ̃γµλ

)
− [σ, ζλ̃]− [σ, ζ̃λ]−H

(
ζλ̃− ζ̃λ

)
,

5The variation with respect to the supersymmetry δζ are obtained by setting ζ̃ = 0 and vice-versa. We

thus have δ = δζ + δζ̃ .
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with Dµ = ∇µ− iqR
(
Aµ − 1

2Vµ
)
− iAµ and Fµν = ∂µAν−∂νAµ− i[Aµ,Aν ]. The R-charges

qR of the fields (Aµ, σ, λ, λ̃,D) are (0, 0, 1,−1, 0) respectively.

The supersymmetric Yang-Mills Lagrangian is

LYM =
1

2e2
Tr

[
1

2
FµνFµν +DµσDµσ + iσεµνρVµFνρ − V µVµσ

2 − (D + σH)2

− iλ̃γµ(Dµ +
i

2
Vµ)λ− iλγµ

(
Dµ +

i

2
Vµ

)
λ̃− 2iλ̃[σ, λ] + iHλ̃λ

]
, (3.4)

where 1
e2

denotes the Yang-Mills coupling. This Lagrangian is invariant under the above

supersymmetry transformations up to boundary terms, which we will discuss in some detail

in the following.

On the H3 or H3
τ backgrounds described in section 2, the Lagrangian reduces to

LYM =
1

2e2
Tr

[
1

2
FµνFµν +DµσDµσ −

(
D +

σ

L

)2

− iλ̃γµDµλ− iλγµDµλ̃− 2iλ̃[σ, λ] +
i

L
λ̃λ

]
. (3.5)

The reality conditions which make the bosonic action positive definite are A and σ her-

mitian and D′ ≡ D + σ
L anti-hermitian. However, in our analysis of asymptotic boundary

conditions in section 3.1.3, we will find natural to impose different reality conditions at

infinity. For instance in a Chern-Simons theory we will be led to consider the gauge field

component Aχ as purely imaginary asymptotically. These reality conditions can be asso-

ciated to the theory obtained by Wick rotation from Lorentzian signature. Defining the

combinations

Az =
1

2
(Aϕ − iAχ) , Az̄ =

1

2
(Aϕ + iAχ) , (3.6)

we can then choose Az and Az̄ independent and hermitian. The reality conditions on the

fields are then
Aµ† = Aµ , µ = η, z, z̄ ,

σ† = σ ,
(
D +

σ

L

)†
= −

(
D +

σ

L

)
.

(3.7)

In the pure Yang-Mills theory, our analysis in section 3.1.3 will allow for different

asymptotics, so we will restrain ourselves from giving an explicit reality condition for this

case. In general one should consider a complex gauge field and path integrate over a

middle-dimensional slice in this complexified space.

The reality conditions that we choose for the fermionic fields are more easily described

in terms of the twisted fields that we introduce in the next section.

3.1.1 Twisted fields

It will be convenient to define the so-called twisted variables or twisted fields, which re-

express all the fields in the multiplet in terms of Grassmann-even and odd scalars. For

bosons we define

X+ = −iPµAµ , X− = −iP̃µAµ , X0 = iKµAµ − σ , Σ = iKµAµ + σ . (3.8)
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For fermions we define the Grassmann-odd scalar fields

Λ+ = ζλ , Λ− = −ζ̃λ̃ , Λ0 = ζλ̃− ζ̃λ , Θ = i
(
ζλ̃+ ζ̃λ

)
. (3.9)

This map can be inverted as follows

Aµ = − i
2

(X0 + Σ)Kµ − i

2
X−Pµ − i

2
X+P̃µ , σ =

1

2

(
Σ−X0

)
,

λ =
1

2

(
Λ0 + iΘ

)
ζ + Λ+ζ̃ , λ̃ =

1

2

(
Λ0 − iΘ

)
ζ̃ + Λ−ζ . (3.10)

The supersymmetry transformations in terms of the twisted variables are given in ap-

pendix B. In later sections we will use the supercharge Q = 1
2δζ + 1

2δζ̃ to perform the

localization computations. The reason for choosing this basis is that the fields are orga-

nized in pairs, each pair comprising one field and its Q-superpartner:

QX+ = Λ+ , QX− = Λ− , QX0 = Λ0 , QΣ = 0 , and QΘ = D0 , (3.11)

with D0 = D+(3Σ+X0) 1
2L−

1
2 [X+, X−]− 1

2 L̂PX
−+ 1

2 L̂P̃X
+. The hats on the derivatives,

as in L̂P = PµD̂µ, denote the fact that the derivatives are not covariant with respect to the

gauge field A, but only with respect to the R-symmetry connection A. The supersymmetry

transformations of the fields Λ0,± and D0 can be worked out from the super-algebra (QΛ0 =

Q2X0, etc).

We can express the reality conditions (3.7) for bosons — and define reality conditions

on fermions — in terms of the twisted fields,

(X0)† = X0 , Σ† = Σ , (X±)† = X∓ ,

(Λ0)† = Λ0 , Θ† = Θ , (Λ±)† = Λ∓ .
(3.12)

Note that (3.7) provides natural reality conditions on the twisted fields.

3.1.2 Q-exact action

The Lagrangian LYM (3.5) can be written as a δ
ζ̃
-exact term or as a δζ-exact term, up to

total derivatives:

V (1)
vec = δζ Tr

1

2e2

(
λ̃λ+ 2iDσ

)
, (3.13)

δ
ζ̃
V (1)

vec = Lvec +
1

e2
TrDµ

(
− σDµσ − iσFµνKν + σDKµ −

i

2
λ̃γµλ− i(λ̃γµζ)(ζ̃λ)

)
,

V (2)
vec = − δ

ζ̃
Tr

1

2e2

(
λ̃λ+ 2iDσ

)
, (3.14)

δζV
(2)

vec = Lvec +
1

e2
TrDµ

(
− σDµσ − iσFµνKν − σDKµ +

i

2
λ̃γµλ+ i(λγµζ̃)(ζλ̃)

)
.

A few intermediate computations leading to (3.13) are given in appendix C. The terms

V
(1)

vec and V
(2)

vec obey the relation

δ
ζ̃
V (1)

vec − δζV (2)
vec = −2iLK

[
Tr

1

2e2

(
λ̃λ+ 2iDσ

)]
, (3.15)

in agreement with the algebra relation (3.1).
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In the localization computation we will use the supercharge Q ≡ 1
2

(
δζ+δζ̃

)
and consider

a modified Lagrangian L̂vec defined by

L̂vec = QVvec

Vvec = V (1)
vec + V (2)

vec . (3.16)

This new Lagrangian differs from the original one by a total derivative. We have6

L̂vec = Q
(
V (1)

vec + V (2)
vec

)
= LYM +

1

e2
∇µ Tr

[
− σDµσ − iσFµνKν +

i

2
(λγµζ̃)(ζλ̃)− i

2
(λ̃γµζ)(ζ̃λ)

]
. (3.17)

BeingQ-exact, this Lagrangian will be used in the localization procedure as our deformation

term (see section 4.2).

3.1.3 Radial cutoff and supersymmetry

In order to regularize infrared divergences and to treat boundary conditions in a super-

symmetric way, we will need to introduce a spatial cut-off or boundary at finite distance

from the center of the space. We show here that the Lagrangian L̂vec (3.17) preserves two

supercharges in the presence of a boundary.

We introduce a cut-off at a finite radial distance η = η0 > 0 from the center of H3
τ .

The boundary of this “chopped” H3
τ is a two-torus. In this case the Killing vector Kµ

is tangent to the boundary and total derivatives of the form LK(· · · ) vanish. From the

algebra relations we have

QL̂vec = Q2Vvec = − i
2
LKVvec ,

QŜvec =

∫
η≤η0

d3x
√
g QL̂vec = − i

2

∫
η≤η0

d3x
√
gLKVvec = 0 . (3.18)

In the last equality we have used the fact that K is a Killing vector tangent to the boundary.

In the above discussion we can consider a general supercharge δu,ũ = u δζ + ũ δ
ζ̃
,

u, ũ ∈ C. Using the facts that V
(1)

vec is δ
ζ̃
-exact and V

(2)
vec is δζ-exact, we obtain

δu,ũL̂vec =
u

2
δζδζ̃Vvec +

ũ

2
δ
ζ̃
δζVvec =

u

2
{δζ , δζ̃}V

(2)
vec +

ũ

2
{δ
ζ̃
, δζ}V (1)

vec

= −2iLK
(
u

2
V (2)

vec +
ũ

2
V (1)

vec

)
δu,ũSvec =

∫
η≤η0

d3x
√
g δu,ũL̂vec

= −2i

∫
η≤η0

d3x
√
gLK

(
u

2
V (2)

vec +
ũ

2
V (1)

vec

)
= 0 .

(3.19)

We conclude that the Lagrangian L̂vec is appropriate to preserve the two supercharges δζ , δζ̃
in the presence of a T 2 boundary, independently of the boundary conditions on the fields.

6Note that δ2
ζ̃

= 0 implies QV
(1)
vec = 1

2
δζV

(1)
vec and similarly QV

(2)
vec = 1

2
δζ̃V

(2)
vec .
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We remark in passing that any choice of Lagrangian of the form L(v,ṽ)
vec = vδζV

(1)
vec +

ṽδ
ζ̃
V

(2)
vec , with v + ṽ = 1, would be equally good, being invariant under δζ and δ

ζ̃
. Any two

Lagrangians in this family differ by a total derivative term. The choice of Lagrangian L̂vec

corresponds to v = ṽ = 1
2 .

3.2 Chiral multiplet

The supersymmetry transformations of a chiral multiplet (φ, ψ, F ) of R-charge r coupled

to the vector multiplet, in a representation R of the gauge group, are given by

δφ =
√

2ζψ

δψ =
√

2ζF + i
√

2(σ + rH)φζ̃ −
√

2iγµζ̃Dµφ (3.20)

δF = −
√

2i (σ + (r − 2)H) ζ̃ψ −
√

2iDµ(ζ̃γµψ) + 2iζ̃λ̃φ ,

with Dµ = ∇µ − iqR
(
Aµ − 1

2Vµ
)
− iAµ. The R-charges qR of the fields (φ, ψ, F ) are

(r, r−1, r−2). The vector multiplet fields (σ,Aµ, λ̃) are given in the representation R and

the indices are contracted appropriately.

The supersymmetry transformations of an anti-chiral multiplet (φ̃, ψ̃, F̃ ) of R-charge

−r in the hermitian conjugate representation R̄ are given by

δφ̃ = −
√

2ζ̃ψ̃

δψ̃ =
√

2ζ̃F̃ − i
√

2φ̃(σ + rH)ζ +
√

2iγµζDµφ̃ (3.21)

δF̃ = −
√

2iζψ̃ (σ + (r − 2)H)−
√

2iDµ(ζγµψ̃)− 2iφ̃ζλ .

Note that here Dµ = ∇µ− iqR
(
Aµ − 1

2Vµ
)

+ iAµ. The R-charges of the fields (φ̃, ψ̃, F̃ ) are

(−r,−r + 1,−r + 2).

The Lagrangian of the chiral multiplet is given by [41]

Lchi = Dµφ̃Dµφ+ φ̃ (D + σH)φ+ 2(r − 1)Hφ̃σφ− F̃F

+ φ̃

(
σ2 +

r

4
R+

1

2

(
r − 1

2

)
V µVµ + r

(
r − 1

2

)
H2

)
φ

− iψ̃γµDµψ − iψ̃
(
σ +

(
r − 1

2

)
H

)
ψ +
√

2i
(
φ̃λψ − ψ̃λ̃φ

)
. (3.22)

We consider the H3
τ background described in section 2. The Ricci scalar is given by R =

− 6
L2 . Furthermore we consider, for simplicity, and because it will be sufficient for our

analysis, a chiral multiplet coupled to a gauge multiplet with only the gauge field turned on,

A , σ = 0 , D = 0 . (3.23)

To allow for a real mass deformation, we also turn on a constant background flavor vector

multiplet (vµ, σF , DF ) with

v = βFdχ , σF = −DFL = m, (3.24)
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and we assume charge qF = 1 under the flavor symmetry. In this set-up the Lagrangian

for a chiral multiplet, in a representation R of the gauge group and with R-charge r, is

Lchi = Dµφ̃Dµφ+

(
m+

r − 1

L

)2

φ̃φ− 1

L2
φ̃φ−F̃F−iψ̃γµDµψ−i

(
m+

r − 1
2

L

)
ψ̃ψ , (3.25)

with the constant background R-symmetry, flavor symmetry vectors, Aµ, vµ, and the

gauge field in the representation R, ARµ , appearing in covariant derivatives, for instance

Dµφ =
(
∂µ − irAµ − ivµ − iARµ

)
φ.

The partition function is defined as a path integral over fields configurations obeying

the reality conditions

φ̃ = φ† , F̃ = −F † . (3.26)

We will give the reality conditions on the fermionic fields using the twisted variables.

3.2.1 Twisted fields

It will be convenient for the chiral multiplet as well to introduce a set of twisted fields. In

this case the bosons are already scalars and so we need only introduce twisted fields for

the fermions, which we decompose as follows

ψ = ζB + ζ̃C , B = −ζ̃ψ , C = ζψ ,

ψ̃ = ζ̃B̃ + ζC̃ , B̃ = ζψ̃ , C̃ = −ζ̃ψ̃ , (3.27)

where we used ζζ̃ = −ζ̃ζ = 1. The R-charges of (B,C, B̃, C̃) are (r − 2 , r , −r + 2 , −r).
This change of variables has a Jacobian equal to |ζζ̃| = 1, so it does not change the measure

of path integrals. The supersymmetry transformations for the twisted fields are given in

appendix B.

The supersymmetric Lagrangian takes the form

Lchi = Dµφ̃Dµφ+

(
m+

r − 1

L

)2

φ̃φ− 1

L2
φ̃φ− F̃F

− i
(
B̃LKB +

3

2L
B̃B + C̃LKC −

3

2L
C̃C + B̃L

P̃
C + C̃LPB

)
− i

(
m+

r − 1
2

L

)
(−B̃B + C̃C) .

(3.28)

Using the Fierz identities (A.7), one can prove the relation7

KaKb − 1

2

(
P̃ aP b + P aP̃ b

)
= (ζζ̃)2δab , a, b = 1, 2, 3. (3.29)

This allows us to write

Dµφ̃D
µφ = (ζζ̃)2

(
LK φ̃LKφ−

1

2
L
P̃
φ̃LPφ−

1

2
LP φ̃LP̃φ

)
. (3.30)

7This is valid for any pair ζ, ζ̃ of Grassman-even spinors.
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The chiral multiplet Lagrangian can then be expressed as

Lchi = LK φ̃LKφ−
1

2
L
P̃
φ̃LPφ−

1

2
LP φ̃LP̃φ+

(
m+

r − 1

L

)2

φ̃φ− 1

L2
φ̃φ− F̃F

− i
(
B̃LKB + C̃LKC + B̃L

P̃
C + C̃LPB

)
(3.31)

+ i

(
m+

r − 2

L

)
B̃B − i

(
m+

r − 2

L

)
C̃C ,

where we used ζζ̃ = 1. The complete reality conditions on the chiral multiplet fields are

taken to be
φ† = φ̃ , F † = −F̃ ,

B† = −B̃ , C† = C̃ .
(3.32)

3.2.2 Q-exact action

The chiral multiplet Lagrangian Lchi can be expressed as a δζ-exact or as a δ
ζ̃
-exact term,

up to total derivatives. We have the following identities:

δζV
(1)

chi = Lchi +
1

2
LP (L

P̃
φ̃ φ)− 1

2
L
P̃

(LP φ̃ φ) + LK
[(
m+

r

L

)
φ̃φ+ iB̃B

]
+ iLP (C̃B) ,

V
(1)

chi = δ
ζ̃

(
−1

2
(B̃B + C̃C) + iφ̃LKφ−

i

L
φ̃φ

)
, (3.33)

δ
ζ̃
V

(2)
chi = Lchi −

1

2
LP (φ̃L

P̃
φ) +

1

2
L
P̃

(φ̃LPφ) + LK
[
−
(
m+

r

L

)
φ̃φ+ iC̃C

]
+ iLP (C̃B) ,

V
(2)

chi = δζ

(
1

2
(B̃B + C̃C) + i(LK φ̃)φ+

i

L
φ̃φ

)
. (3.34)

A few intermediate computations leading to (3.33) are given in appendix C. Moreover V
(1)

chi

and V
(2)

chi are related by

δζV
(1)

chi − δζ̃V
(2)

chi = LK
[
2

(
m+

r − 1

L

)
φ̃φ+ i(B̃B − C̃C)

]
. (3.35)

In the localization computation we will use the supercharge Q ≡ 1
2

(
δζ + δ

ζ̃

)
and consider

a modified Lagrangian L̂chi defined as

L̂chi = QVchi ,

Vchi = V
(1)

chi + V
(2)

chi . (3.36)

This new Lagrangian differs from the original one by a total derivative. We have explicitly8

L̂chi = Q
(
V

(1)
chi + V

(2)
chi

)
= Lchi +

1

4

(
LP (L

P̃
φ̃ φ− φ̃L

P̃
φ)− L

P̃
(LP φ̃ φ− φ̃LPφ)

)
+
i

2
LK(B̃B + C̃C) + iLP (C̃B) .

(3.37)

8Note that δ2
ζ̃

= 0 implies QV
(1)
chi = 1

2
δζV

(1)
chi and similarly QV

(2)
chi = 1

2
δζ̃V

(2)
chi .
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The terms LK(. . .),LP (. . .) and L
P̃

(. . .) are all total derivatives. Explicitly, L̂chi is given

in terms of the twisted fields by

L̂chi = LK φ̃LKφ− LP φ̃LP̃φ+
1

L
φ̃LKφ−

1

L
LK φ̃ φ+

((
m+

r − 1

L

)2
− 1

L2

)
φ̃φ− F̃F

+ i

[
1

2
LKB̃ B −

1

2
B̃LKB +

1

2
LKC̃ C −

1

2
C̃LKC − B̃LP̃C + LP C̃B

+

(
m+

r − 2

L

)
B̃B −

(
m+

r − 2

L

)
C̃C

]
. (3.38)

This new Lagrangian is Q-exact and can be used as the deformation term in the localization

procedure (see section 4.2).

3.2.3 Radial cutoff and supersymmetry

As we did for the vector multiplet, in order to deal with supersymmetry on a space with

a boundary, we wish to consider the situation where we introduce a radial cut-off at η =

η0 > 0. We show now that L̂chi is an appropriate choice of Lagrangian on this “chopped”

H3
τ , in the sense that is preserve the supercharges in the presence of the torus boundary.

The analysis is as in the vector multiplet case.

We consider the action of a supercharge δu,ũ = u δζ + ũ δ
ζ̃
, u, ũ ∈ C. Using the facts

that V
(1)

chi is δ
ζ̃
-exact and V

(2)
chi is δζ-exact, we obtain

δu,ũL̂chi =
u

2
δζδζ̃Vchi +

ũ

2
δ
ζ̃
δζVchi =

u

2
{δζ , δζ̃}V

(2)
chi +

ũ

2
{δ
ζ̃
, δζ}V

(1)
chi

= −2iLK
(
u

2
V

(2)
chi +

ũ

2
V

(1)
chi

)
(3.39)

δu,ũSchi =

∫
η≤η0

d3x
√
g δu,ũL̂chi = −2i

∫
η≤η0

d3x
√
gLK

(
u

2
V

(2)
chi +

ũ

2
V

(1)
chi

)
= 0 .

We conclude that the Lagrangian L̂chi is appropriate to preserve the two supercharges δζ , δζ̃
in the presence of a T 2 boundary, independently of the boundary conditions on the fields.

Here as well we notice that any choice of Lagrangian for the chiral multiplet of the

form L(v,ṽ)
chi = vδζV

(1)
chi + ṽδ

ζ̃
V

(2)
chi , with v + ṽ = 1, would provide an equally good choice of

Lagrangian, invariant under δζ and δ
ζ̃
.

3.3 Other supersymmetric actions

In this section we discuss other supersymmetric actions and the relevant boundary terms

needed for supersymmetry in the presence of a boundary.

3.3.1 Chern-Simons action

We can consider adding to the action a supersymmetric Chern-Simons term with

level k ∈ Z:

SCS = i
k

4π

∫
d3x
√
gTr

[
εµνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
+ 2iDσ + 2λ̃λ

]
. (3.40)
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In the presence of a boundary the CS action is not invariant under supersymmetry trans-

formations, but rather it picks up a boundary term. We have

δSCS = − k

4π

∫
d3x
√
g∇µTr

[
εµνρAν(ζγρλ̃+ ζ̃γρλ) + 2σ(ζγµλ̃− ζ̃γµλ)

]
. (3.41)

This supersymmetry variation can be re-expressed in terms of the twisted fields for a generic

supercharge δu,ũ ≡ uδζ + ũδ
ζ̃
, with u, ũ ∈ C, as

δu,ũSCS =
k

8π

∫
d3x
√
g∇µTr

[
2Kµ

(
(X0 − Σ)

(
u−ũ

2
Λ0 − iu+ũ

2
Θ

)
+ũX−Λ+−uX+Λ−

)
− Pµ

(
u(3Σ−X0)Λ− −X−

(
u+ ũ

2
Λ0 +

u− ũ
2i

Θ

))
+ P̃µ

(
ũ(3Σ−X0)Λ+ −X+

(
u+ ũ

2
Λ0 +

u− ũ
2i

Θ

))]
.

(3.42)

When evaluating this term on the H3
τ space with a torus boundary at η = η0 (radial cut-off)

we obtain

δu,ũSCS =
k

8π

∫
T 2

d2x
√
g2 n

µ Tr

[
− Pµ

(
u(3Σ−X0)Λ− −X−

(
u+ ũ

2
Λ0 +

u− ũ
2i

Θ

))
+ P̃µ

(
ũ(3Σ−X0)Λ+ −X+

(
u+ ũ

2
Λ0 +

u− ũ
2i

Θ

))]
,

(3.43)

where nµ∂µ = 1
L∂η is a unit vector normal to the boundary, d2x

√
g2 = dχdϕ cosh η0 sinh η0

is the determinant of induced metric on the boundary, and we have used nµK
µ = 0.

Remarkably this supersymmetry variation can be canceled by adding the following

boundary term to the CS action:

Sbdry
CS =

k

16π

∫
T 2

d2x
√
g2 Tr

[
(3Σ−X0)

(
(nµP

µX− − nµP̃µX+
) ]

, (3.44)

δu,ũ(SCS + Sbdry
CS ) = 0 . (3.45)

The invariance under the supersymmetry transformation holds without imposing any

boundary condition on the fields. Since δu,ũ is a generic supercharge and the bound-

ary term does not depend on u, ũ, we end up with a total action which is invariant under

the two supercharges δζ , δζ̃ .

In terms of the original variables and making the η0 dependence explicit, the boundary

term is given by

Sbdry
CS =

k

2π

∫
T 2

dχdϕTr (σL+Az̄) (cosh(2η0)Az̄ +Az) , (3.46)

with Az = 1
2 (Aϕ − iAχ), Az̄ = 1

2 (Aϕ + iAχ). In addition we are free to add an extra

boundary term of the form

Sbdry
f =

∫
T 2

d2x
√
g2 Tr[f(Σ)] , (3.47)
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with f an arbitrary function. This term is invariant under the two supercharges, since

δu,ũΣ = 0 (see appendix B). We will fix the choice of boundary term Sbdry
f by requiring

finiteness of the action. Related to this issue we must address the questions of gauge

invariance of the Chern-Simons action with boundary terms and boundary conditions on

the fields. We will discuss these issues all together in section 4.1.1.

3.3.2 Fayet-Iliopoulos term

Another supersymmetric action in gauge theories is the Fayet-Iliopoulos term with param-

eter ξ ∈ R:

SFI = ξ

∫
d3x
√
gTr

[
D − σ

L

]
. (3.48)

On a space with a boundary SFI is not supersymmetric, rather it picks a boundary term

under a generic supersymmetry transformation δu,ũ

δu,ũSFI = ξ

∫
bdry

d2x
√
g2 Tr

[
nµ
(
uζγµλ̃− ũζ̃γµλ

) ]
, (3.49)

where nµ is a unit vector normal to the boundary. Picking the boundary to be the torus

at η = η0, this boundary term can be expressed in terms of the twisted variables

δu,ũSFI = ξ

∫
T 2

d2x
√
g2 Tr

[
u(nµPµ)Λ− − ũ(nµP̃µ)Λ+

]
, (3.50)

where we have used nµKµ = 0. Supersymmetry under the δu,ũ transformation can be

restored by adding the boundary term

Sbdry
FI = −ξ

2

∫
T 2

d2x
√
g2 Tr

[
(nµPµ)X− − (nµP̃µ)X+

]
,

δu,ũ(SFI + Sbdry
FI ) = 0 .

(3.51)

Note that by adding the boundary term Sbdry
FI , one is able to preserve both supersymmetries

δζ , δζ̃ . In terms of the original fields the boundary term is given by

Sbdry
FI = −ξL

∫
T 2

dχdϕTr
[

cosh(2η0)Az̄ +Az
]
, (3.52)

with Az,Az̄ as in (3.46).

As a consequence of adding a boundary term, the FI term is not gauge invariant

without specifying boundary conditions, nor is it finite without adding supersymmetric

boundary terms of the form (3.47). We address these questions in section 4.1.1.

3.3.3 Mixed gauge-R Chern-Simons term

We can consider mixed Chern-Simons term, in particular a mixed gauge-R symmetry

Chern-Simons term with parameter kgR ∈ Z, as discussed in [42, 43]:

SgR =
kgR

2πL

∫
d3x
√
gTr

[
D − σ

L

]
. (3.53)

On the supersymmetric background that we consider, this turns out to be the same as an

FI term with quantized parameter ξ =
kgR

2πL and the analysis of boundary terms is as above.
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3.3.4 Superpotential

Finally we can add a superpotential term to the action. This is given in terms of a holomor-

phic function of the chiral multiplet scalar fields W (φj) and a holomorphic function of the

anti-chiral multiplet scalars W̃ (φ̃j), of R-charge 2 and -2 respectively. The superpotential

action is given by

SW =

∫
d3x
√
g

∑
j

Fj∂jW −
1

2

∑
i,j

ψiψj∂i∂jW +
∑
j

F̃j∂jW̃ −
1

2

∑
i,j

ψ̃iψ̃j∂i∂jW̃

 ,

(3.54)

where (φj , ψj , F j) and (φ̃j , ψ̃j , F̃ j) are the usual components of the (anti-)chiral multiplets.

On the chopped H3
τ , with torus boundary at η = η0, the supersymmetry variation of

SW under a generic supercharge δu,ũ is given by the boundary term

δu,ũSW =

∫
d2x
√
g2 (−i

√
2)nµ

ũP̃µ∑
j

Cj∂jW + uPµ
∑
j

C̃j∂jW̃

 , (3.55)

where Cj , C̃j refer to the twisted fields in the corresponding multiplets and we have used

the fact that total derivatives of the form LK(. . .) vanish. In checking the supersymmetry

of the action, in the presence of real mass deformations by a weakly gauged flavor symmetry

GF , one must make use of the following identities, for each i,∑
j

rjφ
j∂i∂jW = (2− ri)∂iW ,

∑
j

wF,jφ
j∂i∂jW = −wF,i∂iW ,

(3.56)

where rj , wF,j denote the R-charge and flavor charge of the scalar φj . These identities

follow from the small θ expansions of:

W (eirjθφj) = e2iθW (φj) , W (eiwF,jθφj) = W (φj) , θ ∈ R , (3.57)

which are a consequence of the covariance, respectively invariance, of the chiral superpo-

tential W under R-symmetry, respectively flavor symmetry. A similar discussion applies

to the anti-chiral superpotential W̃ .

As before we would like to add a boundary term to restore supersymmetry, however

we cannot do it for a generic supercharge δu,ũ. The best we can do is to add a boundary

term which preserves one supercharge of the form δζ + αδ
ζ̃
, with α 6= 0. In particular,

for α = 1 we can preserve Q ∼ δζ + δ
ζ̃
, in which case the boundary term is

Sbdry
W =

∫
d2x
√
g2 i n

µ
(
P̃µW + PµW̃

)
,

Q(SW + Sbdry
W ) = 0 .

(3.58)

More supersymmetry may be preserved by further imposing boundary conditions, however

for the localization computation we will only require invariance under the supercharge Q

and the above analysis ensures that Q is preserved.
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4 Asymptotics, observables, and localization

In this section we first discuss the asymptotic boundary conditions that we impose on the

various fields, defining more precisely the partition function that we propose to compute.

Then we analyze the localization locus, which are the saddle points of the path integral

arising in the supersymmetric localization computation. We find that the exact partition

function is expressed as a sum of contributions labeled by flat connections on H3
τ , which

we subsequently analyze. We evaluate the classical supersymmetric actions entering in

the final expressions. Finally we discuss the generalization to the exact computation of

supersymmetric Wilson loops.

4.1 Asymptotic boundary conditions

In order to define the theory on the hyperbolic space H3
τ we need to specify the boundary

conditions on the fields or, more precisely, their asymptotic behavior since H3
τ is non-

compact. To derive these asymptotics we chop the H3
τ by introducing a radial cut-off at

η = η0 > 0 and consider the variational principle on the space with a boundary. We then

consider asymptotic expansions of the fields and impose that the boundary contributions

to the equations of motion vanish as η0 is sent to infinity. Moreover we require that the

asymptotics preserve supersymmetry. The upshot of this analysis is that the asymptotics

of all the fields are given by constant background values at infinity, some of them zero, and

that the subleading terms in the asymptotic expansion are square-normalizable fluctuating

modes. One important consequence following from this discussion is that supersymmetric

Yang-Mills and Chern-Simons gauge theories have qualitatively different asymptotics.

Before applying this recipe, we explain how we choose an asymptotic expansion and

how to treat the non-normalizable modes which may appear, following the methods of

holographic renormalization [44]. We assume that the asymptotic expansion at large η for

a generic field Φ takes the form

Φ = e−∆η
(
Φ(0) + Φ(2) e−2η + Φ(4) e−4η + · · ·

)
. (4.1)

The leading exponent ∆ is fixed by solving the equations of motion at leading order in the

large η expansion. Typically there are two solutions ∆± and the expansion (4.1) starts with

the smaller of the two ∆ ≡ ∆−. The leading term Φ(0) turns out to be a non-normalizable

mode, in the sense that it makes the action diverge, and should be seen as a background

field, or non-fluctuating field, so that it is not integrated over in a path integral formulation.

In the expansion (4.1), some subleading terms Φ(n) may also be non-normalizable. In that

case they must be fixed in terms of the leading mode Φ(0) by solving the equations of

motion order by order at large η. When n ≡ 1
2(∆+−∆−) is an integer, the expansion (4.1)

picks an extra term linear in η,

Φ = e−∆η
(
Φ(0) + · · ·+ (ηΦ̂(2n) + Φ(2n)) e−2nη + · · ·

)
. (4.2)

This extra mode is normalizable, except in the special case when n = 0, which concerns

massless vector fields, as we shall see below.
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The resulting asymptotic behavior is then given by the sum of a non-normalizable

background part and a normalizable fluctuating part:

Φ = e−∆η
(
Φ(0) + · · ·

)
+ normalizable . (4.3)

Since we want to preserve supersymmetry, we must require in addition that in the full theory

the collection of background fields (Φ(0) + · · · ) are invariant under the supercharges δζ and

δ
ζ̃
. Then the final step will be to enforce the boundary variational principle asymptotically.

For this we consider the variation of the action under an arbitrary fluctuation of all the

fields and require that the boundary piece vanishes as η0 is sent to infinity, thus further

constraining the asymptotics of the fields.

The analysis for the fermionic fields is simpler, since the constraint of supersymmetry

imposes that their backgrounds vanish. Their asymptotics are then simply given by nor-

malizable fluctuactions and we only need to ensure that normalizability is enough to satisfy

the boundary variational principle. We now derive the asymptotics of the bosonic fields.

4.1.1 Yang-Mills and Chern-Simons theories

Let us now start the analysis with the vector multiplet fields in a Yang-Mills theory. Ap-

plying the above prescription we find that the bosonic fields σ and Aµ have the expansions9

σ = σ(0) +O(e−2η) ,

Aµ = ηÂ(0)
µ +A(0)

µ +O(e−2η) , µ = χ, ϕ ,

Aη = A(0)
η +O(e−2η) .

(4.4)

The fields σ(0), Â(0)
µ and A(0)

η are non-normalizable (they make the Yang-Mills action

diverge), so they must be fixed to chosen values at η = ∞, whereas the other gauge

field components A(0)
χ ,A(0)

ϕ are normalizable and therefore fluctuating degrees of freedom.

The O(e−2η) subleading terms are normalizable and will be unconstrained. To solve the

equations of motion at leading order in e−η, we also need to impose that the backgrounds

σ(0), A(0)
η are in the center of the gauge algebra σ(0),A(0)

η ∈ ZG, so that their commutators

with A(0)
χ ,A(0)

ϕ vanish.

We now consider an arbitrary variation of the action defined by the Lagrangian

L̂vec (3.17) on the chopped H3
τ with torus boundary at η = η0. It is convenient to ex-

press the variation in terms of the untwisted variables σ,A for the bosonic fields and the

twisted variables Λ0,±,Θ for the fermionic fields,

δSvec = − 1

e2L

∫
T 2

d2x
√
g2 Tr

[
σDη(δσ)−FηνδAν + iFηνKνδσ + iσKνδFην

+
i

2
P̃η(Λ

0 − iΘ)δΛ+ +
i

2
Pη(Λ

0 − iΘ)δΛ−
]

+

∫
η<η0

d3x ( · · · ) ,

(4.5)

9These expansions follow from solving Maxwell’s equations d ? F = ?j at leading order in e−2η, upon

assuming that the current j coming from couplings to matter fields is subdominant j = o(e−2η). This is

consistent with the analysis of the chiral multiplet asymptotics of the next section.
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where the bulk term ( · · · ) vanishes upon imposing the equations of motion. Using the

asymptotic expansions of the bosonic fields and requiring no constraint on the normalizable

subleading modes of the fields, we find that δSvec vanishes asymptotically if and only if the

background asymptotics are taken to be

σ(0) = 0 , ∂µA(0)
η = Â(0)

µ , µ = ϕ, χ . (4.6)

The fermionic piece in δSvec vanishes upon imposing normalizability of the fermions

Λ0,±,Θ = o(e−η). After setting D(0) = 0 for the auxiliary field, we obtain an asymp-

totic background invariant under the two supercharges δζ , δζ̃ . One should still solve for

backgrounds A(0)
η , Â(0)

µ globally defined on H3
τ . However in the following we choose to

restrict our analysis to setting A(0)
η = 0, leading to

σ(0) = 0 , A(0)
η = 0 , Â(0)

µ = 0 . (4.7)

With these asymptotics, the subleading components of the gauge field A(0)
µ are uncon-

strained and therefore considered as fluctuating fields.

Furthermore we have the possibility to add supersymmetric boundary terms of the

form (3.47) and solve the variational principle on the boundary with these extra terms. An

interesting choice of possible boundary term is

SYM
bdry =

1

e2

∫
T 2

d2x
√
g2Tr

[
Σ∂ηΣ

]
, (4.8)

where we recall that Σ = σ+ 2Az̄. Solving the variational principle on the boundary leads

to the following constraints:

A(0)
z̄ = 0 , ∂z̄σ

(0) = 0 , ∂z̄A(0)
η = 0 , Â(0)

z̄ = 0 . (4.9)

This implies that σ(0) and A(0)
η are constant along the torus. The simplest asymptotics

which are supersymmetric, within this class of boundary conditions, have A(0)
η = 0, Â(0)

µ =

0, leading to

A(0)
z̄ = 0 , σ(0) = σ0 ∈ Zg constant , A(0)

η = 0 , Â(0)
µ = 0 . (4.10)

The boundary condition A(0)
z̄ = 0 fixes half of the gauge field modes along the boundary,

leaving A(0)
z fluctuating. This choice is possible with the reality conditions (3.7). We will

find similar boundary condition for the Chern-Simons theories below.

To summarize, for the bosonic fields in the vector multiplet in the supersymmetric

Yang-Mills theory there are two possible interesting choices of asymptotics,

lim
η→∞

σ = σ0 , lim
η→∞

Aη = 0 ,

lim
η→∞

Aϕ = α , lim
η→∞

Aχ = β ,

with (1) :

{
σ0 = 0 ,

α, β fluctuating ,

or (2) :

{
σ0 ∈ Zg constant ,

α+ iβ = 0 , α− iβ fluctuating .

(4.11)
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We now reconsider the asymptotics for a theory when we add a Chern-Simons term

with level k. All the fields in the vector multiplet now become massive, with masses

of order ke2. The equations of motion of the massive fields yield different asymptotic

expansions. For the vector field the new equation of motion is d ? F = − ike2

π F and is

solved asymptotically, in terms of the Az,Az̄ combinations, with

Az = e−∆zη(A(0)
z + · · · ) , ∆z ∈

{
0,
ke2

π

}
,

Az̄ = e−∆z̄η(A(0)
z̄ + · · · ) , ∆z̄ ∈

{
0,
−ke2

π

}
,

(4.12)

where we choose to set to zero possible non-normalizable linear terms in η. For k > 0, the

Az expansion starts with a normalizable O(1) term , while the Az̄ expansion starts with

an O(e
ke2

π
η) non-normalizable background. The situation is reversed for k < 0. We will

not consider such diverging backgrounds and simply consider expansions for both Az and

Az̄ starting with normalizable order 1 terms,

Az = A(0)
z +O(e−2η) , Az̄ = A(0)

z̄ +O(e−2η) . (4.13)

The scalar field σ acquires a mass term and its expansion begins with a diverging non-

normalizable term. As we shall see when we analyze the localization locus equations,

supersymmetry does not allow for such a background, therefore we can simply set it to

zero. The asymptotics of σ are then given by normalizable fluctuations only, i.e. σ = o(e−η).

The variation of the supersymmetric Chern-Simons action (3.40), with boundary

term (3.46), under an arbitrary fluctuation of the fields, is

δ(SCS + Sbdry
CS ) =

k

2π

∫
dχdϕTr

[
δσL(Az + cosh(2η0)Az̄)

+ δAz̄(σL+ 2Az̄) cosh(2η0) + δAz(σL+ 2Az̄)
]

+

∫
d3x( · · · ) , (4.14)

where ( · · · ) denotes bulk terms which vanish upon imposing the equations of motion.

Using the expansions (4.11) would constrain the remaining background asymptotics α, β

to be set to zero. Instead we can relax this strong constraint by adding a supersymmetric

boundary term of the form (3.47),

Sbdry
CS

′ = − k

4π

∫
d2x
√
g2 Tr

[
Σ2
]

= − k

8π

∫
dχdϕ sinh(2η0)Tr

[
(σL+ 2Az̄)2

]
, (4.15)

and define

Stot
CS = SCS + Sbdry

CS + Sbdry
CS

′ . (4.16)

The variation of the total Chern-Simons action becomes

δStot
CS =

k

2π

∫
dχdϕTr

[
δσL

(
− 1

2
sinh(2η0)σL+Az + e−2η0Az̄

)
+ δAz̄(σL+ 2Az̄)e−2η0 + δAz(σL+ 2Az̄)

]
+

∫
d3x( · · · ) .

(4.17)
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Using σ = o(e−η) and the expansions described above, the leading term in the asymptotic

expansion is
k

2π

∫
dχdϕTr

[
2δA(0)

z A
(0)
z̄

]
. (4.18)

We then find that the boundary variation vanishes as η0 →∞ when

A(0)
z̄ = 0 , or A(0)

z fixed . (4.19)

In addition we require A(0) to define a supersymmetric asymptotic background. For sim-

plicity we will restrict the choice of boundary conditions for the second option to A(0)

constant on the torus and in the center of the gauge algebra A(0)
z ∈ Zg. We will therefore

consider the two options

(1) A(0)
z̄ =

1

2
(α+ iβ) = 0 , (4.20)

or (2) A(0)
z =

1

2
(α− iβ) ∈ Zg constant . (4.21)

These boundary conditions are familiar in the Chern-Simons theory literature, for instance

in the holographic duality context in [45], or in studies of supersymmetric Chern-Simons

theories with a boundary [46]. Note that the modification of the reality condition, taking

Aχ purely imaginary, and therefore Az and Az̄ real and independent, allows us to fix one

component and let the other fluctuate.

To summarize, the boundary conditions in the theory with a Chern-Simons term are

given by (4.20) or (4.21) for the vector field, together with normalizable asymptotics for σ,10

σ = o(e−η) . (4.22)

For the pure supersymmetric Chern-Simons theory, the analysis leads to the same asymp-

totics as for the Yang-Mills and Chern-Simons theory.

The same analysis, applied to the theory with an FI term, leads us to introduce an

extra boundary term (in addition to (3.51))

Sbdry
FI

′ = ξ

∫
d2x
√
g2 Tr

[
Σ
]

=
ξL

2

∫
dχdϕ sinh(2η0)Tr

[
σL+ 2Az̄

]
. (4.23)

This boundary term is introduced to relax the constraint on TrA(0)
z̄ . In addition, one can

show that it makes finite the total FI action Stot
FI = SFI + Sbdry

FI + Sbdry
FI

′, given by the

sum of the three terms (3.48), (3.51), (4.23). The variation of the action then produces a

boundary term, which vanishes when Tr[δσ(0)] = 0 and Tr[δA(0)
z ] = 0. Therefore, in the

presence of an FI term, we must impose, in addition to the previous constraints,

Tr[σ(0)] = constant , Tr[A(0)
z ] = constant . (4.24)

We will see in later sections that, except for the pure Yang-Mills theory, the presence of

an FI term does not affect the partition function.

10We remind the reader that f(η) = o(e−η) is equivalent to limη→∞ eηf(η) = 0.
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Finally, there is a subtlety in 3d theories, that in the presence of massive fermions,

the bare Chern-Simons level k0 gets shifted11 in the one-loop effective action [50]. In the

N = 2 supersymmetric theories, due to this shift, the effective Chern-Simons level is given

by keff = k0 + 1
2

∑
I sign(mI)q

2
I , where I labels the chiral multiplets of (integer) gauge

charge qI and real masses mI . The Chern-Simons level relevant for the above analysis is

k = keff . To avoid subtleties related to the identification of keff , for simplicity, we will refer

to the “pure Yang-Mills” theories as theories with keff = k0 = 0. This is certainly true at

least for “non-chiral theories”.

4.1.2 Chiral multiplet

We now consider the asymptotics of the chiral multiplet fields. Let us take a chiral multiplet

of R-charge r and gauge charge w under an abelian gauge symmetry. The asymptotic

expansions of the complex scalar can be written

φ = e−∆η(φ(0) + e−2ηφ(2) + · · · ) , (4.25)

with ∆ = 1−
√

1 + (mL+ r)(mL+ r − 2). We use now a result that we will derive when

analyzing the supersymmetric locus equations (see section 4.2.2), which is that for r > 0,

supersymmetric configurations are given by φ = 0. So, assuming a positive R-charge r > 0,

we conclude that the asymptotic background field φ(0), as well as all the subleading non-

normalizable modes in the φ asymptotic expansion, are vanishing. We therefore impose

normalizablity of the scalar field and their superpartners (the twisted fermions) as follows

φ = o(e−η) , C = o(e−η) , B = o(e−η) . (4.26)

The variation of the action with respect to the fields, expressed in terms of the twisted

variables, is given by

δSchi =

∫
η<η0

d3x( · · · )−
∫
T 2

d2x
√
g2

1

L

(
P̃η(LP φ̃ δφ+ iB̃ δC) + Pη(δφ̃LP̃φ− iδC̃ B)

)
,

(4.27)

where the bulk term ( · · · ) vanishes upon imposing the equations of motion. The normal-

izability conditions (4.26) automatically ensure that the boundary term (4.27) vanishes in

the limit η0 →∞.

4.2 Supersymmetric localization

In this subsection we discuss the localization computations and localization locus, following

the method developed in [3].

11 To be more precise the determinant of a spinor of mass M , coupled to a gauge field A, on a compact

space, contains a factor exp[iπsign(M)η[A]/2] [47], with η[A] the APS eta invariant [48] whose variation with

respect to the gauge field A matches the variation of a properly quantized Chern-Simons term (4π)−1
∫
AdA.

The proper regularization of such a determinant involves adding a factor exp(±iπη[A]/2) as reviewed in [49].

The extension of this discussion to non-compact spaces, such as the one we study, necessitates to include the

effect of boundary conditions. It is not clear to us what the consequences can be regarding “Chern-Simons

level shifts”. We thank Cyril Closset for discussions on this issue.
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The supersymmetric localization technique proceeds by adding, to the action of the

theory, a Q-exact deformation term t
∫
d3x
√
g QV , with t ∈ R>0, for a certain supercharge

Q and fermionic term V . Being Q-exact, the deformation term does not modify the value

of the partition function, which therefore can be evaluated in the limit t → ∞. In this

limit the partition function reduces to an integration over the saddle point configurations

of QV , also called localization locus,

Z =

∫
QV [φ0]=0

Dφ0 e
−Sclass[φ0] Zone−loop[φ0] , (4.28)

where Sclass[φ0] is the evaluation of the classical action on the saddle point configuration

φ0 and Zone−loop[φ0] is the one-loop determinant of the deformation term
∫
d3x
√
g QV

around φ0.

For our computation we choose the deformation term

QV = tQVvec + t′QVchi = tL̂vec + t′L̂chi , t, t′ ∈ R>0 , (4.29)

which is a sum of two terms, both Q-exact with respect to the supercharge Q = 1
2(δζ + δ

ζ̃
),

so that the partition function is independent of both t and t′. The fermionic terms Vvec

and Vchi have been defined in (3.16) and (3.36). We then send t→∞ and t′ →∞ in turn,

localizing the vector multiplet fields first and then the chiral multiplet fields.

We now determine the localization locus of the fields.

4.2.1 Vector multiplet locus

The bosonic part of the localizing term QVvec = L̂vec, given in (3.17), is the sum of the

bosonic part of the original Lagrangian (3.5) and a boundary term. With the asymp-

totics (4.11), the boundary term vanishes, so it is enough to focus on the bosonic part of

the original Lagrangian, which is

QVbos ∼ FµνFµν +DµσDµσ −
(
D +

σ

L

)2
. (4.30)

It trivially vanishes when Fµν = Dµσ = D + σ
L = 0. Unfortunately the reality conditions

favored by the boundary analysis (3.7) are such that that the bosonic action Lbos is complex

and its real part is not positive definite,12 so that we cannot a priori rely on a minimization

principle to find the saddle-point configurations. Here we assume that the localization locus

is given by field configurations invariant under the supercharge Q used for the localization,

and therefore solve the BPS equations.

The Q-supersymmetric configurations are the solutions of the following equations

0 =
i

2
εµνρFµνγρζ − i

(
D +

σ

L

)
ζ + iDµσγ

µζ ,

0 =
i

2
εµνρFµνγρζ̃ + i

(
D +

σ

L

)
ζ̃ − iDµσγ

µζ̃ .

(4.31)

12One may think of using an alternative deformation term QV with V = (Qλ)†λ+(Qλ̃)†λ̃, where † denotes

hermitian conjugation, which is manifestly positive definite. The issue with such a term is that, with our

choices of reality conditions, V would be a function of the fields as well as their hermitian conjugates, on

which there is no natural action of the supersymmetry. Based on this observation, we do not consider such

a deformation term.
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Contracting with ζ and ζ̃, these equations are equivalent to

Kµ(?F)µ = −
(
D +

σ

L

)
, LKσ = 0 ,

LPσ = −Pµ(?F)µ , L
P̃
σ = P̃µ(?F)µ ,

(4.32)

with (?F)µ = 1
2ε
µνρFνρ. Again we face a difficulty. For generic complex fields, these

equations have solutions characterized by arbitrary functions and we do not know how to

select the relevant solutions without specifying the reality conditions on the fields, and it is

well-known that the saddle point configurations in Euclidean path integrals may lie outside

of the initial contour of integration. To circumvent the difficulty we propose the following

strategy. We can consider the Lorentzian theory, obtained by Wick rotation, for which the

reality conditions are fixed by supersymmetry, and solve for the BPS locus. Then we can

Wick-rotate back the solutions to Euclidean signature, to obtain the localization locus of

our path integral. This is a priori different from working directly with Equations (4.32).

It is not clear whether the two approaches lead to the same answer at the end of the day

or not. We take encouragement from the fact that such a procedure was used in [17] to

localize a functional integral on AdS2 space and the result agreed in a non-trivial manner

with considerations from microscopic string theory. These issues should be certainly cleared

up using a first principles treatment of Euclidean supergravity.13

The Lorentzian BPS equations are obtained by the Wick rotation, which acts as χ→
iχ, ∂χ → −i∂χ, εµνρ → −iεµνρ and Aχ → −iAχ. It also ensures K∗ = −K and P ∗ =

−P̃ . The equations read as in the Euclidean theory, but with the Wick rotated vectors

K,P, P̃ . In the Lorentzian theory the reality conditions are fixed and compatible with the

supersymmetry transformation generated by Q. We have

Lorentzian theory: A† = A , σ† = σ ,

(
D +

σ

L

)†
=

(
D +

σ

L

)
, (4.33)

so all the fields are hermitian. The first equation in (4.32) is

Kµ(?F)µ = −
(
D +

σ

L

)
. (4.34)

The left-hand side is now anti-hermitian, since (Kµ)∗ = −Kµ, while the right-hand side is

hermitian, so they must vanish separately,

Kµ(?F)µ = 0 , D +
σ

L
= 0 . (4.35)

Decomposing the one-form component (?F)µ along the vectors K,P, P̃ and using the re-

maining BPS equations, we obtain

(?F)µ = −1

2

(
L
P̃
σPµ − LPσP̃µ

)
. (4.36)

13This problem is currently being addressed in [51].
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Again the left-hand side is hermitian, while the right-hand side is anti-hermitian, due to

the relation P ∗µ = −P̃µ, so they must vanish separately. Combining all results, we obtain

the BPS locus equations

Lorentzian theory: Fµν = 0 , Dµσ = 0 , D +
σ

L
= 0 . (4.37)

After a Wick rotation, back to the Euclidean theory, these equations still describe BPS

configurations and we assume that no other configurations will contribute to the localization

locus. We therefore obtain,

Localization locus: Fµν = 0 , Dµσ = 0 , D +
σ

L
= 0 . (4.38)

The locus configurations (4.38) are characterized by flat gauge connections, which

must be considered up to gauge transformations and subject to the asymptotics described

in section 4.1.1. Flat connections on the solid torus S1 ×D have been studied in [52, 53].

This analysis depends only on the topology of the space and it can therefore be applied to

studying flat connections on H3
τ . The flat connections are characterized by the asymptotic

value of the gauge field,

A(0) = αdϕ+ βdχ . (4.39)

Using the flatness of A(0), we can choose a gauge where α and β are constant and in the

Cartan subalgebra t,

α =

rG∑
i=1

aiHi ∈ t , β =

rG∑
i=1

biHi ∈ t , (4.40)

where Hi are the generators of t, and rG is the rank of the gauge group. Given these

asymptotics the gauge field is fixed, up to gauge transformations leaving A(0) invariant,

by solving the flatness condition in the bulk of H3
τ . However not all values of α, β lead to

globally defined flat gauge fields.

We now flesh out this discussion by choosing specific gauge groups. We will analyze

U(N) and SU(N) gauge theories. Generalizing to gauge groups which are products of

U(Ni) and SU(Ni) factors is straightforward.

Let us start with the abelian theory. The flatness condition in the bulk implies

α = 1
2π

∫
ϕA

(0) = 0. By a gauge transformation the flat connection can be set into the

simple form

U(1) theory: A = βdχ , (4.41)

with β constant.

Let us now consider an SU(2) gauge theory. The constant asymptotic gauge field is

given by

α = diag(a,−a) = aσ3 , β = diag(b,−b) = bσ3 . (4.42)

We now use results presented in [52].14 The flatness condition requires a trivial holonomy

around the contractible circle at infinity ei
∫
αdϕ = 1, leading to a = n ∈ Z. For each pair

14The results in [52] are given for a straight torus boundary, τ1 = 0. The generalization to an arbitrary

torus, τ1 6= 0, is achieved by replacing the angle ϕ by ϕ̃ = ϕ− τ1
τ2
χ, so that ϕ̃, χ parametrize a straight torus.
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(n, b) one can construct a smooth flat connection on the whole H3
τ in the form

A = iU−1dU ,

U(η, ϕ, χ) = fn(η, ϕ̃)e−ĩbσ3χ ,
(4.43)

where ϕ̃ = ϕ − τ1
τ2
χ, b̃ = b + τ1

τ2
n and fn : R≥0 × [0, 2π] → SU(2) is a smooth function

satisfying, for some η+ > η− > 0,

fn(η, ϕ̃) = e−inσ3ϕ̃ , for η > η+ ,

fn(η, ϕ̃) = constant , for 0 ≤ η < η− .
(4.44)

This implies in particular

SU(2) theory: A =

{
b̃σ3dχ , for 0 ≤ η < η− ,

nσ3dϕ+ bσ3dχ , for η > η+ .
(4.45)

The matrix-valued function U(η, ϕ, χ) is not globally well-defined for generic b̃, but A is

globally defined.

The generalization to a U(N) or SU(N) theory is straightforward. Let us consider the

U(N) theory. The asymptotic values of the flat connection are given by the matrices

α = diag(a1, a2, · · · , aN ) , β = diag(b1, b2, · · · , bN ) . (4.46)

Flat connections have trivial holonomy around the ϕ-circle at infinity ei
∫
αdϕ = 1, leading

to the quantization of the ai. For the abelian part, we found before that the constraint is

stronger, it imposes αu(1) = 0. We obtain

{ai}1≤i≤N ∈ ZN ,
N∑
i=1

ai = 0 . (4.47)

A flat connection with these asymptotics can be expressed in the form A = iU−1dU as in

the SU(2) case, with the behaviors in neighborhoods of the origin and infinity

U(N) theory: A =


(
β +

τ1

τ2
α

)
dχ , for 0 ≤ η < η− ,

αdϕ+ βdχ , for η > η+ .

(4.48)

For SU(N) theories, we simply have the extra constraint
∑N

i=1 bi = 0.

Finally we need to quotient by the Weyl group, which acts as permutations of the {ai}
and {bi} and brings a factor 1

N ! in the partition function, and by large gauge transforma-

tions, when these are preserved by the boundary conditions. Large gauge transformations

for the U(N) gauge group shift the parameters ai, bi, for each i, as

(ai, bi) ∼
(
ai + ki, bi −

τ1ki
τ2

)
, ki ∈ Z , (4.49)

(ai, bi) ∼
(
ai, bi +

li
τ2

)
, li ∈ Z . (4.50)
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In the pure Yang-Mills theory, the boundary conditions preserve the large gauge trans-

formations. Using (4.49), we can go to a gauge with a′i = 0 and b′i = bi + aiτ1/τ2, then

using (4.50) we can reduce to b′i ∈ [0, 1
τ2

]. The resulting path integral is an integral over

the complex parameters xi = e−2πiτ2b′i ,

U(N) Yang-Mills theory: Z =
1

N !

∫
C

N∏
i=1

dxi
2πixi

I({xi}) . (4.51)

Here I({xi}) = ∆ I ′({b′i}) is the product of the integrand I ′ to be computed and the

Vandermonde determinant ∆ =
∏
i<j(b

′
i − b′j)2 coming from the diagonalization of the flat

connection. We anticipate that I will be a function of the complex parameters xi. The

integration contour C =
∏
Ci is naively composed of unit circles, however it may happen

that the integration contour gets deformed in the complex plane to take into account saddle

points corresponding to complex flat connections. We do not explore this possibility here

and refer to [54] for a more complete discussion on this issue.

In the theories with Chern-Simons terms, the boundary condition Az̄ = 0 breaks large

gauge transformations and sets instead bi = iai ∈ iZ. This is compatible with the reality

conditions (3.7) at infinity. We obtain

U(N) Chern-Simons theory: Z =
1

N !

∑
{ni}∈ZN

δ

(∑
i

ni

)
I(ai = ni; bi = ini) , (4.52)

where I(ai = ni; bi = ini) is the summand to be computed, multiplied by the Vandermonde

determinant ∆ =
∏
i<j [b

′
i − b′j ]2 =

∏
i<j [(ni − nj)τ/τ2]2. The constraint

∑N
i=1 ni = 0 is

implemented by the factor δ
(∑

i ni
)
.

The locus equations (4.38) for the scalar field σ, together with the vanishing asymp-

totics σ(0) = 0 imply

σ = −D
L

= 0 , (4.53)

so that the localization locus of the vector multiplet fields are only characterized by the

flat connections described above.

4.2.2 Chiral multiplet locus

We now turn to the localization locus of the chiral multiplet. We must look at the saddle

point configurations of the Q-exact deformation term QVχ = L̂chi. The reality condi-

tions are

φ̃ = φ† , F̃ = −F † , (4.54)

and the asymptotic behavior of the fields are

lim
η→∞

eηφ = 0 , lim
η→∞

eηF = 0 . (4.55)

The bosonic action in the localizing term QVchi = L̂chi is equal to the sum of the original

(bosonic) Lagrangian (3.25) and a boundary term which vanishes with the chosen asymp-

totics. The real part of the bosonic action consists of a sum of squares as well as the mass
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term
1

L2

(
(mL+ r − 1)2 −

(
1 +

r

2
− iwβ

)2
)
φ̃φ , (4.56)

where iβ is real as per our choice of reality condition for the gauge field. For sufficiently

large m, the above mass term is positive and therefore the action is minimized by

φ = F = 0 . (4.57)

For these values the whole bosonic action, including the imaginary part, vanishes. However

we wish to consider arbitrary m and large iβ, in which case the mass squared becomes

negative and it is not easy to minimize the real part of the bosonic action. Moreover the

action has an imaginary part and the meaning of minimizing the action is unclear.

We will therefore assume, as we did for the vector multiplet, that the saddle point

configurations, or localization loci, are given by the field configurations invariant under the

supercharge used for the localization, namely Q-supersymmetric configurations,

QB = QB̃ = QC = QC̃ = 0 . (4.58)

Let us then solve the supersymmetric equations (4.58). We focus on the chiral multiplet

with R-charge r and charge w under an abelian gauge symmetry, with the abelian vector

multiplet fields frozen to a localization locus configuration A = βdχ, σ = 0, and flavor

background v = βFdχ, σF = m. The BPS equations (4.58) are explicitly

F = −iL
P̃
φ , F̃ =− iLP φ̃ ,

LKφ = (m+ r)φ , LK φ̃ =− (m+ r)φ̃ ,
(4.59)

where we have set L = 1. The equations on the first line solve for F and F̃ in terms of φ

and φ̃. The equation for φ on the second line can be re-expressed as

∂χφ− i∂ϕφ = m0φ , (4.60)

with

m0 = m+ iβF + iwβ − irτ

2τ2
. (4.61)

This is solved by

φ = f(η, z)e
im0

2
z̄ = g(η, z)e

m0
2i

(z−z̄) , (4.62)

where z = ϕ+ iχ, f is a holomorphic function of z, and the last equality defines g in terms

of f . The functions φ and g are periodic in ϕ and can therefore be expanded in a Fourier

series. Taking into account the holomorphicity in z we obtain:

g(η, z) =
∑
k∈Z

ak(η)eikz . (4.63)
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To be globally well-defined φ must satisfy a second periodicity condition φ(η, χ+ 2πτ2, ϕ+

2πτ1) = φ(η, χ, ϕ). This implies for g

g(η, z + 2πτ) = e−2πm0τ2 g(η, z) . (4.64)

This in turn leads to ak(η) = 0 or e2πikτ = e−2πm0τ2 for each k. Then there is a non-zero

solution for g if and only if there exists k ∈ Z such that

e2πikτ = e−2πm0τ2 . (4.65)

This is rephrased as

m0τ2 = −ikτ + in , (4.66)

for some (k, n) ∈ Z2. For generic values of m0 this equation does not have a solution and

we thus conclude that the localization locus is simply

φ = 0 , F = 0 , (4.67)

as found with the naive minimization initially. The locus equations for φ̃ are analogous

and lead to φ̃ = 0 for generic values of m0. The analysis for a chiral multiplet coupled to

a non-abelian gauge field goes along the same lines and leads to the same locus.

At the special values (4.66) of m0 the locus equations admit non-trivial (non-singular)

solutions. For instance, this happens for an uncharged massless scalar with even integer

R-charge, w = 0, m + iβF = 0, r ∈ 2Z≤0. In the following we assume that r > 0 for all

chiral multiplets, in which case the locus is simply given by (4.67).

4.3 Classical contributions

We discuss here the classical contribution Zclass ≡ eSclass to the localization formula (4.28),

which comes from the evaluation of the various classical actions on the localization locus

discussed in the previous section. The classical actions described in section 3.3 can be

evaluated on the chopped H3
τ with a torus boundary at η = η0, on the locus configurations.

The final evaluation then requires taking η0 →∞.

We first provide the evaluations for an abelian gauge field. For simplicity we start with

a flavor vector multiplet, a supersymmetric background is given by

v = βFdχ , σ = −D
L

= m, (4.68)

with βF and m constant. The various actions on the chopped H3
τ evaluate to

SYM = 0 , Sbdry
YM = 0 ,

SCS = πkτ2(sinh η0)2(mL)2 ,

Stot
CS = − π

2
kτ2(mL+ iβF )2 +O(e−2η0) ,

SFI = − 4π2τ2ξL(sinh η0)2mL ,

Stot
FI = 2π2τ2ξL(mL+ iβF ) +O(e−2η0) .

(4.69)
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Note that the combinations with the additional boundary terms conspire nicely to make

the action finite in the η0 →∞ limit, regularizing the infinite volume of the space,

ZYM,flavor = 1 , ZCS,flavor = e−
π
2
kτ2(mL+iβF )2

, ZFI,flavor = e2π2τ2ξL(mL+iβF ) . (4.70)

For a dynamical vector multiplet, the localization locus is given by the configurations

A = βdχ , σ = −D
L

= 0 , (4.71)

with β constant (equal to zero in the Chern-Simons theory). The results are the same as

for the flavor background, with βF replaced by β and m by zero,

Abelian theory : ZYM,locus = 1 , ZCS,locus = e
π
2
kτ2β2

= 1 , ZFI,locus = e2π2iτ2ξLβ = 1 .

(4.72)

In the Chern-Simons theory, or more generally with the asymptotic boundary condi-

tions (4.20), all these terms evaluate to one, since α = 0 in the abelian theory and

β = iα = 0. Similarly in the pure Yang-Mills theory with an FI term, the asymptotic

constraints (4.24) require β = −iα = 0.

We now turn to the non-abelian gauge theory and again we focus on the U(N) or

SU(N) vector multiplet. The localization locus (4.48) is

A =


(
β +

τ1

τ2
α

)
dχ , for 0 ≤ η < η− ,

αdϕ+ βdχ , for η > η+ .

(4.73)

and σ = −D
L = 0. The evaluation of the non-abelian Chern-Simons term on the flat

connection is given in [52] when τ1 = 0. Reproducing their computation we find

ik

4π

∫
Tr

[
A ∧ dA− 2i

3
A ∧A ∧A

]∣∣∣
τ1=0

= πikτ2Tr[αβ] . (4.74)

To include the τ1 dependence, we can go to the coordinates (χ, ϕ̃) ≡ (χ, ϕ − τ1
τ2
χ) which

obey the periodicities of the straight torus, (χ, ϕ̃) ∼ (χ, ϕ̃ + 2π) ∼ (χ + 2πτ2, ϕ̃), and use

the computation at τ1 = 0,

i

4π

∫
Tr

[
A ∧ dA− 2i

3
A ∧A ∧A

]
= πiτ2Tr[α̃β̃] = πiτ2Tr

[
α

(
β +

τ1

τ2
α

)]
, (4.75)

where we inserted the flat connection parameters α̃, β̃ in the (χ, ϕ̃) coordinates.

The classical actions and their associated boundary terms, are easily evaluated:

SYM = 0 , Sbdry
YM = 0 , (4.76)

SCS = πikτ2Tr

[
α

(
β +

τ1

τ2
α

)]
, (4.77)

Stot
CS = πkτ2Tr

[
− 1

2
(α+ iβ)2 + 2α(α+ iβ) +

iτ

τ2
α2

]
+O(e−2η0) , (4.78)

SFI = 0 , (4.79)

Stot
FI = 4π2τ2ξLTr

[
1

2
(α+ iβ)− α

]
+O(e−2η0) . (4.80)
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The classical contributions with the constraint on asymptotics (4.20), 2A(0)
z̄ = α+ iβ = 0,

become

Non-abelian theory, α+ iβ = 0 :

ZYM,locus = 1 , ZCS,locus = eiπkτTr[α2] , ZFI,locus = e−4π2τ2ξLTr[α] = 1 ,
(4.81)

where in the last equality we have used that α is traceless, which is part of the locus

conditions.

We can also consider the second choice of asymptotics (4.21), that we encountered

in our analysis, namely 2A(0)
z = α − iβ = C, with C a constant Cartan-valued algebra

element. For simplicity we consider C = 0. The classical contribution simplifies in this

case as well:

Non-abelian theory, α− iβ = 0 :

ZYM,locus = 1 , ZCS,locus = eiπkτ̄Tr[α2] , ZFI,locus = 1 .
(4.82)

For the chiral multiplet, the localization locus is

φ = F = 0 , (4.83)

and the classical action (3.38) and the superpotential terms (3.54) are vanishing

Schi = 0 , Zchi,locus = 1 . (4.84)

4.4 BPS Wilson loops

Our set-up easily generalizes to the computations of (the vev of) supersymmetric Wilson

loop operators, which are defined in terms of a representation R of the gauge group as,

WR = TrR P exp

∮
C
dt
(
iAµẋµ + σL|ẋ|

)
, (4.85)

where TrR the trace in the representation R, and C is a closed integration cycle

parametrized by t ∈ [0, 2π]. The Wilson loop can preserve some supercharges when the

integration cycle C is embedded appropriately in the bulk geometry. The supersymmetry

invariance under the localization supercharge Q leads to the constraints

0 = Q
(
iAµẋµ + σL|ẋ|

)
=

1

2

(
Λ0(K̇ + L|ẋ|) + Λ−Ṗ + Λ−

˙̃
P
)
,

⇒ K̇ − L|ẋ| = Ṗ =
˙̃
P = 0 ,

(4.86)

where Ẋ ≡ ẋµXµ for X = K,P, P̃ . These constraints are solved if and only if the loop is

placed at the origin of the H3
τ space,

C = {(η = 0, χ = τ2t); t ∈ [0, 2π]} . (4.87)

The vev of the BPS Wilson loop can be computed using the supersymmetric localiza-

tion technique, in the same way as the partition function, with the extra insertion in the

integrand of the evaluation of the loop on the localization locus,15

〈WR〉 =

∫
QV [φ0]=0

Dφ0WR[φ0] e−Sclass[φ0] Zone−loop[φ0] . (4.88)

15We choose not to normalize by the partition function.
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On the vector multiplet locus (4.38), (4.48), the Wilson loop evaluates to

WR[α, β] = TrR e
2πi
(
τ1α+τ2β

)
=
∑
w∈R

e2πi
(
τ1w.a+τ2w.b

)
, (4.89)

where the sum is over the weights w of the R, which is a representation of U(N) here, and

w.a ≡
∑N

i=1wiai and similarly for w.b.

5 One-loop determinants

The remaining piece to compute in our formula (4.28), (4.88) for the exact functional inte-

gral is the one-loop determinant of the deformation operator
∫
d3x
√
g QV (4.29) around the

localization locus. We will focus on the chiral multiplet one-loop determinant and present

three methods to compute it. We will consider the vector multiplet more briefly at the end

of the section. These methods have been used in computations of one-loop determinants

on compact space, but their application to the non-compact space H3
τ encounters some

obstacles, that will require extra assumptions or prescriptions for each of them.

The first method relies on an index theorem. The second method is based on boson-

fermion mode cancellations, counting the contribution of unpaired modes. The complica-

tions in both these approaches come from the non-compactness of the space. The third

method relies on heat kernel determinant computations which is well-suited to the Eu-

clidean AdS3 background. In this case the difficulty arises from the fact that the method

does not preserve supersymmetry manifestly. We will provide a regularization prescription,

which we argue is compatible with supersymmetry. In the end we obtain the same final

answer for the one-loop determinant from all three methods.

The one-loop determinant is computed for the U(N) gauge theory, around the local-

ization locus (4.57), (4.38), (4.53),

φ = F = 0 , σ = D = 0 , Fµν = 0 , (5.1)

and vanishing fermions. The flat connections on H3
τ are given by (4.48) and depend on the

asymptotic data α, β. In order to simplify the computation, we choose in this section a

specific gauge for the background gauge field (or localization locus gauge field configura-

tion), namely

A =

(
β +

τ1

τ2
α

)
dχ . (5.2)

To reach this gauge from the flat connection (4.48), one has to perform a gauge transfor-

mation whose effect is to send η− to infinity. This is not compatible with the asymptotics

of the gauge field that we discussed in section 4 (in the Chern-Simons theory) and such a

gauge transformation is not allowed in the full theory, however for the purpose of comput-

ing the one-loop determinant of the chiral multiplet, we can safely ignore the asymptotics

chosen for the vector multiplet fields and simply regard A as a background. The chiral

multiplet Lagrangian QVchi is invariant under gauge transformations, even those affecting

the asymptotics, so we can go to the gauge where the flat connection is given in (5.2).
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We denote the quadratic fluctuations of the fields around their locus by the same name

(φ,B,C, · · · ). The fluctuations of a chiral multiplet transforming in the representation R
of the gauge group can be decomposed into a sum of components labeled by the weights

of R, and the one-loop determinant factorizes into a product over the weights w of R,

Zone−loop
chi =

∏
w∈R

Zone−loop
abelian (w.A) , (5.3)

where Zone−loop
abelian (w.A) is the determinant of a chiral multiplet charged under the abelian

gauge field w.A ≡ wαdϕ + wβ dχ ≡ (
∑N

i=1wiai)dϕ + (
∑N

i=1wibi)dχ. We will therefore

concentrate on the computation of the contribution of a single weight w, that we denote

more simply Zone−loop
chi, w . As before we will assume R-charge r and real mass m.

5.1 Gauge-fixing

The index theorem that we wish to use to compute the one-loop determinant relies on

the supersymmetry algebra. So far we have only given the algebra (3.1), in which the

vector multiplet fields appear on the right-hand side. The proper super-algebra arises

only after introducing the ghosts for the gauge fixing and combining the supersymmetry

transformations with BRST transformations.

This gauge fixing procedure is performed on fluctuations of the fields around a given

localization locus configuration A = Aloc (5.2) and σ = 0. Following standard recipes (see

e.g. [3, 8, 35]) we introduce the Grassmann-odd scalar fields c, c̃ and the Grassmann-even

scalar b, valued in the gauge algebra g. They are all assigned vanishing R-charge. We then

define the BRST transformation QB by

QBc = ic2 =
i

2
[c, c] , QB c̃ = b , QBb = 0 ,

QBX = δgauge(c) X , (5.4)

where X denote a generic field of the vector or chiral multiplet and δgauge(c) is the

infinitesimal gauge transformation parametrized by c, for instance δgauge(c)σ = i[c, σ],

δgauge(c)Aµ = Dµc.
16 The transformations of the ghosts fields under the supercharge Q

are chosen to be

Qc =
1

2

[
− σ + iKµ(Aloc

µ −Aµ)
]

=
1

2
(Σloc − Σ) ,

Qc̃ = 0 , Qb = − i
2
Lloc
K c̃ ,

(5.5)

where Lloc
K = KµDloc

µ is covariantized with respect to Aloc instead of A (and covariant

with respect to the R-symmetry connection as before). These choices ensure that the new

supercharge Q̂ ≡ Q+QB used for localization obey the modified algebra relation

Q̂2 = − i
2
Lloc
K +

i

2

qR
L
, (5.6)

16On a fermionic adjoint valued field we have δgauge(c)λ = i[c, λ] ≡ icαλβ [tα, tβ ], with tα the g generators.
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on all fields X′ ≡ X−Xloc, fluctuating around the localization locus, ghosts included. The

Q̂ transformation of the ghosts fields c, c̃ are

Q̂c = −1

2
(Σ− Σloc) + ic2 , Q̂c̃ = b .

The localization computation is accordingly modified by replacing the deformation

term QV by the Q̂-exact term

Q̂(V + Vghosts) = QV + Q̂Vghosts ,

Vghosts =

∫
d3x
√
gTr

[
c̃
(
G(A−Aloc) +

κ

2
b
)]

,

Q̂Vghosts =

∫
d3x
√
gTr

[
b
(
G(A−Aloc) +

κ

2
b
)

+ ferm.

]
,

(5.7)

where G(A − A0) is the gauge fixing functional. A standard choice is G(A − Aloc) =

Dlocµ(Aµ − Aloc
µ ), and κ is an arbitrary positive number. The result of the path integral

does not depend on the choice of κ or G [3].

It will be useful to provide the final algebra, including the central deformation by a

flavor background, for a scalar field of gauge charge w, R charge qR and flavor charge qF ,

fluctuating around the localization locus (5.2) given by Aloc =
(
β + τ1

τ2
α
)
dχ:

Q̂2 =
1

L

[
− 2∂z + i2qG.Aloc

z + qR
τ

2τ2
+ iqF (mL+ 2vz)

]
≡ H , (5.8)

where qG, qR and qF are the gauge, R-symmetry and flavor charges respectively, and uz :=
1
2(uϕ + iuχ) for any vector uµ. In the gauge (5.2) and with 2vz = iβF , we have

H =
1

L

[
− 2∂z + iqG.

(
β +

τ1

τ2
α

)
+ qR

τ

2τ2
+ iqF (mL+ iβF )

]
. (5.9)

In the following we analyze the one-loop determinant of the chiral multiplet and we will

simply use the notation A for Aloc, as in (5.2), and Q for Q̂.

5.2 Index theorem

In this subsection we evaluate the super-determinant of the operator
∫
d3x
√
g QV defined in

Equation (4.29) using the Atiyah-Bott fixed point theorem. The content of this theorem [3,

33, 55, 56] is that, using the supersymmetry algebra (5.8), one can reduce the one-loop

calculation to the spacetime fixed points of the operator H. Writing the quadratic part

of the operator QV as a sum of bosonic and fermionic terms with quadratic operators Kb

and Kf respectively, we want to compute the quantity

Z1-loop =

(
detKf

detKb

) 1
2

. (5.10)

The square root appears because we take the determinant over real degrees of freedom.

This will be important, since in the following, we will regard the fields φ, φ̃ (and B, B̃, . . . )
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as independent. We focus on the chiral multiplet determinant in this subsection and we

deal with the vector multiplet determinant in a later subsection.

The first step is to organise the fields of the chiral multiplet into two sets: the elemen-

tary fields (Xbos; Xferm) = (φ, φ̃;B, B̃), and their Q-superpartners (QXbos;QXferm). The

deformation term Vchi can be written as follows:

Vchi = −
(
QB̃ −

√
2iLP φ̃

)
B − B̃

(
QB −

√
2iL

P̃
φ
)

+

(
QC̃ +

√
2iLK φ̃−

√
2
i

L
φ̃

)
C + C̃

(
QC +

√
2iLKφ+

√
2
i

L
φ

)
, (5.11)

where we have used the twisted fermionic variables (B, B̃;C, C̃) of the chiral multiplet as

discussed in section 3.2.1. In terms of the elementary fields and their Q-superpartners,

we have:

Vchi = (QXbos,Xferm)

(
D00 D01

D10 D11

)(
Xbos

QXferm

)
, (5.12)

with

D00 =

(
0 iLK − i

(
m+ r−1

L

)
iLK + i

(
m+ r−1

L

)
0

)
, D01 =

(
0 0

0 0

)
,

D10 =

(
0 i

√
2LP

i
√

2L
P̃

0

)
, D11 =

(
0 −1

−1 0

)
. (5.13)

The above expression of Vchi leads directly to

QVchi = (Xbos, QXferm)

(
H 0

0 1

)(
D00 D01

D10 D11

)(
Xbos

QXferm

)

− (QXbos,Xferm)

(
D00 D01

D10 D11

)(
1 0

0 H

)(
QXbos

Xferm

)
.

(5.14)

The ratio of the determinants of the kinetic operators of the fermions and bosons can be

expressed in terms of a similar ratio of the operator H:

detKf

detKb
=

detXfer
H

detXbos
H

=
detCokerD10

H
detKerD10

H
. (5.15)

The first equality follows from (5.14). The second equality is a consequence of the fact

that the operator D10 pairs all modes of the elementary fields (Xbos; Xferm) with non-zero

eigenvalues. The right-hand side of (5.15) can be computed easily from the H-equivariant

index (the variable t below is purely auxiliary and the result does not depend on it):

ind(D10)(t) := TrKerD10
e−iHt − TrCokerD10

e−iHt . (5.16)

Indeed, the expansion of the index

ind(D10)(t) =
∑
n

a(n) e−iλnt (5.17)
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contains the eigenvalues λn of H and their indexed degeneracies a(n), and we can read off

the ratio of determinants in (5.15) as:

detXfer
H

detXbos
H

=
∏
n

λ−a(n)
n . (5.18)

This infinite product, of course, is understood to be regulated, as we discuss below.

So far the discussion was general. Now we specify to the case of interest in this paper

which is a three-dimensional background with a U(1) × U(1) action. We use the Atiyah-

Bott theorem for the case that there is a G = H ×K−action on the space with H acting

freely. ([55], section 3). This has been discussed recently in [35] for the case S2×S1. Here

our space of interest is X := H3/Z with the metric (2.1) and the identifications (2.6). In

terms of the coordinates (χ′ = χ, ϕ′ = ϕ− τ1
τ2
χ), the periodicity conditions are:

(χ′, ϕ′) ∼ (χ′, ϕ′ + 2πn), (χ′, ϕ′) ∼ (χ′ + 2πnτ2, ϕ
′), n ∈ Z . (5.19)

The action of H and K on the coordinates are generated by:

H : ∂χ′ = ∂χ +
τ1

τ2
∂ϕ , K : ∂ϕ′ = ∂ϕ . (5.20)

The group H acts freely on X. The right-hand side of the supersymmetry algebra (5.8)

is a combination of generators of H and K, and gauge, R-symmetry, and flavor symmetry

transformations.

There are two technical points that are important in this discussion of the index

theorem. Firstly, our space is non-compact with the fields reaching all the way to the

conformal boundary at infinity as discussed in section 4.1. It is not clear that the in-

dex theorem as stated in [55] applies as such to our case.17 The second point is that

the operator D10, whose index we compute, should be transversally elliptic on X with

respect to the H-action. This means that the determinant of the symbol σ(D10), ob-

tained by replacing the partial derivatives ∂µ → ipµ, should not vanish for non-zero mo-

menta transverse to the vector field generated by H. Such an operator should reduce to

an elliptic operator on the quotient space X/H. That this is true can be verified from

the expression (5.13) for D10. Upon replacing the partial derivatives ∂µ → ipµ, we find

that − det(σ(D10)) = p2
η+(coth η pϕ+i tanh η pχ)2. The determinant vanishes when pη = 0

and coth η pϕ + i tanh η pχ = 0. This shows that it is not elliptic, because at η = 0 the

equation is satisfied for arbitrary pχ. When the momentum parallel to the H-action van-

ishes, i.e. pχ′ = pχ + τ1
τ2
pϕ = 0, we have that − det(σ(D10)) = p2

η + (coth η− i τ1τ2 tanh η)2 p2
ϕ.

This determinant vanishes only when pη = pϕ = 0. In other words, the operator indeed

reduces to an elliptic operator on the quotient space X/H.

17There is a small discussion of non-compact spaces in [55], Chapter 3, but this involves a situation where

one can excise a region of the space so as to be left with an effectively compact space. This is not, a priori,

our situation, and we clearly need to deal with the boundary conditions on the various fields carefully.

Here we use boundary conditions consistent with supersymmetry, as discussed at length in section 4.1. We

then apply the compact version of the index theorem as such, assuming that there are no contributions

associated to the boundary. This issue clearly needs a more rigorous mathematical treatment.
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In such cases the index is equal to a sum over representations of H:

ind(D10) =
∑

R = Rep(H)

ind(DR)χR(h) , (5.21)

where DR is the operator that is induced by D10 on (X × R)/H, and χR is the character

of the representation. Noting that the radius of the non-contractible circle is Rχ′ = τ2L,

we can identify the group element h = exp(−it/τ2L).

Now, the operator DR is independent of the representation R, since the group H is

abelian, and so we denote it by DR = D′. The representations of H are labelled by n2 ∈ Z.

Thus we have:

ind(D10) =
∑
n2∈Z

ind(D′)hn2 . (5.22)

Having thus factored out the H-dependence, the problem reduces to computing the equiv-

ariant index of the operator D′ on the space X/H, with respect to the following combined

action of K and the internal symmetries:

H′ ≡ H− (−i)
L

∂χ′ =
1

L

(
i
τ

τ2
∂ϕ + i2qG.Az +

qRτ

2τ2
+ iqF (mL+ iβF )

)
. (5.23)

The operator H′ acts on the quotient space X/H as a translation of ϕ. This action,

that we denote by x 7→ x̃ = e−iH
′tx, has a fixed point at the center η = 0. The index of

the operator D′ reduces to the fixed points of the manifold X/H under the action of H′:

ind(D′)(t) =
∑
{x|x̃=x}

(
TrXbos

− TrXfer

)
e−iH

′t

det(1− ∂x̃/∂x)
. (5.24)

The calculation is simplified by going to complex coordinates in which the metric on

the space X/H is

ds2 = L2(dη2 + sinh2 η dϕ2) = L2 4dwdw̄

(1− ww̄)2
. (5.25)

At the fixed point w = 0, the action of the operator e−iH
′t on the spacetime coordinates

is w 7→ exp( tτ
Lτ2

)w. Therefore, the determinant factor in the denominator of (5.24) is,

with p = e−it/L:

det(1− ∂x̃/∂x) = (1− p−iτ/τ2) (1− piτ/τ2) . (5.26)

We now need the charges of the elementary fields (Xbos; Xferm) = (φ, φ̃;B, B̃) at the

fixed point under the operator H′, which reduces to

H′ |η=0 =
1

L

(
i
τ

τ2
∂ϕ − qG.

(
β +

τ1

τ2
α

)
+
qRτ

2τ2
+ iqF (mL+ iβF )

)
. (5.27)

All the fields in the twisted variables are scalars so they are neutral under the first term ∂ϕ.

The charges of (φ, φ̃) are ∓(iµ+ rτ
2τ2

)/L, and those of (B, B̃) are ∓(iµ+ (r−2)τ
2τ2

)/L, respec-

tively, where18

µ = mL+ iβF + iw.

(
β +

τ1

τ2
α

)
. (5.28)

18We remind the reader that we are focusing here on the contribution to the one-loop determinant of the

fields with gauge charge/weight w.
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The index of the operator D′ is thus:

ind(D′)(t) =
p
µ− irτ

2τ2 + p
−µ+ irτ

2τ2 − pµ−
i(r−2)τ

2τ2 − p−µ+
i(r−2)τ

2τ2

(1− p−iτ/τ2)(1− piτ/τ2)

=
p
µ− irτ

2τ2

1− p−iτ/τ2
− p

−µ+
i(r−2)τ

2τ2

1− p−iτ/τ2

=
∞∑

n1=0

pµ−i(r/2+n1)τ/τ2 − p−µ−i(n1+1−r/2)τ/τ2 , (5.29)

where we expanded in powers of p−iτ/τ2 = e
− tτ
Lτ2 . Putting together Equations (5.22)

and (5.29) we obtain the result:

ind(D10)(t) =
∑
n2∈Z
n1≥0

e
(− it

L
)(µ−i (n1+r/2)τ

τ2
+i

n2
τ2

) − e
(− it

L
)(−µ−i (n1+1−r/2)τ

τ2
+i

n2
τ2

)
. (5.30)

From this expression, we read off the one-loop determinant:

[1] Z1-loop
chi, w =

∏
n2∈Z
n1≥0

−(n1 + 1− r
2) iττ2 + in2

τ2
− µ

−(n1 + r
2) iττ2 + in2

τ2
+ µ


1/2

. (5.31)

Finally we make some comments about the expansion of expression (5.29) for the index.

In the above treatment we expanded it in powers of p−iτ/τ2 = e
− tτ
Lτ2 . Alternatively, if we

expand in powers of piτ/τ2 = e
tτ
Lτ2 , we would obtain:

ind(D′)(t) = −p
µ− i(r−2)τ

2τ2

1− piτ/τ2
+

p
−µ+ irτ

2τ2

1− piτ/τ2
=

∞∑
n1=0

−pµ+i(n1+1−r/2)τ/τ2 + p−µ+i(n1+r/2)τ/τ2 ,

(5.32)

leading to

[2] Z1-loop
chi, w =

∏
n2∈Z
n1≥0

(n1 + 1− r
2) iττ2 − i

n2
τ2

+ µ

(n1 + r
2) iττ2 − i

n2
τ2
− µ


1/2

, (5.33)

which is actually the same as (5.31). If we try instead a mixed (and a priori unnatural)

expansion in piτ/τ2 and p−iτ/τ2 for the two terms in (5.29), for instance

ind(D′)(t) =
p
µ− irτ

2τ2

1− p−iτ/τ2
+

p
−µ+ irτ

2τ2

1− piτ/τ2
=

∞∑
n1=0

pµ−i(n1+r/2)τ/τ2 + p−µ+i(n1+r/2)τ/τ2 , (5.34)

we obtain

[3] Z1-loop
chi, w =

∏
n2∈Z
n1≥0

1

(n1 + r
2) iττ2 + in2

τ2
− µ

, (5.35)
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up to an irrelevant overall phase. The remaining possible option is

ind(D′)(t) = − p
µ− i(r−2)τ

2τ2

1− piτ/τ2
− p

−µ+
i(r−2)τ

2τ2

1− p−iτ/τ2

=
∞∑

n1=0

−pµ+i(n1+1−r/2)τ/τ2 − p−µ−i(n1+1−r/2)τ/τ2 , (5.36)

which gives:

[4] Z1-loop
chi, w =

∏
n2∈Z
n1≥0

((
n1 + 1− r

2

)
iτ

τ2
+ i

n2

τ2
+ µ

)
. (5.37)

These last two choices give answers different from (5.31), with only bosonic or only fermionic

net contributions to the one-loop determinant. As it is natural to expand a given mero-

morphic function at one point only in one expansion parameter, we arrive at the conclusion

that only piτ/τ2 or only p−iτ/τ2 are correct, leading both to (5.31). We will see that this

ambiguity of the four different expansions exists also in the method that we will discuss in

the next section, and there is a different principle which singles out the same result (5.31).

5.3 Unpaired eigenmodes

The one-loop determinant can be alternatively computed via the unpaired eigenmodes

method, which can be seen as a complementary point of view on the result of the index

computation. The idea is to exploit the large cancellation between fermion and boson

eigenvalues, leaving only the contributions of unpaired eigenvalues. It has been used for

instance in [36–38]. The advantage of this method is that it gives us the knowledge of the

actual modes which contribute to the final result, and therefore gives us more insights into

the physics behind the computation.

The first part of the calculation is identical to that of the previous computation, and

therefore we will take as our starting point the formula (5.15)

Z1-loop
chi, w =

(
detXfer

H
detXbos

H

)1/2

=

(
det

B,B̃
H

det
φ,φ̃
H

)1/2

, (5.38)

where the determinants are over all bosonic modes φ, φ̃ and fermionic modes B, B̃ respec-

tively. We wish now to work out the pairing between bosonic and fermionic modes, which

results in eigenvalues cancellations between the numerator and the denominator. Impor-

tantly, we will consider the fields φ,B and φ̃, B̃ as independent and treat them separately.

First we observe that the operators LP and L
P̃

commute with H:

[H,LP ] = 0 , [H,L
P̃

] = 0 . (5.39)

This follows from writing H as H = −i(LK − QR 1
L − QFm), with QF the flavor charge

operator, the commutation relations (2.17), and the commutation relations with the R-

charge operator: [QR,LP ] = 2LP , [QR,LP̃ ] = −2L
P̃

. The commutation relations (5.39)
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imply that LP and L
P̃

can be used as operators pairing bosonic and fermionic modes of

appropriate R-charges with the same H eigenvalues.19 For instance, for a mode φ with

eigenvalue λ, Hφ = λφ, we have a corresponding mode

B = L
P̃
φ, HB = λB . (5.40)

The contribution of this pair (φ,B) to the one-loop determinant (5.38) is trivial (equal to

one), since the fermionic and bosonic eigenvalues cancel each other. The net contribution

to (5.38) is reduced to the φ modes which have no fermionic partner, namely the modes

obeying L
P̃
φ = 0, and the B modes which have no bosonic partner, namely the modes

B 6= L
P̃
φ for any φ. These are the definitions of the kernel and cokernel of L

P̃
respectively.

The net contribution to the one-loop determinant of the φ and B modes is then

[a] (φ,B) →

(∏
B∈CokerL

P̃
λB∏

φ∈KerL
P̃
λφ

)1/2

. (5.41)

Alternatively we can think of pairing the φ and B fields using the LP operator, and associate

to a mode B with eigenvalue λ, the mode

φ = LPB, Hφ = λφ . (5.42)

This leads to a net contribution to the one-loop determinant of φ and B of the form

[b] (φ,B) →

( ∏
B∈KerLP λB∏
φ∈CokerLP λφ

)1/2

. (5.43)

Similarly we can pair the fields φ̃ and B̃ using either L
P̃

or LP , namely φ̃ = L
P̃
B̃ or

B̃ = LP φ̃, leading to a net contribution to the one-loop determinant of φ̃ and B̃ of the form

[a′] (φ̃, B̃) →

( ∏
B̃∈KerL

P̃
λ
B̃∏

φ̃∈CokerL
P̃
λ
φ̃

)1/2

, (5.44)

or

[b′] (φ̃, B̃) →

(∏
B̃∈CokerLP λB̃∏
φ̃∈KerLP λφ̃

)1/2

. (5.45)

In previous studies of one-loop determinants from the unpaired eigenmodes method, for

instance for the one-loop determinant on the three-sphere [36, 37], the pairing operators

LP and L
P̃

are the adjoint of each other, implying the identities CokerLP = KerL
P̃

and CokerL
P̃

= KerLP . The two choices of pairing [a] and [b] described above are then

equivalent, and similarly for the two choices [a′] and [b′]. In addition, the eigenvalues λφ of

the φ modes in KerL
P̃

are paired with the opposite egenvalues λ
φ̃

= −λφ of the complex

conjugate φ̃ modes in KerLP , so that, up to a sign, we have
∏
φ∈KerL

P̃
λφ =

∏
φ̃∈KerLP λφ̃.

The final one-loop determinant in these cases reduces to Z = (detKerL
P̃
H/ detKerLP H).

19We remind the reader that the fields (φ, φ̃, B, B̃) have R-charge (r,−r, r − 2, 2 − r) respectively, and

that the LP and LP̃ operators raise, and respectively lower, the R-charge by 2.
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To get an idea of which modes contribute to the one-loop determinant in our case, we

study now the kernels and cokernels of LP and L
P̃

explicitly.

A straightforward computation shows that the modes X satisfying L
P̃
X = 0 and the

modes Y satisfying LPY = 0, of R-charge qR, flavor charge qF and gauge charge w, and

their H eigenvalues, are locally given by20

L
P̃
X = 0 : X(η, χ, ϕ) = e−in1ϕ eipXχ (sinh η)n1 (cosh η)−i(pX−s) ,

with λX = pX − s + i(qFm+ qR + n1) ,

LPY = 0 : Y (η, χ, ϕ) = ein1ϕ eipY χ (sinh η)n1 (cosh η)i(pY −s) ,

with λY = pY − s + i(qFm+ qR − n1) ,

(5.46)

where we have set L = 1, and with s ≡ qFβF + w.
(
β + α τ1τ2

)
− qR τ̄

2τ2
. Periodicity in the ϕ

direction then requires n1 ∈ Z. Periodicity under the quotient (2.6) imposes, for a given

n1 ∈ Z, the quantization of pX and pY ,21

pX =
n2 + n1τ1

τ2
, n2 ∈ Z , pY = −n2 + n1τ1

τ2
, n2 ∈ Z . (5.47)

We therefore obtain modes labeled by two integers (n1, n2) ∈ Z2. Regularity (or normal-

izability) of the modes at the origin of the space η = 0 leads us to exclude the modes

with n1 < 0. If we wish to exclude also the modes which are not square normalizable,∫
|X|2 <∞,

∫
|Y |2 <∞, then, for the R-charge r lying in a canonical range 0 < r < 2, we

would exclude all the modes with n1 ≥ 0, leaving no modes at all in the kernels. On the

other hand if we allow for the modes diverging at infinity, then the kernels of L
P̃

and LP
are spanned by the Xn1,n2 modes and Yn1,n2 modes respectively, with (n1, n2) ∈ Z≥0 × Z.

This leads to∏
φ∈Ker′L

P̃

λφ =
∏
n2∈Z
n1≥0

((
n1 +

r

2

)
τ

τ2
+
n2

τ2
+ iµ

)
=

∏
φ̃∈Ker′LP

(−λ
φ̃
) ,

∏
B∈Ker′LP

(−λB) =
∏
n2∈Z
n1≥0

((
n1 + 1− r

2

)
τ

τ2
+
n2

τ2
− iµ

)
=

∏
B̃∈Ker′L

P̃

λ
B̃
,

(5.48)

where Ker′ indicates that we count unpaired modes which diverge at infinity.

We now study the cokernels and ask first the question whether there are modes which

cannot be written in the form L
P̃
X. It is enough to focus on a basis of fields with a

given momentum (n1, n2) ∈ Z2, −i∂ϕXn1,n2 = n1Xn1,n2 , −i∂χXn1,n2 = pXXn1,n2 , with

pX = −n2+n1τ1
τ2

. We find that for any field X̌n1,n2 , there is a corresponding local mode

Xn1+1,n2 such that X̌n1,n2 = L
P̃
Xn1+1,n2 , given by

Xn1+1,n2(η) = −
∫ η

η0

dη′
(

sinh η′

sinh η

)n1
(

cosh η′

cosh η

)i(pX−s)
e
i
(
ϕ− τ1

τ2
χ
)
X̌n1,n2(η′) . (5.49)

20The X modes in Ker LP̃ can be modes of the fields φ or B̃. The Y modes in Ker LP can be modes of

the fields φ̃ or B.
21Here the integers n1, n2 characterizing the mode X are unrelated to the integers n1, n2 characterizing

the mode Y .
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The above mode may not be well-defined, or normalizable, at η = 0 for any choice of η0.

Since X̌n1,n2 is a normalizable mode at η = 0, we have X̌n1,n2(η) ∼ ηx, as η → 0, with

x > −1. An analysis of the behavior Xn1,n2 near η = 0 reveals that, for n1 + x ≥ −1, the

choice η0 = 0 leads to a well-defined/normalizable mode at the origin, while for n1+x < −1,

any constant η0 > 0 is enough to enforce normalizability at the origin.

If we choose to include non-normalizable modes of X in the allowed set of modes,

then we conclude that there is always a choice of η0 such that Xn1+1,n2 is well-defined and

therefore the cokernel of L
P̃

is empty. On the other hand if we require Xn1+1,n2 to be also

normalizable at infinity η → ∞, then we would find modes X̌n1,n2 for which Xn1+1,n2 is

not well-defined, and the cokernel of L
P̃

would not be empty. Exhibiting a basis of modes

of the cokernel is this case requires more work.

Similarly we find that if we accept non-normalizable modes (at infinity) in the spec-

trum, then the cokernel of LP is empty, and if we do not accept these modes, then it is

not empty.

Gathering all the results, we find that depending on which normalizablity condition

(at infinity) that we impose on the various fields, we may obtain different answers. To

select these normalizability conditions, we assume that the following identities hold:

CokerXLP = KerXLP̃ , CokerXLP̃ = KerXLP . (5.50)

Here (Co)KerX denotes the (co)kernel over the field X. These identities are true in the

standard situation when LP and L
P̃

are adjoint operators.22 More importantly, they ensure

that the contribution from φ,B computed in the methods [a] and [b] give the same answer,

and similarly for the contribution of φ̃, B̃ computed with the methods [a′] and [b′].

This leaves us with four possible choices of normalizability:

• φ, B̃ non-normalizable, φ̃, B normalizable: We have KerφLP̃ 6= ∅, since φ can be

non-normalizable, Ker
φ̃
LP = ∅, since φ̃ is normalizable, CokerBLP̃ = ∅, since we

allow for pairing B with non-normalizable φ, and Coker
B̃
LP 6= ∅, since we only allow

for pairing B̃ with normalizable φ̃, leaving some modes unpaired in the cokernel.

Similarly we also have KerBLP = ∅, Ker
B̃
L
P̃
6= ∅, CokerφLP 6= ∅, Coker

φ̃
L
P̃

= ∅.
This is compatible with (5.50) for each field. Assuming that (5.50) holds, we obtain,

from any possible choice of pairings, using (5.48) for non-empty kernels,

Z1-loop
chi, w =

(∏
B̃∈Ker′L

P̃
λ
B̃∏

φ∈Ker′L
P̃
λφ

)1/2

=

∏
n2∈Z
n1≥0

(n1 + 1− r
2) ττ2 + n2

τ2
− iµ

(n1 + r
2) ττ2 + n2

τ2
+ iµ


1/2

, (5.51)

up to an overall phase
∏

(±i) which we drop.

22In our situation the operators LP and LP̃ are not the adjoint of each other, at least under the naive

hermitian conjugation. One may define a ‡ operation relating LP and LP̃ , inherited from the Wick rotation

of the Lorentzian theory. Such a complex conjugation would act on the coordinate χ, as well as on the

parameter τ1, as if they were purely imaginary. It may be possible to use these observations to justify (5.50)

more rigorously.
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• φ̃, B non-normalizable, φ, B̃ normalizable: this is the inverse case. The non-

empty spaces are Ker
φ̃
LP , CokerBLP̃ , KerBLP and Coker

φ̃
L
P̃

, which is compatible

with (5.50). Assuming that (5.50) holds, and using (5.48), the partition function

evaluates to

Z1-loop
chi, w =

(∏
B∈Ker′LP λB∏
φ̃∈Ker′LP λφ̃

)1/2

=

∏
n2∈Z
n1≥0

(n1 + 1− r
2) ττ2 + n2

τ2
− iµ

(n1 + r
2) ττ2 + n2

τ2
+ iµ


1/2

, (5.52)

up to an overall phase. This is the same answer as with the first choice of normaliz-

ability.

• φ, φ̃ non-normalizable, B, B̃ normalizable: the non-empty spaces are Ker
φ̃
LP ,

KerφLP̃ , CokerφLP and Coker
φ̃
L
P̃

. In this case the one-loop determinant receives

contributions only from the bosonic modes,

Z1-loop
chi, w =

1(∏
φ∈Ker′L

P̃
λφ
∏
φ̃∈Ker′LP λφ̃

)1/2 =
∏
n2∈Z
n1≥0

1

(n1 + r
2) ττ2 + n2

τ2
+ iµ

. (5.53)

• B, B̃ non-normalizable, φ, φ̃ normalizable: the non-empty spaces are KerBLP ,

Ker
B̃
L
P̃

, Coker
B̃
LP and CokerBLP̃ . In this case the one-loop determinant receives

contributions only from the fermionic modes,

Z1-loop
chi, w =

( ∏
B̃∈Ker′L

P̃

λ
B̃

∏
B∈Ker′LP

λB

)1/2

=
∏
n2∈Z
n1≥0

((
n1 + 1− r

2

)
τ

τ2
+
n2

τ2
− iµ

)
.

(5.54)

Notice that the four results given above are precisely matching the four re-

sults (5.31), (5.33), (5.35), (5.37), obtained from the four possible expansions of the index.

We can therefore associate to each index result a certain choice of normalizability for the

fields φ, φ̃, B, B̃, and provide the unpaired modes contributing to the one-loop determinant

in each case.

In the index computation, we discarded the last two results above, selecting purely

bosonic or purely fermionic unpaired modes, on the basis that they required unnatural

expansions of the index. Here we may discard these choices of normalization on the physical

ground that allowing both φ and φ̃ non-normalizable modes (divergent at infinity), or B

and B̃ non-normalizable modes, would make the action of the theory diverge. Instead,

allowing diverging modes for φ, but not φ̃, or diverging modes of B, but not B̃, does not

lead to an obvious contradiction, since the diverging modes do not have conjugate modes

and therefore do not seem to appear in the action.

We conclude that only the two first choices above are physical. They both lead to the

same result (5.51), in agreement with the index computation (5.31). The main difference

with previous unpaired eigenmodes computations in the literature is the asymmetric treat-

ment of the fields φ and φ̃, or B and B̃. The final result (5.31) contains ill-defined infinite

products, that we need to regularize.
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5.4 Regularization

To regularize the infinite product (5.31) we notice that it has zeros at µ = in2
τ2
− iτ
τ2

(n1+1− r
2),

with n2 ∈ Z and n1 ∈ Z≥0, and it has poles at µ = − in2
τ2

+ iτ
τ2

(n1 + r
2), with n2 ∈ Z and

n1 ∈ Z≥0. A regularized expression is then given by

Zone−loop
chi, w = eF

(∏
n≥0

1− e2π(τ2µ+i(n+1− r
2

)τ)

1− e−2π(τ2µ−i(n+ r
2

)τ)

)1/2

= eF

(∏
n≥0

1− qn+1− r
2 y−wy−1

F

1− qn+ r
2 ywyF

)1/2

,

= eF
(q1− r

2 y−wy−1
F ; q)

1/2
∞

(q
r
2 ywyF ; q)

1/2
∞

,

(5.55)

with q = e2πiτ , y = e−2πi(τ1α+τ2β), yF = e−2πτ2(m+iβF ) and eF a function of µ without poles

nor zeroes. The q-Pochhammer symbol appearing in the above formula is defined by

(x, q)∞ ≡
∏
n≥0

(1− xqn) . (5.56)

Let us see in more detail how to regularize the infinite product and then determine the

factor F . We regularize the product over n ∈ Z with the following formula23∏
n∈Z

(in+ x) = 2 sinh(πx) = eπx
(
1− e−2πx

)
. (5.57)

We obtain

Zone−loop
chi, w =

( ∏
n1≥0

∏
n2∈Z

in2 − iτ
(
n1 + 1− r

2

)
− τ2µ

in2 − iτ(n1 + r
2) + τ2µ

)1/2

=

( ∏
n1≥0

e−π(i(n1+1− r
2

)τ+τ2µ)
(

1− e2π(i(n1+1− r
2

)τ+τ2µ)
)

eπ(i(n1+ r
2

)τ−τ2µ)
(

1− e2π(i(n1+ r
2

)τ−τ2µ)
) )1/2

= eF

(∏
n≥0

1− e2π(i(n+1− r
2

)τ+τ2µ)

1− e2π(i(n+ r
2

)τ−τ2µ)

)1/2

,

(5.58)

with

F = −πiτ
2

∑
n≥0

(
n+ 1− r

2
− iτ2µ

τ

)
−
∑
n≥0

(
n+

r

2
+
iτ2µ

τ

) . (5.59)

Following [57], we regularize the two infinite sums separately, using the Hurwitz zeta func-

tion
∑

n≥0 (n+ x) = ζH(−1, x) = −1
2

(
x2 − x+ 1

6

)
. This leads to

F = 0 . (5.60)

The Hurwitz zeta function regularization of infinite sums has been used also in [27]. We

believe that this regularization is compatible with supersymmetry as in [57], but we do not

23This formula involves using
∏∞
n=0 n

2 = e−2ζ′(0) = 2π.
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have a first principle derivation.24 The final regularized result, for the chiral multiplet of

R-charge r and abelian flavor charge qF , in the representation R of the gauge group, is

Zone−loop
chi =

∏
w∈R

(q1− r
2 y−wy−qFF ; q)

1/2
∞

(q
r
2 ywyqFF ; q)

1/2
∞

, (5.61)

with q = e2πiτ , y = e−2πi(τ1α+τ2β), yF = e−2πτ2(m+iβF ). The result is invariant under the

shifts (4.49) and (4.50) due to large gauge transformations.

Finally we can make some comments about the “unphysical” results (5.35) and (5.37).

After regularization, they lead to one-loop determinants Z ∼ (q
r
2 ywyF ; q)−1

∞ and Z ∼
(q1− r

2 y−wy−1
F ; q)∞, respectively. We observe that, after setting τ1 = 0, these results match

the one-loop determinants of a chiral multiplet on the compact space S1 ×D2 computed

by localization in [27], with Neumann and Dirichlet boundary condition, respectively. Our

interpretation of this result is that (5.35) and (5.37) correspond to the one-loop determi-

nant on the chopped H3
τ space, namely the space truncated at a given radial distance η,

with Dirichlet or Neumann boundary conditions. This space is compact and topologically

equivalent to S1 ×D2, it is therefore plausible that the one-loop determinants on the two

spaces are identical. To confirm this picture more rigorously, we would need to revisit the

boundary conditions and one-loop determinant computations for the chopped H3
τ . The

one-loop determinant on the non-compact H3
τ is however different from those.

5.5 Heat kernel

In order to confirm the result obtained from the index theorem and unpaired eigenmodes

methods, which required some extra assumptions, we provide in this section an alternative

derivation, using heat kernels.

The eigenvalues and determinant of the Laplacian can be computed using the heat

kernel on the space of interest. In [28, 29] the heat kernels and the associated zeta func-

tions of spin s fields on hyperbolic spaces were computed. The heat kernel on thermal

AdS was found in [31, 32], relying on group-theoretic techniques and using the method

of images. Thermal AdS3 is the same geometry as H3
τ , however it does not include the

R-symmetry background gauge field necessary to preserve supersymmetry, nor the back-

ground flat connection corresponding to the locus configuration. In this section we use

the results of [32] and modify them to include the effect of the background R-symmetry

connection and flat gauge connection, to compute the one-loop determinant of the chiral

multiplet in a third way. We will find that the result (5.61) is recovered when the heat

kernel method is used with a specific regularization scheme, which we interpret as a scheme

preserving supersymmetry.

To compute the determinant and eigenvalues spectrum of the spin s Laplacian operator

on H3, which we denote ∆(s), one can consider the heat kernel K(s)(t, xµ, yµ), which is

defined by the equation

(∂t −∆(s))K
(s)(t, xµ, yµ) = 0 , (5.62)

24The alternative regularization using the Riemann zeta function leads to F = πiτ
4

(1− r) + π
2
τ2µ.
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where the Laplacian acts on the xµ variables, and with the boundary condition at t = 0,

K(s)(0, xµ, yµ) = δ3(xµ, yµ) . (5.63)

The eigenvalues λn of the Laplacian deformed by a mass term, −∆(s) + M2, are encoded

in the zeta function

ζs(M, z) =
∑
n

dn
(λn)z

, (5.64)

where n labels the eigenvalues and dn is the degeneracy of λn. The zeta function is defined

for z such that the series converges and analytically continued over the complex plane. On

H3 the eigenvalues are labeled by a continuous parameter λ, as well as discrete parameters,

and the sum over n is replaced by an integration over λ with an appropriate Plancherel

measure [28, 29]. The zeta function can be computed in terms of the heat kernel evaluated

at coincident points by the formula

ζs(M, z) =
1

Γ(z)

∫ ∞
0

dt

∫
H3

d3x
√
g tz−1K(s)(t, x, x) e−M

2t , (5.65)

and is related to the determinant by

det
(
−∆(s) +M2

)
= exp[−∂zζs(M, 0)] , (5.66)

so as to get the familiar formula

− log det
(
−∆(s) +M2

)
=

∫ ∞
0

dt

t
e−M

2t

∫
H3

d3x
√
g K(s)(t, x, x) . (5.67)

In the computation of the determinant, one encounters UV divergences, which are

regularized in the computation of ζ by the analytical continuation in z, and IR divergences

coming from integration over the infinite H3 volume and which needs further regularization.

To compute the determinants on thermal AdS3, the authors of [31, 32] relied on the

method of images, which expresses the heat kernel on the quotient space in terms of the

heat kernel on H3,

− log det
(
−∆(s) +M2

)
=

∫ ∞
0

dt

t
e−M

2tK(s)(t) ,

K(s)(t) =

∫
H3/τZ

d3x
√
g
∑
n∈Z

K
(s)
H3

(t, x, ωn(x)) ,
(5.68)

where ω describes the action of the τZ quotient (2.6) and K(s)(t) is the heat kernel on H3
τ

at coincident points, integrated over H3
τ . In [32], the integrated heat kernel K(s)(t) was

computed and expressed as an integral over the continuous parameter λ ∈ R>0 labeling

the Laplacian eigenvalues25

K(s)(t) = K
(s)
0 (t) +

∑
n∈Z\{0}

1

2δs,0
τ2

| sinπnτ |2

∫ ∞
0

dλ cos(2πnsτ1) cos(2πnλτ2) e−(λ2+s+1)t ,

(5.69)

25Here we correct a typo in formula (6.5) of [32]. Instead of having an extra factor of two, we have taken

into account the contribution of the sum of the two characters χs,λ and χ−s,λ, as is explained in that paper.

This produces the product of cosines in our formula. For s = 0, there only one character χ0,λ to sum over,

resulting in the factor
2−δs,0

2
.
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where the term K
(s)
0 (t) is the contribution from the n = 0 sector, whose computation is

carried out separately and leads to

K
(s)
0 (t) = (1 + 2s2t)

e−(s+1)t

4(πt)3/2
Vol(H3/Z)

2− δs,0
2

. (5.70)

This term carries the infrared divergence of the determinant. It is proportional to the

(infinite) volume of H3
τ and needs to be regularized by adding appropriate counter-terms,

however we will not perform this analysis here.

The determinants that we need to compute involve Laplacian operators ∆̂(s) which

are covariantized with respect to the gauge connection (5.2), A = (β + τ1
τ2
α)dχ, flavor

symmetry connection v = βFdχ and R-symmetry connection A = − τ̄
2τ2
dχ. Therefore

we need to modify the heat kernel computation to take into account these background

connections. It is easy to see that the heat kernel K̂(s) defined by the equation (5.62) with

covariantized laplacian ∆̂(s) is related to the heat kernel without background connection

K(s) by

K̂(s)(t, xµ, yµ) = eis(χx−χy)K(s)(t, xµ, yµ) , (5.71)

where s = qFβF +qG.(β+ τ1
τ2
α)−qR τ̄

2τ2
, with qF the flavor charge, qG the gauge charge and

qR the R-charge of the field for which we compute the determinant. Following the method of

images of [32] and using the modified heat kernel K̂(s)(t, x, ωnx) = e−2πisnτ2K(s)(t, x, ωnx)

, we obtain the modified heat kernel

K̂(s)(t) = K
(s)
0 (t) +

∑
n∈Z\{0}

τ2 cos(2πnsτ1)

2δs,0 | sinπnτ |2
e−2πisnτ2

∫ ∞
0

dλ cos(2πnλτ2) e−(λ2+s+1)t .

(5.72)

The computations in [32] proceed by the usual method of first evaluating the integral

over λ and then the integral over t to obtain the determinant (5.68). This, of course,

implicitly involves an inversion of the t and λ integral. This regularization method, applied

to our problem, leads to a one-loop determinant where the mass parameter m appears in

the expressions as |m + r − 1| and |m + r − 1/2|. We argue that this regularization must

break supersymmetry. Indeed we notice that in the super-algebra (3.2) the parameters

m,α, β, r, w appear only in the complex combination µ = m + iβF + iw.
(
β + τ1

τ2
α
)
, in

the representations carried by the fields of the chiral multiplet. In the supersymmetric

theory the one-loop determinant can be computed as the index of the operator H = Q2,

as explained in section 5.2, so that the final result must be a holomorphic function of µ.

This is not what we find by following the regularization method of [32], therefore we must

find a different regularization method. For this we write the zeta function, ignoring the

divergent n = 0 term,

ζs(M, s, z) =
∑

n∈Z\{0}

τ2 cos(2πnsτ1)e−2πisnτ2

Γ(z)2δs,0 | sinπnτ |2

×
∫ ∞

0
dt tz−1

∫ ∞
0

dλ cos(2πnλτ2) e−(λ2+s+1+M2)t , (5.73)
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and we perform first the integral over t,

ζs(M, s, z) =
∑
n≥1

2τ2 cos(2πnsτ1) cos(2πsnτ2)

2δs,0 | sinπnτ |2

∫ ∞
0

dλ cos(2πnλτ2) (λ2 +M(s)2)−z , (5.74)

with M(s)2 = s+ 1 +M2. It will turn out that the expressions we will use for M(s)2 are

the square of linear combinations of the parameters m and r, and we will define M(s) as

the corresponding linear combinations, with a positive coefficient for m. We then propose

a manipulation, which ensures an analytic result in M(s): we first replace the integral over

(0,∞) to an integral over (−∞,∞) = R and divide by an extra factor of two — this does

not change the expression since the function of λ is even — and then we replace the factor

(λ2 +M(s)2)−z by (λ+ iM(s))−z + (λ− iM(s))−z, so that

ζs(M, s, z) =
∑
n≥1

τ2 cos(2πnsτ1) cos(2πsnτ2)

2δs,0 | sinπnτ |2

×
∫
R
dλ cos(2πnλτ2)

[
(λ+ iM(s))−z + (λ− iM(s))−z

]
.

(5.75)

This last replacement might seem a strong modification at first sight, however one should

remember that only the derivative at z = 0 of ζ is relevant to the computation of the

determinant, and we have (λ2+M(s)2)−z = (λ+iM(s))−z(λ−iM(s))−z ' (λ+iM(s))−z+

(λ − iM(s))−z − 1 around z = 0. The replacement that we propose does not change the

value of ∂zζ|z=0 formally and therefore may legitimately be considered. The integral over λ

can then be evaluated and analytically continued in z, using the formulas26

∫
R
dλ cos(aλ)(λ+ ib)−z =

π|a|z−1

sin(πz)Γ(z)

[
(−ib)z sin

(πz
2
− ib|a|

)
+(ib)z sin

(πz
2

+ ib|a|
)]
,

=
π

|a|
e−b|a|z +O(z2) ,

(5.76)

leading to27

− log det ′(−∆(s) +M2) = ∂zζs(M, s, 0)

=
∑
n≥1

cos(2πnsτ1) cos(2πsnτ2)

2δs,0n| sinπnτ |2
cosh(2πnτ2M(s)) ,

(5.77)

where det ′ denotes the determinant without the n = 0 contribution. Defining q = e2πiτ ,

this can be re-written as

− log det ′(−∆(s) +M2) =
∑
n≥1

(qq̄)
n
2

21+δs,0n(1− qn)(1− q̄n)

[
(qq̄)

ins
2 + (qq̄)−

ins
2
]

×
[(

q

q̄

)ns
2

+

(
q

q̄

)−ns
2
][

(qq̄)
nM(s)

2 + (qq̄)−
nM(s)

2
]
.

(5.78)

26The integral is well-defined for Re(z) > 0, a ∈ R, Re(c) 6= 0 and Im(c) < 0.
27We deform M(s) by an infinitesimally small negative or positive imaginary part to evaluate the integrals.
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After these preliminaries, we can extract the one-loop determinant of interest to us.

We want to compute the determinant over the complex scalar φ and the spinor ψ associated

to the Lagrangian (3.25),28

Zone−loop
chi, w =

det (iγµDµ + imψ)

det
(
−∆(0) +m2

φ

) , (5.79)

with m2
φ = (m+ r − 1)2 − 1 and mψ = m + r − 1

2 . We have set here L = 1 (it can

be recovered by rescaling m → mL). The scalar determinant can be read off directly

from (5.78) with s = 0,

log det ′
(
−∆(0) +m2

φ

)
= −

∑
n≥1

(
(qq̄)

ins0
2 + (qq̄)−

ins0
2

)(
(qq̄)

n
2

(m+r) + (qq̄)−
n
2

(m+r−2)
)

2n(1− qn)(1− q̄n)
,

(5.80)

with s0 = βF + w.(β + τ1
τ2
α)− r τ̄

2τ2
.

The spinor determinant is less straightforward to extract, since we are looking for

the determinant of the Dirac operator and not of the Laplacian. First we notice that

taking the fermion determinant det (iγµDµ + imψ) implicitly assumes the reality conditions

ψ̃α = (ψα)∗, which is not the same as the reality conditions expressed in terms of the

twisted variables C̃ = C∗, B̃ = −B∗. The difference can be interpreted as a deformation

of the contour of integration in field space of the path integral and we will work under the

assumption that this does not change the evaluation of the determinant.

We can then make use of the relation

−∆( 1
2

) −
3

2
+m2

ψ = −(γµDµ +mψ)(γµDµ −mψ) , (5.81)

which implies

log det ′(iγµDµ + imψ) + log det ′(iγµDµ − imψ) = log det ′
(
−∆( 1

2
) −

3

2
+m2

ψ

)
= −

∑
n≥1

(qq̄)
n
2

[
(qq̄)

in
2
s1/2 + (qq̄)−

in
2
s1/2
]

2n(1− qn)(1− q̄n)

[(
q

q̄

)n
4

+

(
q

q̄

)−n
4
][

(qq̄)
n
2
mψ + (qq̄)−

n
2
mψ
]
,

(5.82)

with s1/2 = βF + w.(β + τ1
τ2
α)− (r − 1) τ̄

2τ2
= s0 + τ̄

2τ2
, and the relation

det(iγµDµ + imψ)|q = eFCS det(iγµDµ − imψ)|q̄ , (5.83)

where det(· · · )|q denotes the determinant on the space H3
τ , with q = e2πiτ . The identity

follows from the action of parity P : ϕ→ −ϕ, ψ → iγ3ψ, which reverts the sign of the mass

term and the sign of τ1. If we extrapolate from flat space results, the parity transformation

is anomalous and brings the factor eFCS , which denotes the contribution of Chern-Simons

terms [50]. With a fermion of charges qi under U(1)i symmetries, the parity transformation

brings mixed U(1)i − U(1)j Chern-Simons terms with level kij = qiqjsign(mψ) in (5.83).

28We neglect the integration over the auxiliary field F which evaluates to a number.
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It is not clear whether the same phenomenon appears in hyperbolic space and therefore we

will not provide an explicit expression for eFCS . Assuming that this possible Chern-Simons

term is captured by the n = 0 contribution, we can extract the determinant of the Dirac

operator from (5.82), consistently with (5.83), as29

log det ′(iγµDµ + imψ)

= −
∑
n≥1

(qq̄)
n
2

[
(qq̄)

in
2
s1/2 + (qq̄)−

in
2
s1/2
]

2n(1− qn)(1− q̄n)

[(
q

q̄

)n
4

(qq̄)−
n
2
mψ +

(
q

q̄

)−n
4

(qq̄)
n
2
mψ

]
.

(5.84)

Note that there is an alternative identification of det ′(iγµDµ + imψ) consistent with the

parity relation, which amounts to reversing the sign of mψ in the right-hand side of (5.84),

however, this does not lead to cancellation with the bosonic determinant, and does not

yield the holomorphicity in µ, therefore it would be the wrong identification.

Combining (5.80) and (5.84) and using (qq̄)
in
2
s1/2 = (qq̄)

in
2
s0 q̄

n
2 , we observe spectacular

cancellations,

logZone−loop
chi, w = F + log det ′(iγµDµ + imψ)− log det ′(−∆(0) +m2

φ)

= F +
∑
n≥1

(qq̄)
n
2

(m+r+is0) − qn(qq̄)−
n
2

(m+r+is0)

2n(1− qn)

= F +
∑
n≥1

∑
n′≥0

(qq̄)
n
2

(m+r+is0) − qn(qq̄)−
n
2

(m+r+is0)

2n
qnn

′

= F − 1

2

∑
n′≥0

log
(
1− qn′(qq̄)

1
2

(m+r+is0)
)
− log

(
1− qn′+1(qq̄)−

1
2

(m+r+is0)
)
,

(5.85)

with F denoting the n = 0 contribution. We obtain the final evaluation

Z1−loop
chi = eF

∏
n≥0

(
1− qn+1− r

2 e2πτ2µ

1− qn+ r
2 e−2πτ2µ

) 1
2

. (5.86)

with the parameter µ = m+ iβF + iw.
(
β+ τ1

τ2
α
)
. Although the boson and fermion determi-

nants are not separately holomorphic in µ, their combination is holomorphic, as predicted

from the super-algebra considerations. Moreover the final result is in perfect agreement

with the index computation (5.61). The prefactor eF is not easy to compute from the

heat kernel method since it needs some extra regularization of infrared divergences. We

assume that this can be done in supersymmetric fashion and that it would match the trivial

prefactor in (5.61).

5.6 Vector multiplet

To compute the one-loop determinant we will make use of the twisted variables defined in

section 3.1.1. These are bosonic fields (X−, X0, X+,Σ, D0) of R charges (-2,0,2,0) respec-

29In checking the parity relation (5.83), one should consider the gauge connection parameter s1/2 as a

fixed parameter, independent of τ , since parity does not act on it (the gauge connections have no component

along ϕ).
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tively, and fermionic fields (Λ−,Λ0,Λ+,Θ) of R charges (-2,0,2,0) respectively, all Lorentz

scalars. To these fields we must add the ghost fields (c, c̃, b) of vanishing R charge. Here

we denote by the same name the fluctuation of the field around the localization locus.

As for the chiral multiplet, we decompose the vector multiplet one-loop determinant

into the product over the contributions of the weights of the adjoint representation, which

are labeled by the generators of the gauge algebra,

Zone−loop
vec = ZCartan

∏
γ∈g

Zone−loop
vec, γ , (5.87)

where ZCartan denotes the contribution from the Cartan components and Zone−loop
vec, γ denotes

the contribution from the components Xγ of the fields, with γ ∈ g running over the non-zero

roots of the gauge algebra g. The Cartan contribution is independent of the background

flat connection, as well as the parameters of the theory, except the rank of the gauge group

N , so it evaluates to constant (to the power N), which factorizes in the exact partition

function and which we neglect by setting ZCartan = 1.

Focusing on the γ-component contribution, we observe that the fields decompose into

the set of Grassmann even scalar fields (X−, X0, X+)γ of R-charge (-2,0,2) and the set

Grassmann-odd scalar fields (Θ, c, c̃)γ of vanishing R-charge. The other fields (Λ−,Λ0,Λ+)γ
and (D0,Σ, b)γ are their Q̂ super-partners. Assuming that the one-loop determinant can

be computed using the index theorem as for the chiral multiplet, we can directly extract

the one-loop determinant by applying the formulas (5.22) and (5.24) to the above set of

fields. The computation is further simplified by noticing that the contribution of these

fields to the index computation matches the contribution of the twisted fields of a chiral

multiplet of R charge qR = 2 and gauge charge w = γ (and vanishing flavor charge), plus

the contribution of a scalar and a Grassmann-odd scalar of vanishing R-charges, whose

contributions cancel each other. Therefore we have

Zone−loop
vec, γ = Zone−loop

chi,γ [qR = 2] . (5.88)

Using the result of the chiral multiplet one-loop determinant we conclude, after

simplification,30

Zone−loop
vec = ∆−1

∏
γ>0

±2 sin[πγ.(τ1α+ τ2β)] , (5.89)

where ± denote the sign ambiguity coming from evaluating square roots. This sign ambi-

guity must be fixed by physical requirements (see section 6). In (5.89) we have inserted for

consistency the factor ∆−1 = [γ.(β + τ1α/τ2)]−2, which is the inverse of the Vandermonde

determinant discussed in section 4.2.1. In the full partition function it cancels with the

Vandermonde determinant, restoring invariance of the integrand of the matrix model under

large gauge transformations in the Yang-Mills theory. We conjecture that this extra factor

appears as a factor compensating for overcounting some fermionic unpaired eigenmodes of

the fields which have vanishing R-charges. These unpaired eigenmodes have n1 = n2 = 0

30There is a large cancellation between the γ and −γ contributions.

– 51 –



J
H
E
P
0
3
(
2
0
1
7
)
0
9
5

in (5.46), corresponding to modes bounded at infinity but which do not go to zero and with

eigenvalues γ.(β + τ1α/τ2). Indeed, in localization computations on compact space these

modes are excluded based on normalizability condition (see [36]). In our situation, where

we have been led to count the contributions of diverging unpaired modes, it is not clear

why we should exclude these fermionic modes. To confirm this result, it might be useful

to carry out the heat kernel computation for the vector multiplet fields including ghosts.

6 Exact partition functions and Wilson loops

In this section we gather the results of the previous sections and write the complete exact

partition functions and Wilson loop observables in theories with unitary gauge groups.

The partition function is expressed as a sum over flat connections Aflat on H3
τ ,

Z =
∑
Aflat

Zcl[Aflat]Zone−loop[Aflat] , (6.1)

where Zcl[Aflat] contains the classical contributions of Chern-Simons and Fayet-Iliopoulos

terms, while Zone−loop[Aflat] is the product of the one-loop determinant of the vector and

matter multiplets around the background Aflat. The sum over flat connections is restricted

by the asymptotics of the gauge field analysed in section 4.1.

At infinity the flat connections are given by

A∞flat = αdϕ+ βdχ , (6.2)

with α, β constant and valued in the Cartan subalgebra t ⊂ g. As explained in section 4.2.1,

for U(N) or SU(N) gauge theories, we have

α = diag(a1, a2, · · · , aN ) , β = diag(b1, b2, · · · , bN ) ,

with {ai}1≤i≤N ∈ ZN ,
N∑
i=1

ai = 0 .
(6.3)

The results in the previous sections were given in terms of α and β. The final partition

function is obtained by imposing the further restrictions associated to the choices of gauge

field asymptotics in different theories. For the other fields, we have only considered decaying

asymptotics, corresponding to square-normalizability.

First we consider the gauge field asymptotics (4.20),

A∞z̄ ≡ A
(0)
z̄ = 0 ⇒ α+ iβ = 0 . (6.4)

The one-loop determinant depends on the combination τ1α + τ2β = τα and the partition

function becomes a holomorphic function of q = e2πiτ . The partition function of the theory

with U(N) gauge group, Chern-Simons level k, and with M chiral multiplets of R-charge

rI , in representations RI of U(N), is given by

Z =
1

N !

∑
{ni}∈ZN∑
i ni=0

q
k
2

∑
i n

2
i

∏
i<j

(
q
|ni−nj |

2 − q−
|ni−nj |

2

) M∏
I=1

∏
wI∈RI

(
q1− rI

2
+wI .ny−QI , q

)1/2
∞(

q
rI
2
−wI .nyQI , q

)1/2
∞

,

(6.5)
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where we have introduced possible deformations by U(1)K flavor background: QI =

(QI,1, · · · , QI,K) denote the flavor charges and yQI ≡
∏K
k=1 y

QI,k
k , with yk = e−2πτ2(mk+iβk)

the deformation parameters, corresponding to turning on real masses mk and background

vector field vk = βkdχ. Here we have re-introduced the flavor charges QI,k, compared

to the result of section 5. The factor
∏
i<j(q

|ni−nj |
2 − q−

|ni−nj |
2 ) comes from the one-

loop determinant of the vector multiplet, where the sign ambiguty has been fixed by∏
i<j ±[2 sin(πτ(ni− nj))]→

∏
i<j [2 sin(πτ |ni− nj |)], ensuring that the factor is invariant

under Weyl group gauge transformations (ni, nj) → (nj , ni) for each pair (i, j). We also

dropped an overall factor (−i)
N(N−1)

2 in the full partition function.

Note that for the abelian Chern-Simons theory, the only flat connection compatible

with these asymptotics is the trivial connection A = 0 and the partition function is given by

a single term, carrying the contribution of the matter one-loop determinants. In particular

it is independent of the Chern-Simons level.

As observed in (4.81), the contribution of the FI term vanishes in the supersymmetric

Chern-Simons theory.

The exact evaluation of supersymmetric Wilson loops, as defined in section 4.4, is

obtained by including the Wilson loop factor (4.89) in the summand in (6.5). With the

asymptotics α + iβ = 0, the exact (un-normalized) vacuum expectation value of the BPS

Wilson loop in the representation R of U(N) is

〈WR〉 =
1

N !

∑
{ni}∈ZN∑
i ni=0

TrR
[
qn
]
q
k
2

∑
i n

2
i

×
∏
i<j

(
q
|ni−nj |

2 − q−
|ni−nj |

2

) M∏
I=1

∏
wI∈RI

(
q1− rI

2
+wI .ny−QI , q

)1/2
∞(

q
rI
2
−wI .nyQI , q

)1/2
∞

,

(6.6)

where TrR
[
qn
]

=
∑

w∈R q
w.n =

∑
w∈R q

∑
i wini , with w running over the weights of R. We

observe that the partition function and the BPS Wilson loop are holomorphic functions

in q. This suggests that the answer may have a holographic interpretation as arising

from a holomorphic current algebra. This would be the supersymmetric analog of the

results of [31, 32, 58]. Indeed the non-supersymmetric AdS3 partition functions computed

in those papers exhibits the phenomenon of holomorphic factorization in the part of the

Hilbert space of the theory which had an interpretation as a boundary current algebra

(e.g. graviton, gauge fields, or higher spin fields). In our case we have a purely holomorphic

result, which suggests that the only contribution to the BPS observable that we compute

comes from holomorphic currents in the boundary theory.

The result for an SU(N) gauge group is identical, since the diagonal U(1) does not

support flat connections (with this choice of asymptotics). We can also consider a pure

Yang-Mills theory with the same choice of asymptotics and the result is as above, simply

with vanishing Chern-Simons level k = 0.

A second choice of asymptotics is (4.21),

A∞z ≡ A(0)
z =

C

2
⇒ α− iβ = C , (6.7)
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with C =diag(c1, c2, · · · , cN ) a constant Cartan-valued matrix. Let us set C = 0 for

simplicity. In this case the partition function is analogous to (6.5), but with q replaced by

q̄−1 in several places,

Z =
1

N !

∑
{ni}∈ZN∑
i ni=0

q̄−
k
2

∑
i n

2
i

∏
i<j

(
q̄−
|ni−nj |

2 − q̄
|ni−nj |

2

) M∏
I=1

∏
wI∈RI

(
q1− rI

2 q̄−wI .ny−QI , q
)1/2
∞(

q
rI
2 q̄wI .nyQI , q

)1/2
∞

.

(6.8)

The exact vacuum expectation value of the supersymmetric Wilson loop is obtained in

this case by adding the factor TrR
[
q̄−n

]
=
∑

w∈R q̄
−w.n in the summand. The partition

function and the Wilson loops in this case are not holomorphic, nor anti-holomorphic, in

q. Note that, because |q| < 1, the expression (6.5) seems ill-defined for k < 0, since the

sum diverges. Conversely, with the second choice of asymptotics, the sum in (6.8) is then

divergent for k > 0.

The reason for the asymmetry between q and q̄ in the results (6.5) and (6.8) is to

be attributed to the initial choice of supersymmetric background geometry, which selects

a preferred complex coordinate z on the torus slices, transverse to the radial coordinate.

The supersymmetry preserved by the background we studied has the anti-holomorphic

translation generator L̄0 = ∂z̄ appearing in the super-algebra (3.1), but not the holomorphic

conterpart ∂z.

Finally, in the pure Yang-Mills theory,31 we can consider the choice of asymptotics (1)

of (4.11), for which the asymptotic values of the gauge field A(0)
z and A(0)

z̄ are fluctuating.

In this case α and β are independent. The final result is obtained by integrating over

a certain middle dimensional contour in the space of complex flat connections. Let us

consider the abelian theory for simplicity. In this case flat connections are given by α = 0

and x ≡ e−2πiτ2β ∈ C. The partition function of the U(1) gauge theory, with M chiral

multiplets of R-charge rI and gauge charge wI , is given by

Z =

∫
C

dx

2πix

M∏
I=1

(
q1− rI

2 x−wIy−QI , q
)1/2
∞(

q
rI
2 xwIyQI , q

)1/2
∞

, (6.9)

where yQI is defined as above and C is a one-dimensional integration contour in C. Tak-

ing Aµ hermitian corresponds to C being the unit circle. Taking Az and Az̄ hermitian

corresponds to C being the imaginary axis.

The contour of integration in general is not specified by the localization computation

and must be chosen a priori. The contour corresponds to the choice of integration over

field space in the definition of the path integral and different choices may lead to different

path integrals. Often a particular choice is the most relevant in the sense that it leads to

interesting observables (see, for instance, [54, 59, 60]). In the case at hand, this choice must

be compatible with the asymptotics of the fields. We leave this analysis for future work.

The vacuum expectation value of the supersymmetric Wilson loop with charge qW is

computed by the above integral, with the addition of the factor e2πiqW τ2β = x−qW in the

31As discussed in section 4.1.1, we refer to the pure Yang-Mills theory as the theory with zero bare and

effective Chern-Simons coupling.
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integrand,

〈W (qW )〉 =

∫
C

dx

2πix
x−qW

M∏
I=1

(
q1− rI

2 x−wIy−QI , q
)1/2
∞(

q
rI
2 xwIyQI , q

)1/2
∞

. (6.10)

The corresponding expression for the partition function of the non-abelian U(N) pure

Yang-Mills theory is given by

Z =
1

N !

∫
{Ci}

N∏
i=1

dxi
2πixi

∏
i<j

(√
xi
xj
−
√
xj
xi

) M∏
I=1

∏
wI∈RI

(
q1− rI

2 x−wIy−QI , q
)1/2
∞(

q
rI
2 xwIyQI , q

)1/2
∞

, (6.11)

with the same notations as above, e.g. xwI =
∏
i x

wI,i
i , and {Ci} are the contours of inte-

gration in CN of the complex variables xi, which remain to be determined. The Wilson

loop factor is TrRx
−1 =

∑
w∈R x

−w. In the presence of an FI term, the asymptotics (4.24)

require the product
∏
i xi to be constant, reducing effectively the partition function to that

of an SU(N) gauge theory.

The presence of square roots in the integrands (6.9), (6.10), (6.11), introduce branch

cuts on the xi planes, which require some extra care when defining the contour of integra-

tion. We hope these issues will be addressed in the future.

7 Discussion

In this paper we have computed the exact partition function and the expectation value

of certain BPS Wilson loops of N = 2 supersymmetric gauge theories, defined on a non-

compact quotient of the hyberbolic space H3. Our results rely on the method of super-

symmetric localization, applied to this unexplored domain. We hope that the findings of

this paper will pave the way for extending the localization technique to a broader class of

theories and geometries, some of which we will allude to in the remainder of this section.

Our set-up differs from previous localization calculations in the literature because the

background geometry that we consider is hyperbolic and non-compact. The intuition aris-

ing from holography suggested to deal with this situation by working on a “chopped”

space, including a boundary at a large radial distance from the center, and sending this

to infinity at the end of the calculations. In this way, we could study systematically vari-

ous supersymmetric actions, necessary for implementing the localization technique, which

generically comprise both bulk and boundary terms. At the same time, again following

the ideas of holography, we have discussed boundary conditions for the fields, namely their

asymptotic expansions at infinity.

We found that a careful treatment of this problem is much more complicated than in the

context of analogous computations in compact spaces. In this paper we have attempted

a comprehensive analysis. There remain, however, some puzzling issues related to the

boundary conditions. For example, it appears that the modes that contribute to the one-

loop determinants around the BPS locus have unphysical asymptotic behaviour — we will

comment more on this momentarily. Another issue that we have not settled is the choice

of integration contour for the (complexified) gauge field in the case of Yang-Mills theories;

on the other hand, the presence of Chern-Simons terms selects a natural prescription for

this contour.
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As in more standard situations, the localization arguments imply that the path integral

is computed exactly by the one-loop determinants about the BPS locus. However, for the

problem we considered, it was a priori not obvious which approach would be the most

appropriate to evaluate these determinants. In the context of hyperbolic space, one-loop

determinants of fields with different spins were computed previously using the method

of the heat kernel [28–30]. However, in the existing literature supersymmetry was not

taken into account, in particular even computations in the context of supergravities were

performed in backgrounds breaking supersymmetry [31, 32]. On the other hand, in most

of the localization computations, two methods have been utilised to compute one-loop

determinants efficiently: the pairing of (bosonic end fermionic) eigenvalues (see e.g. [36–

38]) or some version of the index theorem (see e.g. [3, 5, 34, 35, 61]). We have shown that

in our set-up all three methods yield the same results, provided a number of caveats are

appropriately taken into account.

Perhaps the most elegant and succinct method is the one of the index theorem. This

method begins by using off-shell supersymmetry to pair up all the fields of the theory in

doublets of the supercharge Q, and then looks for another pairing D10 of the doublets

themselves. The super-determinant computation is captured by an index of this opera-

tor D10 which, quite remarkably reduces to a simple quantum-mechanical computation

at the set of fixed points of the U(1) action generated by Q2. The method of pairing of

eigenvalues is based on the idea that supersymmetry pairs up most of the bosonic and

fermionic eigenmodes, leaving a net contribution arising from “unpaired” modes that obey

some “shortening condition”. We have implemented this method by using a set of twisted

variables analogous to those introduced in [38]. However, we have found some key novelties:

on one hand, by explicitly solving for the unpaired eigenmodes, we have observed that after

requiring that they are regular in the bulk, we cannot require that they are appropriately

normalizable at infinity. This phenomenon may be analogous to the one discussed in [40].

On the other hand, the eigenmodes contributing to the final result did not arise in pairs

of complex conjugate modes, but rather as isolated “holomorphic” or “anti-holomorphic”

modes: this is a crucial difference with respect to what happens for example on S3 [36, 37]

or S1 × S3 [38], and ultimately is responsible for the appearance of the square root in the

formula of the partition function, as we discussed in section 5.3. Finally, to carry out the

technique of the heat kernel we had first to incorporate appropriately the effect of the var-

ious background gauge fields (R-symmetry, flavor symmetry, and the localized dynamical

gauge field), and most importantly we proposed a recipe to regularize the formal integrals

as to respect holomorphy of the final result. We interpret this as strong evidence that our

regularization method does not break supersymmetry.

We briefly discussed, in section 6, an interpretation of our results for the one-loop

determinant as indicating the presence of holomorphic currents in a putative holographic

boundary theory. Of course the observables that we compute here is not meant to be the

holographic computation of any boundary SCFT2 directly — such a computation would

require the inclusion of the supergravity fields in AdS3. Nevertheless, it is tempting to

think of our results as a piece of the full answer in such a holographic computation.

We expect that it will be possible to refine our results, tying up some loose ends, and

that there will be a number of extensions that could be explored in the future. In the
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concluding part of this paper, we will make some comments on a few problems that we

have not discussed so far.

One the issues that we think should be addressed more carefully is the derivation of the

localization locus. The hyperbolic nature of our space here leads to non-positive-definite

localizing actions, as we discussed at some length in section 4. As a consequence, we could

not prove that the localization locus coincides exactly with the space of solutions of the

off-shell BPS equations. A closely related issue is that of the choice of reality conditions on

the various fields. We suspect that the first-principles construction of Euclidean off-shell

supergravities [51] may help elucidate these issues.

We would like to make some remarks about a very close relative to the case that

we studied in this paper, namely the hyperbolic space H3, without any quotient. In this

case, the background is supersymmetric, without the need to include any background R-

symmetry gauge field and the space has the topology of the three-ball, with a (round) S2

at the conformal boundary.32 In principle, all the ideas and methods that we used to study

the case of H3
τ can be adapted to this case. However, it is not difficult to convince oneself

that in this case the one-loop determinants will be the exponential of simple polynomial

functions of the parameters (more precisely of the masses of the various kinetic operators),

up to a divergent factor proportional to the volume of the space. For scalar and vector

fields the results can be found for example in [31]. We have checked that incorporating

supersymmetry does not alter this generic feature, and for this reason, we have not pursued

all the details here. In principle, the one-loop determinant of the chiral multiplet can be

extracted from the limit of large τ2 of our expressions, leading to a trivial factor. The

contributions associated to the vector multiplet should be revisited after studying the new

supersymmetric asymptotics.

It will not escape the attention of the reader that in this paper we have not discussed

the use of our results to test non-perturbative dualities between different field theories. For

example, in [62, 63] it has been checked (either analytically or numerically) that, upon an

appropriate mapping of parameters, the localized partition function on the three-sphere

match between pairs of dual theories. We have looked at number of simple cases which are

known to work for the case of the partition function on S3, and checked that our partition

functions (6.5) do not match on the two sides. There could be different (speculative)

reasons for this: one option is that on spaces such as the one we considered, in order to

test dualities, one needs to consider more general boundary conditions, including degrees

of freedom living on the asymptotic boundary (see e.g. [64]) . Another possibility is that

the dualities will hold only after choosing appropriate integration contours, in the spirit

of [54]. It would be very interesting to shed light onto this conundrum.

Finally, let us mention some promising extensions of our results. It was shown in [65]

that H3×S1 is a supersymmetric background of four-dimensional rigid new minimal super-

gravity (in fact, preserving four supercharges). Based on the results of our paper, and on

those in [66], we expect that it should be straightforward to compute the localized partition

function of four dimensional supersymmetric gauge theories on H3
τ × S1. Moreover, it is

32In this case it is more convenient to use a different coordinate system, see e.g. [29].
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known that supersymmetric field theories may be defined on AdS4 (see e.g. [1]), suggesting

that another likely-looking case to study is the partition function of N = 2 supersymmetric

field theories on AdS4, perhaps following in the footsteps of [3].

We also hope that our work will be useful towards the more ambitious goal of com-

puting the exact partition function of supergravity theories defined on spaces containing

an H3
τ factor.

Note added: while we were about to submit this paper to the arXiv, the paper [67]

appeared. It discusses localization of N = 2 supersymmetric Chern-Simons theory on the

non-compact space AdS2 × S1. While there may be interesting relations, this space is

different from the one discussed in our paper, and there is no evident overlap between the

two papers.
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A Conventions and useful identities

We adopt the conventions of [41], except for the spin connection which we take with the

opposite sign compared to them. Spinors indices are raised and lowered acting on the left

with εαβ and εαβ with ε12 = ε21 = 1. Spinor bilinears are defined as

ψχ = ψαχα . (A.1)

The gamma matrices are

γ1 = σ3 , γ2 = −σ1 , γ3 = −σ2 , (A.2)

with σa the Pauli matrices. The spin connection is defined by

dea + ωab ∧ eb = 0 , (A.3)

and the covariant derivative on spinors is

∇µζ = ∂µζ +
i

4
ωµ

abεabcγ
cζ . (A.4)

We define the hermitian conjugation on spinors as(
ψ†
)α

= (ψα)∗ . (A.5)
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Fierz identities for commuting (Grassmann-even) spinors

(χ1σ
aχ2)(χ3σaχ4)

= 2(χ1χ4)(χ3χ2)− (χ1χ2)(χ3χ4) (A.6)

2(χ1σ
aχ2)(χ3σ

bχ4)− (χ3σ
aχ2)(χ1σ

bχ4)− (χ1σ
aχ4)(χ3σ

bχ2) (A.7)

= −2δab(χ1χ2)(χ3χ4) + 2δab(χ1χ4)(χ3χ2)

+ iεabc(χ1σcχ4)(χ3χ2)− iεabc(χ1χ4)(χ3σcχ2) ,

with a, b ∈ {1, 2, 3} in the second identity.

The Killing vectors defined in section 2 as bilinear of the spinors ζ, ζ̃ obey the following

identities:

KµKµ = −1

2
PµP̃µ = 1 , KµPµ = KµP̃µ = PµPµ = P̃µP̃µ = 0 ,

iεµνρPνKρ = Pµ , iεµνρP̃νKρ = −P̃µ , iεµνρPνP̃ρ = 2Kµ ,

2K[µPν] = iεµνρP
ρ , 2K[µP̃ν] = −iεµνρP̃ ρ , 2P[µP̃ν] = − 2iεµνρK

ρ

DµXν =−DνXµ =
i

L
εµνρX

ρ for Xµ = Kµ, Pµ, P̃µ . (A.8)

B Supersymmetry transformations of twisted fields

In this appendix we provide the supersymmetry transformations in the language of the

twisted variables. We introduce the complex parameters u, ũ to parametrize a generic

supersymmetry transformation δ ≡ uδζ + ũδ
ζ̃
.

The supersymmetry transformations of the vector multiplet twisted fields X±, X0, Σ,

Λ±, Λ0, Θ, D0 are

δX+ = 2ũΛ+ , δX− = 2uΛ− ,

δΛ+ = −iu
(
L̂KX+ + L̂PΣ− [Σ, X+]− 2

L
X+

)
,

δΛ− = −iũ
(
L̂KX− + L̂

P̃
Σ− [Σ, X−] +

2

L
X−
)
,

δX0 = u(Λ0 − iΘ) + ũ(Λ0 + iΘ) ,

δΣ = 0 ,

δ(Λ0 − iΘ) = −2iũ

(
D0− 1

2
L̂K(Σ−X0)− 1

2
[Σ, X0]

)
,

δ(Λ0 + iΘ) = 2iu

(
D0 +

1

2
L̂K(Σ−X0) +

1

2
[Σ, X0]

)
,

δ

(
D0 − 1

2
L̂K(Σ−X0)− 1

2
[Σ, X0]

)
= u

(
L̂K(Λ0 − iΘ)− [Σ,Λ0 − iΘ]

)
,

δ

(
D0 +

1

2
L̂K(Σ−X0) +

1

2
[Σ, X0]

)
= −ũ

(
L̂K(Λ0 + iΘ)− [Σ,Λ0 + iΘ]

)
,

(B.1)

where L̂Y ≡ Y µ(∇µ − iqRAµ) is not covariant with respect to the gauge connection Aµ.
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The supersymmetry transformations of the chiral multiplet twisted fields are

δφ = u
√

2C ,

δB = u
√

2F + iũ
√

2L
P̃
φ ,

δC = iũ
√

2

[(
m+

r

L

)
φ− LKφ

]
,

δF = iũ
√

2

[(
m+

r − 2

L

)
B − LKB − LP̃C

]
,

(B.2)

and
δφ̃ = ũ

√
2 C̃ ,

δB̃ = iu
√

2LP φ̃+ ũ
√

2 F̃ ,

δC̃ = −iu
√

2

[(
m+

r

L

)
φ̃+ LK φ̃

]
,

δF̃ = −iu
√

2

[(
m+

r − 2

L

)
B̃ + LKB̃ + LP C̃

]
.

(B.3)

The supercharge used for localizing the theory is Q = 1
2(δζ + δ

ζ̃
), corresponding to

u = ũ = 1
2 .

C Supersymmetry computations

We provide here a few intermediate computations leading to the relations (3.13):

δζ(Tr λ̃λ) = Tr − i

2
εµνρ(λ̃γρζ)Fµν + i(λ̃ζ)(D + σH)− i(λ̃γµζ)Dµσ,

δζ(Tr 2iDσ) = Tr 2i(ζγµDµλ̃)σ − i(ζλ̃) (2D − σH) ,

δFµν = 2i
(
ζγ[µDν]λ̃+ ζ̃γ[µDν]λ

)
+ εµνρH

(
ζγρλ̃+ ζ̃γρλ

)
. (C.1)

We provide also intermediate computations leading to the relations (3.33):

δζδζ̃

(
−1

2
B̃B

)
= −LP φ̃LP̃φ− F̃F

+ iLKB̃B + iLP C̃B − iB̃LP̃C + i

(
m+

r − 2

L

)
B̃B , (C.2)

δζδζ̃

(
−1

2
C̃C

)
= −LK φ̃LKφ+

(
m+

r

L

)
LK φ̃φ−

(
m+

r

L

)
φ̃LKφ+

(
m+

r

L

)2
φ̃φ

+ iC̃LKC − i
(
m+

r

L

)
C̃C (C.3)

δζδζ̃

(
iφ̃LKφ

)
= 2LK φ̃LKφ+ 2

(
m+

r

L

)
φ̃LKφ− 2iC̃LKC , (C.4)

δζδζ̃

(
− i
L
φ̃φ

)
= − 2

L

(
m+

r

L

)
φ̃φ− 2

L
LK φ̃φ+

2i

L
C̃C . (C.5)
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