
J
H
E
P
0
3
(
2
0
1
7
)
0
8
7

Published for SISSA by Springer

Received: January 13, 2017

Accepted: February 23, 2017

Published: March 16, 2017

Lie n-algebras of BPS charges

Hisham Satia,b and Urs Schreiberc

aUniversity of Pittsburgh,

Pittsburgh, PA, 15260 U.S.A.
bMathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,

Saadiyat Island, Abu Dhabi, UAE
cMathematics Institute of the Academy,
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1 Introduction

The correspondence between infinitesimal symmetries of a local Lagrangian form and con-

served currents of its induced Euler-Lagrange equations, i.e. Noether’s first variational

theorem, is one of the cornerstones of mathematical field theory. If the Lagrangian under

consideration is preserved only up to an exact term, as is the case for sigma-models of Wess-

Zumino-Witten-type (WZW), then the Lie algebra of conserved currents is an extension

of the symmetry algebra (see for instance [3, section 8] for review from a perspective that

will be useful here). Furthermore, the extensions arising this way are interesting enough

that they acquired a life of their own in pure mathematics: for the 2-dimensional WZW

model they transgress to the current algebras from affine Lie algebra theory (see e.g. [28]

for a survey).

Key examples of higher-dimensional WZW models are the Green-Schwarz-type sigma

models describing the worldvolume theory of all super p-branes [13, 21, 23]. Their extended

current algebras have been argued in [2] to yield extensions of superisometry algebras of

curved superspacetimes by brane charges [24, 41]. These constitute what characterizes

BPS states of supergravity and hence of supersymmetric field theories (e.g. [12]).

However, in traditional constructions one considers a Lie bracket only on equivalence

classes of current forms modulo exact forms, the Dickey bracket [14], [8, section 3]. When-

ever one is in such a situation where an algebraic structure exists on the homology of a

chain complex, it is natural to ask whether a homotopy-theoretic refinement of the alge-

braic structure may exist on the chain complex itself, where algebraic conditions such as

Jacobi identities may hold only up to higher coherent homotopies. For the case of Lie

algebras this means lifting to L∞-algebras (see [17, 36] for review and references), called

Lie (p + 1)-algebras when the underlying chain complex is concentrated in degrees 0 up

to p.

For the case of Lie algebras of conserved Noether currents, a strategy to lift to an

L∞-algebra had been proposed in [7, 27]. However, the construction there only applies
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when all relevant higher charge cohomology groups vanish, resulting in an L∞-algebra that

is in fact quasi-isomorphic to the plain Lie algebra of Noether currents. Hence the general

question remained open.

What we do here for field theories of higher dimensional and parameterized WZW-type

is the following:

1. We identify the correct higher current algebra for higher WZW-type Lagrangians as

the higher Poisson bracket L∞-algebra of local observables considered in [32], for the

pre-(p+ 1)-plectic form being the higher WZW curvature form on target spacetime.

In fact we find two different but quasi-isomorphic L∞-algebras of higher WZW-type

Noether currents, following [17], corresponding to the two different incarnations of

the Dickey bracket observed in [8, (3.10)–(3.11)].

2. We show that the L∞-Heisenberg-Kostant-Souriau extension of [17, theorem 3.3.1]

is the homotopy-theoretic lift of the central extension of infinitesimal symmetries via

Noether currents by de Rham cohomology classes (“topological currents”) as in [42,

p. 203].

3. We indicate how the higher stacky Heisenberg-Kostant-Souriau extension of [16] gen-

eralizes this to higher gauged WZW models (such as the Green-Schwarz-type sigma-

model for the M5-brane) and produces cohomological corrections to the naive brane

charges.

Acknowledgments

We thank Domenico Fiorenza for discussion of truncation of L∞-algebra extensions in

section 3, and we thank Jim Stasheff for historical comments. U.S. thanks Igor Khavkine

for discussion of higher WZW charge algebras in traditional variational calculus; a joint

account dedicated to this aspect is in preparation. U.S. was supported by RVO:67985840.

We review some of the background material in the context of local observables in

section 2. The algebras we discuss in this letter form a hierarchy of the following form

(see [17, 36] for discussion and references).

• L∞-algebras ∈ L∞Alg. These have k-ary brackets for all k ∈ N, k ≥ 2 on a chain

complex;

• dg-algebras ∈ dgLieAlg →֒ L∞Alg. These are L∞-algebras with at most binary

brackets, hence Lie algebras in the category of chain complexes;

• Lie n-algebras ∈ LienAlg →֒ L∞Alg. These are L∞-algebras whose underlying chain

complex is concentrated in degree 0 to (n− 1), also called n-term L∞-algebras;

• Lie algebras ∈ LieAlg = Lie1Alg. These are the usual Lie algebras, i.e. Lie 1-algebras,

viewed as L∞-algebras or dg-Lie algebras whose underlying chain complex is concen-

trated in degree 0.
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This concept of Lie n-algebras in the homotopy theoretic sense of n-term L∞-algebras,

originally due to Stasheff [25], is different from a vaguely similar definition due to Filippov

that has come to be known as n-Lie algebras. But the Filippov 3-Lie algebras found

on the worldvolume of coincident M2-branes are a special case of metric L∞-algebras [31,

section 2.5]. Notice that (super-)L∞-algebras play a role in supergravity and super p-brane

sigma-models already since [1], where they appear in the dual but equivalent guise of their

Chevalley-Eilenberg dg-algebras (“FDA”s), as explained in [36].

The key motivation for finding an L∞-algebra of currents is that it retains more local

information about the system at hand. This is in the general spirit of refining field theories

to what are called “extended” or “multi-tiered” field theories; we refer the reader to the

introductions of [17, 20] for more on this general background. The urge to refine Lie 1-

algebras of infinitesimal symmetries to L∞-algebras becomes more pronounced as one aims

to pass from infinitesimal to finite symmetries. For the example of field theories of WZW

type, the Lagrangian is not a globally defined differential form, but is rather a connection

on a higher bundle (higher gerbe) on field space. Here the only way even to see the full

structure of the finite symmetries is to work in homotopy theory.

Once we have the higher algebras characterized as above, we will describe two ways of

getting back to ‘lower’ algebras (in the categorical sense), including ordinary Lie algebras:

1. Truncation: in section 3 we consider appropriate truncations of higher algebras down

to more classical structures, by controlling the length of the corresponding chain

complex. Given any homotopy-theoretic higher structure, hence a homotopy n-type,

there its “truncation” down to a 0-type, obtained by quotienting out all symmetries.

This operation in general forgets much relevant structure, but the resulting object is

sometimes more easily recognized and compared to more traditional concepts. We

characterize the corresponding current algebra obtained by truncating the higher

Poisson algebras.

2. Transgression: we explain in section 4 how the full L∞-algebra of conserved currents

admits maps to all its transgressions, hence to the results of evaluating conserved

currents on cycles of any dimension. For example, the current Lie 2-algebra of the

2-dimensional WZW model transgresses to the “affine” centrally extended loop Lie

algebra of currents by integrating currents over a circle. The problem of obtaining

the 1-algebraic structure of loop spaces from a 2-algebraic (stacky, gerby) structure

on the original base spaces by transgression had been highlighted prominently in [11,

p. 249].

Then in section 5 we discuss the application of the above construction to super p-brane

sigma-models.

• Application to the Green-Schwarz-type action functionals for super p-brane sigma-

models yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge

central extensions of supersymmetry algebras. We discuss this in the generality of

higher geometry where it applies also to branes with (higher) gauge fields on their

worldvolume.
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• Specifically, application to the M5-brane sigma-model recovers the M-theory super Lie

algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges.

• Passing beyond the infinitesimal Lie theory we find cohomological corrections to the

above charges in higher analogy to the familiar corrections for D-brane charges as

they are lifted from ordinary cohomology to twisted K-theory. This supports the

proposal that M-brane charges live in a twisted cohomology theory [33–35] and is

also supported by the companion analysis in [22].

2 Poisson bracket Lie n-Algebras

We start by briefly reviewing the pertinent concepts and results from [17] in a way that

makes manifest their relation to conserved currents. In order to see the origin of the higher

symmetry in current algebras fully transparently, it is useful to adopt the following general

perspective.

Traditionally a local Lagrangian for a (p+1)-dimensional field theory is thought of as

a suitable differential (p+1)-form L on the jet bundle of the field bundle of the theory. (If

a reference volume form vol on spacetime/worldvolume is chosen, then L is proportional to

that form, L = Lvol, and the coefficient function L is what in many textbooks is regarded

as the Lagrangian.) However, it is well known, though perhaps not widely appreciated,

that for some key field theories of interest (locally variational theories [15]) it is not in fact

globally true that the Lagrangian is a differential (p+1)-form. Rather, in general it is only

locally so, but is globally a (p + 1)-form connection on a “(p + 1)-bundle” or “p-gerbe”.

This is notably the case for field theories of Wess-Zumino-Witten type; see [21] for review

of this fact and for pointers to the literature.

Even if L happens to be given by a globally defined (p + 1)-form, it is still useful

to regard this as the (p + 1)-connection form on a trivial (p + 1)-bundle over field space,

because it is this perspective that makes immediately clear that and how there are higher

symmetries-of-symmetries.

In order to capture this state of affairs mathematically, it is useful to consider a simple

object with a pretentious name: the universal smooth moduli stack of (p+1)-connections,

which we denote by Bp+1U(1)conn. The reader may find exposition and introduction for

such objects in the context of field theory in [20], but this object is easily described and

understood already by its defining universal property. That is, being a smooth universal

moduli stack for higher connections means precisely that it is a generalized smooth space

of sorts, with the following characterizing properties: for X any smooth manifold, then

1. smooth functions ∇ : X −→ Bp+1U(1)conn correspond equivalently to (p + 1)-form

connections on X;

2. smooth homotopies between such functions X

∇1

##

∇2

<<
Bp+1U(1)conn

��

correspond

equivalently to gauge transformations between two such connections ∇1 and ∇2;
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3. smooth homotopies-of-homotopies correspond to gauge-of-gauge transformations,

and so forth, up to p-fold homotopies-of-homotopies.

When the connections∇i are given by globally defined differential (p+1)-forms θi, then

a gauge transformation between these is nothing but a p-form ∆ such that θ2 = θ1 + d∆,

where d denotes the de Rham differential. A gauge-of-gauge transformation is accordingly

(p− 1)-form, etc. up to order-p gauge-of-gauge transformation which are (not 0-forms but)

U(1)-valued functions.

Remark 2.1. (i) One immediate advantage of “modulating” connections and differen-

tial forms by maps into an object such as Bp+1U(1)conn is that it makes their “con-

travariance” manifest while keeping track of higher gauge transformations. Namely,

given a (p+1)-form connection ∇ on X and given a map φ : Y −→ X between spaces,

then the pullback connection φ∗∇ is simply the one modulated by the composite map

φ∗∇ : Y
φ
−→ X

∇
−→ Bp+1U(1)conn .

(ii) So suppose then that X is some space of fields of a field theory, typically the jet

bundle to the field bundle. Then it is clear what a symmetry of such ∇ should be:

namely a diffeomorphism

X
φ

≃
// X

of the field space, such that ∇ is preserved by this up to a specified gauge transfor-

mation η : φ∗∇
≃
−→ ∇.

(iii) In the diagrammatic language that we have set up, this just means that a symmetry

is a pair (φ, η) labeling a diagram of the form

X
φ

//

∇ &&▲▲
▲▲

▲▲
▲▲

▲▲
▲ X .

∇xxqqq
qq
qq
qq
qq

Bp+1U(1)conn

≃
η

�	 ☛
☛
☛
☛

☛
☛
☛
☛

This is equivalent to saying that if ∇ happens to be given by a globally defined (p+1)-

form θ, then the homotopy is given by a p-form η such that

φ∗θ − θ = dη .

Moreover, if we have a smooth 1-parameter flow t 7→ (φ(t),∆(t)) of such symmetries,

then differentiating this relation with respect to t yields the expression of an infinitesimal

symmetry of ∇:

Lvθ = d∆v ,

where v is the vector field of the flow t 7→ φ(t), with Lv its Lie differentiation, and where

∆v = d
dt
η. Notice that if one thinks of θ = L as being the Lagrangian form of a field

theory, then this is precisely the expression for a “weak” symmetry of the Lagrangian, i.e.

a transformation that leaves the Lagrangian invariant up to addition of an exact term d∆v.
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It is useful to equivalently rewrite this as follows: let ω = F∇ denote the curvature

(p+2)-form of the (p+1)-form connection. If the connection is given by a globally defined

differential (p + 1)-form θ, then this is simply ω = dθ. Cartan’s formula then gives that

the contraction is exact

ιvω = −dJv

with

Jv := ιvθ −∆v

a kind of Legendre transform of the weakening term.

If we do think of L = θ as being a WZW-type local Lagrangian, then the expression

Jv = ιvθ − ∆v is the conserved Noether charge induced by the symmetry v. This is the

interpretation that we are interested in here, as it is what connects to the conceptualization

of BPS charges from Noether currents of higher WZW terms in [2].

(More generally, when L is not just a WZW term, then one has to refine the discussion,

take X above to be a jet bundle and incorporate the horizontal/vertical decomposition of

the variational bicomplex of forms on that bundle. This further generality will be discussed

elsewhere, here we focus on topological terms of higher WZW type.)

For p = 0 the above relations are well-known from symplectic geometry, for the case

that ω is a (pre-)symplectic form. Since this is the correct analogy, we also say that a

closed (p + 2)-form ω is a multisymplectic (p + 2)-form or a (p + 1)-plectic form [32]. In

view of this it is sensible to agree on the following terminology, modeled directly on the

traditional case given by p = 0.

Definition 2.2. (i) A closed (p+2)-form ω on a manifold X is also called a pre-(p+1)-

plectic form, and the pair (X,ω) a pre-(p+ 1)-plectic manifold.

(ii) Given such, then a vector field v such that Lvω = 0 called a pre-(p+1)-plectic vector

field.

(iii) If, moreover, there exists a p-form J with ιvω = −dJ then v is called a Hamiltonian

vector field and J is called a Hamiltonian form for v. The pair (v, J) is then a

Hamiltonian pair.

(iv) If ω is non-degenerate in that the kernel of the contraction ι(−)ω : Vect(X) →

Ωp+1(X) vanishes, then v is uniquely determined by its current J ; in this case we call

ω (p+ 1)-plectic (instead of just pre-(p+ 1)-plectic).

This is the case that is often restricted to in the literature, but the whole theory goes

through in the pre-plectic case using such Hamiltonian pairs instead of just Hamiltonian

forms.

Definition 2.3. (i) We write

Ωp
ω(X) := {(v, J) ∈ Vect(X)⊕ Ωp(X) | ιvω = −dJ}

for the linear space of the above pairs and speak of local Hamiltonian observables.

– 6 –
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(ii) We write

VecHam(X,ω) →֒ VectSymp(X,ω) →֒ Vect(X)

for the subspaces of symplectic and Hamiltonian vector fields.

Notice that both inclusions above are sub-Lie algebras under the canonical Lie bracket

of vector fields. When regarding θ = L as a local Lagrangian, one then finds that the

contraction ι···ω vanishes on tangents to field trajectories which solve the corresponding

equations of motion. Consequently, Jv is an on-shell conserved current, induced by the

given symmetry. This is a special case of the general (p+ 1)-plectic Noether theorem [38].

Next, symmetries as above form a group in an evident way, where the composition

operation is the pasting of diagrams

X
φ1 //

∇ ))❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘ X

∇
��

φ2 // X

∇uu❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

Bp+1U(1)conn

η1qy ❥❥❥❥
❥❥

❥❥❥
❥❥❥

η2qy ❦❦❦
❦❦❦

❦
❦❦❦

❦❦❦
❦ . (2.1)

Working out the Lie bracket of this Lie group one finds (as a special case of what is generally

given by definition 2.6 below) that the bracket on the these Hamiltonian pairs (v,∆v) (from

definition 2.2) is given by

[(v1,∆v1), (v2,∆v2)] = ([v1, v2], Lv1∆v2 − Lv2∆v1) .

Remark 2.4. In the case that ∇ is given by a globally defined form θ and we think of this

as being a local Lagrangian as before, so that the ∆s are its conserved Noether currents,

then after passing to de Rham cohomology classes, the above bracket may be identified with

what is known as the Dickey bracket on Noether currents [14] [8, (3.10)]. We generalize

this to the case where ω is not assumed to be globally exact below in proposition 3.6.

Moreover, when a fixed potential ∆[v1,v2] entering the definition of J[v1,v2] is picked

from its equivalence class, then in terms of this the above bracket becomes

[(v1,∆v1), (v2,∆v2)] = ([v1, v2],∆[v1,v2]) + (0,Lv1∆v2 − Lv2∆v1 −∆[v1,v2]) .

This may be identified with the bracket on Noether currents as displayed in [2, (13), (14)]

for the case of super p-brane sigma-models. We turn to this example below in section 5.

Therefore, we have found traditional current algebras from a diagrammatic calculus of

symmetries of higher connections.

Remark 2.5. This highlights two points which seem not to have been explicitly addressed

in traditional literature:

1. Higher groups: when p > 0, the group of symmetries is a higher group (a higher

group stack) of higher order symmetries-of-symmetries. Namely the homotopies η in

the diagram (2.1) may themselves have homotopies-of-homotopies between them

X
φ

//

∇ &&▲▲
▲▲

▲▲
▲▲

▲▲
▲ X

∇xxrrr
rr
rr
rr
rr

Bp+1U(1)conn

⇒
�� jr
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corresponding to gauge-of-gauge transformations. Hence after Lie differentiation

then, on top of the Lie bracket of conserved currents above, there are higher order

gauge transformations between these currents. These may be most directly under-

stood from the fact that the choice of ∆v above is clearly only unique up to addition of

exact terms, whose potentials in turn are themselves only unique up to exact terms,

and so forth. As a result, we find not just a Lie algebra, but a dg-Lie algebra of

currents, whose differential is the de Rham differential acting on higher order current

forms.

2. Refined cohomology and higher forms: in full generality, the above discussion needs

to be performed not just for globally defined θ, but for higher prequantizations θ

which are given by Čech-Deligne cocycles with curvature (d+1)-form ω. This allows

for the inclusion of geometric data via differential cohomology.

Incorporating these, the resulting dg-Lie algebra is the one given in [17, defini-

tion/proposition 4.2.1]:

Let X be a smooth manifold, ω ∈ Ωp+2
cl (X) a closed differential (p + 2)-form, with

(X,ω) regarded as a pre-(p+ 1)-plectic manifold. Let θ be a higher pre-quantization of ω

given by a Čech-Deligne cocycle with respect to a cover U of X. Write Tot•(U ,Ω•) for the

Čech-de Rham complex of the cover and notice that the Lie derivatives of θ are naturally

regarded as taking values in this complex. Then we have:

Definition 2.6. The Poisson bracket dg-Lie algebra

Poisdg(X, θ) ∈ dgLieAlg →֒ L∞Alg

is the dg-Lie algebra whose underlying chain complex has components

Poisdg(X, θ)0 :=
{
(v,∆) ∈ Vect(X)⊕ Totp(U ,Ω•)|Lvθ = dTot∆

}
,

Poisdg(X, θ)i≥1 := Totp−i(U ,Ω•) ,

with differential dTot, and whose non-vanishing Lie brackets are

[(v1,∆1), (v2,∆2)] =
(
[v1, v2], Lv1∆2 − Lv2∆1

)
,

[
(v,∆), η

]
= −[η, (v,∆)] = Lvη .

It turns out that there is a very different looking but equivalent incarnation of this

L∞-algebra, originally considered in [32]:

Definition 2.7 (Higher Poisson bracket of local observables). Given a pre-(p+ 1)-

plectic manifold (X,ω),

(i) we say that the truncated de Rham complex ending in the Hamiltonian pairs of

definition 2.3 is the complex of local observables of (X,ω), denoted

Ω•
ω(X) :=

(
C∞(X)

d
−→ Ω1(X)

d
−→ · · ·

d
−→ Ωn−2(X)

(0,d)
−−−→ Ωp

ω(X)

)
,

with Ωp
ω(X) in degree zero.

– 8 –
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(ii) The binary higher Poisson bracket on local Hamiltonian observables is the linear map

{−,−} : Ωp
ω(X)⊗ Ωp

ω(X) −→ Ωp
ω(X)

given by the formula

[(v1, J1) , (v2, J1)] := [([v1, v2] , ιv1∧v2ω)] ; (2.2)

(iii) and for k ≥ 3 the k-ary higher Poisson bracket is the linear map

{−, · · · ,−} : (Ωp
ω(X))⊗

k

−→ Ωp+2−k(X)

given by the formula

[(v1, J1) , · · · , (vk, Jk)] := (−1)⌊
k−1

2
⌋ιv1∧···∧vkω .

(iv) The chain complex of local observables equipped with these linear maps for all k will

be called the higher Poisson bracket L∞ algebra of (X,ω), denoted

Pois∞(X,ω) := (Ω•
ω(X),d, {−,−} , {−,−,−} , · · · ) .

Remark 2.8. From [17, theorem 4.2.2], there is an equivalence of L∞-algebras

Pois∞(X,ω)
≃
−→ Poisdg(X,ω)

between those of definition 2.6 and definition 2.7.

We would like to gain some further understanding of these L∞-algebras. The idea is

that starting with R, we can view it as a chain complex by placing it in various degrees

with the remaining degrees being zero. Shifting the degrees up and down result in stack

analogs of the classifying functor B. When the resulting stack is flat, we denote this with

a musical ♭.

Definition 2.9. For X a smooth manifold, denote

1. by H(X, ♭BpR) the abelian Lie (p+ 1)-algebra given by the chain complex

Ω0(X)
d
−→ Ω1(X)

d
−→ · · ·

d
−→ Ωp(X) ,

with Ωp(X) in degree 0;

2. byBH(X, ♭BpR) the abelian Lie (p+1)-algebra given by the chain complex, including

one more term,

Ω0(X)
d
−→ Ω1(X)

d
−→ · · ·

d
−→ Ωp(X)

d
−→ dΩp(X) ,

with dΩp(X) in degree zero.

– 9 –
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We start with relating the latter to Hamiltonian vector fields.

Remark 2.10. From [17, proposition 3.2.3] there is the following result. For (X,ω) a

pre-(p+ 1)-plectic manifold, the multilinear maps

ω[1] : v 7→ −ιvω;

ω[2] : v1 ∧ v2 7→ ιv1∧v2ω;

...

ω[p+2] : v1 ∧ v2 ∧ · · · vp+2 7→ −(−1)(
p+2

2 )ιv1∧v2∧···∧vp+2
ω

define an L∞-morphism ω[•] : VectHam(X) −→ BH(X, ♭BpR) . This is the higher Kirillov-

Kostant-Souriau L∞-algebra (p+2)-cocycle on the Lie algebra of Hamiltonian vector fields

with values in the abelian (p+2)-algebra BH(X, ♭BpR) associated to the pre-(p+1)-plectic

manifold (X,ω).

The L∞-algebras in remark 2.8 are characterized as follows.

Remark 2.11. From [17, theorem 3.3.1], the Poisson bracket Lie (p + 1)-algebra

Pois∞(X,ω) is the extension of the Lie algebra of Hamiltonian vector fields, definition 2.2,

by the abelian Lie (p+1)-algebraH(X, ♭BpR) induced by the Kirillov-Kostant-Souriau L∞-

algebra (p+2)-cocycle ω[•]. Namely, there is a homotopy fiber sequence of L∞-algebras of

the form
H(X, ♭BpR) // Pois∞(X,ω)

��
VectHam(X,ω)

ω[•]
// BH(X, ♭BpR) .

Here the vertical homomorphism comes from the projection Ωp
ω(X) → VectHam(X) (from

Hamiltonian pairs to Hamiltonian vector fields, definition 2.3) which induces a surjective

linear morphism of L∞-algebras.

3 Truncation to ordinary Lie algebras

We would like to consider appropriate truncations down to more classical structures. This is

governed by controlling the ‘size’ of the corresponding chain complex. Given any homotopy-

theoretic higher structure, hence a homotopy n-type, there its “truncation” down to a

0-type, obtained by quotienting out all symmetries. This operation in general forgets

much relevant structure, but the resulting object is sometimes more easily recognized and

compared to more traditional concepts.

For the simple special case of chain complexes of vector spaces in non-negative degree

(in the homological degree conventions), 0-truncation is the functor

τ≤0 : Ch• −→ Vect

which sends a chain complex (· · ·V2
∂1−→ V1

∂0−→ V0) to its degree-0 homology group

τ≤0V• = V0/im(∂0) = H0(V•) .
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We now discuss this 0-truncation for the Lie (p + 1)-algebras of conserved currents

discussed in the previous section, section 2.

Lemma 3.1. The 0-truncation functor τ ≤ 0 on chain complexes induces a functor

τ≤0 : L∞-alg≥0 → Lie

where L∞-alg≥0 denotes the category of L∞-algebras concentrated in nonnegative degrees,

with L∞-morphisms as morphisms, and Lie denotes the category of Lie algebras with Lie

algebra morphisms. More explicitly, τ≤0 maps an L∞-algebra (g,d, {−,−} , {−,−,−} , · · · )

concentrated in nonpositive degrees to the Lie algebra (H0(g), {−,−}) and an L∞-morphism

f : g → h to the Lie algebra morphism H0(f1) : H0(g) → H0(h), where f1 is the linear

component of f . Moreover, the natural morphism of chain complexes g → τ≤0g is a natural

linear and surjective L∞-morphism

(g,d, {−,−} , {−,−,−} , · · · ) → (H0(g), {−,−}) . (3.1)

Proof. Since the chain complex g is concentrated in nonnegative degrees, the chain complex

τ≤0g consists of the vector space H0(g) concentrated in degree zero. All the statements in

the lemma then follow straightforwardly from this.

Remark 3.2. Naturality of the linear L∞-morphism (3.1) means that for any L∞-

morphism f : g → h between L∞-algebras concentrated in nonnegative degree we have

a commutative diagram of L∞-morphisms

g

��

f
// h

��
H0(g)

H0(f1)// H0(h) .

We now look at the 0-truncation of the corresponding Poisson algebras.

Definition 3.3. Let (X,ω) be a pre-(p+ 1)-plectic manifold. Write

Pois(X,ω) := τ≤0Pois∞(X,ω)

for the 0-truncation of Pois∞(X,ω) ≃ Poisdg(X,ω).

Note that using definition 2.6, definition 2.7, remark 2.8, and via lemma 3.1, this is the

quotient Pois∞(X,ω) → H0Pois∞(X,ω) by exact current p-forms. We now characterize

this 0-truncation.

Proposition 3.4. Let (X,ω) be a pre-(p + 1)-plectic manifold. Then the Lie 1-algebra

of currents, definition 3.3, is a central extension of the Hamiltonian vector fields by the

abelian Lie algebra Hp
dR(X) of de Rham p-forms. In other words, writing Pois(X,ω) for

H0Pois∞(X,ω), there is a short exact sequence of Lie algebras

0 → Hp
dR(X) −→ Pois(X,ω) −→ VectHam(X,ω) → 0 ,

and Hp
dR(X) is central in Pois(X,ω).
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Proof. From the short exact sequence of chain complexes given by proposition 2.11

0 → H(X, ♭BpR) → Pois∞(X,ω) → VectHam(X,ω) → 0 ,

we get the long exact sequence in homology

0 → Hp
dR(X) → Pois(X,ω) → VectHam(X,ω) → 0

and, by lemma 3.1, this is a short exact sequence of Lie algebras. The fact that Hp
dR(X) is

central in Pois(X,ω) is immediate from equation (2.2).

Remark 3.5. For the special case when X is the jet bundle of a field bundle, when

the de Rham differentials appearing everywhere are constrained to be the corresponding

horizontal differentials, and under the assumption that the cohomology of this horizontal

de Rham complex is concentrated in degree 0, then another L∞-stucture on the truncated

de Rham complex appearing in definition 2.7 has been constructed in [7]. Inspection of

the construction around theorem 7 there shows that this L∞-algebra is L∞-equivalent to

its 0-truncation Pois(X,ω) which under these assumptions is the Dickey algebra [14]; see

the comments above in section 2. Hence for all purposes of homotopy theory the algebra

in [7] is this 0-truncation.

In order to further compare proposition 3.4 to existing literature, we consider now a

choice of Hamiltonian current forms for each symmetry generator. The following statement

is for definition 2.7 what remark 2.4 was for definition 2.6.

Proposition 3.6. Under a choice of linear splitting J : v 7→ (v, Jv) of the natural projection

Ωp
ω(X) → VectHam(X,ω) from definition 2.2, the Lie bracket on de Rham cohomology

classes of currents in Pois(X,ω), proposition 3.4, is isomorphic to

{v + [α], w + [β]} = [v, w] +

[
J[v,w] −

1

2
(LvJw − LwJv)

]
.

When moreover ω is globally exact via dθ = ω, then in terms of the currents ∆v := ivθ−Jv
this reduces to

{v + [α], w + [β]} = [v, w] + [Lv∆w − Lw∆v −∆[v,w]]

as in remark 2.4.

Proof. The splitting induces a linear isomorphism of the form

VectHam(X,ω)⊕Hp
dR(X)

∼
−→ Pois(X,ω)

v + [α] 7→ (v, Jv − α)

and with this the Lie bracket on VectHam(X,ω)⊕Hp
dR(X) reads

{v + [α], w + [β]} = [v, w] + [J[v,w] − ιv∧wω] .
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Since ιvω = −dJv, one has

ιv∧wω = −ιwdJv = −LwJv + dιwJv

and

ιv∧wω = −ιw∧vω = ιvdJw = LvJw − dιvJw .

Hence, combining, we can write

ιv∧wω =
1

2
(LvJw − LwJv)−

1

2
d(ιvJw − ιwJv)

and so

{v + [α], w + [β]} = [v, w] +

[
J[v,w] −

1

2
(LvJw − LwJv)

]
.

If, moreover, a global potential θ for the pre-n-plectic form ω is given, i.e., if one has a

p-form θ with dθ = ω then, writing Jv = ivθ −∆v, one finds

J[v,w] −
1

2
(LvJw − LwJv) = −∆[v,w] + ι[v,w]θ −

1

2
(Lvιwθ − Lwιvθ) +

1

2
(Lv∆w − Lw∆v)

= −∆[v,w] + ι[v,w]θ −
1

2
(ι[v,w]θ − ι[w,v]θ)

︸ ︷︷ ︸
=0

−
1

2
(ιwLvθ − ιvLwθ)

+
1

2
(Lv∆w − Lw∆v)

= −∆[v,w] −
1

2
(ιwd∆v − ιvd∆w) +

1

2
(Lv∆w − Lw∆v)

= −∆[v,w] + Lv∆w − Lw∆v + d-exact terms .

Therefore, finally, we get the desired expression

{v + [α], w + [β]} = [v, w] + [Lv∆w − Lw∆v −∆[v,w]] .

4 Transgression to ordinary Lie algebras

We will now consider another process of getting ordinary Lie algebras starting from our

higher algebras. While the 0-truncation which we considered in section 3 just quotients out

and forgets higher gauge transformations to obtain a plain Lie 1-algebra of currents, there

is another way to turn a higher current Lie (p+1)-algebra into a Lie k-algebra for k ≤ p that

retains more information: mathematically this is transgression, while in terms of physics

this corresponds to the natural operation of integrating local currents over submanifolds

of some codimension. A notable instance is to do so over Cauchy surfaces, in order to turn

them into ordinary observables (i.e. functions on field configurations).

The conception of higher groups of currents as indicated in section 2, via automorpisms

sliced over a higher differential moduli stack, lends itself to a clear picture of the process

of transgression of higher currents as follows.

First observe that transgression of plain differential forms has the following neat sheaf-

theoretic formulation. Write Ωp+1 for the sheaf of smooth differential (p+1)-forms (on the
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site of all smooth manifolds). Then, by the Yoneda lemma, a smooth differential (p + 1)-

form ω ∈ Ωp+1(X) on some smooth manifold X is equivalently a morphism in the category

of sheaves of the form

ω : X −→ Ωp+1 .

Now, given a closed oriented smooth manifold Σ of dimension k ≤ p + 1, write [Σ,Ωp+1]

for the mapping space, which is the sheaf that sends a test manifold to the set of sheaf

morphisms U × Σ → Ωp+1, and hence to the set of smooth differential (p + 1)-forms on

U × Σ. It is immediate then that ordinary fiber integration of differential forms along the

projections Σ× U → U , for all possible U , is embodied in a single morphism of sheaves of

the form ∫

Σ
: [Σ,Ωp+1] −→ Ωp+1−k .

Now, forming the mapping sheaf out of Σ is a functorial process, and hence we obtain from

the above ingredients the following

Proposition 4.1. There a composite morphism of the form

∫

Σ
[Σ, ω] : [Σ, X]

[Σ,ω]
−−−→ [Σ,Ωp+1]

∫
Σ−→ Ωp+1−k ,

representing a differential (p+ 1− k)-form on the smooth mapping space [Σ, X].

The point now is that, unwinding all the definitions, one finds

Corollary 4.2. The differential (p+ 1− k)-form
∫
Σ[Σ, ω] is the transgression of ω to the

above mapping space, namely is the form
∫
Σ ev∗Σω, for

evΣ : [Σ, X]× Σ −→ X

the evaluation map.

While this is the traditional formulation of transgression, the above re-formulation via

mapping sheaves has the advantage that it neatly generalizes from differential n-forms ω

to their pre-quantization by (p+ 1)-connections ∇, that we considered in section 2.

Recall that fiber integration of differential forms, viewed as an operation on all possible

Σ×U as U varies, can be encapsulated in a single morphism of sheaves as above. Similarly,

fiber integration of n-connections, hence fiber integration of cocycles in ordinary differential

cohomology of degree (p+2), is equivalently encoded [18] in a morphism of smooth higher

stacks of the form ∫

Σ
: [Σ,Bp+1U(1)conn] −→ Bp+1−k U(1)conn .

With this in hand we immediately obtain

Proposition 4.3. (i) There is a natural homomorphism from the smooth (p+ 1)-group

of conserved currents as in section 2, to (p + 1 − k)-group of their transgression to

the mapping space out of Σ.
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(ii) This is done simply by applying the ∞-functor [Σ,−] to the defining slice diagrams

and then postcomposing the slicing with
∫
X
, as indicated here:




X
φ

//

∇ &&▲▲
▲▲

▲▲
▲▲

▲▲
▲ X

∇xxrrr
rr
rr
rr
rr

Bp+1 U(1)conn

≃

η

~� ✆✆
✆✆

✆✆
✆✆




7→




[Σ, X]
[Σ,φ]

//

[Σ,∇] ''❖❖
❖❖

❖❖
❖❖

❖❖
❖

[Σ, X]

[Σ,∇]ww♦♦♦
♦♦
♦♦
♦♦
♦♦

[Σ,Bp+1 U(1)conn]

∫
Σ

��
Bp+1−k U(1)conn

≃

[Σ,η]

}� ✂✂
✂✂
✂

✂✂
✂✂
✂




.

Remark 4.4. The above operation now transgresses not only the (p + 1)-connection ∇,

which for us is the Lagrangian of the given field theory, but transgresses also all the currents

which are embodied in the equivalences labeled η. Specifically, if ∇ happens to be given

by a globally defined differential (p + 1)-form θ = L then η is, infinitesimally, given by a

current p-form J , and the above operation takes that to its transgression form
∫
Σ ev∗J .

1. When k = p, then this transgressed form is a 0-form, hence a function, and has the

interpretation of the actual observable induced by the current J .

2. Generally, for k = p then on the right all higher homotopies vanish, due to the

composition with
∫
Σ which lands in the 1-stack BU(1)conn, and hence in this case

the truncation map factors through the 0-truncation of the group on the left, which

we just discussed above. This way the 0-truncation of the current Lie (p+1)-algebra

maps into the generalized affine Lie algebra of currents, but the latter may in general

be bigger.

Example 4.5. The archetypical example of this process is given by the case of the 3d WZW

model on a compact Lie group G. In this case ∇ above is the WZW gerbe LWZW : G −→

B2U(1)conn on the group, and its transgression
∫
S1 [S

1,LWZW] : [S1, G] → BU(1)conn is

a bundle with connection on the loop group. By the results of [16] the group of currents

induced by this, as discussed above, is the “quantomorphism group” of this bundle regarded

as a prequantum line bundle in the sense of Souriau. It is a famous fact [30] (see [37, around

proposition 42]), that this is the Kac-Moody central extension of the loop group of G, whose

Lie algebra is the corresponding affine Lie algebra of G. This is “the” current algebra as

seen in most of the mathematics literature.

We see here that this Kac-Moody loop group is nothing but the transgression of the

smooth 2-group of currents of the WZW model, which, by [16, 2.6.1], is what is called the

String 2-group of G, and that the affine current Lie algebra is nothing but the transgression

of the corresponding Lie 2-algebra, which is the string Lie 2-algebra [6].

Remark 4.6. Two variants of transgression are of relevance in physics:

1. When the target space is a product X × Σ, there is a canonical morphism X −→

[Σ, X × Σ]. Transgression followed by precomposition with this inclusion
(
X × Σ

∇
−→ Bp+1U(1)conn

)
7→

(
X → [Σ, X × Σ]

∫
Σ
[Σ,∇]

−−−−−→ Bp+1−dim(Σ)U(1)conn

)

is double dimensional reduction.
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2. Moreover, when Σ is equipped with a base point s0 : ∗ → Σ, then there is also the

induced restriction operation

(
X × Σ

∇
−→ Bp+1U(1)conn

)
7→

(
X → [Σ, X × Σ]

|s0−−→ X × Σ
∇
−→ Bp+1U(1)conn

)
.

Example 4.7. The product case occurs frequently in the M-theory circle bundle over

10-dimensional spacetime X. The combination of double dimensional reduction with re-

striction is, for instance, what takes the 11-dimensional supergravity C-field to the B-field

and Ramonf-Ramond (RR) form in 10 dimensions. The above process allows us to do so at

the level of stacks, where all the higher geometric and gauge structures are carried along.

A stack perspective on this can be found in [19].

5 Application to brane charges

We now discuss how the above constructions lead to interesting applications in (supersym-

metric) physical models. We note that all the previous discussion generalizes directly to

the situation of superalgebra and supergeometry, where all manifolds are generalized to

supermanifolds, differential forms to super-differential forms, and where Lie n-algebras are

generalized to super Lie n-algebras (see [21] for details and pointers to the literature). This

means that we may apply the previous results to supermanifolds X as they appear in higher

supergravity theory, where they carry certain special super (p + 2)-forms which serve as

the curvatures of WZW terms for the super p-brane sigma-models of Green-Schwarz type,

with target space X.

We consider this in detail. For N a real spin representation of Spin(d − 1, 1), let

Rd−1,1|N be the corresponding super-Minkowski spacetime, regarded as a super translation

Lie group. The canonical left-invariant 1-form on Rd−1,1|N is traditionally denoted E =

(Ea, ψα)a,α, where a ranges over linear basis elements for Rd and α runs over a basis for

the linear representation space N . To make precise statements, let then (d,N, p) an item

in the old brane scan, i.e. let p ∈ N be such that

ωWZW := ψ ∧ Γa1···apψ ∧ Ea1 ∧ · · · ∧ Eap ∈ Ωp+2
cl (Rd−1,1|N )

is a super Lie algebra cocycle of the given form (see [21] for review and details). This

is then the WZW-curvature term for the Green-Schwarz sigma model for super p-branes

propagating on Rd−1,1|N .

For instance for d = 10, p = 1 and N = (2, 0) = 16+16 there is such a cocycle, and it

constitutes the curvature 3-form of the κ-symmetry WZW-term of the type IIB superstring

on Minkowski background. More generally, let X be a more general supermanifold locally

modeled on Rd−1,1|N and equipped with a super-vielbein field (super soldering form) E and

further relevant fields, including a super (p+ 2)-form ω. Then the equations of motion of

d-dimensional N -supersymmetric supergravity constrain the vielbein to be such that the

fermionic part ωX
WZW of ωX is the pullback of ωWZW via E [9, 10].

Following terminology familiar from the theory of G2-manifolds, we may express this by

saying that ωX
WZW is a definite form, define on ωWZW. We may regard the pair (X,ωX

WZW) as
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a pre-(p+1)-plectic supermanifold according to definition 2.2. As such it induces the higher

Poisson bracket super Lie (p + 1)-algebra Pois(X,ωX
WZW) of definition 2.6, definition 2.7,

and remark 2.8.

The fact that the equations of motion of supergravity force ωX
WZW to be definite on

ωWZW means that isometries of X preserve ωX
WZW, hence that their ‘super’ vector fields

(the Killing vectors and Killing spinors) are (p + 1)-plectic vector fields in the sense of

definition 2.2. It is not guaranteed that every isometry with respect to the given viel-

bein preserves θ up to gauge transformation; those that do are precisely the Hamiltonian

isometries in the sense of definition 2.2. Write

IsomHam(X,ωX
WZW) →֒ VectHam(X,ωX

WZW)

for the inclusion of these into all Hamiltonian vector fields

Definition 5.1. WriteBPS(X,ωX
WZW) for the restriction of the current Lie (p+1)-algebra

Pois(X,ωX
WZW) (definition 2.6, definition 2.7, remark 2.8) of ωX

WZW to isometries, i.e. for

the super L∞-algebra in the homotopy pullback diagram

BPS(X,ωX
WZW) //

��

Pois(X,ωX
WZW)

��
Isom(X,ωX

WZW) // VectHam(X,ωX
WZW) .

The following reproduces and generalizes the result in [2, p. 8].

Proposition 5.2. The 0-truncation to a super-Lie algebra τ0BPS(X,ω) is the central

extension of the supersymmetry algebra of X by charges of p-branes wrapping non-trivial

cycles.

Proof. This follows via remark 3.6 by proposition 3.4, which gives an extension

Hp
dR(X) → τ0BPS(X,ωX

WZW) → Isom(X,ωX
WZW) ,

classified by ωX
WZW(−,−). The elements in Hp

dR(X) are the p-brane charges.

Hence we have the following picture:





X
φ

//

LWZW &&▲▲
▲▲

▲▲
▲▲

▲▲
▲ X

LWZWxxrrr
rr
rr
rr
rr

Bp+1U(1)conn

≃

η

}� ✄✄
✄✄

✄✄
✄✄

, ωX
WZW = FLWZW





Lie
7−−→

Hp
dR(X)

��
τ0Poiss(X,ωX

WZW)

��
Isom(X,ωX

WZW)

.

These are the supersymmetry extensions induced by a single brane species, as consid-

ered originally in [2]. But the “type II algebra” and the “M-theory algebra” [24, 41] are
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supposed to arise from considering not just strings and membranes, but also the branes on

which these may end, namely the D-branes and the M5-brane, respectively. Notably the

M-theory supersymmetry algebra is given on the fermionic generators in traditional local

component notation as [4, 41]

{Qα, Qβ} = (CΓM )αβPM + (CΓMN )αβZ
MN
2 + (CΓMNPQR)αβZ

MNPQR
5 , (5.1)

where C is the charge conjugation matrix and Γ are the Dirac matrices. The three terms on

the right hand side correspond to the graviton momentum 1-form charge, the membrane 2-

form charge and the fivebrane 5-form charge. Notice again that this traditional expression

applies only locally, on patches of spacetime diffeomorphic to super-Minkowski spacetime.

Now the proper global analysis of [2, p. 8] and of proposition 5.2 only ever produces

extensions by charges of a single brane species with no (higher) gauge fields on its worldvol-

ume. But in [21, 22, 39] we explained that the WZW-type sigma models for super p2-branes

with (higher) gauge fields on the their worldvolume and on which super p1-branes may end,

are globally defined not on target superspacetime X itself, but on the total space
˜̂
X of a

super p1-stack extension
˜̂
X → X of superspacetime, which itself is a differential refinement

of the p1-gerbe X̂ that underlies the WZW term of the p1-branes. Moreover, in [16] we

showed that the higher Heisenberg-Kostant-Souriau extensions of remark 2.11 generalizes

to such higher stacky base spaces. Schematically this follows now by the following picture,

the full details are in [38, 39]:





X̂

��

L
p2
WZW

''

≃ // X̂

��

L
p2
WZW

vv

X
≃ //

L
p1
WZW

▼▼
▼▼

▼

&&▼▼
▼

X

L
p1
WZW

qq
qq
q

xxqqq

Bp1+1U(1)conn

��
Bp2+1U(1)conn





≃
7−→

Hp2(
˜̂
X)

��

τ0Poiss(
˜̂
X,Lp2

WZW)

��

Isom(
˜̂
X,Lp2

WZW)

.

(All 2-cells on the left are filled by homotopies of higher stacks. We suppress them nota-

tionally just for convenience and readability.)

Here the differential refinement
˜̂
X of X̂ is what makes a sigma-model field Σp2 −→

˜̂
X

be a pair consisting of an ordinary map to target spacetime Σp2 −→ X together with a

twisted p1-form gauge field on Σ6. This is the global model for super p-branes with tensor

multiplet higher gauge fields on their worldvolume.

While this is necessary for the full picture, the isometry group and the cohomology of
˜̂
X is hard to compute. There is however a canonical forgetful map

˜̂
X → X̂ to the geometric

realization of this differential stack (regarded itself as a locally constant stack, see [38] for

details). By combining results of [38] and [29], one finds that in the case at hand X̂ is the

homotopy type of the K(Z, p1 + 1)-fiber bundle over spacetime X that is classified by the
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integral class of the background field of the p1-brane. We now compute the cohomology

of that geometric realization. In a full discussion one will have to pull the result of the

following computation back along the above map to
˜̂
X, and kernel and cokernel of this

pullback map potentially yield yet further corrections to the brane charges.

We specialize to the case p1 = 2 and p2 = 5 corresponding to M5-branes propagating

in an M2-brane condensate [21]. First, consider the cohomology of the fiber K(Z, 3). At

the integral level, this is known but has a complicated structure. We will instead consider

the corresponding rational cohomology, which is much more accessible. Indeed, it directly

follows from the Hurewicz theorem and the universal coefficient theorem that

Hk(K(Z, 3);Q) =

{
Q for k = 0, 3 ,

0 otherwise .

Given the homotopy fiber sequence

K(Z, 3) // X̂

��
X

the cohomology Serre spectral sequence takes the form

Ep,q
2 = Hp(X); Hq(K(Z, 3)) ⇒ Hp+q(X̂) .

From the cohomology of the fiber determined above, we see that q has to be either 0 or 3

in order to contribute. The relevant differential dr : Ep,q
2 → Ep+r,q−r+1

2 is then d4, which

raises the cohomology degree by 4.

Hence the brane charge extension of the 11-dimensional superisometries is, rationally,

by H5(X̂), and by the Serre spectral sequence this is the middle cohomology of

H1(X)
(0,d4)
−−−→ H2(X)⊕H5(X)

(d4,0)
−−−→ H6(X) , (5.2)

where d4 = [G4] ∪ (−) is the cup product with the degree-4 class of the C-field. For

torsion C-fields this vanishes rationally and hence one arrives at the conclusion that the

M-theory super Lie algebra extension is by brane charges in H2(X) ⊕ H5(X), agreeing

with the result of the argument in [40]. For non-torsion C-fields or else when considered

not just rationally, then there are corrections to this statement by the kernel and cokernel

of d4. Notice that these corrections are directly analogous to the correction by kernel and

cokernel of a d3 differential in an Atiyah-Hirzebruch spectral sequence, which appear when

refining D-brane charges from ordinary cohomology to twisted K-theory [26, (3.2), (3.6)].

That 5-brane charges should be in a degree-4 twisted cohomology theory this way has been

suggested earlier in [35, section 8] and has been discussed further in [22].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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