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1 Introduction

The renormalization group (RG) flow describes how physics changes with scale in a quan-

tum field theory (QFT). In recent years, interesting connections of these flows with quantum

information theory (QIT) have been discovered. A universal term in the vacuum entan-

glement entropy (EE) was shown to decrease monotonically along the RG for space-time

dimensions d = 2, 3 [1–3]. This gives an alternative proof of the c-theorem in d = 2 [4] and

a proof of the F-theorem in d = 3 [5, 6]. In addition to unitarity and Lorentz covariance of

the QFT, the key property of these proofs is strong subadditivity of entanglement entropy.

Holographically, the monotonicity of the RG flow is related to the null energy condition in

the bulk [5, 7]. More generally, the fine-grained RG flow in terms of tensor networks [8] has

been proposed as a description of the spatial structure of the holographic gravity dual [9].

A natural information theory tool to study changes between states is the relative

entropy. This meassures distinguishability between different states in a precise operational

way [10]. In the context of the renormalization group flows a natural idea is to use relative

entropy to quantify how a theory (or its vacuum state) gets modified as we change the

scale.1 Relative entropy has also started to play important roles in black hole physics,

holography and quantum field theory; see e.g. [13–18].

1Previous steps in this direction include [11, 12], who studied the classical relative entropy between the

probability distributions defined by the Euclidean path integrals as a measure of distinguishability between

theories. A change in the Lagrangian that induces the RG flow produces a change in the state associated

to the path integral probability distribution.
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In this work we consider quantum relative entropies in real time, between vacuum

states of two theories reduced to certain regions, and look at the consequences of positivity

and monotonicity of relative entropy. We follow the steps of the recent work [19], where

relative entropy was shown to lead to a simple proof of the g-theorem for d = 2 conformal

field theories (CFT) in a space with a boundary at x = 0.

Evidently, not every pair of vacuum states of two different theories can be compared

through the relative entropy. Different theories, i.e. containing one and two free scalar

fields respectively, usually live in different Hilbert spaces, and there is no natural meaning

in taking a relative entropy in this case. In order to compute a relative entropy, we

need that (at least in presence of a physical UV cutoff such as a lattice) the microscopic

constituents of the two models be the same. For this reason, we will study theories with

the same UV fixed point, where this can in principle be achieved. More precisely, we will

fix as a reference state the UV conformal fixed point itself, and study the relative entropy

with another state arising from the CFT by perturbing it with a relevant operator. We

will argue that relative entropy gives a useful notion of statistical distance between these

theories, and is well-suited for capturing global properties of RG flows.

Relative entropy is notoriously efficient in distinguishing states. It essentially takes

into account all fine grained information about the states. In our setup this is reflected in

the possible presence of divergences. In order to get definite results for RG flows, we need

to avoid these divergences and prevent the relative entropy from distinguishing the states

too much.

Divergences may be of UV origin, due to the fact that even if the two theories we

consider approach each other at short distances, the correlators of the deformed theory do

not converge to the ones of the CFT fast enough to make the relative entropy finite. We

will find a range of the conformal dimension ∆ of the perturbation that triggers the RG

flow where relative entropy is free from UV divergences.

There are also divergences of infrared origin, coming from the difference between the

states that pile up for large distances. In fact, if we take the two full vacuum states relative

entropy will always be divergent as they correspond to two different pure states. However,

this problem is circumvented by looking at the states reduced to a finite region in space.

The size R of the region will be the parameter with which we can look at the RG scale.

In general, we find that relative entropy increases super-volumetrically as Rd due to the

contribution of the modular Hamiltonian. Following [19], we will then compare the states on

a null surface. This effectively reduces the relative entropy to terms increasing like the area

∼ Rd−2, giving direct information on the entanglement entropy and aspects of its RG flow.

The main result is a new proof of the c-theorem in d = 2, that extends to higher

dimensions d > 2 as a statement about the renormalization of the area term in entanglement

entropy. This is shown to be always decreasing between fixed points, but there is a restricted

window of conformal dimensions ∆ < (d+ 2)/2 where the change is finite. This is parallel

to studies of the renormalization of the Newton constant [20–23].

The expression in terms of relative entropy gives a more transparent information-

theoretic interpretation to these RG monotonicity results. The c-theorem is equivalent to

the following QIT statement: the vacuum ρ1 of an RG-running theory can be distinguished
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(using the relative entropy measure) from the vacuum ρ0 of the UV fixed point, compared

on the null Cauchy surface of a sphere of radius R, by the amount

S(ρ1|ρ0) ≈ cUV − cIR

3
log(mR) , (1.1)

for radius R bigger than the scale m characterizing the RG flow; cUV and cIR are the central

charges of the UV and IR fixed points. Then the central charge difference cUV−cIR controls

the distinguishability, or statistical distance, between the two theories. The c-theorem then

amounts to positivity and monotonicity of the relative entropy, and can be explained as

due to the increased distinguishability of two states as we increase the algebra of operators

that are available to probe them. In higher dimensions, we prove a similar inequality for

the difference in the EE area terms of the two theories.

The work is organized as follows. In section 2 we study relative entropy for the vacuum

states of two theories, its dependence on the Cauchy surface where the states are compared,

and whether this relative entropy is finite or UV divergent. In section 3 we study the

consequences of positivity and monotonicity of relative entropy evaluated on a null Cauchy

surface. We prove the c-theorem in d = 2 and the area theorem for the entanglement

entropy in d > 2. In section 4 we discuss the results. Finally, the appendix describes

explicit computations for free fields.

2 Relative entropy for states of different theories

The relative entropy between two density matrices ρ0 and ρ1 is defined by

S(ρ1|ρ0) = Tr
(
ρ1 log ρ1 − ρ1 log ρ0

)
. (2.1)

We are interested in the relative entropy of the vacuum states of two theories, reduced to

certain surfaces. The surfaces are usual spatial, but we will also consider the null case.

The two theories are denoted by T0, and T1. We are going to take T0 as a CFT and T1 is

obtained by perturbing T0 with a relevant deformation, starting an RG flow:

S1 = S0 +

∫
ddx gO(x) . (2.2)

The scaling dimension of the operator O at the fixed point g = 0 is denoted by ∆; the

perturbation is relevant for ∆ < d. This construction ensures that T0 and T1 have the

same operator content in the UV. As these states belong to two different theories, they

are evolved in time with two different Hamiltonians. Hence, we have to be more specific

on the instant of time when we compare the states, because they will undergo different

unitary evolutions, and as a consequence relative entropy will depend on time.

As shown in [19] for the simpler setup of the g-theorem, the dependence of relative

entropy on the Cauchy surface can be exploited to reduce (and eventually eliminate) contri-

butions from the modular Hamiltonian to relative entropy. In this case, the entanglement

entropy inherits the monotonicity and positivity properties of relative entropy, and this can

be used to understand RG flows. We will apply this idea to flows of the type (2.2). In this

section we study the dependence of relative entropy on the Cauchy surface, and analyze in

detail the null limit. In section 3 we will consider the consequences for the RG.
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2.1 Reduction to a spatial region of two states of different theories

In order to clarify the dependence of relative entropy on time, let us first consider only one

QFT and review the standard way the state reduction is achieved in space-time. We can

describe the operator content of the theory T0 in any global Cauchy surface Σgl (where gl

stands for global) by a set of fields we call generically φλ(x), with x ∈ Σgl, that form a

complete set of generators for the operators in the Hilbert space. These set of operators

may include time derivatives of the fields, or to adapt this description to Σgl, derivatives

in the normal direction to Σgl instead of time derivatives. For any Σ ⊆ Σgl we can form

the algebra AΣ generated by polynomials of the operators localized in this spatial region.

Given a global state ρ0
gl, its restriction to AΣ gives the reduced state ρ0

Σ to Σ. This is

just the state2 on AΣ that gives place to the same expectation values than the global state

would give for all operators in this region. Notice that we can take an arbitrary state and

have not used the dynamics or the Hamiltonian of the theory in this construction.

Let us consider another spatial surface Σ′ with the same causal development D as Σ

(see figure 1). In the Heisenberg representation, states do not depend on time and operators

obey the usual Heisenberg equations of motion. Operators localized at points in Σ′ belong

to the causal development of Σ and can be written in terms of the ones in Σ using the

equations of motion. This identification depends on the Hamiltonian of the theory. Taking

this into account we see that the algebra generated by the fields on Σ′ coincides with the

one on Σ. Since the global state does not depend on any choice of Cauchy surface in the

Heisenberg representation, and the algebra on the two surfaces is the same, we conclude

the reduced states ρ0
Σ and ρ0

Σ′ are the same. That is, they give the same expectation values,

for the same operators on the same algebra, where operators are identified between Σ and

Σ′ using the equations of motion. Therefore, the entanglement entropies are the same, if

they are regularized in the same manner (for instance, by using the mutual information to

provide a geometric cutoff). Relative entropies for two different states in this theory will be

independent on the choice of Cauchy surface. The subalgebra of operators, and the reduced

states, can then be thought of as functions of the causal completion or causal development

D of Σ (which coincides with the one of Σ′), rather than functions of Cauchy surfaces.

Now, let us modify the Hamiltonian by adding a source term as in (2.2), in such a way

that we can still describe a generating basis for the operators in a Cauchy surface by the

same set of fields, that we call φ̃λ(x) for this new theory T1. We might need to impose a

cutoff to do so.3 Let us also consider the Heisenberg representation with respect to this new

Hamiltonian, and another global state ρ1
gl for this new theory. Again, ρ1

Σ and its entropy

will be invariant in changing Cauchy surfaces Σ and Σ′ (the density matrix representing

2We are using the abstract definition of a state as a positive normalized linear function on the operators

of an algebra with values in the complex numbers. See for example [24]. This is a density matrix once a

basis has been selected to write the operators. We often interchange between the abstract state and its the

density matrix representation.
3In general it is also necessary to impose a cutoff to define the algebras in a sharp time slice as we are

doing here. As it is the usual practice in QFT, the question of the existence of the relative entropy in

the continuum limit will be translated into the question about the finiteness of this quantity as we remove

the cutoff.
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Figure 1. Different Cauchy surfaces Σ and Σ′ with the same causal domain of dependence D; Σgl
is a global Cauchy surface.

this state can of course change if we change basis). Accordingly we will drop the subindex

Σ of these states.

If we want to compare the two states of the two theories with relative entropy we need

to identify the Hilbert spaces, or equivalently, the algebra of operators of the theories, in

a precise way. For doing this identification we will use a Cauchy surface. Given a Cauchy

surface Σ we naturally identify the field operators φλ(x) with φ̃λ(x) for x ∈ Σ. Formally,

the identification φλ(x)↔ φ̃λ(x) is carried out by a unitary operator UΣ that maps Hilbert

spaces and operators between theories such that

UΣφ̃λ(x)U †Σ = φλ(x) x ∈ Σ. (2.3)

The expectation values of the operators φλ(x) on Σ computed with the two states ρ0 and

UΣρ
1U †Σ define two different reduced states on the same algebra. The state UΣρ

1U †Σ gives

just the same expectation values on the fields of the first theory as ρ1 on the fields of the

second theory,

tr(UΣρ
1U †Σφλ1(x1) . . . φλm(xm)) = tr(ρ1φ̃λ1(x1) . . . φ̃λm(xm)) , xi ∈ Σ . (2.4)

We can then compute the relative entropy S(UΣρ
1U †Σ|ρ0). Analogously we can compute

S(ρ1|U †Σρ0UΣ), with the same result. This follows from the invariance of relative entropy

under the simultaneous change of the states by the same unitary.

To be clear, both states, ρ0 of T0 and ρ1 of T1 define expectation values for operators

in D in each theory. To compute the relative entropy between these states we map the

algebras by identifying its local basis elements: φλ(x)↔ φ̃λ(x), that is, with (2.3). We can

write this relative entropy simply as

SΣ(ρ1|ρ0) ≡ S(ρ1|ρ0)
∣∣
φλ(x)↔φ̃λ(x) ; x∈Σ

(2.5)

This construction does not differ form the usual way relative entropy is computed in

lattice systems. For instance, we can imagine a lattice on the surface where spin degrees of
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freedom sit at the vertices. We have two states, coming for example from the fundamental

states of two different Hamiltonians. Then we can compute the relative entropy between

these two states by assuming the spin operators are identified.

We do this at each Cauchy surface under consideration. If we pick another Cauchy

surface Σ′ in the same Causal domain D of Σ, the relative entropy we have defined will

depend on the Cauchy surface; SΣ(ρ1|ρ0) will differ from SΣ′(ρ
1|ρ0). The reason for this

change is that the identification of local basis elements φλ(x′) ↔ φ̃λ(x′), x′ ∈ Σ′, will be

different from the identification in Σ, or, in the above language, UΣ is different from UΣ′ .

This is because the local fields φλ(x) of Σ can be expressed, by the equation of motion of

T0, as a certain non-local function φλ(x) = FΣ′
0 [φ(x′)] of the fields with x′ ∈ Σ′, but for

the theory T1 we have a different function φ̃λ(x) = FΣ′
1 [φ̃(x′)] to express the fields, because

the theories T0 and T1 have different equation of motions. Identifying φλ(x) ↔ φ̃λ(x) on

Σ is to identify FΣ′
0 [φ(x′)] with FΣ′

1 [φ̃(x′)]. Since FΣ′
0 and FΣ′

1 are different functions, this

is not compatible with the identification of local fields on Σ′. As a result, identifying local

operators in different surfaces leads to different relations between Hilbert spaces.

In a general interacting theory it is difficult to obtain FΣ′ explicitly. Fortunately we

will not need it. As an example where the evolution between surfaces can be made explicit,

consider as T0 a free scalar field of mass m0. We have

φ(x) = i

∫
Σ′
dd−1x′

√
h
(
ηµ∂xµC0(x− x′)φ(x′) + C0(x− x′)ηµ∂µφ(x′)

)
, (2.6)

where x ∈ D and x′ ∈ Σ′, h is the induced metric on Σ′, ηµ is the unit vector normal to

Σ′, and

C0(x− x′) = [φ(x), φ(x′)] (2.7)

is the commutator function of the scalar field of mass m0. The normal derivative

ηµ∂µφ(x′) ≡ π(x′) is the momentum operator adapted to Σ′, and has to be consider an

independent operator on this surface ( {φλ(x′)}λ=1,2 = {φ(x′), π(x′)}). We can consider

as the theory T1 a scalar field with a different mass m1. This has a different commutator

function C1 in place of C0 in (2.6), giving φ̃(x) as a different combination of fields in Σ′.

2.2 Conformal interaction picture

The previous construction based on the Heisenberg representation makes manifest the

dependence of the relative entropy on the choice of Cauchy surface. However, it is not the

most convenient approach for concrete calculations. For this reason, we now present an

equivalent discussion in terms of a “conformal interaction picture”, which is a generalization

of the standard interaction picture representation of QFT.

In the interaction picture of weakly coupled QFT, the Hamiltonian is split into a free

part H0 and an interacting part Hint. Operators in the interaction basis are chosen in

the Heisenberg representation of the free Hamiltonian H0, and states then evolve unitarily

according to the evolution operator for Hint,

U(t1, t2) = T

(
exp{−i

∫ t2

t1

dtHint(t)}
)
. (2.8)

– 6 –
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Here T denotes time-ordering, and Hint is written in the interaction picture. This leads to

the standard perturbative expansion around the free theory.

In our case, instead of a free theory we have a CFT, and the interaction is given by

the perturbation Hint =
∫
dd−1x gO(x). We then define a conformal interaction picture

where operators are in the Heisenberg representation of the CFT Hamiltonian, while the

state evolution is given by Hint. In more detail, let us denote the Heisenberg vacuum of the

CFT T0 by |0〉 and its Heisenberg operators by φλ(x) as in the previous section. For the

perturbed theory T1, we note the corresponding objects by |Ω〉 and φ̃λ(x). Time-ordered

correlators of T1 become, in the interaction picture,

〈Ω|T{φ̃1(x1) . . . φ̃n(xn)}|Ω〉 =
〈0|T{φ1(x1) . . . φn(xn) exp

[
−i
∫∞
−∞ dtHint(t)

]
}|0〉

〈0|T{exp
[
−i
∫∞
−∞ dtHint(t)

]
}|0〉

. (2.9)

The factor in the denominator4 arises from the evolution that maps |0〉〈0| into |Ω〉〈Ω|. In

this way, an expectation value in T1 is reduced to the calculation of a correlation function

in the CFT T0. In particular, for small g the right hand side in (2.9) can be evaluated

using the standard rules of conformal perturbation theory.

We can now redo the steps in section 2.1 in the interaction picture. The operators

for T0 and T1 are now the same, φλ(x), corresponding to the Heisenberg CFT operators.

Therefore, and recalling the map (2.9), we can now think in terms of two different states

ρ0 and ρ1 in the same theory. For concreteness, consider reduced states on a spatial region

associated to the vacuum states (it is easy to extend the following discussion to more

general states). As before, we choose a global Cauchy surface Σgl, and let Σ be a part of

it. The Heisenberg vacuum of T0 gives a state ρ0 that is independent of Σ. However, the

state ρ1 for T1 evolves explicitly with time.

For a surface of constant time, the evolution is given by (2.8). For instance, the state

at t = 0 is given by

ρ1 = K trΣ̄ U(0,−∞)|0〉〈0|U(∞, 0) , (2.10)

with K a normalization factor that sets trρ1 = 1. For a more general surface, we can evolve

the state using a source g(x; Σgl) that is nonzero and equals g only for x in the region of

spacetime below the surface Σgl:

ρ1
Σ = K trΣ̄ U(Σgl)|0〉〈0|U †(Σgl) , (2.11)

and

U(Σgl) = T

(
exp{−i

∫
ddx g(x; Σgl)O(x)}

)
. (2.12)

From here we have for two surfaces, Σ and Σ′ to the future of Σ,

ρ1
Σ′ = UΣ,Σ′ρ

1
ΣU
†
Σ,Σ′ , (2.13)

with

UΣ,Σ′ = T

(
exp{−i

∫
VΣΣ′

ddx gO(x)}

)
, (2.14)

where VΣΣ′ is the spacetime region between Σ and Σ′.

4The integrals in time have to be done in a slightly imaginary direction to project onto the vacuum state.
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This exhibits how the state ρ1
Σ depends explicitly on Σ in the interaction picture;

expectation values calculated with this state (such as the relative entropy) will also depend

on the Cauchy surface.

2.3 Modular Hamiltonian

It is convenient to express the relative entropy by the equivalent expression

S(ρ1|ρ0) = ∆〈H〉 −∆S , (2.15)

where

∆S = S(ρ1)− S(ρ0) , (2.16)

is the difference of von Newmann entropies, and

∆〈H〉 = Tr(ρ1H)− Tr(ρ0H) , (2.17)

is the difference of the expectation values of the modular Hamiltonian

H = − log ρ0 . (2.18)

In (2.16) and (2.17) the states appear in the same order as they enter in the arguments of

S(ρ1|ρ0).

In the present case, ∆S gives the difference between the entanglement entropies of

the two vacuum states in the same region. This term does not depend on the choice of

Cauchy surface. The dependence on Σ comes exclusively from the expectation value of the

modular Hamiltonian,5

∆〈H〉Σ = Tr
(
(ρ1

Σ − ρ0)H
)
. (2.19)

H is an operator in the theory T0. Its expectation value in the state ρ0 is independent of

the Cauchy surface. However, its expectation value using the second state ρ1
Σ depends on

which surface we have identified operators.

In order to proceed we will choose T0 to be a CFT, ρ0 is its vacuum state, and restrict

attention to the case where the boundary of Σ is a d− 2 dimensional sphere. The modular

Hamiltonian for this case has a simple expression in terms of the energy momentum tensor

Tµν of the theory T0 [25, 26],

H =

∫
Σ
dσ ηµξνTµν . (2.20)

Here ηµ is a norm one, future pointing, normal vector to the Cauchy surface Σ, and ξν is the

conformal Killing vector corresponding to conformal transformations keeping the sphere

fixed. For a sphere centered at the origin in the plane x0 = 0, its (x0, xi) components are

ξν =
π

R

(
R2 − (x0)2 − (~x)2,−2x0xi

)
, (2.21)

where R is the radius of the sphere. One can check that the current jµ = ξνTµν is conserved

using that Tµν is symmetric, conserved, and has zero trace. This makes H a conserved

5The following formulas are written in the conformal interaction picture.
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charge independent of the Cauchy surface in T0, but this is not the case when we evaluate

its expectation value using ρ1
Σ.

In order to evaluate ∆〈H〉Σ we need to understand the change in expectation value

of the stress tensor ∆〈Tµν(x)〉Σ. This is a local operator and its expectation value in the

new state ρ1
Σ depends on the structure of the state (the correlation functions) near the

point x on this surface. Then, we expect a local expression, that can involve only local

tensors. These are gµν and all local geometrical quantities that can be constructed with the

Cauchy surface, such as the normal ηµ, the extrinsic and intrinsic curvatures, etc. Given

the Lorentz invariance of each vacuum in its respective theory, no other tensors can appear.

However, curvature terms can only appear as corrections accompanied by positive

powers of the cutoff, for example in the form K2
ijε

2, with Kij the extrinsic curvature of Σ

and ε a short distance cutoff. This is because we are evaluating the expectation value of

a local operator for a QFT in flat space, and the shape of Σ only enters in the correlation

functions through the distance between points. For example, in a lattice regularization Tµν
can be written in terms of operators at a point and few of its neighbors, and the expectation

value in the state ρ1
Σ depends only on short distance correlations functions on the lattice.

We show some explicit examples for free fields in the appendix. The curvature then only

enters modifying the distance of nearby points, and is always accompanied by the cutoff.

These terms can be neglected if the curvature is much smaller that the cutoff scale. We

will always assume that this is the case. This is also necessary since we can define the

position of the Cauchy surface only at scales larger than the cutoff.

Therefore we have the general form

∆〈Tµν(x)〉Σ = k
(
ηµ(x)ην(x)− gµν

d

)
+O(K2ε2) + . . . . (2.22)

We have used the fact that the stress tensor of the CFT is traceless. This expectation value

depends on the Cauchy surface through the normal vector ηµ, and this is crucial in order

to have a traceless symmetric tensor in an otherwise Lorentz invariant computation. Note

∆〈Tµν(x)〉Σ does not transform as a Lorentz tensor unless Σ is also transformed. Eq. (2.22)

will be quite important for our arguments below. For this reason, in the appendix we

perform explicit calculations of ∆〈Tµν〉 for mass flows in free scalar field theories, and

exhibit the dependence on the Cauchy surface.

Let us find out the possible behavior of the constant k with the cutoff. If k is divergent

with the cutoff we expect a perturbative calculation would give its leading behavior. The

reason is that the coupling g in (2.2), responsible for deforming T0 into T1, is relevant and

hence goes to zero in the UV. Perturbative corrections start at second order in g since

〈TµνO〉 = 0 for a primary operator in a CFT. Taking into account that the dimension

[k] = d and [g] = d−∆ , we have by dimensional analysis

k ∼ g2εd−2∆ . (2.23)

Therefore, the expectation value of the modular Hamiltonian between the CFT and the

perturbed theory in a spatial surface is UV divergent for ∆ ≥ d/2. For ∆ < d/2 we cannot

compute k perturbatively, but we expect a finite k.

– 9 –
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Figure 2. Modular flow vector field ξµ in the d = 2 causal diamond of a spatial sphere. ∆〈H〉Σ
is described by the flux of ξµ through the Cauchy surface Σ. ∆〈H〉Σnull

= 0 on the null Cauchy

surface Σnull for the range of perturbations discussed in the text. The divergence of ξµ integrated

over the shaded region gives ∆HΣ′ − ∆HΣ and hence the variation of the relative entropy with

the surface.

The dependence of ∆〈H〉Σ with the Cauchy surface Σ follows from inserting (2.22)

into (2.20)

∆〈H〉Σ =
k(d− 1)

d

∫
Σ
dσ ηµξµ . (2.24)

Then, this simple geometrical dependence is described by the flux of the field ξν through Σ

(see figure 2). This changes because the flux in (2.24) is not constant and as a consequence

of Gauss’ theorem

∆〈H〉Σ′ −∆〈H〉Σ =
k(d− 1)

d

(∫
Σ′
dσ ηµξµ −

∫
Σ
dσ ηµξµ

)
=
k(d− 1)

d

∫
VΣΣ′

dv (∂ · ξ) ,

(2.25)

where

(∂ · ξ) = −2πd

R
x0 , (2.26)

and VΣΣ′ is the space-time region between the two surfaces.

The infrared behavior of the expectation value of the modular Hamiltonian follows

from this integral. For the planar Cauchy surface at x0 = 0 we get

∆〈H〉 =
2πΩ̃ k

d(d+ 1)
Rd , (2.27)

where R is the radius of the spherical entangling surface and

Ω̃ =
2π

d−1
2

Γ(d−1
2 )

(2.28)
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is the area of the unit sphere immersed in Rd−1 (Sd−2 sphere). The same super-extensive

behavior ∼ Rd holds for other spatial surfaces that do not approach much to the null

horizon of the causal development of the sphere.

2.4 The null limit

Having understood the general dependence on the Cauchy surface, we are now ready to

approach the null limit. From the expression (2.21) for ξν and the definition of ηµ, we find

that on the limit of the null Cauchy surface for the sphere

(ηµξµ)|Σnull
= 0 . (2.29)

In fact, both vectors becomes null vectors on the null Cauchy surface. With this, and (2.24),

we obtain the interesting result

∆〈H〉Σnull
= 0 . (2.30)

This limit, however, is not necessarily justified because the coefficient in (2.24) can be

divergent. As we mentioned above, we need to assume that the typical scale of curvature

of Σ is large with respect to the cutoff ε. As we go to the null surface, the extrinsic and

intrinsic curvature of a spatial surface will typically diverge. For example, a hyperboloid

(x0)2 − (~x)2 = a2 has a curvature scale of order a−1, and the null limit is a → 0. Put

differently, we need that the cutoff scale ε is always much smaller than the total length

across the surface Σ, in order for example, to associate the cutoff to a physical lattice on

the surface. Hence, we need to keep ε . a as we take the null limit a→ 0. We can take the

ratio a/ε to be some arbitrarily large number, but keep it fixed as we take the simultaneous

limit ε ∼ a → 0. This automatically keeps the curvature terms in (2.22) under control.

Given this, we should understand next when ∆〈H〉Σ vanishes.

Let us examine the expression (2.24) in the null limit. For simplicity we consider as

Cauchy surfaces a family of hyperboloids Σa parametrized with the radius a,(
x0 −

√
a2 +R2

)2
− ~x2 = a2 , 0 < |~x| < R , x0 > 0. (2.31)

The integral ∫
Σa

dσ ηµξµ =

{
4πa2 log(R/a) +O(a3) d = 2

2πΩ̃
(d−1)(d−2)a

2Rd−2 +O(a3) d > 2
, (2.32)

generically goes as ∼ a2Rd−2 for small a. Plugging this back into (2.24) and using (2.23)

for k, we have

∆〈H〉Σ ∼ g2Rd−2εd−2∆a2 . (2.33)

We see that using hyperboloids of constant a, the contribution of the modular Hamiltonian

increases like the area ∼ Rd−2 instead of the Rd dependence in the surface x0 = 0, (2.27).

Eq. (2.33) gives a vanishing limit for a ∼ ε→ 0 provided that

∆ <
d+ 2

2
. (2.34)
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That is, the null limit enlarges the window where the modular Hamiltonian gives a finite

contribution from ∆ < d/2 to ∆ < (d + 2)/2. In this window in fact this contribution

vanishes in the null limit. We do not have control of the null limit for ∆ ≥ (d+ 2)/2.

In some special theories having a UV fixed point with free scalars, the modular Hamil-

tonian has an additional boundary term [22, 27–29]. This term scales like the area Rd−2

and does not depend on the Cauchy surface. Then it does not vanish in the null limit.

However, this does not alter the conclusions about the relative entropy we want to make

in this section. We discuss boundary terms in the modular Hamiltonian in more detail in

the appendix.

2.5 Entanglement entropy and regimes of relative entropy

Let us now briefly analyze the contribution of the entanglement entropy to the relative

entropy. As we mentioned before, this does not depend on the Cauchy surface. The con-

tribution of the entanglement entropy, in contrast to the one of the modular Hamiltonian,

will generically be a complicated function of R that depends on the full RG running of the

model. We will say more about the entanglement entropy in the next section; however, the

main features are well known. At the fixed points its leading term is proportional to the

area, except for d = 2 where it can grow logarithmically with R. We can ask when the EE

will give a finite or divergent contribution. Again we expect that in the divergent case we

can do a perturbative treatment. The divergent terms are going to be proportional to the

boundary area since divergences are related to local entanglement that is extensive on the

boundary of the region. Then we expect on dimensional grounds

∆S ∼ g2Rd−2εd+2−2∆ . (2.35)

The allowed window for having finite ∆S is ∆ < (d + 2)/2. This is well known from

holographic calculations [30–32] and direct computations of the renormalization of the

area terms [22, 23, 33–35]. This coincides with the window (2.34) for having vanishing

∆〈H〉 in the null limit. We do not know of a deeper reason for this agreement.

With this information and the one of the modular Hamiltonian we can summarize the

different regimes for relative entropy between the two theories.

First, for spatial surfaces (flat, or with curvature ∼ R−1) the relative entropy is dom-

inated by the contribution of the modular Hamiltonian for large distances. In the infrared

it grows superextensively as Rd. It is UV finite only for the window of perturbations with

dimensions ∆ < d/2. For this range of ∆ and at short distances, the entanglement entropy

is finite; conformal perturbation theory then gives ∆S ∼ g2R2(d−∆), which goes to zero

faster than Rd for small R. The modular Hamiltonian thus dominates over the entangle-

ment entropy at all scales for ∆ < d/2. Since the entanglement entropy is independent

of Σ, the relative entropy changes with Cauchy surface in a simple geometric form as the

modular Hamiltonian,

S(ρ1|ρ0)Σ′ − S(ρ1|ρ0)Σ = −2πk(d− 1)

R

∫
VΣΣ′

dv x0 . (2.36)
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On the other hand, the limit of relative entropy on null surfaces is finite for dimensions

∆ < (d + 2)/2, extending the range ∆ < d/2 of spatial surfaces. In this window the

contribution of the modular Hamiltonian vanishes and the relative entropy is entirely due

to the entanglement entropies S(ρ1|ρ0) = −∆S. It grows as the area ∼ Rd−2 in the

infrared. The null relative entropy is finite for the same window in which it can be defined

as a limit from the relative entropy of spatial surfaces, ∆ < (d+ 2)/2.

The result S(ρ1|ρ0)Σnull
= −∆S (or ∆〈H〉Σnull

= 0) gives to the null surface a special

status. The relative entropy computed on it do not distinguish the vacuum states ρ1, ρ0 as

much as when computed in other (spatial) surfaces of the same causal domain. The reason

for this is that, as we take the null limit, correlations in the direction that is getting null

become short distance correlations, and then are less efficient in distinguishing the state

from its UV limit.

3 Consequences for the entanglement entropy

The previous result ∆〈H〉Σnull
= 0 in the window

d− 2

2
≤ ∆ <

d+ 2

2
(3.1)

implies that

S(ρ1|ρ0) = −∆S = S(ρ0)− S(ρ1) (3.2)

on a null Cauchy surface. This reveals that −∆S has the positivity and monotonicity

properties of the relative entropy,

−∆S ≥ 0 ,
d∆S

dR
≤ 0 . (3.3)

In this section we explore the consequences of this result in two and higher dimensions.

For d = 2 we find a simple alternative proof of the c-theorem, while for d > 2 this will lead

to the monotonicity of the area term in the entanglement entropy.

3.1 A simple proof of the c-theorem

Let us consider the implications of (3.2) for RG flows in d = 2 spacetime dimensions. In

this case, the window (3.1) becomes 0 < ∆ < 2, capturing all possible deformations by

relevant operators.

We take the theory T0 as an UV 2d CFT with central charge cUV. We recall that, in

this case, the entanglement entropy for an interval of size R is of the form

S(R) =
cUV

3
log(R/ε) + c0 , (3.4)

where ε is a short-distance cutoff and c0 is a nonuniversal constant.

In contrast, the entropy for T1 will have a more complicated radial dependence because

it undergoes a nontrivial RG flow. However, at distances much longer than the typical mass

scale m ∼ g−1/(d−∆) of the RG flow, T1 goes to the IR fixed point of central charge cIR.
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Taking into account that the UV divergences are still controlled by the UV fixed point of

central charge cUV, the EE for T1 at large distances is given by

S(R) =
cIR

3
log(mR)− cUV

3
log(mε) + const. (3.5)

Subtracting (3.4) to (3.5), we obtain the difference in EE between both theories at

long distances is given by

∆S ≈ cIR − cUV

3
log(mR) , (3.6)

up to terms that are subleading in R (that we drop in what follows). From (3.3), ∆S < 0

and so we deduce that

cIR < cUV . (3.7)

This provides a new derivation of Zamolodchikov’s c-theorem [4] using the relative entropy

on null surfaces.

3.2 Monotonicity of the area term in entanglement entropy

Having understood the result for d = 2, let us now consider QFTs in d > 2. Note that for

d > 2 the restriction (3.1) puts an upper bound ∆ < (d + 2)/2 on the dimensions of RG

perturbations. When (d+2)/2 < ∆ < d, the perturbation is still relevant but the change in

the modular Hamiltonian no longer vanishes; it is then not clear whether −∆S, which is also

divergent in this range, inherits the monotonicity and positivity properties of the relative

entropy. It would be interesting to study in more detail the regime (d + 2)/2 < ∆ < d,

looking for possible cancellations of divergences, but in this work we restrict for simplicity

to ∆ < (d+ 2)/2.

The EE for a QFT on a sphere of radius R, much bigger than all the length scales of

the theory, is extensive on the boundary of the sphere, and hence

S(R) = µRd−2 + . . . (3.8)

where µ is a constant of mass dimension d − 2, and ‘. . .’ are terms subleading in R. We

want to understand properties of this area term along RG flows.

For a CFT such as theory T0 above, dimensional analysis dictates that

µUV =
k0

εd−2
, (3.9)

where k0 is a nonuniversal constant. On the other hand, theories with RG flows have

additional mass scales that can also enter here. For T1 this is determined by g, the coefficient

of the relevant perturbation. If conformal perturbation theory applies, the first correction

is of order g2, and hence we expect

µIR =
k0

εd−2
+ g2 k1

ε2(∆− d+2
2

)
+ . . . (3.10)

See also (2.35). The second term is divergent for ∆ > (d+ 2)/2, which is outside the range

of dimensions (3.1) under consideration. Instead, for ∆ < (d + 2)/2, the contribution to

the area term sourced by the RG will be finite,

µ =
k0

εd−2
+ k1m

d−2 . (3.11)

The dimensionless coefficient k1 is in general non perturbative.
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Comparing T0 and T1 through the relative entropy on a null surface implies ∆S < 0;

this says that the coefficient of the area term decreases along RG flows, ∆µ < 0, or

µUV > µIR . (3.12)

We call this the area theorem. Note that the nonuniversal divergent term proportional to

1/εd−2 is the same in both theories, and hence it cancels out from this inequality. Therefore

the finite renormalization in the area term in T1 has to be negative, k1m
d−2 < 0. We also

note that the monotonicity condition d∆S
dR ≤ 0 does not give rise to new inequalities in

this analysis of the IR behavior. For d = 2 and d = 3 eq. (3.12) also follows from strong

subadditivity [1, 2].

This result has some interesting implications for gravity. The idea that part of the

black hole entropy is due to entanglement entropy, suggests that the universal area term in

the EE should agree with the renormalization of Newton’s constant. This was made more

precise in [22, 23, 34, 35], who related the Adler-Zee formula [20, 21],

∆((4GN )−1) = − π

d(d− 1)(d− 2)

∫
ddxx2〈Θ(x)Θ(0)〉 , (3.13)

(where Θ(x) = Tµµ (x) is the trace of the stress tensor) to the finite part of the area term

in the EE. These derivations use the first law of EE [14] or holography [23].

From our approach, the universal part of the area term (given by ∆µ = µIR − µUV) is

proven to be negative due to its relation to relative entropy. This does not use positivity

of the stress-tensor two-point function, as in (3.13), and does not need to go through the

first law of EE or holography. The situation is analogous to what happened in d = 2,

where positivity of the stress-tensor two-point function leads to the c-theorem [36], while

our proof relied on positivity of the relative entropy. In fact, the derivation based on

the relative entropy emphasizes the common origin between the c-theorem and the area

theorem, something that was also seen in the holographic context in [23]. Furthermore,

our approach identifies ∆µ with a well-defined continuum quantity, and suggests further

connections between quantum corrections to gravity and relative entropy.

4 Conclusions

In this work we have shown that the c-theorem in d = 2 and the decrease in the area term

of the entanglement entropy between short and large distances are required by positivity

and monotonicity of relative entropy. These results coincide with analogous results that

use either reflection positivity of stress tensor correlators or strong subadditivity of entan-

glement entropy. However, as a bonus, the present proof relying on relative entropy gives

a more direct QIT interpretation for the irreversibility of the RG: it corresponds to an

increased distinguishability of vacuum states in a region as this region gets larger, allowing

more operators to be used to distinguish states.

In this sense, these monotonicity properties of the RG are a common quantum mechan-

ical phenomenon. However, relativity and QFT enter crucially in the proof, in the fact that
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we needed to compare the states on null surfaces. Otherwise the relative entropy distin-

guishes the states too much, giving non interesting information. The null surface decreased

distinguishability in such a way that relative entropy turns out to be reduced to minus the

difference in entanglement entropies. The reason the vacuum of the theory and the one

of its CFT ultraviolet fixed point get more similar when compared on the null surface is

physically clear. The correlators along null directions are UV correlators and cannot be

used to distinguish them. Only correlation functions in the transverse directions matter.

This relative entropy in the null limit is finite only for ∆ < (d + 2)/2. Otherwise

correlators are different enough at arbitrarily short distances to allow for perfect distin-

guishability. When the relative entropy between the two vacuum states is not finite we

may think they live in “different Hilbert spaces”.6 For ∆ < (d+ 2)/2 this is not the case.

However, for large regions relative entropy grows at least as Rd−2. Indeed, it is necessary

to have divergent relative entropy for the full space, as in this limit we have two different

pure states. It would be very interesting to develop techniques that could be applied to

the full range of dimensions.

When the renomalization of the area term is finite, the result can be interpreted as

an increase of Newton’s constant towards the IR, due to QFT effects. This implies anti-

screening of gravity. But at the same time it shows that the area term cannot be purely

induced and finite, since it would be negative, and we would have a negative Newton

constant. The entropy cannot be negative and needs an additional positive UV term to

compensate for the sign, and the same should occur with the Newton constant. Of course

this is an old problem (see [20] for example) and we just see it in a new perspective.

It is interesting that the null relative entropy does not coincide with −∆S for theories

with free scalars in the UV, due to a boundary term in the modular Hamiltonian. In the

appendix we show calculations that suggest that taking the relative entropy as a form of

regularized entropy restores the naive counting of divergent terms induced by the mass that

fails for the free scalar. In this sense the relative entropy gives a different regularization of

entropy than, for example, mutual information. However, the change with respect to other

regularizations is a term exactly proportional to the area that, for example, does not alter

the c-function. It corresponds to a specific choice of contact term in (3.13).
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A Free field examples

In the main text we compared the two theories T0 and T1 in terms of the relative entropy.

A crucial consequence of this analysis is the dependence on the choice of Cauchy surface,

which enters via ∆〈Tµν〉 as in (2.22). In this appendix we illustrate how this happens in

6A more precise mathematical statement would be that the local algebras of operators on the sphere are

in two disjoint representations for the two theories.
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detail for free scalar fields. The required calculations can be performed explicitly, and we

discuss the results with different cutoffs. We also show how the divergence in ∆S at d = 4

is canceled by the boundary term in the modular Hamiltonian.

A.1 Massless and massive scalar fields

In free field theory we can consider an RG flow given by perturbing a massless scalar with

a mass term. The UV fixed point is simply the free massless scalar, and the relevant mass

deformation triggers a flow that ends in a trivial gapped theory. In fact, it will be useful to

consider a slightly more general setup, where T0 is the theory of a free scalar with squared

mass m2
0, while T1 is another theory with mass squared m2

1. We want to compute the

variation ∆〈Tµν〉 between both theories, with Tµν the stress-tensor operator for T0.

Recall that a massive scalar field,

S =

∫
ddx
√
g

(
1

2
gµν∂µφ∂νφ−

1

2
m2

0φ
2

)
(A.1)

has an energy-momentum tensor given by

Tµν = ∂µφ∂νφ−
1

2
gµν

(
(∂φ)2 −m2

0φ
2
)
− ξc(∂µ∂ν − gµν∂2)φ2 , ξc =

d− 2

4(d− 1)
. (A.2)

The last term is the improvement term. We have added it to have a traceless tensor in the

massless limit. We will compute ∆〈Tµν〉 with different regulators, and choose the spatial

Cauchy surface x0 = 0.

A possible physical regulator is to use a point splitting associated to the choice of

Cauchy surface; in the present case, we can split the points infinitesimally along the spatial

surface. For this, we will need the Minkowskian propagator in d dimensions,

〈φ(x)φ(y)〉 = 〈Tφ(x)φ(y)〉 =
1

(2π)d/2

(
m

|x− y|

) d
2
−1

K d
2
−1(m|x− y|) (A.3)

where the distance |x−y| =
√

(~x− ~y)2 − (x0 − y0)2. The T00 for a scalar field of mass m0,

with the point splitting regularization, evaluated in the vacuum of mass m1 is

〈T00〉1 =
1

2
〈π(x)π(y)〉1 +

1

2
〈∇xφ(x) · ∇yφ(y)〉1 +

1

2
m2

0〈φ(x)φ(y)〉1

− ξc〈∇2
xφ(x)φ(y) + φ(x)∇2

yφ(y) + 2∇xφ(x)∇yφ(y)〉1 . (A.4)

Here 〈. . .〉1 means that the expectation value is taken in the state specified by T1. It is

important to take first x0 = y0 and then the limit |~x−~y| → 0. Note that the last term, giving

the improvement term contribution to T00, vanishes identically by translation invariance.

Before proceeding to the calculation, let us see how (2.22) works out in this case. If

we set m0 = 0, Tµν is an explicitly traceless operator, that we should write in terms of

φ(x) and π(x) for x in the spatial surface x0 = 0 before proceeding to evaluate expectation

values in the theory of mass m1. This needs the massless equations of motion for d > 2

and the i, j components of the stress tensor, since these contain ∂2
0φ in the improvement
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term. Once this is done, the operator Tµν is explicitly traceless. Using the isotropy of the

spatial surface, we have

〈Tij〉1 =
〈T00〉1
d− 1

δij . (A.5)

Comparing with (2.22), we then have ηµ = δµ0, and k = d
d−1〈T00〉. This illustrates how the

dependence on the Cauchy surface appears for the simple case of a free scalar.

Given (A.4), we can now evaluate ∆〈T00〉 = 〈T00〉1 − 〈T00〉0. In d = 2 and with x0 = 0

we have

∆〈T00〉 =
1

4π

[
(m2

0 −m2
1)K0(m|~x|)− 2m1

|~x|
K1(m|~x|) + 2

m0

|~x|
K1(m0|~x|)

]
=

1

8π

[
m2

1 −m2
0 + 2m2

0 log(m0/m1)
]

(A.6)

in the limit |~x| → 0. This function is positive for all m0 and m1, reaching a minimum of zero

in m0 as a function of m1. As we have seen, for m0 = 0 this positivity is necessary to have

a positive relative entropy in the interval. For m0 6= 0 the positivity of this quantity is still

needed for positivity of relative entropy in Rindler space, where the modular Hamiltonian

is still given in terms of T00.

If instead of doing the point splitting on the x0 = 0 surface we choose another spatial

direction x0 = αx1, with |α| < 1, we can split the points along this line to find

∆〈T00〉 =
1

8π

[
α2 + 1

α2 − 1
(m2

0 −m2
1) + 2m2

0 log(m0/m1)

]
(A.7)

as the regulator vanishes. This is not positive for all the range of m0, m1. The reason is

that in using a point splitting in a slanted direction we have made use of correlators of

the T1 theory outside the Cauchy surface. Recalling these expectation values in different

Cauchy surfaces belong to different states for the T0 theory, we are not able to justify

positivity from relative entropy, and in fact positivity fails.

Let us consider next a hard momentum cutoff. Since the Cauchy surface at x0 = 0

distinguishes space and time, we will allow for two different cutoffs on momenta, |p0| < Λ0,

|~p | < Λ. The physical limit corresponds to Λ0 � Λ, so that we have a spatial lattice that

propagates in a continuous time variable. For Lorentz (or euclidean) invariant quantities,

the order in which the cutoffs are sent to infinity does not matter. One then usually

chooses Λ0 = Λ to be able to use euclidean invariance. Here, however, we will see that

Λ0 � Λ and Λ0 � Λ give different results for ∆〈T00〉. To simplify the formulas, consider

m0 = 0,m1 = m, and let us work in d = 2. Fourier-transforming T00 = 1
2(∂0φ)2 + 1

2(∂1φ)2

and rotating to euclidean signature, we have,

∆〈T00〉 =
1

2

∫ Λ0

−Λ0

dp0

2π

∫ Λ

−Λ

dp1

2π
(−p2

0 + p2
1)

(
1

p2
0 + p2

1 +m2
− 1

p2
0 + p2

1

)
. (A.8)

If Λ0 � Λ, we perform first the integral over p0, and can take Λ0 → ∞. The resulting

integral over p1 is then finite and agrees with the point-splitting result (A.7). If we instead

take Λ� Λ0 and integrate over p1 first, the final result has opposite sign,

∆〈T00〉 = −m
2

8π
, (A.9)

which is not physical for the energy.
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As a last example for d = 2 we can compute T00 in a lattice. We use first neighbors

T00(i) =
1

2
(π2
i + (φi − φi−1)2 +m2

0φ
2
i ) , (A.10)

and the lattice correlators in the fundamental state

〈φkφl〉 =
1

4π

∫ π

−π
dx

eix(l−k)√
m2

1 + 2 cos(x)
, (A.11)

〈πkπk〉 =
1

4π

∫ π

−π
dx eix(l−k)

√
m2

1 + 2 cos(x) . (A.12)

The result for ∆〈T00〉 in the limit of small lattice spacing coincides with (A.6).

The results for higher dimensions can be similarly calculated. Using point splitting

we obtain

d = 2∆〈T00〉 =
1

8π

[
m2

1 −m2
0 + 2m2

0 log(m0/m1)
]
,

d = 3∆〈T00〉 =
1

24π
(m1 −m0)2(m1 + 2m0) ,

d = 4∆〈T00〉 = −(m2
0 −m2

1)2

32π2
log(ε) ,

d = 5∆〈T00〉 =
(m2

1 −m2
0)2

64π2ε
, (A.13)

d = 6∆〈T00〉 =
(m2

1 −m2
0)2

64π3ε2
,

. . .

d = d∆〈T00〉 ∝
(m2

1 −m2
0)2

εd−4
.

We see these are all positive for all m0, m1, as expected. The perturbation of the Hamil-

tonian due to a mass has dimension ∆ = d− 2, with coupling constant m2
1. These results

match the expectations of a finite ∆Tµν for ∆ < d/2, which gives d < 4. In fact for the

finite cases d = 2, 3 we obtain the same results with other regularizations, such as a lat-

tice. For the divergent cases d ≥ 4 the results also match the expectations from conformal

perturbation theory (for m0 = 0), that is, ∆〈T00〉 ∼ g2/ε2∆−d = m4
1/ε

d−4. We obtain

similar results for free fermions. However, for fermions ∆〈T00〉 ∼ m2/εd−2 diverges in all

dimensions, as corresponds to ∆ = d − 1. Nevertheless, on the null surface the relative

entropy is finite for d = 2, 3, 4, 5 for scalars (up to a subtlety that we will address next),

and d = 2, 3 for fermions.

A.2 Boundary term in the modular Hamiltonian

In the power-counting classification of section 2.5 there is a subtle point for free scalars.

These have divergent ∆S for d ≥ 4, and the dimension of the relevant perturbation m2φ2

is ∆ = (d−2). Hence they violate the standard counting which would produce divergences

for ∆ = d − 2 ≥ (d + 2)/2 and then d ≥ 6. We will now see that in fact this divergence

cancels out (at least for d = 4) from the relative entropy because of an additional boundary
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term in the modular Hamiltonian [22, 27–29]. See [37] for a recent analysis of boundary

terms in entanglement entropy.

The free scalar theory contains a subtlety that is generically absent from more general

flows: the improvement term in the conformal stress tensor (A.2). The modular Hamil-

tonian in Rindler space is constructed with the canonical stress tensor rather than the

conformal one. The sphere modular Hamiltonian comes from the Rindler one by a confor-

mal transformation, and we have to use the conformal tensor. Adding the improvement

term to the canonical tensor gives an additional boundary term proportional to φ2 [22],

〈Hbdry〉 = 2πξc

∫
dσ 〈φ2〉 , (A.14)

where the integral is over the boundary of the spherical entangling surface. This term does

not change with Cauchy surface and subsists in the null limit. Hence we have to add (A.14)

to −∆S to obtain the relative entropy.

The expectation value of φ2 on the state corresponding to the massive theory is

∆〈φ2(x)〉 =

∫
ddk

(2π)d

(
1

k2 +m2
− 1

k2

)
. (A.15)

This is finite for d = 2, 3 and divergent for d ≥ 4. For d ≥ 4 we can still get a universal

part that is the finite term for d odd and the logarithmic term for d even. These universal

pieces agree when computed using different regularizations, for example dimensional reg-

ularization, heat kernel, or point splitting. The general result for the universal term using

dimensional regularization writes

〈φ2〉 =
2πd/2

(2π)dΓ(d/2)

π

2 sin πd
2

(m2)d/2−1 , (A.16)

where an expansion in d is assumed for even dimensions to get the logarithmic term. The

boundary contribution corresponding to this universal part then reads

〈Hbdry〉 = 2π
d− 2

4(d− 1)

2πd/2

(2π)dΓ(d/2)

π

2 sin πd
2

(m2)d/2−1A , (A.17)

where A is the area of the d− 2 dimensional spherical entangling surface.

Let us compute the relative entropy in the infrared for different dimensions. The

universal pieces of the entropy are given by

∆S = (−1)(d−1)/2 π

3 2d πd/2−1 Γ[d/2]
md−2A , (A.18)

for d odd, and

∆S = (−1)d/2
1

3 2d−1 πd/2−1Γ[d/2]
log(mε)md−2A , (A.19)

for d even [33].
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Therefore, for d = 3 we have ∆〈H〉Σnull
= − 1

16mA and ∆S = − 1
12mA. Note ∆〈H〉Σnull

,

coming exclusively from the boundary term, is negative. However, the relative entropy is

still positive, with a smaller area term than −∆S,

Srel =
1

48
mA . (A.20)

For d = 4 both ∆S and ∆〈Hbdry〉 are logarithmically divergent. However, these loga-

rithmic terms agree,

∆〈Hbdry〉 = ∆S =
1

24π
log(mε)m2A . (A.21)

Therefore, these divergences cancel out of the relative entropy. Thinking in the relative

entropy on the null surface as a form of regularization of the entropy, this restores the

validity of the counting argument in section 2.5 for free scalars. Once the divergent parts

cancel, there must remain a finite term proportional to m2A for Srel in d = 4. To get this

area term requires using the same cutoff for the entropy and ∆〈φ2〉. It would be interesting

in the future to calculate Srel explicitly in terms of a physical cutoff. Here we will simply

assume that the power-counting analysis of section 2.5 becomes valid due to cancellations

between ∆〈Hbdry〉 and ∆S.

For d = 5 both ∆S ∼ ε−1 and ∆〈φ2〉 ∼ ε−1. If the boundary term generally restores

the counting of divergences for the scalar, we should also have finite relative entropy in

d = 5. This would mean that the leading divergences cancel, and we end up with the

universal pieces. For these we have ∆S ∼ m3/(64π) and ∆〈H〉Σnull
∼ m3/(72π). Again

the result is positive,

Srel =
1

576π
m3A . (A.22)

Finally, for d = 6 the naive counting gives a logarithmically divergent Srel. If all

higher powers cancel, we have from the universal parts ∆S ∼ −1/(192π2) log(mε)m4A and

∆〈H〉Σnull
∼ −1/(160π2) log(mε)m4A. This gives the divergent, though positive result

Srel = − 1

960π2
log(mε)m4A . (A.23)

For d ≥ 7 the combination of the universal parts is not positive, which is consistent with the

relative entropy having leading divergent non universal terms that compensate for the sign.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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