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1 Introduction

The hot and dense QCD matter has attracted lots of attention recently, because it sheds

lights on the mysterious aspects of strongly coupled systems such as the non-trivial topo-

logical vacuum, quark confinement and so on. One way to investigate the properties of

QCD matter is to measure its responses with respect to external fields such as the electro-

magnetic fields and the fluid vorticity. Up to the order of linear response, one has

Jµ
(1) = σEE

µ + σBB
µ + σV l

µ, (1.1)

J5µ
(1) = σ5

EE
µ + σ5

BB
µ + σ5

V l
µ. (1.2)

where Eµ = Fµνuν and Bµ = 1
2ǫ

µνρσuνFρσ are separately the background electric and

magnetic field in the rest frame of fluid. lµ = −ǫµνρσuν∂ρuσ is the 4-vorticity vector of

the fluid.1 The subscript “(1)” of Jµ
(1) and J5µ

(1) means that as the responses of the system

to Eµ, Bµ and lµ, they are the first order contributions to the total currents from the

hydrodynamical point of view.

The response coefficients in eq. (1.1) contains quite a lot of important and interesting

messages of the QCDmatter generated in the high energy nucleon collisions (see for example

refs. [1, 2]). They are the electric conductivity (of the Ohm Law) relates with σE , the

Chiral Electric Separation Effect coefficient relates with σ5
E [3, 4]; the Chiral Magnetic

Effect (CME) [5–7] relates with σB, the Chiral Separation Effect (CSE) with σ5
B [8, 9]; the

Chiral Vortical Effect (CVE) [10–12] with σV and the Chiral Vortical Separation Effect

1The anti-symmetric symbol ǫµνρσ is defined as ǫ0123 = −ǫ0123 = 1.
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(CVSE) with σ5
V . All these effects are about a net (axial) vector current is induced when

the QCD matter (usually in the condition of both chemical and axial chemical are nonzero)

is exposed to the external electromagnetic field or the vorticity of the fluid.

The proposal of CVE can be dated back to ref. [10] where Kharzeev studies the possi-

bilities of the existence for the non-trivial topological domains (the P-odd bubbles) excited

in high energy nucleon collisions. The signature for the P-odd bubbles is the asymmetry

of the charged pions in the final state. This asymmetry has a polar axis which can be cho-

sen along the angular momentum vector of the system, which is inherited from the initial

colliding nucleons. The non-central collision of the initial hadrons causes a net angular

momentum transverse to the reaction plane though the larger part of it is carried away by

the spectator nucleons. Then Kharzeev and Zhitnitsky [11] show that both the angular

momentum and the magnetic field can induce the charge separation effect when the excited

P-odd vacuum domain is at present.

The CVE can be intuitively explained like this. If a hot and dense QCD matter with

both µ 6= 0 and µ5 6= 0 has an global rotation ~ω, an effective angular momentum ~L

associated with ~ω will be present. Then the chiral quarks with spin ~S will couple with ~L in

the form of −~S · ~L which is like the spin-orbit coupling in a quantum mechanical problem

in atoms. Chiral quarks are allowed to move only along the direction of ~L because their

momentum ~p should always point in the same (opposite) direction of ~S for right (left)

handed ones. So an effective vector current will be induced in case that there is more

positive charged particles inside this QCD matter. In general, the CVE coefficient will

have two parts relate separately with the chemical potential and the temperature. Present

researches on the properties of CVE coefficient discover that its temperature dependent

part will not get corrected when the plasma couples with scalar fields [13] but will get

corrected when couples with vector fields [14].

Though the early stage concepts about CVE was considered in phenomenological mod-

els, the first CVE coefficient was found in holographic models [15–17] with the CVE term

coming from the Chern-Simons (CS) term in the bulk action. All these 3 works were calcu-

lated in the frame work of boundary derivative expansion (BDE) formalism of fluid/gravity

correspondence [18–20], in which refs. [15, 16] work in the charged AdS5 black hole and

ref. [17] in the STU black hole [21]. Then Son and Surówka [22] prove that this newly

found vorticity term is the requirement of quantum anomaly manifested in macroscopic

scale. Son et al.’s work actually open’s the field of the anomalous or the parity violating

hydrodynamics (see for example refs. [23–27]).

The early stage studies of the holographical CVE coefficient [15–17] only focus on

the CVE coefficient itself. This condition has changed after Son et al.’s work [22] on the

anomalous hydrodynamics where the author introduced also the background gauge fields

in the classical background of bulk spacetime. The more recent studies relate with the

CVE [28–33] turn to be in a more comprehensive way. Among these, refs. [28–31] use the

R-charged AdS5 black hole, but with manual modifications. To be specific, [28] proposes

the Kubo formulae for the CVE coefficient and the conductivities of the background gauge

fields and apply them on the R-charged AdS black hole. Then ref. [29] use these Kubo

formulae in some modified R-charged AdS black hole: it contains a gauge-gravity mixed

– 2 –
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anomaly sector in the bulk action which is responsible for the temperature dependent part

of the CVE coefficient.2 Ref. [30] adds an axial vector sector to modify the R-charged

AdS black hole background to get the CSE coefficient. The above 3 papers are using

the Green-Kubo formalism technically, while the following 3 use the boundary derivative

expansion formalism. Ref. [31] calculates the second order transport coefficients for the

anomalous fluid in the model of [29]. Both refs. [32, 33] use the STU black hole, but the

author prescind from the original physical meanings of the 3 vector charges and give them

new interpretations. They study σB, σ
5
B, σV and σ5

V in [32] and σB with v2 correction in

the case of anisotropy hydrodynamics in [33].

The holographic studies that we have mentioned on CVE coefficient [15–17, 28–32] use

either the R-charged AdS black hole or the STU black hole background, the boundary fluid

of which are all conformal. In this paper, based on the nonconformal generalization of the

fluid/gravity correspondence constructed via the compactified D4-branes [19, 20], we would

like to begin the venture for the nonconformal anomalous hydrodynamics. The study of

nonconformal fluid is important in that it will help us to recover new information of hy-

drodynamics. For example, [35] discovers that some relations between the second order

transport coefficients of nonconformal fluid proposed in [36] are wrong with the help of the

results of [20]. In this paper, we will only study the CVE coefficient and other thermal and

hydrodynamical quantities up to the first order as the first step towards the nonconformal

anomalous hydrodynamics. In order to introduce the background vector field into the com-

pactified D4-brane, we will use the background of compactified black D4-branes with D0-

branes smeared uniformly on its volume. If one makes a double Wick rotation on both the

time direction and one of the direction of D4-branes’ world volume, then this background

will become the D0-D4 Sakai-Sugimoto model [37, 38]. This model is constructed by adding

the smeared D0-brane charge into the Sakai-Sugimoto (SS) model [39, 40] background and

it has been used to explore many aspects of QCD holographically [37, 38, 41–45].

The organization of this paper is as follows: in section 2 we will give a clear explana-

tion on the background of compactified D4-brane with smeared D0-brane charge and its

dimensional reduction to 5D form. Then in section 3, we will solve all the perturbations.

We will calculate all the thermodynamic and hydrodynamic quantities in section 4. We

will end this paper in section 5 by discussing some problem and some working directions

for the future.

2 The setup

In this section, we will introduce the background of compactified D4-brane with smeared

D0-brane charge and reduce it into 5 dimensional form. This technic has been used firstly

in ref. [46] where Benincasa et al. derive the sound speed and ζ/η for the compactified

black D4-brane background, and later in refs. [19, 20] where the authors try to offer a

2There is an interesting research work [34] which gives a contradictive proposal: the temperature de-

pendent part of CVE coefficient depends on the number of chiral degrees of freedom in the plasma, not the

gravitational anomaly.
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nonconformal counterpart to Bhattacharyya et al.’s AdS5 construction of fluid/gravity

correspondence [18].

The 10D effective action for the type IIA superstring theory with both D0 and D4-

brane at present reads as:

S =
1

2κ210

∫

d10x
√
−G

[

R(10) − 1

2
(10∇φ)2 − g2s

2 · 4!e
φ
2F 2

4 − g2s
2 · 2!e

3

2
φF 2

2

]

, (2.1)

The background for N4 compactified black D4-branes with N0 smeared D0-branes is

ds2 = −H
−

7

8

0 H
−

3

8

4 f(r)dt2 +H
1

8

0 H
−

3

8

4 (d~x2 + dy2) +H
1

8

0 H
5

8

4

(

dr2

f(r)
+ r2dΩ2

4

)

,

eφ = eΦ−Φ0 = H
3

4

0 H
−

1

4

4 , F4 = g−1
s Q4ǫ4, F2 = dA1 =

g−1
s Q0

r4H2
0

dr ∧ dt, (2.2)

with

f(r) = 1− r3H
r3

, H0 = 1+
r3Q0

r3
, H4 = 1+

r3Q4

r3
, A1 = g−1

s

√

1 +
r3H
r3Q0

(H−1
0 − 1)dt. (2.3)

Here Φ is the dilaton with Φ0 its vacuum value and gs is the string coupling defined as

gs = eΦ0 . A1 is the Ramond-Ramond (RR) field coupled with D0-branes, with F2 its field

strength. F4 is the RR field strength magnetically coupled with the D4-branes. The rH ,

rQ0, rQ4, Q0 and Q4 are the parameters of this background. The Q0 and Q4 can be given as3

Q0 =
(2πls)

7gsN0

V4Ω4
, Q4 =

(2πls)
3gsN4

Ω4
, (2.4)

by using the normalization conditions of the RR fields. They relate with rH and rQ0, rQ4

via EOM as

Q2
0 = 9r3Q0(r

3
Q0 + r3H), Q2

4 = 9r3Q4(r
3
Q4 + r3H). (2.5)

Under the near horizon limit, H4 → L3/r3 with L3 = πgsN4l
3
s thus the background metric

and dilaton becomes

ds2 = −
( r

L

) 9

8

(

H
−

7

8

0 fdt2 +H
1

8

0 (d~x
2 + dy2)

)

+

(

L

r

) 15

8

H
1

8

0

(

dr2

f
+ r2dΩ2

4

)

, (2.6)

eφ =
( r

L

) 3

4

H
3

4

0 . (2.7)

The D4-branes are lying in directions of {xi, y} with y compact hence the name compactified

D4-brane. So the above metric is the near-extremal, compactified D4-branes with smeared

D0-branes with the topology is D2×R3×S1×S4, where D2 is the 2D disk of {r, t} surface.

If one makes Wick rotations on both dt and dy at the same time: dt2 → −dτ2, dy2 →
−(dx0)2 with x0 noncompact, then the 10D Einstein metric in the near horizon limit

3Here the Ω4 is the volume of unit 4-sphere and V4 is the spatial volume of the D4-brane.
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becomes the D0-D4 Sakai-Sugimoto model metric:

ds2 =
( r

L

) 9

8

(

H
1

8

0 ηµνdx
µdxν +H

−
7

8

0 fdτ2
)

+

(

L

r

) 15

8

H
1

8

0

(

dr2

f
+ r2dΩ2

4

)

,

f(r) = 1− r3KK

r3
. (2.8)

This metric is a bubble configuration with topology of R4 × D2 × S4 with D2 the 2D

disk of {r, τ}. In the bubble background the D0-brane’s RR field is Aτ , which is a spatial

component. Since the spatial component of a vector is a pseudoscalar. So it can be

interpreted [39] that its integration along τ corresponds to θ: θ =
∫

dτAτ =
∫∫

dτdrFrτ .

The reason that Aτ can be interpreted as the theta angle lies on this: in the SS model, the

field theory is not on the boundary, it is on the world volume of D4-brane. The action of

the effective field theory on the world-volume of D4-brane has a term as

S
(D4)
CS =

1

2
µ4(2πα

′)2
∫

dτAτ trF2 ∧ F2. (2.9)

Since one has θ =
∫

dτAτ thus S
(D4)
CS ∼ θ

∫

trF2 ∧ F2 which is the θ term in field theory.

Here F2 is the gauge field strength on the world-volume of D4-brane (not D0-brane’s RR

field strength F2). But the 10D metric we use is of black brane type, not of bubble type.

The D0-brane’s RR field At is in the real time direction dt now, it is just a scalar so we can

not relate it with θ any longer. Thus A1 in our paper is a vector and its nonzero component

in the background At can be related with chemical potential of the corresponding fluid.

We use the following ansatz to reduce the metric into 5D form as in refs. [19, 46] (L = 1

from now on):

ds2 = e−
10

3
AgMNdxMdxN + e2A+8Bdy2 + e2A−2BdΩ2

4. (2.10)

The reduced 5D background will be

ds2 = −r
5

3H
−

2

3

0 (r)f(r)dt2 + r
5

3H
1

3

0 (r)d~x
2 +

H
1

3

0 (r)

r
4

3 f(r)
dr2.

eφ = r
3

4H
3

4

0 , eA = r
13

80H
1

16

0 , eB = r
1

10 , A1 = g−1
s

√

1 +
r3H
r3Q0

(H−1
0 − 1)dt. (2.11)

As one can check that the scalar curvature and the square of Riemann tensor behave like

1/r2/3 and 1/r4/3, respectively near the boundary. Thus the metric of the 5D reduce

background (2.11) is asymptotically flat which is the same as in ref. [19]. The Hawking

temperature is

T =
3r

1

2

H

4πH
1

2

0 (rH)
=

3r2H

4π(r3H + r3Q0)
1

2

. (2.12)

The expression for Q4 in eq. (2.4) gives Q4 = 3πgsN4l
3
s = 3L3. Since we have set L = 1,

thus Q4 = 3. Here we would like to define a parameter relates with Q0 as

n2
0 ≡

Q2
0

Q2
4

= r3Q0(r
3
Q0 + r3H). (2.13)
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Given that Q4 = 3, one has Q0 = 3n0, which will be used later.

The 5D reduced bulk action can be got through the following procedures:

√
−G =

√−g
√
γe−

10

3
A, (2.14)

√
−GR(10) =

√−g
√
γ

(

R+
10

3
∇2A− 40

3
(∂A)2 − 20(∂B)2 + 12e−

16

3
A+2B

)

, (2.15)

√
−G(10∇φ)2 =

√−g
√
γe−

10

3
AGM̂N̂∂M̂φ∂N̂φ=

√−g
√
γe−

10

3
A(e

10

3
AgMN )∂Mφ∂Nφ

=
√−g

√
γ(∂φ)2, (2.16)

√
−G

g2s
2 · 4!e

φ
2F 2

4 =
√−g

√
γ
Q2

4

2
e

φ
2
−

34

3
A+8B, (2.17)

√
−G

g2s
2 · 2!e

3φ
2 F 2

2 =
√−g

√
γe−

10

3
A g2s
2 · 2!e

3φ
2 (e

10

3
AgMP )(e

10

3
AgNQ)FMNFPQ

=
√−g

√
γ

g2s
2 · 2!e

3

2
φ+ 10

3
AF 2

MN , (2.18)

where the indices with a “hat” like M̂, N̂ are 10 dimensional ones and those without a

“hat” like M,N are 5 dimensional ones. Here g = det gMN and γ is the determinant of the

matric on S4. We write an explicit superscript “(10)” on some quantities to indicate they

are 10D quantities. The details of the reduction of R(10) to its 5D form R can be found in

the appendix of ref. [19]. Thus the reduced 5D bulk action is

S =
1

2κ25

∫

d5x
√−g

[

R− 1

2
(∂φ)2 − 40

3
(∂A)2 − 20(∂B)2 − V (φ,A,B)− g2s

4
e

3

2
φ+ 10

3
AF 2

MN

]

,

V (φ,A,B) =
Q2

4

2
e

φ
2
−

34

3
A+8B − 12e−

16

3
A+2B, (2.19)

where 1
2κ2

5

=
Ω4βy

2κ2

10

is the 5 dimensional surface gravity and βy =
∫

dy is the circumference

of S1. Compared with the case of ref. [19], here the action receives the contribution from

the D0-branes’ RR field, i.e. AM . Thus this system is 5D Einstein gravity coupled with 3

scalars and a vector field. The dual field theory will have a chemical potential as we will

see in the final results.

According to refs. [19, 20], the full action of the reduced 5D system is

S = Sbulk −
1

κ25

∫

d4x
√
−hK +

1

κ25

∫

d4x
√
−h

5

2
e−

5

3
A−

1

12
φ, (2.20)

where the second term in the r.h.s. of the above equation is the Gibbons-Hawking term

and the third term is the counter term. The 5 dimensional bulk action is

Sbulk =
1

2κ25

∫

d5x

{√−g

[

R− 1

2
(∂φ)2 − 40

3
(∂A)2 − 20(∂B)2 − V (φ,A,B)

− g2s
4
e

3

2
φ+ 10

3
AF 2

MN

]

+
1

3
g3sκCSǫ

MNPQRAMFNPFQR

}

,

V (φ,A,B) =
9

2
e

φ
2
−

34

3
A+8B − 12e−

16

3
A+2B. (2.21)
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Here we define the Levi-Civita symbol as it is in flat spacetime with the metric ηMN =

diag{−1, 1, 1, 1, 1} with the convention ǫ01234 = −ǫ01234 = −1. κCS is the coupling of

the CS term. Note that in the above bulk action, we add manually a CS term for the

D0-branes RR field which corresponds to the vorticity term in the dual relativistic fluid.

This CS term does not have a 10D origins. It is added just “by hand”. Here we take a

similar viewpoint as [29–32] that we will not be very strict on the 10D string theory origin

of the 5D reduced theory with the full action is (2.20). Generally speaking, the technic

of BDE formalism does not relate with the 10D string theory directly but rely more on

calculating the Brown-York tensor for the 5D reduced background. So one may take the

same standpoint as [32] that to view the 5D reduced system as a bottom-up holographic

model which does not have direct relations with its 10D origins. In practical application,

the manually added CS term for the D0-brane RR field does not couple with the scalar

fields or the metric tensor. So it will not change any properties of the scalar part or the

tensor part of the 5D theory. It may only modify, if it will, the topological property of the

vector field since it is a topological term. But we do not use the topological property of

the vector field in the calculations. So pragmatically, we think this is enough to justify the

manually added CS term in the 5D reduced theory.

The EOM can be derived out from eq. (2.21) as

EMN − TMN = 0, (2.22)

∇2φ− 9

4
e

φ
2
−

34

3
A+8B − 3

8
g2se

3

2
φ+ 10

3
AF 2

MN = 0, (2.23)

∇2A+
153

80
e

φ
2
−

34

3
A+8B − 12

5
e−

16

3
A+2B − 1

32
g2se

3

2
φ+ 10

3
AF 2

MN = 0, (2.24)

∇2B − 9

10
e

φ
2
−

34

3
A+8B +

3

5
e−

16

3
A+2B = 0, (2.25)

∂N (g2s
√−ge

3

2
φ+ 10

3
AFMN )− g3sκCSǫ

MNPQRFNPFQR = 0. (2.26)

In the above equation, EMN is the Einstein tensor and it is defined as

EMN ≡ RMN − 1

2
gMNR; (2.27)

TMN is the energy-momentum tensor in the 5D bulk defined as

TMN ≡ 1

2

(

∂Mφ∂Nφ− 1

2
gMN (∂φ)2

)

+
40

3

(

∂MA∂NA− 1

2
gMN (∂A)2

)

+ 20

(

∂MB∂NB − 1

2
gMN (∂B)2

)

+
g2s
2
e

3

2
φ+ 10

3
A

(

FMPF
P

N − 1

4
gMNF 2

2

)

− 1

2
gMNV. (2.28)

As in ref. [18], we boost the reduced 5D background by dv → −uµdx
µ, dxi → P i

µdx
µ

– 7 –
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and (2.11) becomes

ds2 = −r
5

3H
−

2

3

0 f(r)uµuνdx
µdxν + r

5

3H
1

3

0 Pµνdx
µdxν − 2r

1

6H
−

1

6

0 uµdx
µdr,

eφ = r
3

4H
3

4

0 , eA = r
13

80H
1

16

0 , eB = r
1

10 ,

A1 = g−1
s

√

1 +
r3H
r3Q0

(1−H−1
0 )uµdx

µ, F2 = dA1 =
g−1
s Q0

r4H2
0

uµdx
µ, (2.29)

where

f(r) = 1− r3H
r3

, H0(r) = 1 +
r3Q0

r3
, uµ =

(1, βi)
√

1− β2
i

. (2.30)

Now we let the parameters in the above equation i.e. rH , rQ0 and βi to be slowly xµ-

dependent, which means
∣

∣

∣

∂µ#
T

∣

∣

∣
≪ 1, # = {rH , rQ0, βi}. The physical meaning of rH and

βi to be boundary coordinate dependent has been explained clearly in refs. [18, 19]. We

would like to give an explanation to xµ dependence of rQ0. From eq. (2.5) one can see that

rQ0 relates with n0 and rH , thus rQ0 is xµ dependent is equal to n0 is xµ dependent. We

know that n0 is the relative density of D0-branes, thus n0 is xµ dependent means the D0

charge is no longer uniform — it has fluctuations which should be in the long wavelength

limit due to the condition:
∣

∣

∣

∂µrQ0

T

∣

∣

∣
≪ 1. The gradients of D0-brane density and the CS term

of AM will behave like two sources that separately contributes to the first derivative order

of the conserved vector current Jµ, as will be seen in the final results of this paper. Though

n0 has a clearer physical significance than rQ0, we will still use rQ0 in the calculation of

the following sections since it will make the formulations look more neatly.

3 Solving the perturbations

We expand the xµ dependent metric in eq. (2.29) to first order as

ds2 = −r
5

3H
−

2

3

0

(

f − 3r2HδrH
r3

−
2fr2Q0δrQ0

r3H0

)

dv2 + 2r
5

3H
−

2

3

0 (f −H0)δβidx
idv

+ 2r
1

6H
−

1

6

0

(

1−
r2Q0δrQ0

2r3H0

)

dvdr + r
5

3H
1

3

0

(

1 +
r2Q0δrQ0

r3H0

)

d~x2

− 2r
1

6H
−

1

6

0 δβidx
idr. (3.1)

where δ# = xµ∂µ#, with # = {rH , rQ0, βi}. We set the perturbations of the metric as

ds2 = −r
5

3H
−

2

3

0 k(x, r)uµuνdx
µdxν + 2r

5

3H
−

2

3

0 P ρ
µwρ(x, r)uνdx

µdxν

+ r
5

3H
1

3

0 (αµν(x, r) + h(x, r)Pµν)dx
µdxν − 2r

1

6H
−

1

6

0 j(x, r)uµdx
µdr. (3.2)

To first order, it becomes

ds2 = −r
5

3H
−

2

3

0 k(1)(r)dv2 − 2r
5

3H
−

2

3

0 w
(1)
i (r)dxidv + 2r

1

6H
−

1

6

0 j(1)(r)dvdr

+ r
5

3H
1

3

0 (α
(1)
ij (r) + h(1)(r)δij)dx

idxj . (3.3)
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The vector field together with the preset perturbations reads as

A1 = g−1
s

√

1 +
r3H(x)

r3Q0(x)
(1−H−1

0 (x, r))uµ(x)dx
µ + P ν

µaν(x, r)dx
µ + c(x, r)uµ(x)dx

µ. (3.4)

To first order, the above becomes

A1 = −g−1
s

[(

n0

r3Q0

+
3r2HδrH
2n0

− 3r3HδrQ0

2n0rQ0

)

(1−H−1
0 ) +

3n0δrQ0

r3H2
0rQ0

]

dv

+
g−1
s n0

r3Q0

(1−H−1
0 )δβidx

i − c(1)(r)dv + a
(1)
i (r)dxi. (3.5)

Since from (2.11) one can see that the scalar field φ and A (should not be confused with

D0-brane’s RR field AM ) contains H0 thus will also be xµ dependent after the promotion

of rQ0 to be boundary coordinate dependent. So after the derivative expansion, φ and A

become

φ = ln

[

r
3

4H
3

4

0

(

1 +
9r2Q0δrQ0

4H0r3

)]

, A = ln

[

r
13

80H
1

16

0

(

1 +
3r2Q0δrQ0

16H0r3

)]

. (3.6)

Note that here we do not turn on any perturbations for the scalar fields. This makes the

EOMs of the scalar fields contains only the scalar part perturbations of metric tensor and

vector field. One can of course turn on perturbations for φ, A and B, for which we may

leave as future studies. The xµ dependence of scalar fields will also modify the Brown-York

tensor, we will see in section 4.

In the rest of this section, we will put the metric (3.1) with its perturbations (3.3)

together with the vector field (3.5) and scalar fields (3.6) upto first order into the EOMs

of the 5D system to solve all the perturbations out in the asymptotic regime, i.e. near the

boundary. We set gs = 1 from now on and will omit the superscript “(1)” for all the first

order perturbation ansatz.

3.1 The tensor part

The EOM of the tensor part is

Eij −
1

3
δijδ

klEkl = Tij −
1

3
δijδ

klTkl. (3.7)

By substituting the expanded metric and the metric perturbations one has the differential

equation of F (r)

∂r(r
4f∂rF ) = −

5r3 + 2r3Q0

r
3

2H
1

2

0

, (3.8)

where F (r) satisfies αij = F (r)σij , with σij = ∂(iβj) − 1
3δij∂β the spatial part of the shear

viscous tensor.

The solution of eq. (3.8) can be written formally as

F (r) =

∫ r

∞

1

x4f(x)
dx

∫ x

rH



−
5y3 + 2r3Q0

y
3

2H
1

2

0 (y)



 dy. (3.9)
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We only need the asymptotic behavior of the result for the above integral. So we expand

the above in terms of 1/r and get

F (r) =
4

r
1

2

−
2rH

√

r3H + r3Q0

3r3
. (3.10)

More details about this integral can be found in refs. [18, 20].

3.2 The vector part

The vector part is quite different from the case in refs. [19, 20], here it has two sectors of

perturbations: wi from the metric and ai from the vector field. The differential equations

for them are coupled with each other, but can be decoupled and solved independently.

The constraint equation of vector part from the Einstein equation is

gr0(E0i − T0i) + grr(Eri − Tri) = 0, (3.11)

which gives
r2H

r3H + r3Q0

∂irH = −2∂0βi. (3.12)

One can check that if rQ0 = 0, we will have ∂irH = −2rH∂0βi which is the first order

vector constraint in the compactified D4-brane case [19]. The dynamical equation from the

Einstein equation is

Eri − Tri = 0, (3.13)

this gives

4r8H2
0w

′′

i + 4r4H0(4r
3 + 7r3Q0)w

′

i + 36r6Q0wi − 12n0r
4H2

0a
′

i

−3r−
1

2H
1

2

0 (r
3 + 4r3Q0)r

2
Q0∂irQ0 − 2r

5

2H
3

2

0 (5r
3 + 2r3Q0)∂0βi = 0. (3.14)

The (i) component of the Maxwell equation for the vector field gives

∂r(r
4H0fa

′

i)−
(

3n0

H0
w′

i +
9n0r

3
Q0

r4H2
0

wi

)

+
n0(r

3 + 4r3Q0)

r
9

2H
1

2

0

∂0βi

−
3[n2

0(r
6 − 9r3Q0r

3 − 4r6Q0) + r6Q0r
3H0(r

3 + 4r3Q0)]

4n0rQ0r
15

2 H
3

2

0

∂irQ0 +
24κCSn

2
0

r7H3
0

li = 0, (3.15)

where li = ǫijk∂jβk is the spatial component of lµ. From eq. (3.14) and eq. (3.15) we can

eliminate ai and get the quation for wi as

∂r[r
4f∂r(r

4w′

i)] =
3r2Q0

8r
15

2 H
5

2

0

[

5r9 + (7r3H + 16r3Q0)r
6 − 4r3Q0(7r

3
H + 4r3Q0)r

3 (3.16)

− 8r3Hr6Q0

]

∂irQ0 +
1

4r
9

2H
3

2

0

[

55r9 − 25(r3H − 2r3Q0)r
6

− 4r3Q0(5r
3
H + 2r3Q0)r

3 − 8r6Q0(5r
3
H + 6r3Q0)

]

∂0βi −
72κCSn

3
0

r7H4
0

li.
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The solution of the differential equation for wi is

wi(r) = − 2

r
1

2

∂0βi +O
(

1

r
7

2

)

∂irQ0 +O
(

1

r6

)

li, (3.17)

where we only record terms with the order less than O
(

1
r3

)

here, but in the calculation

process higher order terms should be taken into consideration so that one can get the

correct solution for ai, which is

ai(r) = −
4rHr

3

2

Q0

3r3
∂0βi −

r4Hr
1

2

Q0

2(r3H + r3Q0)r
3
∂irQ0 +

4κCSr
3
Q0(3r

3
H + r3Q0)

9(r3H + r3Q0)
2r3

li. (3.18)

Note that wi still does not have 1/r3 order terms as in [19], which means it will not con-

tribute to the conserved vector current of the boundary fluid. The vector part perturbation

ai of AM will contribute to the conserved current since it contains the 1/r3 order terms.

The interesting point is, though the CS term of AM is added by hand, it turns out to have

a physical contribution as can be seen from the term of li.

3.3 The scalar part

From refs. [19, 20] we learn that to nonconformal fluid in the prescription of BDE formalism

of fluid/gravity correspondence, the scalar part is the most complicate. In the situations

considered in this paper, the scalar part is even more complex than that in refs. [19, 20].

We will separate the constraint and the dynamical equation into two parts to study.

3.3.1 The constraint equations

There is one more constraint equations of scalar part than it is in refs. [19, 20], which is

the (r) component of the Maxwell equations for the vector field.

The first scalar constraint from the Einstein equation is

grr(Er0 − Tr0) + gr0(E00 − T00) = 0, (3.19)

which gives

r2H(5r3 + 2r3Q0)∂0rH + 3r2Q0(2r
3 − r3H)∂0rQ0 + 2r3(r3H + r3Q0)∂β = 0. (3.20)

The (r) component of Maxwell equation gives

3r2HrQ0∂0rH + 3(r3H + 2r3Q0)∂0rQ0 + 2rQ0(r
3
H + r3Q0)∂β = 0. (3.21)

The above two constraint equations contain no scalar perturbations, from which we can

solve ∂0rH and ∂0rQ0 out in terms of ∂β:

1

rH
∂0rH = −

2(r3H + r3Q0)

5r3H + 4r3Q0

∂β,
1

rQ0
∂0rQ0 = −

4(r3H + r3Q0)

3(5r3H + 4r3Q0)
∂β. (3.22)

One can check that if setting rQ0 = 0, we will have 1
rH

∂0rH = −2
5∂β, which is the first

scalar constraint in ref. [19]; the other constraint will become a trivial identity. The above
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two constraint relations will be useful in tackling the following equations in that one can

use it to change the sources of both ∂0rQ0 and ∂0rH into the source of ∂β.

The second scalar constraint from Einstein equation is

grr(Err − Trr) + gr0(Er0 − Tr0) = 0, (3.23)

which gives

r4H0(5r
3 + 2r3Q0)k

′ + 3(5r6 + 10r3Q0r
3 + 2r6Q0)k − 30r6H2

0 j + 3r4H2
0 (5r

3 − 2r3H)h′

− 6n0r
4H2

0c
′ +



2r
5

2H
3

2

0 (5r
3 + 2r3Q0) +

4n2
0H

1

2

0 (r
3 − 2r3Q0)

(5r3H + 4r3Q0)r
1

2



 ∂β = 0. (3.24)

We have changed the source term with ∂0rQ0 into ∂β, we will continue to do this for the

following dynamical equations without pointing it out again. The above equation contains

the first order derivative of perturbations, and will be usefull when we solving them.

3.3.2 The dynamical equations

There are two main differences for the dynamical equations of scalar perturbations com-

pared with ref. [19]. The first one is that we should take the (0) component of the Maxwell

equation into consideration. The second one is, the EOMs of the three scalars φ, A and

B produce the same differential equations in [19] but here their EOMs produce different

differential equations. So in general, we should consider 6 dynamical equations. They are

the (rr) and (ii) (with i summed) components of Einstein equations, the EOMs for the

three scalars and the (0) component of the Maxwell equation.

The (rr) component of Einstein equation is

Err − Trr = 0, (3.25)

after putting into the first order expanded metric together with the perturbations, this

gives

6r4H0h
′′ + 9r3h′ − 2(5r3 + 2r3Q0)j

′ = 0. (3.26)

This is the most simple one among those 6 dynamical equations.

The EOM of φ (2.23) gives

2r4H0(r
3 − 2r3Q0)k

′ + 6(r6 + 2r3Q0r
3 − 2r6Q0)k − 2r4H0f(r

3 − 2r3Q0)j
′ − 12r6H2

0 j (3.27)

+ 3r4H0f(r
3 − 2r3Q0)h

′ − 12n0r
4H2

0c
′ +



2r
5

2H
3

2

0 (r
3 − 2r3Q0) +

24n2
0r

5

2H
1

2

0

5r3H + 4r3Q0



 ∂β = 0,

the EOM of A (2.24) gives

2r4H0(13r
3 − 2r3Q0)k

′ + 6(13r6 + 26r3Q0r
3 − 2r6Q0)k − 2r4H0f(13r

3 − 2r3Q0)j
′

− 156r6H2
0 j + 3r4H0f(13r

3 − 2r3Q0)h
′ − 60n0r

4H2
0c

′

+



2r
5

2H
3

2

0 (13r
3 − 2r3Q0) +

8n2
0H

1

2

0 (11r
3 − 4r3Q0)

(5r3H + 4r3Q0)r
1

2



 ∂β = 0, (3.28)
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and the EOM of B (2.25) gives

2r3k′ + 6r2k − 2r3fj′ − 12r2j + 3r3fh′ +



2r
3

2H
1

2

0 − 4n2
0r

−
3

2H
−

1

2

0

5r3H + 4r3Q0



 ∂β = 0. (3.29)

These 3 equations for scalar perturbations are not independent, as one can check that

5 · EOM of φ+ 8r4H2
0 · EOM of B − EOM of A = 0. (3.30)

The (0) component of Maxwell equation gives

∂r(r
4H2

0c
′)− 9

2
n0h

′ + 3n0j
′ = 0. (3.31)

This equation can help us to eliminate c′ from the other equations.

The (ii) component of Einstein equation

∑

i

(Eii − Tii) = 0 (3.32)

gives

6r8H2
0k

′′ + 3r4H0(13r
3 + 16r3Q0)k

′ + 9(5r6 + 10r3Q0r
3 + 8r6Q0)k

+ 12r4H2
0 (r

4fh′)′ − 6r4H2
0 (5r

3 − 2r3H)j′ − 90r6H2
0 j + 18n0r

4H2
0c

′

+

[

4r
3

2H
3

2

0 (5r
3 + 2r3Q0) +

12n2
0r

5

2H
3

2

0

5r3H + 4r3Q0

]

∂β = 0. (3.33)

We record this equation here just for the completeness of the paper and the convenience of

the readers, we will not use it when solving the perturbations. But it can be used to check

the solutions for the perturbations.

The strategy for solving the scalar perturbations is in the order of h, j, c and k. 4

times the second scalar constraint (3.24) plus 3 times the EOM of φ (3.27) minus the EOM

of A (3.28) will give us

4r4fH0(5r
3 + 2r3Q0)j

′ − 6r4H0

[

(5r3 + 2r3Q0)f − 2(5r3 − 2r3H)H0

]

h′

+ 4r
5

2H
3

2

0 (5r
3 + 2r3Q0)∂β = 0. (3.34)

Using this to eliminate j′ in the (rr) component of Einstein equation one gets the equation

for h:

∂r(r
4f∂rh) = −

5r3 + 2r3Q0

3r
3

2H
1

2

0

∂β . (3.35)

We can see that the l.h.s. is the same as the differential equation for F (r) and the r.h.s.,

i.e. the source part is 1/3 of that for differential equation of F . So we can get immediately

h = F/3. This relation also holds in [19] for the case of compactified D4-brane. But from

the experience of solving the second order perturbations in [20], we know that we should
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solve h and j to the order of 1/r6 in order to get the correct term of order 1/r3 for k, so we

record here the solution of h to the order of 1/r6 for the readers’ convenience. We have h as

h =





4

3r
1

2

−
2rH

√

r3H + r3Q0

9r3
−

2(2r3H + r3Q0)

21r
7

2

−
r4H

√

r3H + r3Q0

9r6



 ∂β. (3.36)

Then j is easy to get from eq. (3.34):

j =





rH
√

r3H + r3Q0

3r3
−

12(r3H + r3Q0)

35r
7

2

+
rH

√

r3H + r3Q0(11r
3
H + 6r3Q0)

30r6



 ∂β. (3.37)

Next, we put the results into the (0) component of Maxwell equation (3.31) and get c

c ∼ O
(

1

r
7

2

)

∂0rQ0. (3.38)

So c is trivial and will not contribute to the conserved current. Substitute h and j into the

differential equation of B one has

r3k =



Ck +
20(3r6H + 4r3Hr3Q0 + r6Q0)

7(5r3H + 4r3Q0)r
1

2

−
r4H

√

r3H + r3Q0

3r3



 ∂β, (3.39)

where Ck is the integral constant and can be fixed by the requirement that the boundary

stress tensor is in the Landau frame: Ck = − 2
15 . We would like to stress that though we

record the results for the scalar perturbations to the order of 1/r6, only the term of order

1/r3 will contribute to the energy momentum tensor of the boundary relativistic fluid.

4 The stress tensor and conserved vector current of the boundary fluid

In this section we will derive the boundary stress tensor and the conserved vector current

for the relativistic fluid on the boundary so that we can read all the thermodynamic and

the hydrodynamical quantities.

The total action of our system is eq. (2.20). The details of deriving the boundary

stress tensor can be found in [19]. One should notice that from (2.11) or (2.29) we can see

that both φ and A depend on H0 and hence x, when rQ0 is promoted to be xµ dependent.

Since the boundary is at some r = const, in the case without D0 charge, the scalars are all

constant on the boundary. But now with D0-brane present, φ and A will also vary on the

boundary. This means the boundary hyperplane on which the relativistic fluid resides is not

“iso-D0-charged” — the relative number density of D0-brane will fluctuate on the boundary.

This is quite different from the charged AdS5 black hole where the boundary stress tensor

is still the same as in the case without charge, which can been seen from the eq. (4.35) of

ref. [16]. Thus the boundary stress tensor in this D0-D4 plasma should be modified to

Tµν =
1

2κ25
lim
r→∞

r
5

3 · 2
(

Kµν − hµνK − 5

2
r−

1

3H
−

1

6

0

(

1−
r2Q0δrQ0

2H0r3

)

hµν

)

. (4.1)
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Put the first order expanded metric (3.1) together with the solutions of its perturba-

tions (3.3) in, we get

Tµν =
1

2κ25

[(

5

2
r3H + 3r3Q0

)

uµuν +
1

2
r3HPµν − rH

√

r3H + r3Q0

(

2σµν +
4

15
Pµν∂ρu

ρ

)]

,

(4.2)

from which we can read the energy density, momentum density, shear and bulk viscosity as

ε =
1

2κ25

(

5

2
r3H + 3r3Q0

)

, p =
1

2κ25

1

2
r3H ,

η =
1

2κ25
rH

√

r3H + r3Q0, ζ =
1

2κ25

4

15
rH

√

r3H + r3Q0 . (4.3)

From (4.3) one can see that the bulk to shear viscosity ratio is not changed: ζ/η = 4/15,

as compared with ref. [19].

To calculate the entropy, we use

S =
AH

4G5
=

1

2κ25
4πAH , (4.4)

where AH is the area of the horizon. The entropy can then be calculated as

S =
1

2κ25
4π

∫

d3x
√
g~x

∣

∣

∣

∣

rH

=
1

2κ25
4π

∫

d3xr
5

2H
1

2

0

∣

∣

∣

∣

rH

=
1

2κ25
4πV3r

5

2

HH
1

2

0 (rH). (4.5)

Thus the entropy density is

s =
S

V3
=

1

2κ25
4πr

5

2

HH
1

2

0 (rH). (4.6)

From the Hawking temperature (2.12) and the above expression, we can see that if the

temperature goes to zero T → 0, then we should have rH → 0, which makes s → 0. This

is quite different from the Reissner-Nordstrom case where the entropy does not go to zero

when T → 0 at the extremal condition. The shear and bulk viscosity to entropy ratios are

also not changed comparing with ref. [19]:

η

s
=

1

4π
,

ζ

s
=

1

15π
. (4.7)

The chemical potential is defined and calculated as

µ = At(∞)−At(rH) =
n0

r3H + r3Q0

. (4.8)

It is smaller than 1 since from eq. (4.8) one has

µ2 =
n2
0

(r3H + r3Q0)
2
=

r3Q0

r3H + r3Q0

< 1, (4.9)

given that both rH and rQ0 are larger than 0. This will be useful when we analyze the

stability of the boundary fluid. The conserved vector current is defined as

Jµ =
1

2κ25
lim
r→∞

3r3Aµ (4.10)
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ε 1
2κ2

5

(

4π
3

)6 (5+µ2)T 6

2(1−µ2)4

p 1
2κ2

5

(

4π
3

)6 T 6

2(1−µ2)3

η 1
2κ2

5

(

4π
3

)5 T 5

(1−µ2)3

ζ 1
2κ2

5

(

4π
3

)5 4T 5

15(1−µ2)3

ρ 1
2κ2

5

(

4π
3

)6 3T 6µ
(1−µ2)4

σ 1
2κ2

5

(

4π
3

)5 T 5

(1−µ2)2

σV 1

2κ2

5

4κCSµ
2
(

1− 2

3
µ2

)

Table 1. Reexpress the thermal and hydrodynamical quantities in terms of T and µ.

with the result is

Jµ =
1

2κ25

(

Q0uµ − r4H

(r3H + r3Q0)
1

2

TP ν
µ∂ν

(µ

T

)

+
4κCSr

3
Q0(3r

3
H + r3Q0)

3(r3H + r3Q0)
2

lµ

)

. (4.11)

Compared with the following definition for the current of relativistic fluid

Jµ = ρuµ − σTP ν
µ∂ν

(µ

T

)

+ σV lµ, (4.12)

we then have

ρ =
1

2κ25
3n0, σ =

1

2κ25

r4H

(r3H + r3Q0)
1

2

, σV =
1

2κ25

4κCSr
3
Q0(3r

3
H + r3Q0)

3(r3H + r3Q0)
2

. (4.13)

Here the σV is the CVE coefficient for the D0-D4 plasma. From eqs. (2.12), (4.3), (4.6),

(4.8), (4.13) one can see that the Smarr relation is satisfied

ε+ p = sT + µρ. (4.14)

Since the temperature and chemical potential both depend on rH and rQ0, thus we can

solve rH and rQ0 in terms of T and µ to reexpress the results. They are listed in table 1.

From the thermal quantities in table 1, we can derive some other thermal properties.

The D0-brane charge number susceptibility is defined [47] and calculated as

χ =
∂ρ

∂µ

∣

∣

∣

∣

µ=0

=
1

2κ25

(

4π

3

)6

3T 6. (4.15)

It is interesting to compare this result with that of ref. [15] where χ ∼ T 2. There is another

very interesting relation between the CVE coefficient and the thermal quantities. From

the results of eqs. (4.3), (4.8), (4.13), one can easily see that µ = ρ/(ε + p). So we can

reexpress the CVE coefficient σV in table 1 as

σV =
1

2κ25
4κCSµ

2

(

1− 2

3

µρ

ε+ p

)

. (4.16)

– 16 –



J
H
E
P
0
3
(
2
0
1
7
)
0
8
2

From the above result we may draw two important conclusions. The first one is that

the above result justifies the CS term that we add manually in (2.21). The CVE term

σV lµ in the conserved current of the boundary fluid comes from the CS term added “by

hand” in the 5D bulk action (2.21). One may wonder whether it is reasonable to do such

modifications on the 5D system dimensionally reduced from the background of compactified

D4-brane with smeared D0-brane charge. So by calculating the concrete result for the CVE

coefficient we can see that the CVE term resulting from our modification is actually allowed

or admitted to be present by the thermodynamics of the 5D system. The second one is that

the anomalous transport coefficients for strongly coupled relativistic fluid seems irrelevant

with the conformality of the fluid. This can be seen by comparing our result (4.16) (which is

a result for a nonconformal relativistic fluid) with the results in [22, 28] (where the boundary

fluid is conformal). We can see that if we do not count in the temperature square part of

the CVE coefficient (like the case in [29]), the anomalous transport coefficients is indeed

irrelevant with the conformality of the fluid.

At the end of this paper, we want to prove that the relativistic fluid on the boundary

is stable by checking the stability criterions. According to ref. [48], there are two kinds of

stabilities for fluid systems. The first one is the thermal stability, whose stability condition

can be given as the heat capacities are positive. The second one is the dynamical stability,

of which the stability condition is the simultaneous validness of the following 3 conditions:

c2s > 0, ΓT > 0, ΓL > 0, (4.17)

where cs, ΓT and ΓL are separately the sound speed, the attenuation coefficients for the

shear and sound mode dispersion relations:

ωT = −iΓTk
2,

ωL = ±cs|k| − iΓLk
2. (4.18)

Firstly, we check the thermal stability conditions. The enthalpy for this system is

H = ε+ p =
1

2κ25

(

4π

3

)6 3T 6

(1− µ2)4
. (4.19)

In the calculation, the thermal equilibrium value of the relative density of D0-branes

N0/(V4N4) is supposed to be a constant. Since one has ρ ∼ n0 = Q0/Q4 ∼ N0/(V4N4),

thus the heat capacity at constant volume and at constant pressure should be calculated

at fixed ρ:

cV =

(

∂ε

∂T

)

ρ

=
1

2κ25

(

4π

3

)6 3T 5(5− µ2)

(1 + 7µ2)(1− µ2)3
,

cp =

(

∂H
∂T

)

ρ

=
1

2κ25

(

4π

3

)6 18T 5

(1 + 7µ2)(1− µ2)3
. (4.20)

Given that µ2 < 1, the heat capacities are both positive. The ratio of cp to cV is

cp
cV

=
6

5− µ2
. (4.21)
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This ratio is no longer a constant as in the case of compactified black D4-brane [49], it

depends on the chemical potential.

Secondly, we will check the dynamical stability condition. The sound speed can be

calculated from only the thermal quantities at constant s/ρ [48] as

c2s =

(

∂p

∂ε

)

s/ρ

=

∣

∣

∣

∣

∂(p, s/ρ)

∂(T, µ)

∣

∣

∣

∣

/ ∣

∣

∣

∣

∂(ε, s/ρ)

∂(T, µ)

∣

∣

∣

∣

=
1− µ2

5− µ2
> 0. (4.22)

Note that the condition that s/ρ is kept fixed is very important for getting the correct

result of the sound speed. The dispersion relation is calculated by working in the linear

regime of the fluid [18–20]. In the circumstances now, the linear regime is achieved by

expanding rH , rQ0 and uµ as

rH(x) = rH + δrHeikx, rQ0(x) = rQ0 + δrQ0e
ikx, uµ(x) = (−1, δβie

ikx). (4.23)

Then put the above into the EOM of the fluid4

∂µJµ = 0, (4.24)

∂µTµν = 0. (4.25)

One can solve out δrQ0 from eq. (4.24) in terms of δrH and k · δβ and then substitute it

into eq. (4.25). The condition that the determinant of the coefficient matrix for the vector

(δrH , δβi)
T is zero gives a quintic algebraic equation for ω which can be factorized.5 We

can solve out the dispersion relation from this quintic equation. The result is

ωT = −i
rH

3(r3H + r3Q0)
1

2

k2,

ωL = ± r
3

2

H

(5r3H + 4r3Q0)
1

2

|k| − i
2rH(10r3H + 13r3Q0)

15(r3H + r3Q0)
1

2 (5r3H + 4r3Q0)
k2. (4.26)

Here we omit the higher orders in |k| for the sound mode. Compared with eq. (4.18) the

above dispersion relations give us

cs =
r

3

2

H

(5r3H + 4r3Q0)
1

2

, ΓT =
rH

3(r3H + r3Q0)
1

2

, ΓL =
2rH(10r3H + 13r3Q0)

15(r3H + r3Q0)
1

2 (5r3H + 4r3Q0)
. (4.27)

All of the above 3 parameters are positive so that this system is stable under the long

wavelength fluctuations of the smeared D0 charge and the local temperature associated

with the wavy horizon. As one can check

ΓT =
η

ε+ p
, ΓL =

1

2(ε+ p)

(

4

3
η + ζ +

4c2ρ6D

µ2Tc2sc
2
V H2

)

(4.28)

4Since we do not turn on the background field like in [22, 31], thus the EOMs for stress tensor and charge

current are still take their conserved form.
5The “T” in (δrH , δβi)

T stands for transpose.
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considering the results of eqs. (4.3), (4.8), (4.13), (4.20). Here D is the charge diffusion

constant and it relates with the conductivity σ by [48]

(

ρT

H

)2

D = σT, (4.29)

and c is defined as

c =

(

∂µ

∂ρ

)

T

. (4.30)

From eq. (4.28) we can also restate the dynamical stability condition in terms of transport

coefficients as

c2s > 0, η > 0, ζ > 0, D (or σ) > 0. (4.31)

Again, the above 4 conditions should be satisfied at the same time. Compare with the

formulation of the attenuation coefficients in compactified D4-branes [19], the form of ΓT

is not changed. This is because the shear mode of the dispersion relation reflects only

the diffusions of the (traceless) tensor part perturbations which is described by η. While

the sound attenuation ΓL will receive a new contribution associated with charge diffusion

constant D. We can also reformulate eq. (4.27) in terms of (T, µ) as:

cs =

√

1− µ2

5− µ2
, ΓT =

1− µ2

4πT
, ΓL =

(10 + 3µ2)(1− µ2)

10πT (5− µ2)
. (4.32)

One can see clearly now that the sound speed from the dispersion relation (i.e. eq. (4.32))

is the same as it is got through the thermal relations (i.e. eq. (4.22)). Note that with

0 < µ2 < 1, we have 0 < c2s < 1/5. So adding the smeared D0 charge into the D4-brane

volume will slow down the sound speed.

5 Discussions and outlooks

In this paper, we derive out the CVE coefficient in the 5D background which is reduced from

the compactified D4-brane with smeared D0-branes via the BDE formalism of fluid/gravity

correspondence. The relativistic fluid corresponds to the 5D bulk is nonconformal with a

conserved vector current. The vorticity term contributing to the first order non-dissipative

part of this vector current is derived from the CS term that is added manually in the 5D

bulk action. We derive all the thermal and hydrodynamical quantities up to first order such

as the energy and momentum density, the chemical potential and charge density, the shear

and bulk viscosities, the conductivity and CVE coefficient, etc. Except that the sound

speed and the CVE coefficient rely only on µ, most of the others depend both on T and µ.

We also talk about the stability for the background of the near extremal, compactified

black D4-branes with smeared D0-brane charge. This background can be viewed as a

combination of the black Dp-brane and the smeared configuration of D0-branes (in terms

of ref. [48]). According to ref. [48], the former has stable regime in the parameter space

while the latter is not stable. The compactified D4-brane with smeared D0-brane charge

raise a new kind of background that is interesting to investigate in the frame of ref. [48].
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Our discussion is only restricted to the near horizon limit for the D4-branes. The result for

the stability analysis can be summarized into one sentence: the D4-branes will dominant

the main stability property of this background, while the smeared D0 charge can only

change the specific value of the thermal/hydrodynamical quantities but not the general

tendency. The results that reexpressed in terms of (T, µ) in table 1 is not the completely

field theory language because we still have κ5 in those expressions. If one formulates these

results into complete field theory language like in [20], she/he will find that all the results

will be proportional to N2
4 with N4 can be chosen freely. Since the stability conditions

are just the (simultaneous) positivity of c2s,ΓT ,ΓL on which the value of N4 does not have

effects. So arbitrary choice for N4 will not affect the stability of the fluid as long as N4 is

a very large number such that gauge/gravity duality works.

Another interesting difference from ref. [15] is that there the chemical potential should

be kept small i.e. |µ/T | ≪ 1 so that the fluctuations on the charge horizon r− will not exceed

the event horizon r+. But in our case it seems that there is no additional requirement that

should be imposed on µ. It has a bound that 0 < µ2 < 1 by its definition and no additional

conditions is required here. This can be accounted by comparing the emblackening factor

f(r) for the Reissner-Nordstrom type black hole and the black hole background in this

paper. In the Reissner-Nordstrom black hole, we have f(r) = 1− r4
0

r4
+ Q2

r6
, the location of

horizon r+ is determined by both r0 and Q at the same time. Actually, f(r) = 0 will give

us two real roots: the charge horizon r− and the event horizon r+ and we need r+ > r− in

order to avoid the naked singularity. Thus the event horizon is associated with the charge

of black hole. While in our case, the emblackening factor is f(r) = 1 − r3H
r3
. The horizon

is just at r = rH and does not relate with rQ0. This suggests that the 5D black hole that

we use in this paper (2.11) is not of Reissner-Nordstrom type. That’s why here we do not

need the requirement that r− ≪ r+ as in [15].

There is a recent paper [50] which also calculates the dispersion relation in the same

holographic model. Its result for the sound mode attenuation is

Γ
[50]
L =

1

5πT
+

2Q0

5πT
. (5.1)

Since this paper does not take into account the vector perturbation, so we should use only

the tensor and scalar part contributions in ΓL to compare:

1

2(ε+ p)

(

4

3
η + ζ

)

=
1

5πT
− µ2

5πT
, (5.2)

with µ2 =
Q2

0

9(r3
H
+r3

Q0
)2
. The first term is the same, because this is the case without D0

charge. Except the first term, our result is different from that of [50] even after ignoring

the vector part contribution. This can be understandable that [50] uses the approximation

that Q0 is very small and it has expanded in terms of Q0 when solving the differential

equations (This can be seen from its section 5). But all the results in our paper are exact,

we do not use any approximations.

Considering the achievement that we have made in this paper, there are still some

interesting aspects valuable to explore. Firstly, we can add the background gauge field and
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try to extract σE and σB. We can also move to the second order for such a construction like

ref. [31]. Secondly, there is another holographic QCD model which is similar like ours, which

is called the D-instanton-D3 model. It is the black D3-brane with smeared D(-1)-brane

charge [51]. This model has a vacuum pseudoscalar field which may have potential usage

in mimicking the QCD plasma. Thirdly, ref. [48] studies a kind of unstable background

consists of only smeared D0-branes with the smeared dimension p. As far as we know,

there is no work on the second order transport properties of an unstable relativistic fluid

at present. Though its significance is not clear now, it is still an interesting trial. Lastly,

one may extract the anisotropy of QCD plasma using the solution of smeared Dp-brane

in string theory [52, 53]. A prototype on this direction is ref. [33]. Though a Dp-brane

smeared on one of its transverse directions is not stable [54], it may still have potential use

in QCD plasma. For example, a black D2-brane smeared on a transverse spatial direction

may be used to describe the anisotropic QCD plasma.
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