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1 Introduction

Supersymmetric partition functions are useful to explore strongly-coupled theories with

various amounts of supersymmetry — see e.g. [1–6]. This is particularly true in three

dimensions, where there are fewer non-perturbative tools available than in even dimensions.

For instance, in three-dimensional conformal field theories (CFT), the quantity

FS3 = − log |ZS3 | , (1.1)

where ZS3 is the partition function on the round three-sphere,1 is a fundamental quantity

analogous to the central charge a in even dimensions [7–9]. In three-dimensional theo-

ries with N = 2 supersymmetry, we can often compute (1.1) exactly by supersymmetric

localization in a gauge-theory UV completion of the CFT [2–4].

In this work, we consider N = 2 gauge theories with an R-symmetry U(1)R. We study

them on a three-manifold Mg,p, a U(1) principal bundle over a Riemann surface:

S1 −→Mg,p
π−→ Σg . (1.2)

This family of geometries is indexed by two integers, g ∈ Z≥0, the genus of the Riemann

surface Σg, and p ∈ Z, the first Chern number of the principal bundle. It includes the

round three-sphere and the product spaces Σg × S1:

M0,1
∼= S3 , Mg,0

∼= Σg × S1 . (1.3)

We derive general formulas for the supersymmetric partition functions ZMg,p and for ex-

pectation values of supersymmetric Wilson loops (and other loop operators) wrapped on

an S1 fiber. We heavily exploit the fact that the supersymmetric background on Mg,p is

a pull-back of the two-dimensional topological A-twist on Σg [10, 11]. Note that a very

similar computation was performed in [12] for theories with N ≥ 3 supersymmetry.2

An interesting upshot of our analysis is that the S3 partition function can be viewed as

the expectation value of a particular loop operator F wrapped on S1 in the topologically-

twisted theory on S2 × S1 — that is:

ZS3 =
〈
F
〉
S2×S1 . (1.4)

1The log of the partition function is UV divergent; F is defined as its finite piece upon taking the UV

cut-off to infinity.
2We differ from [12] in our treatment of fermionic zero-modes and obtain different results for g > 0.
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We call F the fibering operator. Its insertion along an S1 fiber in Mg,p corresponds to

shifting the Chern number of the total space, replacing p by p + 1. The relation (1.4) is

a generalization to N = 2 theories of a similar relation in Chern-Simons theory [13]. We

will compute the fibering operator explicitly for N = 2 supersymmetric Yang-Mills-Chern-

Simons-matter theories. Note that the relation (1.4) only holds for theories with integer-

quantized R-charges, because the R-charges are integer-quantized on S2 × S1. However,

the S3 result can be analytically continued to real R-charges in a canonical fashion [4, 14].

In the rest of this introduction, we summarize our main results and discuss relations

to previous works.

Seifert manifolds, three-dimensional A-twist and the Coulomb branch. For 3d

N = 2 theories with an R-symmetry, the three-dimensional backgrounds that allow for

some supersymmetry were classified in [11]. In order to preserve two supercharges of

opposite R-charges, the three-manifoldM3 must admit a nowhere-vanishing Killing vector

Kµ. There are two distinct possibilities:

• Kµ is real. Then M3 must be an (orientable) Seifert manifold — an S1 bundle over

a two-dimensional orbifold Σ̂g.

• Kµ is complex and generates two isometries. The only known example is the “un-

twisted” S2×S1 background of [15]. The corresponding partition function computes

the so-called superconformal index [15, 16].

In this work, we focus on the simplest supersymmetric Seifert-manifold backgrounds satis-

fying two additional conditions: 1) the orbits of Kµ are the Seifert fibers; 2) the base space

is a smooth closed Riemann surface Σg (without orbifold points).

Condition 1) could be waived in the case of a base Σ̂g with genus g = 0 or 1. For

g = 0, this corresponds to turning on a ‘squashing’ parameter — this is often denoted by

b 6= 1 on lens space backgrounds — see e.g. [17–19]. It will be essential to our story that

we do not allow any such squashing deformation. Condition 2) is not essential to our story

but it is assumed for simplicity. We hope to report on the case of general Seifert manifolds

in future work.

These two conditions imply that the supersymmetric background onMg,p is a pull-back

of the ordinary A-twist for two-dimensional N = (2, 2) theories on the Riemann surface

Σg.
3 In this language, localization on Mg,p becomes a simple generalization of a recent

localization computation on Σg × S1 [20–22].

As we will show, the supersymmetric partition functions on the A-twisted Mg,p can

be constructed in terms of the low-energy theory on the Coulomb branch of the flat-space

theory on R2 × S1. We may view the three-dimensional theory on a circle of radius β

as a two-dimensional N = (2, 2) supersymmetric theory with an infinite number of fields.

This theory has a classical Coulomb branch spanned by the coordinates u = iβ(σ + ia0),

where σ is the real scalar in the 3d N = 2 vector multiplet and a0 is the holonomy of the

gauge field on S1 (along the Cartan of the gauge group). The low-energy dynamics on the

3Strictly speaking, this is for a particular choice of the “shift by κ” in [11]. See appendix B.
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Coulomb branch is governed by the effective twisted superpotential W(u). We will discuss

this function in depth, paying particular attention to the effect of the Chern-Simons terms.

Schematically, it is given by:

W(u) =
k

2
u(u+ 1) +

1

24
kg +

1

(2πi)2

∑
i

Li2(e2πiQi(u)) . (1.5)

The first term is the gauge CS term, the second term is a gravitational CS term, and the

last term is the contribution of chiral fields Φi with gauge charges Qi. Note that we assign

a physical significance to the constant piece of W, which is identified with the gravitational

CS level kg in three dimensions.

The coupling of this effective theory to curved space is governed by the so-called

effective dilaton, which takes the schematic form:

Ω = kRu+
1

2
kRR −

1

2πi

∑
i

(ri − 1) log(1− e2πiQi(u))− 1

2πi

∑
α

log(1− e2πiα(u)) . (1.6)

Here kR and kRR are mixed U(1)R-gauge and U(1)R CS levels, respectively. The other

terms are the contribution of the chiral multiplets (with R-charges ri) and of the W-bosons.

These two functions were derived in [23, 24]; in addition, we included the contribution of

the U(1)R and gravitational supersymmetric CS terms of [25].

From (1.5) and (1.6), we construct two well-defined Coulomb-branch operators. The

handle-gluing operator is given by [24]:

H(u) = exp
(
2πiΩ(u)

)
det
ab

(
∂2W(u)

∂ua∂ub

)
. (1.7)

It corresponds to adding a handle to the base Σg, shifting g to g+ 1. The fibering operator

introduced above is a simple function of the twisted superpotential:

F(u) = exp

(
2πi

(
W(u)− ua

∂W(u)

∂ua

))
. (1.8)

This is our main result. The formula (1.8) will be made more precise in the main text.

Consider a theory such that the “Bethe vacua” (the abelian Coulomb branch vacua,

which are the gauge-inequivalent solutions to the Bethe equations [26] of the theory) are

distinct. This always happens, for instance, in theories with enough flavor symmetries and

with generic fugacities. In that case, the find the simple result:

ZMg,p =
∑
û∈SBE

F(û)pH(û)g−1 , (1.9)

with SBE the set of Bethe vacua. For p = 0, this is the so-called twisted index on Mg,0
∼=

Σg × S1 [21, 22, 24]. In particular, the partition function on M1,0
∼= T 3 computes the 3d

Witten index studied in [27]. For p = 1, g = 0, on the other hand, we have the familiar S3

partition function, and the relation (1.4) directly follows. More generally, we have:〈
W
〉
Mg,p

=
〈
WFp

〉
Σg×S1 =

〈
WFpHg

〉
S2×S1 (1.10)
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for the expectation value of a supersymmetric Wilson loop W wrapped on the S1 fiber.

We do not specify the insertion points on Σg since the 2d theory is topological. We may

view H and F as particular defect loop operators in the 3d N = 2 gauge theory, given

by (1.7) and (1.8) on the Coulomb branch.

Localization formula. Another formula for the partition function ZMg,p can be ob-

tained by supersymmetric localization in the UV. We follow the abelianization method of

Blau and Thompson [13, 28] adapted to the supersymmetric context. From that point of

view, the partition function for p 6= 0 can be written as:

ZMg,p =
∑

m∈Zrk(G)
p

∮
Cη
drk(G)u Ig,p,m(u) . (1.11)

The sum is over flat torsion bundles for the Cartan subgroup of the gauge group G. The

meromorphic integrand Ig,p,m(u) contains classical contributions (the Chern-Simons terms

and FI parameters) and one-loop contributions from all the matter fields. The contour

integral is taken along a particular “Jeffrey-Kirwan (JK) contour” on a multiple cover of the

Coulomb branch (with u ∈ Crk(G)). Using gauge invariance, one may also write (1.11) as:

ZMg,p =
∑

m∈Zrk(G)

∮
Cη0
drk(G)u Ig,p,m(u) . (1.12)

where the sum is over all GNO-quantized fluxes of G, while the u variables are gauge-fixed

to 0 ≤ Re(u) < 1. The expression (1.12) is also valid at p = 0 [21, 22], in agreement

with the relations (1.10). By resuming the fluxes in (1.12), one can obtain the Bethe-

vacua formula (1.9). Here we should note that we only rigorously derived the JK contour

in (1.11) or (1.12) in the rank-one case. The higher-rank formula should be considered

as a well-motivated conjecture. (It also follows in good part from earlier results relating

supersymmetric localization [20, 29–31] to JK residues [32, 33].)

For p 6= 0, the JK contour in (1.11) can be deformed to a simple “σ-contour” which

lies along the imaginary u axis — that is, we have an integral over real σ:

ZMg,p = irk(G)
∑

m∈Zrk(G)
p

∫
drk(G)σ Ig,p,m(σ) , (1.13)

in some appropriate region of parameter space. This is the familiar integral over real σ on

S3 [2]. For generic fugacities, the contour along σ generally has to be deformed, so that

it always “separates” the singularities of the integrand in the same way. For pure N = 2

supersymmetric Chern-Simons theory, we may also rotate the contour to lie along the real

axis in the u plane; such a theory is equivalent to ordinary Chern-Simons theory (up to a

shift of the CS level), and (1.13) indeed reproduces the known integral formula over the

holonomies a0 in that case [13].

Parity anomalies, contact terms and Chern-Simons levels. As is well known, a

three-dimensional Dirac fermion coupled to gauge fields suffers from the so-called parity

anomaly; one cannot quantize the fermion while preserving both gauge invariance and

three-dimensional parity [34–36]. Throughout this work, we choose a gauge-invariant regu-

larization of the 3d N = 2 chiral multiplet. After integrating out the matter fields, the lack
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of parity invariance of the vector multiplet effective action (both for dynamical gauge fields

and background gauge fields for global symmetries) is encoded in certain parity-odd contact

terms in two-points functions of the corresponding conserved currents. We denote these

contact terms by κ. Unlike ordinary contact terms, which are generated by local terms in

the effective action and are therefore ambiguous, the contact terms κ correspond to Chern-

Simons terms in the action, whose couplings k — the CS levels — are integer-quantized for

compact gauge groups. The contact terms κ, therefore, are physically meaningful modulo

integer shifts, κ→ κ+ k [25]. In this work, we are careful in distinguishing between κ and

k. Unless otherwise specified, the CS levels k are always integer-quantized, while chiral

multiplets contributes certain half-integers to κ. For instance, a single chiral multiplet

coupled to a U(1) (background) gauge field with charge 1 will be quantized with a contact

term κ = −1
2 for that U(1). This is sometimes referred to as a “U(1)− 1

2
quantization”.

This distinction is not only pedantic. It is crucial in order to compute partition func-

tions, including all dynamical and background Chern-Simons terms, in a consistent manner.

This resolves some confusions about “sign ambiguities” that appeared in [20–22] — there

are no sign ambiguities except for the ones encoded in CS terms for global symmetries.

Relatedly, we will correct some signs that arise from classical CS actions for abelian gauge

groups. (See in particular appendix C.)

Dualities and on-shell superpotential. Many 3d N = 2 supersymmetric gauge theo-

ries are related by infrared dualities. On general grounds, the partition function (and other

N = 2 supersymmetric observables) of two dual theories T and TD should agree on any

supersymmetric background:

ZMg,p [T ] = ZMg,p [TD] . (1.14)

The Bethe-vacua formula (1.9) for ZMg,p is particularly convenient to check these duality

relations. The duality relations (1.14), and similar relations for loop operator insertions,

can be rephrased as a statement about matching Bethe vacua in a one-to-one fashion. The

duality statement is that the handle-gluing and fibering operators of the dual theories agree

“on-shell”, that is, when evaluated on a dual pair of Bethe vacua, u = û and uD = ûD.

Equivalently, one can state the duality relations in terms of the effective twisted su-

perpotential: the twisted superpotentials of the dual theories must agree on-shell:

WT (û) =WTD(ûD) , (1.15)

on any pair of dual vacua4 (and similarly for the so-called on-shell effective dilaton, that we

will define later). Interestingly, the relations (1.15) for gauge-theory dualities often follow

from known dilogarithm identities [37]. We should emphasize that, even in the case of the

S3 partition functions, this provides a simpler derivation of the duality relation (1.14) than

previous investigations of complicated integral identities — see in particular [38–40].5

4The twisted superpotential suffers from branch-cut ambiguities, and this relation holds for a particular

choice of branches.
5On the other hand, those integral identities are valid on S3

b with non-zero squashing, b 6= 1, while we

only consider b = 1.
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We will also discuss how we can use the on-shell twisted superpotential to gauge a flavor

symmetry, independently of whether the original theory has a Lagrangian description.

Relation to previous works and outlook. The three-dimensional A-twist vantage

point relates the S3 partition function [2–4] with the Σg × S1 twisted indices [20–22]. As

already noted, this generalizes known results for pure CS theories [13] to N = 2 super-

symmetric gauge theories with matter. This framework also explains the results of [41] on

the Wilson loop quantum algebra on S3, which is encoded in the Bethe equations [22]. A

similar relation between the twisted index and the S3 partition function was also observed

in large N quiver gauge theories [42, 43].

For generic values of g, p, the supersymmetric background Mg,p only allows for quan-

tized R-charges. When g − 1 = 0 mod p, including the case M0,1
∼= S3, on the other

hand, the R-charges can be varied continuously. We will explain how our formulas for

ZMg,p can account for any R-charge, in those cases. On S3, this allows us to probe prop-

erties of the infrared CFT, where the R-charges are generally irrational. Whenever the

UV R-symmetry can mix with abelian flavor symmetries along the RG flow (and in the

absence of accidental symmetries), the superconformal R-charge in the infrared can be de-

termined by F -maximization [4, 44]. That is, we need to maximize (1.1) over the possible

trial R-charges. Our Bethe-vacua formula for ZS3 is well-suited for this computation, and

the results compare well with previously-obtained results using the integral formula (1.11).

Another important localization result available in the literature is the lens space L(p, 1)

partition function [45, 46]. We should note that the supersymmetric background for

the manifold:

M0,p
∼= L(p, p− 1) , (1.16)

that we consider here, is distinct from the L(p, 1) background considered in [45–47], if p > 2.

The main difference between the two supersymmetric backgrounds is that the R-symmetry

line bundle present on (1.16) is topologically non-trivial, unlike the background of [45, 46].

In the A-twist language, the L(p, 1) background corresponds to a genus-zero Riemann

surface Σ̂0
∼= S2/Zp with two orbifold points. We hope to address this case in future work,

along with generic Seifert manifolds. Pure Chern-Simons theory on a restricted class of

Seifert manifolds was considered in [48, 49].

The formula (1.9) for the supersymmetric partition functions is reminiscent of the

surgery prescription for pure CS theory [50]. Here we have a potentially richer quasi-

topological structure that depends holomorphically on various parameters. It would be

very interesting to explore that point of view further.

Another construction of supersymmetric partition functions is in terms of holomorphic

blocks [51]. They are partition functions on D2 × S1, with D2 a disk, which are in one-to-

one correspondence with the Bethe vacua. Despite the similarities, that approach seems

somewhat orthogonal to the one of the present paper, especially since the squashing param-

eter (or Ω-deformation on D2) plays such an important role in [51], while we set it to zero

throughout. Nonetheless, it would be very interesting to understand better the relation be-

tween the two approaches. Relatedly, our results should be of interest in the context of the

3d/3d correspondence [52–54]. In particular, one might ask what kind of topological field
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theory can be obtained by compactifying M5-branes on the supersymmetric background

Mg,p; progress on understanding such systems has been made recently in [55, 56].

Finally, let us mention that results completely analogous to the ones of this paper can

be obtained for four-dimensional N = 1 theories on Mg,p × S1 [57].

This paper is organized as follows. In section 2, we explore the two-dimensional A-

model point of view and we derive the Bethe-vacua formula (1.9). In section 3, we summa-

rize important aspects of curved-space supersymmetry on Mg,p. In section 4, we discuss

supersymmetric localization and we obtain the localization formula (1.11). In section 5,

we compute the S3 partition function with the Bethe-vacua formula, and we present some

non-trivial examples of F -maximization. In section 6, we study the matching of supersym-

metric partition function across gauge-theory dualities. Additional material is contained

in various appendices.

2 The partition function as a sum over Bethe vacua

In this section, we start by reviewing some relevant results about two-dimensional N =

(2, 2) gauge theories. We then consider three-dimensional N = 2 gauge theories on a circle

as a two-dimensional N = (2, 2) theory and discuss in detail the low-energy theory on the

Coulomb branch. We argue that the partition function on Mg,p can be obtained as a sum

over “Coulomb branch vacua” (Bethe vacua) by a simple modification of the formula for

the Σg × S1 twisted indices discussed in [21, 22, 24]. We will give a microscopic derivation

of this result in section 4.

2.1 The Bethe-vacua formula in two dimensions

As a preliminary, consider a two-dimensional N = (2, 2) gauge theory with gauge group

G and chiral multiplets Φi in representations Ri of g = Lie(G). From the vector multiplet

V, one can build a g-valued twisted chiral multiplet Σ = −iD−D̃+V with components:

Σ =
(
σ , Λ1 , −Λ̃1̄ , −4f11̄

)
. (2.1)

Here we follow the A-twist conventions of [31]. In particular, the gauginos Λ1, Λ̃1̄ are (1, 0)-

and (0, 1)-forms after the twist, respectively.6 See also appendix B.

Let us denote by GF the flavor symmetry group (the non-R global symmetry group) of

the theory. It is natural to couple the flavor currents to a background vector multiplet VF .

The so-called twisted masses corresponds to constant expectations values σF = mF for its

complex scalar component. A particular chiral multiplet Φi has twisted mass mi = ωi(mF ),

where ωi is a weight of the flavor representation.

At a generic point on the classical Coulomb branch, the gauge group is broken to the

Cartan subgroup H ⊂ G, and the massive chiral multiplets and W-bosons can be integrated

6To avoid any possible confusion, let us recall that there are two distinct but standard usages of the term

“twist” in two dimensions. The terms “twisted chiral multiplet” and “twisted mass” refer to representations

of N = (2, 2) supersymmetry, while the “A-twist” is a topological twist of the theory.
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out. The low-energy dynamics on the Coulomb branch is governed by the effective twisted

superpotential [23, 26, 58]:

W = τ(σ)− 1

2πi

∑
i

∑
ρi∈Ri

(ρi(σ) +mi)
(

log(ρi(σ) +mi)− 1
)
− 1

2

∑
α∈g+

α(σ) . (2.2)

The first term in (2.2) is the contribution from the two-dimensional complexified Fayet-

Iliopoulos (FI) parameters, with τ a projection on the free abelian subgroup
∏
I U(1)I ⊂ G.

The second term in (2.2) is the contribution from the chiral multiplets Φi, with ρi the

weights of the representation Ri. The last term in (2.2) is the contribution from the

W-bosons and their superpartners, with a sum over the positive roots of g.

In the following, it will be useful to pick a basis ea of the Cartan H of G, and a basis

eαF of the Cartan of GF , such that:

σ = σae
a , mF = mαe

α
F . (2.3)

We choose a basis {ea} that generates the coweight lattice Λcw, so that ρ(ea) ≡ ρa ∈ Z for

all weights ρ ∈ Λw, and similarly for the flavor group.

We view the low energy theory on the Coulomb branch as an A-twisted Landau-

Ginzburg (LG) model [59] with twisted superpotential W for the twisted chiral multiplets

Σa. However, we see from (2.1) that the highest component of Σa is an abelian field

strength. We may treat f11̄ as the fundamental variable if we also impose flux quantization

by hand [26]:
1

2π

∫
d2√g (−2if11̄)a ∈ ma ∈ Z , (2.4)

on any compact space. Relatedly, the twisted superpotential (2.2) suffers from branch cut

ambiguities due to the logarithms:

W(σa,mα) → W(σa,mα) + naσa + nαmα , na, nα ∈ Z . (2.5)

The quantization condition (2.4) ensures that (2.5) only shifts the effective action by an

integer multiple of 2πi, so that the path integral remains well-defined. When looking for

the vacua of the theory, we have to take the ambiguity (2.5) into account. This leads to

the so-called Bethe equations [26]:

exp

(
2πi

∂W
∂σa

)
= 1 , a = 1, · · · , rk(G) . (2.6)

Note the left-hand side is independent of the branch-cut ambiguity — in fact, it is a rational

function of σa and mi.

If G is abelian, the solutions to (2.6) correspond directly to the vacua of the theory. In a

non-abelian theory, we must divide by the action of the Weyl group of G, WG. In addition,

solutions which are not acted on freely by the Weyl symmetry correspond to putative vacua

with unbroken non-abelian gauge symmetry, wherein the derivation of (2.2) is unreliable.

Following [60], we will exclude these solutions, which are believed not to correspond to
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physical vacua. (See also [61] for a related recent discussion.) Thus the set of vacua of the

Coulomb branch theory is given by:7

SBE =

{
σ̂a

∣∣∣∣ exp

(
2πi

∂W
∂σa

(σ̂)

)
= 1 , ∀a , w · σ̂ 6= σ̂, ∀w ∈WG

}
/WG . (2.7)

We refer to the solutions σ̂ = (σ̂a) (modulo the Weyl symmetry) as the “Bethe vacua”.

2.1.1 Coulomb branch correlation functions

The Coulomb branch operators are the twisted chiral ring operators given by gauge-

invariant polynomials P (σ) in the scalar field σ ⊂ V . On the classical Coulomb branch,

they correspond to Weyl-invariant polynomials in the variables σa. The effective twisted

superpotential provides us with twisted chiral ring quantum relations.

Let us consider the N = (2, 2) theory on a closed orientable Riemann surface Σg with

the topological A-twist. The low energy topological field theory for the twisted chiral

multiplets Σa has an effective action:

STFT =

∫
Σg

d2x
√
g

(
−2f11̄a

∂W(σ)

∂σa
+ Λ̃a1̄Λb1

∂2W(σ)

∂σa∂σb

)
+
i

2

∫
Σg

d2x
√
gΩ(σ)R , (2.8)

up to Q-exact terms. The first term in (2.8) depends on the effective twisted superpotential

W, and it is explicitly topological (since f11̄ and Λ1̄Λ1 are naturally 2-forms). The second

term involves R the Ricci scalar, and it is topological for the constant modes of σa due to

the Gauss-Bonnet theorem. It corresponds to the “improvement” Lagrangian of [62]. The

holomorphic function Ω(σ) is the effective dilaton which governs the coupling of the theory

to the A-twist background. In our two-dimensional N = (2, 2) gauge theory, it is given

by [23, 24]:

Ω(σ) = − 1

2πi

∑
i

∑
ρi∈Ri

(ri − 1) log(ρi(σ) +mi)−
1

2πi

∑
α∈g

logα(σ) , (2.9)

up to an arbitrary constant. Here ri ∈ Z denote the R-charges of the chiral multiplets Φi,

which should be integers so that the theory can be defined on any Σg.

The correlation functions of Coulomb branch operators can be computed as a sum over

the Bethe vacua, by a direct generalization of Vafa’s formula for ordinary topological LG

models (LG) [59]. One finds [24]:

〈P (σ)〉Σg =
∑
σ̂∈SBE

H(σ̂)g−1 P (σ̂) , (2.10)

with

H(σ) = e2πiΩ(σ) det
ab

(
−2πi

∂2W(σ)

∂σa∂σb

)
(2.11)

7For simplicity in this paper, we consider compact connected gauge groups, such that the Weyl group

of G and the Weyl group of its Lie algebra g coincide. Then the condition w.σ̂ 6= σ̂, ∀w ∈WG is equivalent

to α(σ̂) 6= 0, ∀α ∈ g.
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the so-called handle-gluing operator. The first factor in (2.11) comes from the last term

in (2.8) evaluated on the Coulomb branch, and the Hessian determinant of the superpo-

tential arises because of the gaugino zero-modes on Σg. One can also obtain (2.10) by

supersymmetric localization in the UV [21].

There is an important caveat to this discussion: we have assumed that the Bethe

vacua are isolated. This generally happens in theories with enough flavor symmetries and

with generic twisted masses. Many important two-dimensional theories do not satisfy this

condition, however — for instance, any GLSM that flows to a Calabi-Yau NLSM in the IR

has a degenerate W; on the other hand, such theories can still be studied by localization

methods, at least at genus g = 0 [31, 63]. Isomorphic comments apply in three dimensions.

2.1.2 Flux operators

In the presence of a flavor symmetry group GF , it is natural to turn on supersymmetric

background fluxes for the gauge field in VF ,

1

2π

∫
Σg

d2x
√
g (−2if11̄)α = nα ∈ Z , (2.12)

in addition to the twisted masses σα = mα. This adds a term:

Sflux =

∫
Σg

d2x
√
g

(
−2f11̄α

∂W(σ,m)

∂mα

)
(2.13)

to the topological effective action (2.8). We are free to choose the background gauge field

at will. In particular, we may consider the addition of a δ-function flux at a point x0 on Σg:

(−2if11̄)α = 2πnα δ
2(x− x0) (2.14)

for each U(1)α ⊂ GF . In this case, we have:

e−Sflux =
∏
α

Πα(σ,m)nα , Πα(σ,m) ≡ exp

(
2πi

∂W(σ,m)

∂mα

)
. (2.15)

Therefore, the insertion of a unit of U(1)α background flux on Σg can be viewed as the

insertion of a local operator Πα at x = x0. We will call such operators the flux operators.

Incidentally, the handle-gluing operator (2.11) can itself be thought of as a flux operator

for the vector-like R-symmetry. On the A-twist background, the R-symmetry background

flux is:
1

2π

∫
dA(R) = g − 1 , (2.16)

in order to preserve supersymmetry. Therefore, adding a handle has the same effect as

adding one unit of U(1)R flux.

2.2 Three-dimensional N = 2 gauge theories on a circle

Let us now consider a three-dimensional N = 2 supersymmetric gauge theory compactified

on a circle S1
β of radius β. We view this theory as a two-dimensional N = (2, 2) theory
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with an infinite number of fields, corresponding to the Kaluza-Klein (KK) modes of each

three-dimensional field.

At finite β, the complex scalar in any U(1) vector multiplet is cylinder-valued due to

large gauge transformations. We introduce the notation:

ua = iβ(σa + ia0 a) , να = iβ(mα + iaF0α) (2.17)

for the scalar fields in the Cartan of G×GF . Here σ and m are real scalars in 3d N = 2

vector multiplets, and a0 denotes the holonomy along S1. We have the identifications

ua ∼ ua + 1 and να ∼ να + 1 under large gauge transformations. The dimensionless

quantity u in (2.17) is related to the two-dimensional complex scalar of section 2.1 by

u = βσ(2d). It is often convenient to work with the single-valued fugacities:

xa = e2πiua , yα = e2πiνα . (2.18)

The low energy theory on the Coulomb branch (with coordinates ua) is still governed by

the topological effective action (2.8), but the twisted superpotential W(u) and the effective

dilaton Ω(u) have new features intimately related to three-dimensional physics. In the

following, it will be convenient to rescale W according to W3d = βW2d, so that both W
and Ω are dimensionless quantities.

2.2.1 The three-dimensional twisted superpotential

The classical part of the twisted superpotential is related to Chern-Simons interactions in

three dimensions. Consider any U(1)a vector multiplet. A Chern-Simons interaction with

level kaa ∈ Z contributes to the twisted superpotential as:

WCS,aa = kaa
1

2
ua(ua + 1) . (2.19)

This can be derived by direct evaluation of the Chern-Simons functional on Σg × S1, for

instance, as we will explain in section 4. The quadratic piece is essentially a mass term,

corresponding to the well-known fact that the CS interaction lifts the three-dimensional

Coulomb branch classically. The linear piece in (2.19) is related to the subtle signs alluded

to in the introduction (see also section 4 and appendix C). Although this is not single-

valued, it may only shift by terms of the form (2.5), which do not affect the path-integral.

For future reference, we may rewrite (2.19) as a function of xa:

WCS,aa =
kaa

(2πi)2

1

2

(
log2(−xa) + π2

)
, (2.20)

with a branch cut along the positive real axis xa ∈ [0,∞). (Here the log is on its principal

branch, so that log(−x) = log x+ πi.)

Similarly, a mixed CS term between U(1)a and U(1)b contributes:

WCS,ab = kab uaub =
kab

(2πi)2
log xa log xb . (2.21)
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In addition, we claim that the supersymmetric gravitational Chern-Simons term [25] con-

tributes a constant term:

WCS,g =
kg
24
, (2.22)

with kg ∈ Z. We will give several justifications for this claim below. In total, the contribu-

tion of all the gauge, flavor and gravitational CS terms to the twisted superpotential read:

WCS(u, ν) =
∑
a

kaa
2
ua(ua + 1) +

∑
a>b

kabuaub +
∑
α

kαα
2
να(να + 1)

+
∑
α>β

kαβνανβ +
∑
a,α

kaαuaνβ +
kg
24
,

(2.23)

where all the levels are integer-quantized. For any simple group Gγ ⊂ G, we have

ka′b′=ha′b′kγ with ha′b′ the Killing form of Gγ (and a′, b′ running over its Cartan subgroup).

Consider next the one-loop contribution of the three-dimensional chiral multiplets. A

chiral multiplet Φ with charge 1 under some U(1) symmetry contributes:

WΦ = − 1

2πi

∑
n∈Z

(u+ n) (log (u+ n)− 1) =
1

(2πi)2
Li2(x) , (2.24)

with u the effective twisted mass of Φ and x = e2πiu; the U(1) symmetry could be dynami-

cal, flavor or a combination of both. The first equality in (2.24) gives WΦ as a formal sum

over KK modes. Upon regulating that expression, we obtain the dilogarithm of x. As we

will explain in section 4, we have implicitly chosen a regularization scheme that preserves

gauge invariance at the expense of “parity”. This is often stated as a “U(1)− 1
2

quanti-

zation” of the chiral multiplet, wherein we turn on a “half-integer CS level to cancel the

parity anomaly”. In this work, we never consider “half-integer” CS levels since they are not

well-defined. The quantization of the chiral multiplet implicit in (2.24) is gauge-invariant

and includes a contact term κ = −1
2 for the U(1) current two-point function [25]. We also

have a gravitational contact term κg = −1. The only scheme ambiguity is in shifting κ by

an integer CS level k (and κg by an integer kg), corresponding to

W =
1

(2πi)2

(
Li2(x) +

k

2

(
log2(−x) + π2

)
− π2

6
kg

)
, (2.25)

which would correspond to a “U(1)− 1
2

+k quantization”. An important consistency check

of the twisted superpotential (2.24) is that it reproduces the correct decoupling limits at

large value of the three-dimensional real mass σ. We have:

lim
σ→+∞

WΦ = 0 , lim
σ→−∞

WΦ = − 1

12
+

1

8π2

(
log2(−x) + π2

)
, (2.26)

which corresponds to the expected shift of the contact terms:

δκ =
1

2
sign(σ) , δκg = sign(σ) . (2.27)

For large positive σ, we obtain an empty theory and the twisted superpotential vanishes,

while at large negative σ we are left with the background U(1) and gravitational CS levels
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k = −1 and kg = −2, as we can see by comparing (2.26) to (2.20) and (2.22). This

gives a first consistency check of the detailed form of (2.23). We can easily generalize this

consistency check to chiral multiplets coupled to arbitrary background gauge fields. We

refer to section 4.3.2 for additional discussions of our treatment of the chiral multiplets.

As another consistency check, let us consider a pair of two chiral multiplets Φ1, Φ2

of U(1) charges ±1. Since this allows for a superpotential mass term W = Φ1Φ2, the low

energy theory should be empty. More precisely, it is empty if we consider two multiplets

with opposite contact terms, which amount to adding CS level k = 1 and kg = 2, with our

choice of quantization. We then have:

WΦ1Φ2 =
1

(2πi)2

(
Li2(x) + Li2(x−1) +

1

2

(
log2(−x) + π2

))
+

1

12
= 0 . (2.28)

Here we have used the dilogarithm identity:

Li2(x) + Li2(x−1) +
π2

6
+

1

2
log2(−x) = 0 . (2.29)

In section 6, we will relate other dilograrithm identities to non-trivial dualities between

different gauge theories.

Finally, we should consider the effect of the W-bosons and their superpartners on

the Coulomb branch, which contribute like chiral multiplets Wα of gauge charges α and

R-charge 2. For every pair of roots α,−α, we choose the “symmetric” quantization, with op-

posite contact terms for Wα and W−α. Therefore, due to the identity (2.29), the W-bosons

do not contribute at all to the effective twisted superpotential in three dimensions.

For general N = 2 Chern-Simons-Yang-Mills matter theories with gauge group G and

chiral multiplets Φi in representations Ri of G, we have the twisted superpotential:

W(u, ν) =WCS(u, ν) +
1

(2πi)2

∑
i

∑
ρi∈Ri

Li2(xρyi) (2.30)

where the classical contributionWCS is given by (2.23). Here we introduced the short-hand

notation:

νi = ωi(ν) , yi = yωi = e2πiνi , (2.31)

where ωi is the flavor charge of Φi (that is, a weight of the flavor group). Note that this

twisted superpotential is only defined modulo the branch-cut ambiguities:

W →W + naua + nανα + n0 , na, nα, n0 ∈ Z . (2.32)

However, all the physical observables that we will define are free from such ambiguities.

2.2.2 Flux operators and Bethe equations

As in two dimensions, we may define the flux operators :

Πa(u, ν) ≡ exp

(
2πi

∂W(u, ν)

∂ua

)
, Πα(u, ν) ≡ exp

(
2πi

∂W(u, ν)

∂να

)
, (2.33)
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for the gauge and flavor symmetries, respectively. This is obviously invariant under (2.32).

One can check that these operators are rational functions of the fugacities xa and yα. The

three-dimensional flux operators are loop operators supported along the S1 direction. They

can be identified with the vortex loops discussed in [64, 65]. The Bethe vacua are given by:

SBE =

{
ûa

∣∣∣∣ Πa(û, ν) = 1 , ∀a , w · û 6= û, ∀w ∈WG

}
/WG . (2.34)

In particular, they are rational equations for the single-valued variables xa.

2.2.3 The effective dilaton and the handle-gluing operator

If we couple the 3d N = 2 theory to a Σg × S1 background with the A-twist along Σg, the

effective dilaton Ω can be computed like in two dimensions [24]. As we will further discuss

in section 4, the classical Chern-Simons terms for the U(1)R background gauge field [25]

contributes:

ΩCS(u, ν) =
∑
a

kaRua +
∑
α

kαRνα +
1

2
kRR . (2.35)

Here kaR, kαR denote mixed R-gauge and R-flavor CS levels, and kRR is the U(1)R CS

level. All these levels are integer-quantized. A chiral multiplet Φ of U(1) gauge charge 1

and R-charge r ∈ Z contributes:

ΩΦ = − 1

2πi
(r − 1) log (1− x) . (2.36)

This corresponds to the same “U(1)− 1
2

quantization” discussed above, which includes the

contact terms κR = −1
2(r− 1) and κRR = −1

2(r− 1)2 for the gauge-R and R-R conserved-

current two-point functions, respectively. The limits

lim
σ→+∞

ΩΦ = 0 , lim
σ→−∞

ΩΦ = − 1

2πi
(r − 1) log x− 1

2
(r − 1) , (2.37)

reproduce the correct shifts of the U(1)R CS terms upon integrating out a chiral multiplet.8

The W-bosons contributes similarly like chiral multiplets of R-charge r = 2. Due to

our choice of “symmetric quantization” mentioned above, we also have a shift of kRR
by 1

2dim(g/h).

In total, the effective dilaton of our 3d N = 2 supersymmetric gauge theory compact-

ified on S1 reads:

Ω(u, ν) =
∑
a

kaRua +
∑
α

kαRνα +
1

2

(
kRR +

1

2
dim(g/h)

)
− 1

2πi

∑
i

(ri − 1)
∑
ρi∈Ri

log(1− xρiyi)−
1

2πi

∑
α∈g

log(1− xα) ,
(2.38)

with ri ∈ Z the R-charge of Φi. The three-dimensional handle-gluing operator is given by:

H(u, ν) = exp
(

2πiΩ(u, ν)
)

det
ab

(
∂2W(u, ν)

∂ua∂ub

)
. (2.39)

8That is, taking into account that Ω is only defined modulo an integer. The second limit in (2.37)

corresponds to CS levels kR = −(r − 1) and kRR = −(r − 1)2.
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This directly leads to an expression for the Σg × S1 twisted index as a sum over Bethe

vacua [20, 22, 24]. Note that we accounted for the effect of the CS level kRR in (2.38). This

leads to a subtle sign (−1)kRR in (2.39), which was previously overlooked.

2.3 Induced charges of monopole operators

For future reference, let us consider the induced charges of the bare monopole operators

Ta±. These operators are associated with the limit σa → ∓∞ on the classical Coulomb

branch. We define their induced charges by:

Qa±
b ≡ Qb[Ta±] = ± lim

ua→∓i∞
∂ua∂ubW ,

QFa±
α ≡ Qα[Ta±] = ± lim

να→∓i∞
∂ua∂ubW , (2.40)

ra± ≡ R[Ta±] = ± lim
ua→∓i∞

∂uaΩ ,

for their gauge, flavor and R-charges, respectively. One can easily check that these for-

mula reproduce the standard one-loop formula for the induces charges; see e.g. [22]. By

construction, the charges (2.40) are always integers.

2.4 The fibering operator in three dimensions

In addition to the three-dimensional flavor symmetry group GF , the effective two-

dimensional theory has a U(1)KK symmetry whose charge is the KK momentum. We

may turn on a supersymmetric background vector multiplet VKK for U(1)KK . It orig-

inates from the three-dimensional N = 2 “new-minimal” supergravity multiplet — see

e.g. [25, 66] — which decomposes into a supergravity and a vector multiplet upon KK

reduction to two dimensions. The twisted mass associated to VKK is mKK = 1
β . Indeed,

the twisted masses for the KK tower of any 3d chiral multiplet takes the form σ2d + n
β ,

with n ∈ Z the KK momenta.

In any three-dimensional N = 2 theory, there must exist a distinguished flux operator

for U(1)KK , which we denote by F . The insertion of F at a point on Σg has the effect

of introducing one unit of flux for U(1)KK , which is nothing but a shift of the first Chern

class of the U(1) principal bundle over Σg. In particular, the partition function of Mg,p

can be written in terms of p insertions of F on Σg × S1:

ZMg,p = 〈Fp〉Σg×S1 . (2.41)

Since F introduces a non-trivial fibration of the circle over Σg, we call it the fibering

operator. Reinstating dimensions, we have:

F(u, ν) = exp

(
2πi

∂

∂mKK

(
mKKW(u, ν)

))
, u =

σ2d

mKK
, ν =

m2d

mKK
, (2.42)

with the dimensionless W(u, ν) given by (2.30). This gives us the explicit form of the

fibering operator for any 3d N = 2 gauge theory:

F(u, ν) = exp

(
2πi

(
W(u, ν)− ua

∂W(u, ν)

∂ua
− να

∂W(u, ν)

∂να

))
. (2.43)
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We immediately see that (2.43) is insensitive to the branch-cut ambiguities (2.32) of the

twisted superpotential. On the other hand, it transforms non-trivially under large gauge

transformations u ∼ u+ 1 or ν ∼ ν + 1 (for either the gauge or flavor group). We find:

F(ua −ma, να − nα) = F(u, ν)
∏
a

Πa(u, ν)ma
∏
α

Πα(u, ν)nα , ∀ma, nα ∈ Z , (2.44)

where Πa,Πα are the flux operators defined in (2.33).

2.4.1 The Chern-Simons and chiral multiplet fibering operator

For future reference, we note that the effect of the classical CS terms (2.23) on the fibering

operator is:

FCS = exp

−πi∑
a,b

kabuaub − 2πi
∑
a,α

kaαuaνα − πi
∑
α,β

kα,βνανβ +
πi

12
kg

 . (2.45)

Similarly, a chiral multiplet of charge 1 under some U(1) contributes:

FΦ(u) = exp

(
1

2πi
Li2
(
e2πiu

)
+ u log

(
1− e2πiu

))
. (2.46)

This defines a meromorphic function of u on the complex plane, as the branch cuts of the

dilogarithm and logarithm cancel each other. The function (2.46) has poles of order n

at u = −n, n ∈ Z>0 and zeros of order n at u = n, n ∈ Z>0. (This is proven e.g. by

proposition 5.1 of [67].) It is closely related to the chiral multiplet one-loop determinant

on S3, as we discuss further in section 5.1.

We note that the Chern-Simons and chiral fibering operators satisfy:

u→ −u, ν → −ν, “k”→ −“k” ⇒ F → F−1 (2.47)

where “k” denotes all Chern-Simons levels and contact terms in the theory, including the

gravitational Chern-Simons level and the contact terms appearing in the quantization of the

chiral multiplet. This operation thus has the same effect as taking p → −p. As discussed

further in section 4.3.2, this reflects the fact that the Mg,p and Mg,−p backgrounds are

related by a parity transformation.

2.5 Partition function and loop-operator correlation functions

Combining all the ingredients introduced so far, we can write the supersymmetric partition

function on Mg,p as:

ZMg,p(ν) =
∑
û∈SBE

F(û, ν)pH(û, ν)g−1
∏
α

Πα(û, ν)nα (2.48)

Here we introduced generic background fluxes nα for the flavor symmetry. As we discussed,

we can also view these background fluxes as inserting flux operators Πα at points on Σg.

(A constant background flux is then viewed as a “smeared” flux operator.) Note that,

in the presence of any abelian flavor symmetry U(1)F , we may shift the R-symmetry by
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R→ R+ tF , where t is quantized to preserve the Dirac quantization of the R-charge. The

net effect on the partition function is to shift the background flux nF → nF +(g−1)t. This

amounts to a shift:

Ω→ Ω + t
∂W
∂νF

(2.49)

in the topological effective action (2.8). The partition function (2.48) is unaffected if we

shift the R-symmetry current by any abelian gauge current.

We are also interested in supersymmetric Wilson loop operators along the S1 fiber. Any

such Wilson loop correspond to a Weyl-invariant Laurent polynomial in the fugacities xa,

W (x) ∈ C[xa, x
−1
a ]WG . (2.50)

For a Wilson loop in a representation R of G, we have:

WR = TrR Pexp

(
−i
∫
S1

(aµdx
µ − iβσdψ)

)
= TrR (x) =

∑
ρ∈R

xρ , (2.51)

where ψ the fiber coordinate. We then have the expectation value:

〈W (x)〉Mg,p =
∑
û∈SBE

W (x̂)F(û, ν)pH(û, ν)g−1
∏
α

Πα(û, ν)nα . (2.52)

From this formula, we can read off the quantum algebra of Wilson loops, which is an S1

uplift of the 2d N = (2, 2) twisted chiral ring [22, 41]. The quantum relations are the

relations satisfied by solutions to the Bethe equations (2.34).

Let us briefly comment on the defect operators Πα. They enter in (2.52) in the same

way as the Wilson loops, in agreement with their interpretation as operators supported

along S1 at a particular point on the base Σg. These line operators can be identified with

the vortex loop operators discussed in [64, 65]. In principle, one can insert fractional flux

at points on Σg as long as the total flux is integer. The effect of such operators is to impose

that matter fields charged under the flavor symmetry induce a non-trivial holonomy as

they wind around the vortex loop. The Bethe equations imply relations satisfied by flux

operators, just like for Wilson loops.

2.6 Gauging flavor symmetries and the on-shell twisted superpotential

Given a flavor symmetry, it is natural to gauge it, by promoting background vector multi-

plets to dynamical ones. This is an important operation for producing new theories from old

ones, and we would like to perform it at the level of the partition function (2.48). This can

be done most conveniently by working with the “on-shell” effective twisted superpotentials

and effective dilatons,

W l(ν) ≡ W(ûl(ν), ν) ,

Ωl(ν) ≡ Ω(ûl(ν) , ν) + log

(
det
a,b

∂W
∂ua∂ub

) ∣∣∣
u=ûl(ν)

,
(2.53)

which are evaluated at solutions ûl to the Bethe equations. The functions (2.53) are par-

ticularly useful because we can use them to construct all of the ingredients in the partition

function (2.48), even if one does not have access to a Lagrangian description of the theory.

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
4

As described above, the supersymmetric vacua of the theory are determined by so-

lutions to the Bethe equation (2.34). For generic-enough mass parameters να, this has a

finite number of solutions,

ûla(ν) , l = 1, . . . , |SBE| (2.54)

It is important to stress that the functions ûla(ν) generically have branch points, where

two or more solutions become equal, and branch cuts, where the solutions are permuted.

Thus it is more natural to think of ûla(ν) as functions on an |SBE|-fold branched cover of

the space of the να’s.

To any Bethe vacua, we may associate the “on-shell” effective twisted superpotential

and effective dilaton (2.53), which we consider as a function on the |SBE|-fold branched

cover of the parameter space. Nonetheless, the twisted superpotential W l is not yet well-

defined due to branch cut ambiguities ofW itself. To partially fix this ambiguity, we impose

a “physical branch” condition:9

∂W
∂ua

(ula(ν), ν) = 0 , a = 1, . . . , rk(G) . (2.55)

This function will still have branch cut ambiguities associated to the background gauge

multiplets, i.e., it is defined only up to shifts W l →W l +mανα +m0, mα,m0 ∈ Z, but it

will not have any branch cuts associated to shifts by the dynamical gauge field. This must

be the case, as the dynamical gauge field should play no role in the low energy effective

theory. Up to these shifts, the on-shell effective twisted superpotential is a physically-

meaningful observable of the low-energy theory. In particular, it should match across

dualities. Similar statements hold for the on-shell effective dilaton.

If one has access to the on-shell effective twisted superpotentials of a theory, one

may construct the on-shell flux and fibering operators, even if the theory lacks a known

Lagrangian description. They are given by:

Πl
α(ν) = exp

(
2πi

∂W l(ν)

∂να

)
, F l(ν) = exp

(
2πi

(
W l(ν)− να

∂W l(ν)

∂να

))
. (2.56)

We can easily see that this agrees with the gauge-theory definitions (2.33) and (2.43) upon

using (2.55). Similarly, the on-shell handle-gluing operator is simply defined by:

Hl(ν) = exp
(

2πiΩl(ν)
)
, (2.57)

which obviously agrees with (2.39).

Using the on-shell twisted superpotential, it is straightforward to gauge a flavor sym-

metry. For instance, suppose we want to gauge a subgroup of the flavor group GF , with

parameters {νa} ⊂ {να}. We simply write the Bethe equation for νa in terms ofW l, namely:

exp

(
2πi

∂W l(ν)

∂νa

)
= 1 . (2.58)

9Namely, the Bethe equation, (2.34), only imposes that the r.h.s. is an integer, however, by “changing the

branch” by adding appropriate integer multiples of ua toW, we may arrange that the r.h.s. is precisely zero.
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These equations should be solved for each l, and may have zero, one, or several solutions

for each l. The vacua of the new gauge theory is the union of these solutions for all l, and

the resulting on-shell twisted superpotential can be used to construct the Mg,p partition

function of the new theory. This procedure is described in more detail in appendix E. We

will see an example of this procedure in section 6.

3 A-twisted supersymmetric theories on Mg,p

In this section, we study curved-space rigid supersymmetry on Mg,p. We introduce a par-

ticular three-dimensional supergravity background which realizes the “three-dimensional

A-twist” in a precise sense. We also discuss curved-space supermultiplets and Lagrangians

on this background, following the general results of [11, 19].

3.1 Supersymmetric background on Mg,p

Consider the three-manifold Mg,p, a principal U(1) bundle of first Chern number p ∈ Z
over a closed oriented Riemann surface Σg of genus g:

S1 −→Mg,p
π−→ Σg . (3.1)

This is a simple example of a Seifert fibration. The topology of Mg,p is fully specified by

the two integer p ∈ Z and g ∈ Z≥0. In particular, if p 6= 0 we have the second cohomology:

H2(Mg,p,Z) ∼= Z2g ⊕ Zp , (3.2)

which includes the torsion subgroup Zp. A more detailed account of the topology and

geometry of Mg,p is provided in appendix A. Let us consider the metric

ds2(Mg,p) = β2
(
dψ + C(z, z̄)

)2
+ 2gzz̄(z, z̄)dzdz̄ , (3.3)

with ψ ∈ [0, 2π) the fiber coordinate, and z a complex coordinate on the base Σg (in a

given patch). The principal bundle connection C has field strength:

∂zCz̄ − ∂z̄Cz =
2πi p

vol(Σg)
gzz̄ . (3.4)

We normalize the volume of the base to vol(Σg) = π, so that C has flux

1

2π

∫
Σg

dC = p (3.5)

on Σg. The metric (3.3) admits a Killing vector K whose orbits are the S1 fibers. The dual

one-form η determines a transversely holomorphic foliation (THF) of Mg,p. We define:

K ≡ Kµ∂µ =
1

β
∂ψ , η ≡ Kµdx

µ = β (dψ + pA) . (3.6)

Note that Kµηµ = 1. We also define the tensor:

Φµ
ν = −εµνρ ηµ , (3.7)
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which acts as a three-dimensional ‘complex structure’. (We summarize important aspects

of this geometric structure in appendix A.) The complex coordinates ψ, z, z̄ introduced

above are coordinates adapted to the THF.

In order to preserve half of the flat-space supersymmetry on Mg,p, we turn on ad-

ditional background fields in the three-dimensional ‘new minimal’ N = 2 supergravity

multiplet [11, 68, 69]. This includes a scalar H and a U(1)R gauge field A(R)
µ :

H = ipβ , A(R)
µ =

1

8
Φµ

ν∂ν log g + ∂µs (3.8)

with g the metric determinant. The complete supergravity background is spelled out in

appendix B. The expression for A(R)
µ in (3.8) is only valid in the adapted coordinates ψ, z, z̄.

Let us also define the adapted frame:

e0 = β (dψ + pA) , e1 =
√

2gzz̄dz , e1̄ =
√

2gzz̄dz̄ . (3.9)

Any one-form α can be decomposed into ‘vertical’, ‘holomorphic’ and ‘anti-holomorphic’

components:

α = α0η + αzdz + αz̄dz̄ , (3.10)

and similarly for any tensor. (In the following, we will mostly use the frame basis.) The

holomorphic component αz in (3.10) transforms as a section of a “canonical line bundle”

onMg,p, denoted by K, which is the pull-back of the canonical line bundle on the Riemann

surface Σg through the projection π in (3.1). Its first Chern class is given by:

c1(K) = 2g − 2 ∈ Zp , (3.11)

where Zp is the torsion subgroup in (3.2). It is very natural to introduce a modified Levi-

Civita connection ∇̂µ that preserves the decomposition (3.10). Following [11], we define

the modified spin connection:

ω̂µνρ = ωµνρ − iH (ηνΦµρ − ηρΦµν + ηµΦνρ) , (3.12)

with ωµνρ the standard spin connection. In particular, we have:

∇̂µgνρ = 0 , ∇̂µην = 0 . (3.13)

The price to pay is that the modified connection has torsion, with the torsion tensor

Tµνρ = 2iH ηµ Φνρ proportional to H.

The supergravity background (3.3)–(3.8) preserves two (generalized) Killing spinors ζ

and ζ̃, of R-charge 1 and −1, respectively, which satisfy:(
∇̂µ − iA(R)

µ

)
ζ = 0 ,

(
∇̂µ + iA(R)

µ

)
ζ̃ = 0 , (3.14)

with A(R)
µ given above. The holonomy of the modified connection ∇̂µ is contained in U(1),

therefore it can be “twisted” away by a compensating U(1)R transformation. The Killing

spinors are then essentially constant in the adapted frame:

ζ = eis

(
0

1

)
, ζ̃ = e−is

(
1

0

)
(3.15)
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This is the three-dimensional version of the A-twist. Geometrically, it corresponds to

choosing the U(1)R line bundle L(R) such that:

L(R) ∼=
√
K . (3.16)

This is a torsion line bundle with first Chern class:

c1(L(R)) = g − 1 ∈ Zp , (3.17)

with the connection A(R)
µ given by (3.8). It follows that the R-charges must be integers in

general. More precisely, we have the Dirac quantization condition:

r(g − 1) ∈ Z , (3.18)

with r the R-charge of any field. Note that the U(1)R bundle is topologically trivial if and

only if g − 1 = 0 mod p. For instance, this is the case for the three-sphere M0,1
∼= S3.

The function s in (3.8) and (3.15) corresponds to a U(1)R gauge transformation. The

Killing spinors (3.15) are globally well-defined if we choose s = 0. We may call this choice

the “A-twist gauge”. More generally, we can choose a gauge s = −nψ, where n is any

integer; we will come back to this point below.

Note also that the Killing vector K and the covector η are built out of the Killing

spinors (3.15) according to:

Kµ = ζγµζ̃ , ηµ = −ζ
†γµζ

|ζ|2
=
ζ̃†γµζ̃

|ζ̃|2
, (3.19)

with ηµ = Kµ in our background. All the background fields are invariant under the isometry

generated by K. The compatibility condition (3.13) directly follows from (3.14) and (3.19).

3.1.1 Background vector multiplets

In addition to the background supergravity fields (3.3)–(3.8), we may also turn on back-

ground vector multiplets:

V(F ) =
(
a(F )
µ , σ(F ) , D(F )

)
, (3.20)

for any flavor symmetry of the theory. To preserve the same supersymmetry as the geo-

metric background, we take:

σ(F ) = m(F ) , (3.21)

a constant, which is the real mass associated to the flavor symmetry, and:

f
(F )
01 = f

(F )

01̄
= 0 , D(F ) = 2if

(F )

11̄
+ σ(F )H , (3.22)

with f
(F )
µν the field strength of a

(F )
µ and H given in (3.8). This implies that a

(F )
µ is the

connection of a holomorphic vector bundle over Mg,p [19]. In particular, let us choose a

holomorphic line bundle L(F ) associated to a U(1)F flavor symmetry. Its first Chern class

has to lie in the torsion subgroup of the second cohomology (3.2):

c1(L(F )) = nF ∈ Zp , (3.23)
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assuming p 6= 0. (See [22] for the p = 0 case.) Let us also define:

ν(F ) = iβ
(
m(F ) + ia

(F )
0

)
, (3.24)

where a
(F )
0 = ηµa

(F )
µ is taken to be constant. The quantity (3.24) has a nice geometric

interpretation as a complex modulus of the holomorphic line bundle L(F ) [19]. Under a

large gauge transformation along the circle fiber, the parameters ν(F ) and n(F ) transform as:(
ν(F ) , n(F )

)
∼
(
ν(F ) + 1 , n(F ) + p

)
. (3.25)

This must be an invariance of any physical observable.

3.1.2 U(1)R vector multiplet

From the supergravity multiplet, one can also construct an abelian vector multiplet for the

R-symmetry [14]. In terms of the supersymmetric background (3.3)–(3.8), it is given by:

V(R) ≡
(
a(R)
µ , σ(R) , D(R)

)
=

(
A(R)
µ + iHηµ , H ,

1

4
(R− 6H2)

)
, (3.26)

where R is the Ricci scalar of gµν . In particular, one can check that the supersymmetry

conditions (3.22) are satisfied:

f
(R)
01 = f

(R)

01̄
= 0 , D(R) = 2if

(R)

11̄
+H2 . (3.27)

It follows that L(R) is a holomorphic line bundle, which is determined by its torsion

flux (3.17) and by the modulus:

ν(R) = iβ
(
σ(R) + ia

(R)
0

)
= −∂ψs = n ∈ Z . (3.28)

Interestingly, ν(R) is fully determined by the supergravity background. A large U(1)R
gauge transformation along the circle fiber corresponds to:(

ν(R) , g − 1
)
∼
(
ν(R) + 1 , g − 1 + p

)
. (3.29)

Note that we can set ν(R) = 0, but it is sometimes useful to keep track of ν(R) as a formal

parameter, together with the U(1)R gauge redundancy (3.29).

3.1.3 Parameter dependence and R-charge dependence

Supersymmetric observables onMg,p depend explicitly on the discrete parameters p and g

as well as on the torsion fluxes n(F ) for flavor symmetries. They are also locally holomorphic

functions of the complex parameters ν(F ) [14, 19]. Note that a line bundle L(F ) generally

has additional moduli, corresponding to flat connections along the one-cycles from Σg.

In our two-supercharge background, however, these additional moduli couple to Q-exact

operators and supersymmetric observables are completely independent of them [19].

We can similarly understand the dependence of supersymmetric observables on the

choice of R-symmetry [14]. In a theory with abelian flavor symmetries, the R-symmetry

current can mix with flavor currents. Let us consider:

j(R)
µ → j(R)

µ + t j(F )
µ , (3.30)
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for some parameter t, which shifts the R-charge by the U(1)F charge according to R →
R+ t F . (The flavor charge F is integer quantized by assumption.) This is equivalent to a

shift of the U(1)F vector multiplet by the U(1)R vector multiplet:

V(F ) → V(F ) + tV(R) . (3.31)

On our geometric background, the shift (3.30) is only allowed if it preserves the Dirac

quantization condition (3.18). This implies that t ∈ Z in general. On the other hand, if L(R)

is topologically trivial (that is, if g− 1 = 0 mod p), there is no restriction on the R-charge

and we can take t ∈ R. Geometrically, the shift (3.31) is a tensor product of line bundles:

L(F ) → L(F ) ⊗
(
L(R)

)⊗t
, (3.32)

with t integer or real, respectively. This corresponds to a shift of parameters:

ν(F ) → ν(F ) + t ν(R) , n(F ) → n(F ) + t (g − 1) . (3.33)

The partition function (or any supersymmetric observable) shifts accordingly. Note that

the complex modulus ν(F ) stays invariant in the “A-twist gauge” ν(R) = 0. This is the

gauge that we used implicitly in section 2. When L(R) is topologically trivial, another

particularly interesting gauge is:

ν(R) =
1− g
p

, if g − 1 = 0 mod p (3.34)

In such a case, the dependence of supersymmetric observables on the R-charge is entirely

through the combination:

ν(F ) + t
1− g
p

, (3.35)

with t ∈ R. Let us note that, in the case M0,1
∼= S3, the supersmmetric background con-

sidered in [2–4] has ν(F ) = iσ (setting β = 1 for simplicity) and therefore the dependence

on the R-charge is holomorphic in the parameter σ− it [4, 14]. As we can see from (3.35),

that property generalizes to any Mg,p background admitting continuous R-charges.

3.1.4 Comparison with three-sphere and lens space backgrounds

It is interesting to compare our family of curved-space backgrounds to the ones previously

studied in the literature. The genus zero case, g = 0, corresponds to the lens space

M0,p
∼= S3/Zp. For instance, we can consider the metric:

ds2 = β2
(
dψ +

p

2
(1− cos θ)dφ

)2
+

1

4
(dθ2 + sin2 θdφ2) , (3.36)

with the angular coordinates θ ∈ [0, π] and

(φ, ψ) ∼ (φ, ψ + 2π) ∼ (φ+ 2π, ψ + pπ) . (3.37)

– 23 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
4

This is the total space of a degree p U(1) bundle over the round S2, written down on the

“northern patch” θ ∈ [0, 2π).10 If we choose β = 1
p , we obtain the round metric on the

S3/Zp quotient, and the remaining supergravity fields (see appendix B) are:

H = i , Vµ = −2ηµ , A(R)
µ dxµ =

1

p
dψ . (3.38)

For p = 1, we can set A
(R)
µ = 0 by a large gauge transformation. This background is

related to the three-sphere background of [2–4] by a so-called “κ ambiguity” shift [11, 19]

which we briefly discuss in appendix B. While one can preserve four supercharges on S3,

our background only preserves two of them.

For p > 1, we have a non-trivial holonomy of the R-symmetry gauge field A
(R)
µ along

the Hopf fiber, corresponding to the fact that c1(L(R)) = −1 mod p. This is in contrast

with the supersymmetric backgrounds considered in [45–47], which studied the same ge-

ometry (3.36) with a topologically trivial L(R). The reason is that there exists two distinct

supersymmetric backgrounds on the same topological space, corresponding to topologically

distinct THFs. To explain this point, let us consider the lens space L(p, q) defined as the

quotient of the three-sphere

{|z1|2 + |z1|2 = 1} ⊂ C2 (3.39)

by the freely-acting Zp action:

(z1 , z2) ∼
(
e

2πiq
p z1 , e

− 2πi
p z2

)
, (3.40)

with p and q two non-zero integers. The Hopf fibration considered above is given by

the map:

π : (z1, z2) 7→ z =
z2

z1
(3.41)

to the two-sphere, where z is the complex coordinate on CP1 on the northern patch (z 6=∞),

related to the angular coordinates above by z = tan θ
2e
iφ. The quotient (3.40) acts on the

base as:

z ∼ e−
2πi(q+1)

p z , (3.42)

leaving it invariant if and only if q = p− 1 (mod p). It follows that:

M0,p
∼= L(p, p− 1) , (3.43)

as Seifert manifolds equipped with a particular THF. In contrast, the previous literature

dealing with N = 2 theories on lens spaces [45–47] considered L(p, 1) instead. While L(p, 1)

and L(p, p− 1) are homeomorphic, the THFs induced on them by the quotient (3.40) are

distinct (if p > 2).11 We should note that the methods of this paper do not apply directly

to L(p, 1) or other lens spaces, because they would correspond to circle fibrations over the

sphere with orbifold points. (These are examples of general Seifert fibrations, as mentioned

in the introduction.) We also note that [12] studied gauge theories on the L(p, p − 1)

supersymmetric background.

10The usual Hopf coordinates are θ, φ and ψ̂ = 2ψ
p

, with ψ̂ ∈ [0, 4π
p

).
11The THFs are inherited from the complex structure on C2. A closely related statement is that

there exists two distinct families of complex structures on the Hopf surface L(p, q) × S1 if p > 2 [70],

as discussed in [71].
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3.2 Supersymmetric multiplets and Lagrangians

Given the supersymmetric background above, the N = 2 supersymmetric multiplets and

Lagrangians directly follow from the general results of [11]. In this subsection, we spell

out those multiplets and Lagrangian in “A-twisted variables” — see appendix B.1 and

e.g. [22, 31] — in order to emphasize the relation to the A-twist on Σg.

In the following, we write all the fields in the canonical frame basis. In that case,

the holomorphic line bundle K on Mg,p is really a U(1) bundle,12 and K̄ ∼= K−1. The

corresponding U(1) charge is the “two-dimensional spin” of a field — in other words, a

field of integer two-dimensional spin s0 ∈ Z is a section of (K)s0 , and similarly for s0 half-

integer for some choice of square root. The three-dimensional A-twist (3.16) corresponds

to a “twist” of the two-dimensional spin by the R-symmetry according to:

s = s0 +
r

2
, (3.44)

with r the R-charge. By definition, the A-twisted variables have vanishing R-charge and

definite twisted spins. Note that 2s ∈ Zp since K is a torsion bundle. The real connection

on K is given by:

A(K) = − i
4
∂z log g dz +

i

4
∂z̄ log g dz̄ + 2ds = 2A(R) , (3.45)

with A(R) defined in (3.8). Let us also define the covariant derivative

Dµ = ∇̂µ − isA(K)
µ , (3.46)

acting on tensors valued in (K)s, with s ∈ 1
2Z and ∇̂µ the connection defined by (3.12).

3.2.1 Supersymmetry algebra

The two Killing spinors (3.15) correspond to two supersymmetry transformations:

δ = ζQ , δ̃ = ζ̃Q̃ , (3.47)

which satisfy the supersymmetry algebra:

δ2 = 0 , δ̃2 = 0 , {δ , δ̃} = −2i (Z + LK) . (3.48)

Here Z is the real central charge of the N = 2 superalgebra in flat space, and LK is the

K-covariant Lie derivative along the Killing vector K. For a vector multiplet V in Wess-

Zumino (WZ) gauge, the real scalar component σ also enters (3.48) as Z = Z0 − σ, where

Z0 is the actual central charge and σ is valued in the appropriate gauge representation.

We should note that the Lie derivative and the covariant derivative ∇̂µ coincide along Kµ,

which means that:

LK = KµDµ . (3.49)

Note that we traded the R-symmetry gauge field for A
(K)
µ in (3.48) since we are considering

A-twisted fields, which are R-neutral by definition.

12We are being slightly cavalier in our notation since K may denote either a holomorphic line bundle or

the associated U(1) bundle: αz is a section of the holomorphic line bundle K and α1 = ez1αz is a section of

the associated U(1) bundle.
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3.2.2 Vector multiplet

Let G and g = Lie(G) denote a compact Lie group and its Lie algebra, respectively. In

WZ gauge, a g-valued vector multiplet V has components:

V =
(
aµ , σ , Λµ , Λ̃µ , D

)
. (3.50)

The A-twisted fermions Λµ decompose as:

Λµdx
µ = Λ0e

0 + Λ1e
1 , Λ̃µdx

µ = Λ̃0e
0 + Λ̃1̄e

1̄ , (3.51)

where the vertical components Λ0 Λ̃0 are scalar fields and the horizontal components Λ1,

Λ̃1̄ are sections of K and K̄, respectively. Let us define the field strength

fµν = ∂µaν − ∂νaµ − i[aµ, aν ] , (3.52)

and denote by Dµ the covariant and gauge-covariant derivative. The supersymmetry trans-

formations of (3.50) are

δaµ = iΛ̃µ , δ̃aµ = −iΛµ
δσ = Λ̃0 , δ̃σ = −Λ0 ,

δΛ0 = i (D − σH − 2if11̄) + iD0σ , δ̃Λ0 = 0 ,

δΛ1 = 2f01 + 2iD1σ , δ̃Λ1 = 0 ,

δΛ̃0 = 0 , δ̃Λ̃0 = i (D − σH − 2if11̄)− iD0σ ,

δΛ̃1̄ = 0 , δ̃Λ̃1̄ = −2f01̄ − 2iD1̄σ ,

δD = −D0Λ̃0 − 2D1Λ̃1̄ δ̃D = −D0Λ0 − 2D1̄Λ1

−HΛ̃0 + [σ, Λ̃0] , +HΛ0 + [σ,Λ0]

(3.53)

The dependence of (3.53) on the geometric background is mostly implicit, through the

covariant derivatives written in the frame basis. To check the supersymmetry algebra, it

is important to note that:

f01 = D0a1 −D1a0 , f01̄ = D0a1̄ −D1̄a0 , f11̄ = D1a1̄ −D1̄a1 +Ha0 , (3.54)

where H appears due to the non-zero torsion of the covariant derivative.

3.2.3 Chiral multiplet

Consider a chiral multiplet Φ of (integer) R-charge r, transforming in a representation R

of g. In A-twisted notation [31], we denote the components of Φ by

Φ = (A , B , C , F) . (3.55)

Similarly, the charge-conjugate antichiral multiplet Φ̃ of R-charge −r in the representation

R̄ has components

Φ̃ =
(
Ã , B̃ , C̃ , F̃

)
, (3.56)
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The fields are valued in the canonical line bundle to the appropriate power. We have:

A , B ∈ Γ(K
r
2 ⊗ VR) , C , F ∈ Γ(K

r
2 ⊗ K̄ ⊗ VR) ,

Ã , B̃ ∈ Γ(K̄
r
2 ⊗ V̄R̄) , C̃ , F̃ ∈ Γ(K̄

r
2 ⊗K ⊗ V̄R̄)

(3.57)

where VR, V̄R̄ are the gauge vector bundles. In particular, A,B have two-dimensional spin
r
2 , while C,F have two-dimensional spin r−2

2 . The supersymmetry transformations of the

chiral multiplet read:

δA = B , δ̃A = 0 ,

δB = 0 , δ̃B = −2i
(
− σ +D0

)
A ,

δC = F , δ̃C = 2iD1̄A ,

δF = 0 , δ̃F = −2i
(
− σ +D0

)
C − 2iD1̄B − 2iΛ̃1̄A ,

(3.58)

where Dµ is appropriately gauge-covariant and σ and Λ̃1̄ act in the representation R.

We have:

DµA =
(
∂µ − iaµ − i

r

2
A(K)
µ

)
A , DµC =

(
∂µ − iaµ − i

r − 2

2
A(K)
µ

)
C , (3.59)

with A
(K)
µ defined in (3.45). For the antichiral multiplet, we similarly have:

δÃ = 0 , δ̃Ã = B̃ ,

δB̃ = −2i
(
σ +D0

)
Ã , δ̃B̃ = 0 ,

δC̃ = −2iD1Ã , δ̃C̃ = F̃ ,

δF̃ = −2i
(
σ +D0

)
C̃ + 2iD1B̃ + 2iΛ1Ã , δ̃F̃ = 0 .

(3.60)

Using (3.53), one can check that (3.58) and (3.60) realize the supersymmetry algebra:

δ2 = 0 , δ̃2 = 0 , {δ, δ̃} = −2i
(
−σ + L(a)

K

)
, (3.61)

where L(a)
K is the gauge-covariant Lie derivative, and σ acts in the appropriate representa-

tion of the gauge group.

3.2.4 Supersymmetric Lagrangians

To conclude this section, let us write down the most important supersymmetric Lagrangians

for our three-dimensional N = 2 gauge theories [11].

Vector multiplet. The curved-space super-Yang-Mills (SYM) Lagrangian reads:

LYM =
1

e2

(
1

4
fµνf

µν +
1

2
DµσD

µσ − 1

2
(D + σH)2 + 4iHσf11̄ + 2H2σ2

+ iΛ̃0D0Λ0 + 2iΛ̃1̄D1Λ0 + 2iΛ̃0D1̄Λ1 − iΛ̃1̄D0Λ1

− iΛ̃0[σ,Λ0]− iΛ̃1̄[σ,Λ1]

)
.

(3.62)
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Here and below, the trace over gauge indices is left implicit. The Lagrangian (3.62) is

δ-exact, like any well-defined D-term. One can check that:

LYM =
1

e2
δδ̃

(
1

2
Λ̃0Λ0 −

1

2
Λ̃1̄Λ1 + 2σf11̄ − 2iHσ2

)
. (3.63)

Another important Lagrangian is the Chern-Simons (CS) term. For any gauge group G,

we have

LCS =
k

4π

(
iεµνρ

(
aµ∂νaρ −

2i

3
aµaνaρ

)
− 2Dσ + 2iΛ̃0Λ0 + 2iΛ̃1̄Λ1

)
, (3.64)

with k ∈ Z the CS level.13 In the presence of an abelian sector, we can also have mixed

CS terms between U(1)I and U(1)J , with I 6= J :

LCS,IJ =
kIJ
2π

(
iεµνρa(I)

µ ∂νa
(J)
ρ −D(I)σ(J) −D(J)σ(I) + iλ̃(I)λ(J) + iλ̃(J)λ(I)

)
, (3.65)

with λ̃(I)λ(J) = Λ̃
(I)
0 Λ

(J)
0 + Λ̃

(I)

1̄
Λ

(J)
1 . For each U(1)I factor, we may also turn on the

Fayet-Iliopoulos parameter:

LFI = − ξI
2π

trI(D − (σ + 2ia0)H) , (3.66)

where we normalized ξI like in [22]. The FI term is a special case of a mixed CS term

between the U(1)I vector multiplet VI and the background vector multiplet VTI (with real

mass σTI = ξI and vanishing flux nTI = 0) for the associated topological symmetry U(1)TI ,

with level kITI = 1.

Chiral multiplet. The standard kinetic term for a chiral multiplet coupled to a vector

multiplet (in WZ gauge) reads:

L
Φ̃Φ

= Ã
(
−D0D0 − 4D1D1̄ + σ2 +D − σH − 2if11̄

)
A− F̃F

− i

2
B̃(σ +D0)B + 2iC̃(σ −D0)C + 2iB̃D1C − 2iC̃D1̄B

− iB̃Λ̃0A+ iÃΛ0B − 2iÃΛ1C + 2iC̃Λ̃1̄A .

(3.67)

This Lagrangian is δ-exact:

L
Φ̃Φ

= δδ̃

(
i

2
Ã(σ +D0)A− C̃C

)
. (3.68)

Finally, we may write down superpotential interactions in terms of a superpotential

W = W (Φ) of R-charge 2. Those interaction terms are Q-exact and do not play any

crucial role in the following. The only way the superpotential appears in the localization

computation is by the constraints it imposes on the flavor symmetry and R-charges.

13In general, we have a distinct CS level for each simple factor and for each U(1) factor in G.
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U(1)R and gravitational Chern-Simons terms. Three additional supersymmetric

Chern-Simons Lagrangians are available in curved space [11, 25]. Let us consider them on

our Mg,p background.

The first Lagrangian is simply a mixed CS term between a U(1)I vector multiplet and

the U(1)R vector multiplet (3.26). It reads:

LCS,RI =
kRI
2π

(
iεµνρ(A(R)

µ + iHηµ)∂νa
(I)
ρ −HD(I) − 1

4
(R− 6H2)σ(I)

)
, (3.69)

in terms of the supergravity background fields defined above. The second Lagrangian is a

supersymmetric CS term for the U(1)R vector multiplet:14

LCS,zz =
kzz
4π

(
iεµνρ(A(R)

µ + iHηµ)∂ν(A(R)
ρ + iHηρ)−

1

2
HR+ 3H3

)
. (3.70)

The third CS Lagrangian is the N = 2 supersymmetric completion of the gravitational

CS terms:

LCS,g =
kg

192π

(
iεµνρ Tr

(
ωµ∂νωρ +

2

3
ωµωνωρ

)
+ 4iεµνρ(A(R)

µ − iHηµ)∂ν(A(R)
ρ − iHηρ)

)
.

(3.71)

We need kg ∈ Z for the non-supersymmetric gravitational CS term to be well-defined by

itself. On the other hand, the coefficient of the R-symmetry CS term A(R)dA(R) is:

kRR ≡ kzz +
1

12
kg . (3.72)

This “RR CS level” must be integer, kRR ∈ Z, whenever the U(1)R line bundle is topo-

logically non-trivial. The level kzz itself does not need to be quantized because it is a CS

level for the gauge field coupling to the central charge [25], which is never quantized in our

family of backgrounds.

The mixed CS term (3.69) can involve either a dynamical or background U(1)I vector

multiplet. The two other terms (3.70) and (3.71) only depend on the geometric background.

The CS levels kRR and kg correspond to contact terms in two point functions of the R-

symmetry current and energy-momentum tensor, respectively [25].

4 Localization on the Coulomb branch

In this section, we sketch the Coulomb branch localization argument, which gives an inde-

pendent derivation of the results of section 2.

14The full non-linear expression for LCS,zz has not appeared explicitly in the literature, but it is easily

obtained by realizing that this supergravity Lagrangian only depends on the U(1)R vector multiplet, instead

of the full supergravity multiplet.
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4.1 Vector multiplet localization

Let us first consider the supersymmetry equations for the vector multiplet V. It follows

from (3.53) that the gaugino variations vanish if and only if:

D0σ = 0 , f01 + iD1σ = 0 , f01̄ + iD1̄σ = 0 , D = 2if11̄ + σH . (4.1)

In addition, we consider the partial gauge-fixing condition:

ηµ(LKaµ) = 0 , (4.2)

which is simply D0a0 = 0. To understand the supersymmetry equations, it is useful to

define the complexified gauge field:

Aµ = aµ − iσηµ , (4.3)

with field strength Fµν , in terms of which the equations (4.1) read:

D0σ = 0 , F01 = 0 , F01̄ = 0 , D + σH = 2iF11̄ . (4.4)

These conditions imply that Aµ is the connection of a holomorphic vector bundle [19],

together with the gauge-fixing condition D0A0 = 0. Let us define the quantities:

u = iβ(σ + ia0) , ũ = −iβ(σ − ia0) , (4.5)

for the constant modes of σ and a0. We also define:

x = e−i
∫
γ A = e2πiu , (4.6)

the holonomy of Aµ along the S1 fiber.

We would like to localize the path integral onto the constant modes (4.5). The bosonic

part of the SYM action (3.62) can be written as:

LYM

∣∣∣
bos

=
1

e2

(
2f01f01̄ +

1

2
DµσD

µσ +
1

2
(2iF11̄)2 − 1

2
(D + σH)2

)
. (4.7)

Since the action (4.7) is the bosonic part of Q-exact action, we can localize the path integral

by taking the limit e→ 0. We choose a standard reality condition for the dynamical fields

aµ and σ, which are taken to be real, while we remain agnostic about the reality condition

for D.15 Then the BPS configurations (4.1) simplify to:

Dµσ = 0 , f01 = f01̄ = 0 , D = 2if11̄ + σH . (4.8)

If, in addition, we take D to be purely imaginary, we have f11̄ = 0 and we localize onto flat

connections. This is slightly too strong, however, and in the following we will also allow

for constant modes of f11̄ that satisfy (4.8).

15Note that the Q-exact action (4.7) is not positive definite in general. This makes it harder to argue for

the validity of the localization argument. We leave a clearer understanding of this point for future work.
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We may use the residual two-dimensional gauge freedom to diagonalize a0:

a0 = diag(a0,a) , a = 1, · · · , rk(G), (4.9)

breaking the gauge group G to the Cartan subgroup

H ∼=
rk(G)∏
a=1

U(1)a . (4.10)

From Dµσ = 0 and the reality condition, σ is also localized onto the constant diagonal

modes σ = diag(σa). The constant modes ua = iβ(σa + ia0,a) will be identified with the

Coulomb branch parameters of section 2. In the diagonal gauge, we should sum over H-

bundles over Mg,p which are pull-backs of H-bundles on Σg [13, 72]. All such bundles are

torsion bundles [13]. Here we assume that p 6= 0. (We briefly review the p = 0 case below.)

The torsion flux m takes value in the finite group:

Γ
(p)
G∨ = {m : ρ(m) ∈ Z ∀ρ ∈ ΓG , m ∈ Zrk(G)

p } ∼= Zrk(G)
p , (4.11)

which is a Zp reduction of the ordinary magnetic flux lattice [73, 74]. Here ΓG ⊆ ih∗ is the

weight lattice of electric charges of G.

In a given topological sector m, the non-trivial connection can be chosen to be flat.

We take:

aµ = â0ηµ + a(flat)
µ , â0 ∈ R . (4.12)

Note that â0 is the coefficient of a well-defined one-form, therefore it cannot affect the

topological properties of the gauge field. Some basic properties of flat connections are

reviewed in appendix A. Importantly, we have the holonomy:

e−i
∫
γ a

(flat)

= e
2πim

p , (4.13)

along the fiber. Note that we have:

u = iβ (σ + iâ0) +
m

p
(4.14)

in a given topological sector. Under a U(1)a large gauge transformations, the parameters

ma and ua transform as:

(ua, ma) ∼ (ua + 1, ma + p) . (4.15)

In addition to these parameters, the U(1)a line bundles are also characterized by flat

connections along Σg, corresponding to elements of the cohomology group H1(Mg,p,R) ∼=
R2g. We can parametrize these flat connections by:

g∑
I=1

(
αIω

I
zdz + α̃I ω̃

I
z̄dz̄
)
, [ωI ] ∈ H1(Mg,p,R) (4.16)

The U(1)a holonomies αI , α̃I live in a compact domain.
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Importantly, the kinetic terms for the gaugino appearing in the localizing action (3.62)

admit fermionic zero-modes, which satisfy:

D0Λ0 = D1Λ0 = 0 , D0Λ1 = D1̄Λ1 = 0 , (4.17)

and similarly for the charge-conjugate fermions Λ̃0, Λ̃1̄. These zero-modes are directly

related to the more familiar zero modes of the A-twisted Dirac operator on Σg. We have

the constant mode of Λ0, and g one-form zero-modes for Λ1:

Λ0 = constant , Λ1 =

g∑
I=1

ΛIω
I
1 . (4.18)

The cohomology classes [ωIzdz] ∈ H1(Mg,p,R) ∼= R2g are the pull-back of the holomorphic

one-forms on the Riemann surface Σg. Note that the torsion of the covariant derivative

Dµ = ∇̂µ plays a crucial role here, since it is such that the equations (4.17) are independent

of p. Therefore, the localization of the path integral can be performed in a manner identical

to the p = 0 case studied in [22]. The vector multiplet localizes to an integral over the

zero-mode supermultiplets:

V0 = (σ , a0 , Λ0 , Λ̃0 , D̂) , VI = (αI , α̃I , ΛI , Λ̃I) , I = 1, · · · , g , (4.19)

where the constant mode D̂ is defined by

D = 2if11̄ + σH + iD̂ . (4.20)

We have turned on a non-BPS constant mode D̂ as a regulator. In order to have a positive

definite localizing action, the contour for D̂ is chosen to be D̂ = R − 2f11̄, which allows

the constant modes for f11̄ [20–22]. Then we deform the D̂-contour to be along the real

axis. When we deform the contour, we pick up the residues of the pole in the region

0 < D̂ < −2f11̄, but the residues of these poles are exponentially suppressed as we take

the limit e→ 0 [20]. Schematically, we obtain the partition function:

Z =
∑

m∈Γ
(p)

G∨

∫
dV0

∫ ∏
I

dVI e−S0 Z1-loop
m (V0,VI) . (4.21)

where the sum is over all topological sectors, S0 is the classical action evaluated on the

supersymmetric locus, including the fermionic zero-modes, and Z1-loop
m is the one-loop

determinant in a given topological sector. The integrand of (4.21) enjoys a residual super-

symmetry, which follows from (3.53) restricted to the zero-modes. Following [22], we can

argue that (4.21) reduces to a certain multi-dimensional contour integral on ua-space with

a meromorphic integrand.

While the integrand of that contour integral can be straightforwardly computed, the

precise form of the contour is more complicated to derive. We will give a complete derivation

of the contour in the rank-one case in appendix D, and we will present the higher-rank

generalization as a conjecture.
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4.2 Classical action contribution: CS terms

Let us first consider the classical action evaluated on the supersymmetric locus. For the

vector multiplet, this corresponds to the parameters u, ũ and m. The only non-vanishing

contributions come from the Chern-Simons terms (including the FI terms). On general

ground, the result should be holomorphic in u. We provide a summary of some subtle

properties of the CS functional in appendix C.

Ordinary CS term. For simplicity, let us first consider a U(1) vector multiplet as de-

scribed above, with parameters (u,m). The Chern-Simons term (3.64) can be decom-

posed as:

SCS = S
(1)
CS + S

(2)
CS (4.22)

with

S
(1)
CS = i

k

4π

∫
a(flat) ∧ da(flat) ,

S
(2)
CS = i

k

4π

∫
(â0)2η ∧ dη +

k

4π

∫
d3x
√
g
(
−2σ2H − 4iσf11̄

)
.

(4.23)

The expression for S
(1)
CS is formal since it involves a non-trivial gauge connection. We claim

that the exponentiated CS functional for the flat connection of a torsion U(1) bundle, of

first Chern class m ∈ Zp, is given by:

e−S
(1)
CS = (−1)kme

πikm2

p . (4.24)

See e.g. [46, 75] in the case g = 0. We conjecture that (4.24) also holds onMg,p with g > 0.

A proper computation should be done by using the four-dimensional definition of the CS

functional, as explained in appendix C. Note that (4.24) is invariant under the large gauge

transformations m ∼ m + p for any m ∈ Zp, if and only if k ∈ Z, as it should be.

The integrand of S
(2)
CS in (4.23), on the other hand, is well-defined, and the action can

be evaluated straightforwardly. We find:

e−S
(2)
CS = eπikpβ

2(σ+iâ0)2

, (4.25)

which is holomorphic in σ+iâ0, as expected. The total contribution of the supersymmetric

CS action takes the simple form:

e−SCS = exp

(
− πip k u2 + 2πik

(
u+

1

2

)
m

)
= e−πip k u

2
(−x)km (4.26)

when written in terms of u as defined in (4.14), with x defined in (4.6). For a more general

gauge group G, we similarly obtain:

e−SCS =

rk(G)∏
a=1

e−πip k u
2
a (−xa)kma (4.27)

after diagonalization.
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Mixed CS term. Consider two U(1) vector multiplets with parameters (uI ,mI) and

(uJ ,mJ). We claim that the mixed Chern-Simons term (3.65) has a contribution from the

flat connections:

e−S
(1)
CS,IJ = exp

(
− ikIJ

2π

∫
a

(flat)
I da

(flat)
J

)
= e

2πikIJ
mImJ
p , (4.28)

similarly to (4.24). This is invariant under large gauge transformations for kIJ ∈ Z. The

remaining terms are well-defined and give:

e−S
(1)
CS,IJ = exp

(
2πi p kIJ β

2(σI + iâI0)(σJ + iâJ0)
)
. (4.29)

The full supersymmetric action (3.65) can be written as:

e−SCS,IJ = e−2πi p kIJuIuJ (xJ)kIJmI (xI)
kIJmJ , (4.30)

with xI = e2πiuI and xJ = e2πiuJ . Note that this includes the (generalized) FI parameter for

a U(1)I gauge group, which is given by mixed CS term between U(1)I and the topological

symmetry U(1)TI , at level kITI = 1, with fugacity:

xTI ≡ qI = e2πiτI , (4.31)

and background flux nTI .

U(1)R and gravitational CS terms. By direct computation, one can check that the

mixed U(1)R-U(1)I CS term (3.69) evaluates to:

e−SCS,RI = e2πikRI(g−1)uI = (xI)
kRI(g−1) . (4.32)

This simply corresponds to (4.30) with the U(1)R vector multiplet parameters plugged in.

We wrote down (4.32) in the “A-twist gauge” ν(R) = 0. (More generally, we have ν(R) ∈ Z
and therefore xR = e2πiν(R)

= 1.)

In the A-twist gauge, the U(1)R and gravitational CS terms (3.70) and (3.71) give a

subtle contribution:

e−SCS,zz−SCS,g = (−1)kRR(g−1) eπip
kg
12 . (4.33)

The kRR term can be inferred by replacing u and m by ν(R) = 1 and mR = g− 1 in (4.26).

The kg term is a further conjecture. We do not provide a complete proof of (4.33), but it

passes a number of consistency checks. For instance, these CS classical terms can be gener-

ated from the chiral multiplet effective action onMg,p in the appropriate decoupling limits.

In the language of section 2, all these supersymmetric Chern-Simons terms correspond

to the classical twisted superpotential (2.23) and effective dilaton (2.35), that is:

W =
1

2
ku(u+ 1) + kIJuIuJ +

1

24
kg , Ω = kIRuI +

1

2
kRR . (4.34)

Note again that this only makes sense for kRI , kRR integer-quantized. Whenever U(1)R
can be taken non-compact, the general result for a theory with continuous R-charges can

be obtained by starting with integer-quantized R-charges and deforming the fugacities in

the way explained in section 3.1.3.
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4.3 One-loop determinants

Next, we discuss the one-loop determinant contributions to the localized path integral.

4.3.1 Chiral multiplet contribution

Consider a chiral multiplet Φ coupled to a U(1)I vector multiplet V with charge Q = 1, and

coupled to our geometric background with R-charge r ∈ Z. We contribution of Φ in the

supersymmetric background (u,m) for V can be computed with the Q-exact action (3.67).

The Gaussian integral

ZΦ =

∫
[dΦdΦ̃]e−SΦΦ̃ (4.35)

only receives non-trivial contributions from the zero-modes of the operator D1̄, with Dµ

defined in (3.59). By a standard argument,16 we find:

ZΦ =
detcokerD1̄

(−σ +D0)

detkerD1̄
(−σ +D0)

. (4.36)

All other modes cancel out by supersymmetry. Note that the modified covariant derivative

Dµ is the pull-back of the ordinary covariant derivative on Σg. We can then expand any

3d field along the S1 fiber:

ϕ =
∑
n∈Z

ϕn e
inψ , (4.37)

with the modes ϕn living on Σg. In particular, the zero-modes An that contribute to the

denominator in (4.36), satisfy:

D0An = i
n− aψ
β
An , (Dz̄ − iCz̄)An = 0 . (4.38)

In other words, the modes An correspond to holomorphic sections of the line bundle:

O(pn+ m)⊗K
r
2 (4.39)

on Σg, where O(n) denotes a line bundle of first Chern number n. These bundles pull-back

to torsion bundles on Mg,p [13]. Similar considerations hold for the fermionic zero-modes

C that satisfy D1C = 0, corresponding to the numerator of (4.36). In this way, we find

that (4.36) is given by the formal expression:

ZΦ
g,p,m(u) =

∏
n∈Z

(
1

n+ u

)pn+m+(g−1)(r−1)

, (4.40)

with u defined in (4.14). This infinite product has to be regulated carefully, but it is clear

that it possesses the expected properties. Firstly, it is formally invariant under the large

gauge transformation (u, m) ∼ (u+ 1, m + p). Secondly, it takes the form:

ZΦ
g,p,m(u) = FΦ(u)p ZΦ

g,0,m(u) , (4.41)

16See e.g. the discussion in appendix C of [31] which easily generalizes to our case.
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where ZΦ
g,0,m(u) is the result of [20] for a chiral multiplet on Σg × S1, in the presence of m

units of flux on Σg. The function:

FΦ(u) ≡
∏
n∈Z

(
1

n+ u

)n
(4.42)

gives the contribution of a chiral multiplet to the fibering operator introduced in section 2.4.

A similar one-loop determinant was first obtained in [12].

4.3.2 Regulated chiral multiplet one-loop determinant

The formal product (4.40) is invariant under large gauge transformations. It is also invari-

ant under a “parity” transformation which acts on (4.40) as:

P : u→ −u , p→ −p , (4.43)

leaving all other parameters fixed. This reflects the fact that the kinetic Lagrangian (3.67)

is both gauge invariant and parity invariant.17 The quantum theory, however, has a “parity

anomaly” [34–36]. This is the statement that we cannot quantize a three-dimensional Dirac

fermion coupled to a background gauge field (and a background metric) while preserving

both gauge invariance (and diffeomorphism invariance) and parity. In the present case, the

parity anomaly shows up upon regulating the formal product (4.40). We naturally choose

to preserve gauge invariance.

The parity anomaly is sometimes loosely stated as the fact that one should “add a CS

term with level 1
2” to compensate for the lack of gauge invariance of the fermion effective

action. This is misleading since there is no such thing as a Chern-Simons action with

half-integer level. Instead, the gauge-invariant effective action necessarily breaks parity.

(See [76] for a recent discussion of this point.) In particular, a Dirac fermion coupled to

U(1) gauge fields contributes half-integer contact terms κ to two-point functions of U(1)

currents (and similarly for the coupling to the metric). These contact terms can be shifted

by integers (by adding CS terms at levels k for the gauge fields in the effective action) but

the non-integer parts of κ are physical [25] and violate parity.

In order to identify the correct gauge-invariant regularization for the chiral multiplet

one-loop determinant, we recall that integrating out a chiral multiplet Φ by scaling the real

mass σ → ±∞ leads to a shift of the relevant contact terms by:

δκII =
1

2
Q2 sign (Qσ) , δκRI =

1

2
Q(r − 1) sign (Qσ) ,

δκRR =
1

2
(r − 1)2 sign (Qσ) , δκg = sign (Qσ) .

(4.44)

Here we reintroduced the U(1)I gauge charge Q, which we had set to 1 before. We would

like to identify a “U(1)− 1
2

regularization”, corresponding to contact terms:

κII = −1

2
Q2 , κRI = −1

2
Q(r − 1) , κRR = −1

2
(r − 1)2 , κg = −1 , (4.45)

17On a fixed background, the coupling to curved space breaks parity explicitly; in particular, the back-

ground supergravity field H is parity odd. Here we are considering a family of supersymmetric backgrounds

Mg,p on which parity acts naturally as Mg,p →Mg,−p.
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for a free chiral multiplet coupled to background fields. This is such that:

lim
Qσ→+∞

ZΦ
g,p,m(Qu) = 1 , (4.46)

since the IR theory with large positive real mass Qσ is then an empty theory with vanishing

background Chern-Simons levels. Let us first consider the p = 0 contribution to (4.40)

(with Q = 1):

ZΦ
g,0,m(u) = ΠΦ(u)m+(g−1)(r−1) , ΠΦ(u) ≡

∏
n∈Z

1

u+ n
. (4.47)

The infinite product can be regularized in various ways, but there is a unique gauge-

invariant answer that satisfy (4.46). It is given by:

ΠΦ(u) =
1

1− x
, (4.48)

with x = e2πiu. Similarly, the “fibering operator” contribution (4.42) gives:

FΦ(u) = exp

(
1

2πi
Li2(x) + u log(1− x)

)
, (4.49)

in agreement with (2.46). As mentioned before, FΦ(u) is a meromorphic function of u with

poles at u = −n, n ∈ Z>0. It is also the contribution of a chiral multiplet of R-charge

r = 1 to the S3 partition function [7, 44], as we will discuss in section 5. The full one-loop

determinant on Mg,p is given by:

ZΦ
g,p,m(u) = FΦ(u)p ΠΦ(u)m+(g−1)(r−1) . (4.50)

Note that FΦ(u) satisfies the difference equation:

FΦ(u+ 1) = FΦ(u) ΠΦ(u)−1 , (4.51)

which implies that (4.50) is invariant under the large gauge transformations (4.15). We

may also view FΦ as a function of x:

FΦ(x) = exp

(
1

2πi

(
Li2(x) + log x log(1− x)

))
, (4.52)

in which case (4.51) corresponds to a monodromy around x = 0.18 In the limit of large

negative real mass, one can show that:

lim
Qσ→−∞

ZΦ
g,p,Qm(Qu) = eπipQ

2u2
e−

πip
6 (−x−Q)Qm+(g−1)(r−1) . (4.53)

Comparing to the classical Chern-Simons contributions discussed in section 4.2, we see that

this limit reproduces the classical supersymmetric Chern-Simons action with integer levels:

kII = −Q2 , kRI = −Q(r − 1) , kRR = −(r − 1)2 , kg = −2 , (4.54)

provided that r ∈ Z. This agrees with the expected shift (4.44) of the bare contact

terms (4.45).

18Note that x = 0 is the only branch point in (4.52). The branch cut of Li2(x) at x ∈ [1,∞) is cancelled

by the second term in the exponent.
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4.3.3 Vector multiplet contribution

The W-boson and their superpartners also give a non-trivial contribution on the Coulomb

branch. They contribute like chiral multiplets of gauge charges α, with α the roots of g,

and R-charge 2 [20, 31]. The W-bosons come in pairs of charges α and −α. As was already

mentioned in section 2, we choose a symmetric quantization, such that there is no shift

of any contact term. This implies that the W-bosons do not contribute to the effective

twisted superpotential, while they do contribute to the effective dilaton. We have:

Zvec
g (u) = (−1)(g−1) 1

2
dim(g/h)

∏
α∈g

(1− xα)1−g =
∏
α∈g+

(1− xα)2−2g , (4.55)

where g+ denotes the positive roots. The one-loop determinant (4.55) is independent of

p and of the topological sector m. It naturally agrees with previous results for S3 [2] and

Σg × S1 [20].

4.4 A comment on the Mg,0
∼= Σg × S1 case

The case p = 0 was studied in [20–22]. Let us emphasize the presence of some subtle signs

that were previously overlooked. When p = 0, the sum over topological sectors is over all

GNO-quantized fluxes on Σg:
1

2π

∫
Σg

da = m . (4.56)

The Coulomb branch parameters ua are cylinder-valued, ua ∼ ua + 1, corresponding to

complexified flat connections along S1.

The classical and one-loop contributions can be obtained by setting p = 0 in the results

above. In particular, a U(1) CS term at level k contributes:

e−SCS = (−x)km (4.57)

in the presence of a flux m ∈ Z. We see that, even in the absence of flat connection along

S1 (that is, if u = 0), we have a contribution (−1)km. This is because of the choice of

spin structure dictated by supersymmetry, with periodic boundary conditions for fermions

around S1. This explicit dependence on the spin structure for k an odd integer [77] was dis-

cussed recently in [78, 79], and we review some relevant material in appendix C. The U(1)R
CS term contributes a sign (−1)(g−1)kRR for the same reason. Note that mixed CS terms

do not introduce any additional signs, because they are independent of the spin structure.

4.5 The contour-integral formula

Combining the classical and one-loop contribution, and integrating over the fermionic zero

modes, the path integral (4.21) can be written as a particular contour integral on {ua} ∼= hC.

(This is proven in appendix D in the rank-one case, and it is a well-motivated conjecture

in general.) On Mg,p with background fluxes nα for the flavor symmetry, we have:

ZMg,p =
1

|WG|
∑

m∈Γ
(p)

G∨

∫
C
Ig,p,m(u) du1 ∧ · · · ∧ dur , (4.58)
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with r = rk(G) and the integrand:

Ig,p,m(u) = (−1)r Zclassical
m,g,p (u) Z1-loop

m,g,p (u)
(

det
ab
∂ua∂ubW(u)

)g
. (4.59)

The term Zclassical
m,g,p (u) is the classical contribution due to the Chern-Simons terms discussed

in section 4.2. The one-loop determinants contribute as:

Z1-loop
m,g,p (u) =

∏
α∈g+

(1− xα)2−2g
∏
i

∏
ρi∈Ri

FΦ(xρiyi)
p ΠΦ(xρiyi)

ρi(m)+ni+(g−1)(ri−1) , (4.60)

with FΦ(x) and ΠΦ(x) defined as in (4.52) and (4.48), respectively. The last term in (4.59)

originates from the integration over the gaugino zero-modes Λ1, Λ̃1̄.

The integrand (4.59) may be conveniently written in terms of the effective twisted

superpotential and effective dilaton of section 2.2:

Ig,p,m(u) = J (u)
r∏

a=1

Πa(u)ma ,

J (u) ≡ (−1)rF(u)p e2πi(g−1)Ω(u)

(
det
ab
∂ua∂ubW(u)

)g ∏
α

Πα(u)nα ,

(4.61)

with Ω, F and Πa,Πα the effective dilaton (2.38), the fibering operator (2.43), and the flux

operators (2.33), respectively. (We suppressed the dependence on the flavor parameters να
to avoid clutter.)

Note that the integrand (4.59) is invariant under the large gauge transformations

(ua,ma) ∼ (ua+1,ma+p). In particular, when p = 0, the integrand is periodic, ua ∼ ua+1,

in each topological sector, and the integration contour lies on the classical Coulomb branch

M̃ [22]. For p 6= 0, it is useful to decompose the (as yet unspecified) real codimension-r

integration contour C ⊂ Cr as:

C ∼= ∪n∈ZrCn , Cn ⊂ {u | na ≤ Re(ua) ≤ na + 1} , (4.62)

where Cn is a contour that lies in the vertical strip n ≤ Re(u) < n + 1, as indicated. We

then have the formal identities:∑
m∈Zr

p

∑
n∈Zr

∫
Cn
druJ (u)

∏
a

Πa(u)ma =
∑
m∈Zr

p

∑
n∈Zr

∫
C0
druJ (u+n)

∏
a

Πa(u)ma

=
∑
m∈Zr

p

∑
n∈Zr

∫
C0
druJ (u)

∏
a

Πa(u)ma−pna =
∑
m∈Zr

∫
C0
druJ (u)

∏
a

Πa(u)ma ,

(4.63)

where we used the property (2.44) in the second equality, and we relabelled the fluxes

m − pn as m in the last one. Therefore, the partition function (4.58) can be written as a

sum over the whole flux lattice of G, like in the p = 0 case:

ZMg,p =
1

|WG|
∑

m∈ΓG∨

∫
C0
J (u)

r∏
a=1

Πa(u)ma du1 ∧ · · · ∧ dur . (4.64)

– 39 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
4

This formula realizes the relation (1.10) at a formal level, since (4.64) looks like an explicit

insertion of the operator Fp in the Coulomb-branch localization formula on Σg×S1. This is

only formal, however, because the localization argument must be adapted to accommodate

for the insertion of the fibering operator. This generally results in a different contour

prescription for p 6= 0, consistent with the fact that the integrand J (u) is no longer

invariant under u ∼ u+ 1 in this case.

4.5.1 Singularities of the integrand

Before discussing the integration contour, let us summarize the structure of the integrand

singularities. We have four distinct types of singularities:

Matter field singularities. First of all, we have potential singularities along the hyper-

planes:

Hρi,n = {u ∈ hC | ρi(u) + νi + n = 0 , n ∈ Z } . (4.65)

They correspond to the poles at xρiyi = 1 in the one-loop determinant of the chiral multiplet

Φi, corresponding to points in the moduli space where the chiral multiplet develops a

bosonic zero mode. There is a pole along the hyperplane Hρi,n if and only if:

Nρi,n ≡ pn+ ρ(m) + ni + (g − 1)(ri − 1) > 0 , (4.66)

as is evident e.g. from (4.40). Note that Nρi,n is the order of the pole. For Nρi,n < 0, on

the other hand, we have a zero of order |Nρi,n| along the hyperplane.

Large Im(u) region (monopole singularities). The second type of singularities orig-

inate from the large imaginary u region. We define the “hyperplanes”:

Ha± = {u ∈ hC | Im(ua) = ∓∞} . (4.67)

That is xa =∞ and xa = 0, respectively, in the xa variables. The integrand has potential

singularities of the form:

Im(u) ∼

e∓2πip( 1
2
Q+a

au2
a+

∑
b 6=aQa+

bubua+
∑
αQ

F
a+

α
ναua)x

±(Qa±(m)+QFa±(n)+(g−1)ra±)
a ,

(4.68)

in the limit σa → ∓∞, where Qa±, QFa± and ra± are the monopole charges (2.40). We

refer loosely to the singularity at Im(u)→ ∓∞ as a “pole at infinity”. More precisely, we

have an actual pole at x = ∞ or x = 0, respectively, when p = 0. For p 6= 0, it is more

natural to use the variable u. The regions in the u-plane where (4.68) diverges generally

contribute non-trivially to the partition function.

Large Re(u) regions. When p 6= 0, the integrand may diverge at Re(u)→ ±∞. Using

the property F(u + N) = F(u)Π(u)−N with N a large integer, we can understand that

divergence as follows. Suppose we have a part of the integration contour that probes the

large Re(u) region. For p > 0, the integrand diverges as Re(u) → −∞ along portions of

that contour such that |Π(u)| > 1; similarly, it diverges as Re(u)→∞ when |Π(u)| < 1.
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W-boson singularities. In addition, at higher genus g > 1 and for a non-abelian gauge

group, we also have potential singularities at:

Hα,n = {u ∈ hC | α(u) = n , n ∈ Z } , (4.69)

for any simple root α ∈ g. These hyperplanes correspond to the walls of the Weyl chambers,

where part of the non-abelian symmetry is restored. Following previous works, our prescrip-

tion will be to exclude the contribution from any singularity that includes Hα,n [13, 21, 22].

Example: U(1)−1/2 with one chiral. To illustrate some of these general features, we

will consider a simple example, the U(1) theory with a charge one chiral and an effective

CS level κ = −1
2 . For simplicity let us consider the case g = 0, p = 1, i.e., Mg,p = S3, and

an R-charge such that Ω = 0. Then the partition function is given by:

ZS3(ν, τ) = −
∫
C
du e−2πiτuFΦ(u+ ν)

= −
∑
n∈Z

∫
Cn
du e−2πiτuFΦ(u+ ν)

= −
∑
m∈Z

∫
C0
du e−2πiτuFΦ(u+ ν)Π(u)m ,

(4.70)

where:

Π(u) =
e2πiτ

1− e2πi(u+ν)
. (4.71)

Here we have included a mass parameter ν for the chiral multiplet, as well as an FI

parameter τ .19

From (4.66), the integrand has a pole of order n at u = −ν−n, n = 1, 2, · · · . For large

|u| the integrand behaves as:

e−2πiτuFΦ(u+ ν) −→
|u|→∞

{
e−2πiτu if Im(u) > 0 ,

eπi(u+ν)2−2πiτu−πi
6 if Im(u) < 0 .

(4.72)

The behavior of the integrand is shown in figure 1. There are poles due to the charged chiral

multiplet, as well as the charged monopole T+, at Im(u) → −∞, however the monopole

T− is uncharged. We will revisit this example below as we discuss more properties of the

Mg,p partition function.

4.5.2 Jeffrey-Kirwan contour: the rank-one case

In the rank-one case (r = 1), we can derive a precise contour on the u-plane, as we explain

in appendix D. The supersymmetric partition is given by:

ZMg,p =
−1

|WG|
∑
m∈Zp

∫
Cη
du F(u)p Π(u)m Πα(u)nα e2πi(g−1)Ω(u)H(u)g , (4.73)

19We may eliminate ν by a shift of u, but it will be instructive to include it.
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Figure 1. Poles of integrand for U(1)−1/2 with one chiral, for g = 0, p = 1. Poles due to the

positively charged chiral multiplet are shown in blue, and the “poles at infinity” from the negatively

charged monopole, T+, are denoted by the red line.

where H(u) ≡ ∂2
uW(u), and Π(u), Πα(u) are the gauge and flavor flux operators, respec-

tively. The contour Cη, with η a non-zero real number, is defined as follows. We excise an

ε-neighborhood of all singularities in the integrand, as well as a box of size R, which we take

very large, leaving a compact region, M̂ in which the integrand is regular. We then define:

Cη =
{
u ∈ ∂M̂ | sign (Im(∂uW)) = − sign(η)

}
. (4.74)

For η > 0, this includes those portions of ∂M̂ encircling the poles due to positively-charged

chiral multiplets, as well as the positively-charged monopole singularities at Im(u)→ ±∞.

Similarly, the contour for η < 0 picks the contributions from the negatively charged singu-

larities. The orientation of Cη is positive or negative for η > 0 or η < 0, respectively. This

is such that the residues from the positively charged chiral multiplets are counted with a

plus sign (respectively, the residues from the negatively charged fields are counted with

a minus sign). A corresponding orientation is assigned to the boundary components, as

shown in figure 2. Since this contour integral is a slight modification of the Jeffrey-Kirwan

residue prescription at rank one, we will call Cη the “JK contour”.

For some purposes, it will be useful to rewrite (4.73) as:

ZMg,p =
−1

|WG|
∑
m∈Z

∫
Cη0
du F(u)p Π(u)m Πα(u)nα e2πi(g−1)Ω(u)H(u)g , (4.75)

by using the identities (4.63). Let M̂0 be the restriction of M̂ to the vertical strip 0 ≤
Re(u) ≤ 1 on the u-plane. The contour Cη0 is defined as:

Cη0 =
{
u ∈ ∂M̂0 | sign (Im(∂uW)) = − sign(η)

}
, (4.76)

with the orientation depending on sign(η) as before. Note that this contour generally in-

cludes vertical lines along Re(u) = 0 and Re(u) = 1, as we will see in explicit examples
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Figure 2. The p 6= 0 JK contour, for η > 0 and η < 0, respectively. For η > 0 the contour

surrounds the poles due to positively charged chirals in an anti-clockwise manner, and for η < 0

it surrounds the poles due to negatively charged chirals in a clockwise manner. Only the part of

the contour at infinity that satisfies the condition sign (Im(∂uW)) = − sign(η) should be included

in the respective contours.

below. For p = 0, we have the same formula (4.75) with a periodic integrand, and the

contributions of those vertical lines cancel out. For p 6= 0, on the other hand, they are an

important part of the JK contour Cη0 in the quasi-periodic representation (4.75). More gen-

erally, we may define M̂n to be the restriction of M̂ to the vertical strip n ≤ Re(u) ≤ n+ 1,

and define the contour Cηn analogously.

We emphasize that, for each m, the integral in (4.75) is independent of the choice of η.20

Due to the non-periodicity of the integrand under u→ u+1 for p 6= 0, this property would

not hold if we did not inlcude the segments of the vertical lines along Re(u) = 0 and 1.

Example. In figure 3, we illustrate the JK contour for the U(1)−1/2 theory with a charge

one chiral multiplet. Note that:

∂uW = τ − 1

2πi
log(1− e2πi(u+ν)) (4.77)

Then one finds:

Im(∂uW)→


−∞ u→ −ν − n
∞ Im(u)→ −∞
Im(τ) Im(u)→∞

(4.78)

in the respective limits. Thus the η > 0 contour surrounds the pole at u = −ν − n, while

the η < 0 contour surrounds the “pole at infinity” due to the charged monopole T+. In

addition, along the vertical boundaries of M̂m at Re(u) ∈ Z, and along the horizontal

boundary at Im(u) → ∞, a portion of the contour is selected depending on the sign of

Im(∂uW); the figure illustrates the behavior for Im(τ) < 0.

20One way to see this is to note that Cη>0
0 − Cη<0

0 encloses the region M̂0, inside of which the integrand

has no poles, and so the integral over this difference of the contours vanishes.
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Figure 3. JK contour Cη−1 shown for η > 0 in blue, and Cη0 for η < 0 in red. Here we assume

Im(τ) < 0, which implies that the contribution at Im(u)→∞ is included in the η > 0 contour.

4.5.3 The higher-rank case

In the higher rank case, we conjecture the existence of a similar formula:

ZMg,p =
(−1)r

|WG|
∑
m∈Zr

p

∫
Cη
dru F(u)p Πa(u)ma Πα(u)nα e2πi(g−1)Ω(u)H(u)g , (4.79)

with H(u) ≡ detab ∂ua∂ubW. Here η is a non-zero covector in h∗, and Cη is an appropriate

middle-dimensional “JK contour” in hC ∼= Cr. Equivalently, by the same argument as

in (4.75), we may rewrite this as:

ZMg,p =
(−1)r

|WG|
∑
m∈Zr

∫
Cη0
dru F(u)p Πa(u)ma Πα(u)nα e2πi(g−1)Ω(u)H(u)g , (4.80)

where Cη0 is contained in the region 0 ≤ Re(ua) ≤ 1. We will comment on the precise form

of these contours below.

4.6 Rank-one theories

Let us explore some of the properties of the partition function formula of the previous

section in the case of theories with a rank-one gauge group (that is, g = u(1) or su(2)). We

will comment on generalization to the higher-rank case in the next subsection.

4.6.1 The σ-contour

For p 6= 0, it is possible to express the Mg,p partition function as a non-compact integral:

ZMg,p =
−1

|WG|
∑
m∈Zp

∫
Cσ
du F(u)p Π(u)m Πα(u)nα e(g−1)Ω(u)H(u)g . (4.81)
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Here, Cσ is a non-compact contour connecting Im(u) → −∞ with Im(u) → ∞. In other

words, it is roughly an integral over imaginary u, or equivalently, over real σ. This directly

relates the contour prescription presented here to the one used in earlier work on the round

S3 [2–4], where such an integral over real σ was obtained instead. Here we derive the

precise form of the non-compact contour, Cσ, by relating it to the JK contour prescription.

Note that, unlike the more naive contour along the imaginary u axis, the contour Cσ always

leads to a converging integral.

A simplification in the sum over fluxes. To proceed, we will need a general fact

about the sum over fluxes, which holds for all p. As we can see from (4.65) and (4.66), a

chiral multiplet of gauge charge Q and R-charge r contributes poles to the integrand if and

only if:

Q(p Re(u)−m) < −(p Re(ν)− n) + (r − 1)(g − 1) . (4.82)

where ν, n are the flavor parameters. We also have “monopole contributions” that arise in

the limit Im(u)→ ∓∞, where the integrand takes the form:

expπi
(
−p k∓u2 + 2k∓um− 2pτ∓u+ 2τ∓m + 2un∓ + 2kR∓u(g − 1)

)
. (4.83)

Here k∓ and kR∓ are the effective CS levels in this limit, which depend on the charges

of the chiral multiplets, while τ∓ and n∓ are the effective parameters for the topological

symmetry U(1)T , which depend on the flavor symmetry parameters. Recall from (2.40)

that we have the monopole charges Q± = ±k∓ and r± = ±kR∓. We then find that the

monopole singularity at Im(u)→ ∓∞ contribute a “pole at infinity” only when:

Q±(p Re(u)−m) < −(±p Re(τ∓)∓ n∓) + r±(g − 1) . (4.84)

We see that the integrand only has singularities, associated to either the chiral multiplets

or the monopole operators, provided that:

Qα(p Re(u)−m) < δα (4.85)

where the index α runs over both the matter and monopole contributions, and δα is some

constant that depends on the flavor symmetry parameters and R-charges. Note that if

Qα = 0 for a monopole operator,21 this bound becomes independent of u and m, and

depends only on the flavor symmetry parameters through δα. We will return to this

point below.

In general, the allowed choices for the R-charge and the flavor symmetry parameters

may be restricted by superpotential terms and by the Weyl symmetry. Suppose for the

moment that we lift any such restriction, and allow independent mass parameters for all

chiral multiplets, and complexified FI parameters in the Cartan of the gauge group. Then it

is clear from (4.82) that we may choose δα arbitrarily for each chiral multiplet. Similarly,

by shifting the bare U(1)T parameters, we may take δ±, the bounds for the monopole

21A charge-zero chiral multiplet has a contribution which is independent of the gauge parameter, and so

does not enter this analysis.
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contributions, to be arbitrary. Although the answer we obtain in this way may only be

defined in a non-physical region of parameter space, it is typically possible to analytically

continue it back to the physical region at the end of the computation.

Returning to the expression (4.75) for theMg,p partition function of a rank-one gauge

theory, we find it useful to decompose the contour Cη0 into two pieces:

Cη0 = Cη, bulk
0 + Cη, boundary

0 , (4.86)

where Cη, bulk
0 is the part of the contour surrounding the poles in the integrand due to

the charged chiral multiplets and monopole operators. The remainder, Cη, boundary
0 , can be

further decomposed as:

Cη, boundary
0 = Cη,Re(u)=0

0 + Cη,Re(u)=1
0 + δQ+,0 C

η, Im(u)=−R
0 + δQ−,0 C

η, Im(u)=R
0 . (4.87)

Here the first two terms consist of the parts of the vertical lines Re(u) = 0, 1 contained in

Cη0 , while the third and fourth terms are only included if the corresponding monopole charge

vanish, Q+ = 0 and/or Q− = 0 (otherwise these pieces are included as part of Cη, bulk
0 ).

It follows from (4.85) that, for sufficiently large negative m, there are no poles in the in-

tegrand which are due to the positively-charged singularities. Therefore, if we choose η > 0

to compute the integral at large negative m, the contour Cη>0, bulk
0 gives a vanishing contri-

bution, and the only contribution comes from the boundary contour. Similarly, for suffi-

ciently large positive m, we may take η < 0 and there will be no contribution from Cη<0, bulk
0 .

For p = 0, since the integrand is periodic under u→ u+1, the boundary contributions

along Re(u) = 0 and Re(u) = 1 cancel each other. If, in addition, the monopole charges

Q± are non-zero, then the sum over m truncates to a finite sum. More generally, if one or

both of Q± vanishes, this truncation only occurs provided the flavor symmetry parameters

are picked so that the corresponding δα satisfies (4.85). Otherwise, there will be in general

be a contribution from infinitely many flux sectors. A similar truncation property in the

sum over topological sectors was observed in [80] in the context of the S2 × T 2 partition

function (where there are no subtleties related to monopole contributions).

For p 6= 0, on the other hand, the pieces along the vertical boundaries at Re(u) = 0

and 1 no longer cancel. Their contributions actually add up and give rise to the σ-contour.

Deriving the σ-contour. To proceed, let us first assume, for simplicity, that we have

δα − Qαp < 0 for all α. In this case, there is no contribution from positively-charged

singularities for any m ≥ 0, and no contributions from negatively-charged singularities for

any m ≤ 0. Moreover, with this assumption, the bound (4.85) is also violated for any

zero-charge monopole operator, and so there is no contribution from the third and fourth

terms in (4.87). Then, if we choose η > 0 for m ≤ 0 and η < 0 for m > 0, there are

no bulk contributions from Cη0 for any m, and we only need to deal with the boundary

contributions.
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We set p > 0 for definiteness. Let us rewrite the expression (4.75) as:

ZMg,p =
1

|WG|
∑
m∈Zp

∑
n∈Z

∮
Cη0
du F(u− n)p Π(u)m J̃ (u)

=
1

|WG|
∑
m∈Zp

( ∞∑
n=1

∮
Cη<0

0

+

0∑
n=−∞

∮
Cη>0

0

)
du F(u− n)p Π(u)m J̃ (u) ,

(4.88)

where we wrote the periodic and m-independent part of the integrand as J̃ (u) to avoid

clutter. Then, as argued above, the bulk contour, along with the third and fourth terms

in (4.87), give a vanishing contribution, and we are left with:

1

|WG|
∑
m∈Zp

( ∞∑
n=1

(∫
Cη<0,Re(u)=0

0

+

∫
Cη<0,Re(u)=1

0

)
du F(u− n)p Π(u)m J̃ (u)

+
0∑

n=−∞

(∫
Cη>0,Re(u)=0

0

+

∫
Cη>0,Re(u)=1

0

)
du F(u− n)p Π(u)m J̃ (u)

)
.

(4.89)

Consider the sum over n ≤ 0. Since the contours along Re(u) = 0 and Re(u) = 1 have

opposite orientations, we see that it is a telescoping sum, with contributions canceling

between adjacent terms. That is, if we place an lower cutoff at −N , we find:

0∑
n=−N

(∫
Cη>0,Re(u)=0

0

+

∫
Cη>0,Re(u)=1

0

)
du F(u− n)p Π(u)m J̃ (u)

=

∫
Cη>0,Re(u)=0

0

du F(u)p Π(u)m J̃ (u) +

∫
Cη>0,Re(u)=1

0

du F(u+N)p Π(u)m J̃ (u) .

(4.90)

Using F(u+N)p = F(u)p Π(u)−pN and the fact that |Π(u)| = e−2πIm(∂uW) > 1 for η > 0,

by definition of the Cη0 contour, we see that the second term in (4.90) vanishes as N →∞,

and so the sum converges to the first term. Similarly, the sum over positive n converges to:∫
Cη<0,Re(u)=1

0

du F(u− 1)p Π(u)m J̃ (u) =

∫
Cη<0,Re(u)=0

0

du F(u)p Π(u)m J̃ (u) . (4.91)

We then find:

ZMg,p =
1

|WG|
∑
m∈Zp

(∫
Cη>0,Re(u)=0

0

+

∫
Cη<0,Re(u)=0

0

)
du F(u)p Π(u)m J̃ (u) . (4.92)

These two pieces include the portion of Re(u) = 0 with Im(∂uW) > 0 and Im(∂uW) <

0, respectively, thus spanning the entire imaginary axis (up to a measure zero subset).

The respective orientations are such that Cη>0,Re(u)=0
0 + Cη<0,Re(u)=0

0 is the contour along

Re(u) = 0 from Im(u) = −∞ to Im(u) =∞. We finally obtain:

ZMg,p =
−1

|WG|
∑
m∈Zp

∫
Re(u)=0

du F(u)p Π(u)m Πα(u)nα e(g−1)Ω(u)H(u)g . (4.93)

This reproduces the formula (4.81) with Cσ equal to the imaginary axis.
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Figure 4. Taking η < 0 for n < 0 and η > 0 for n ≥ 0, we see the contours do not enclose any

poles, and so the bulk contributions vanish, leaving only the boundary contributions. These sum

to form the contour Cσ. Here we have taken Im(τ) < 0.

The above derivation relied on the assumption that δα − Qαp < 0, ∀α. In the more

general case, the argument above, and the resulting integration contour Cσ, needs to be

modified slightly. In general, we may find a finite set of fluxes, m, which have a non-zero

contribution from Cη, bulk
0 . In addition, there may be contributions from third and fourth

terms in (4.87). Both contributions will add additional pieces to the σ-contour.

Alternatively, a simple way to arrive at the correct contour is to start from a region

of parameter space where the assumption δα − Qαp < 0 holds, in which case the contour

is the imaginary axis, and then analytically continue to the region of interest. As we

continuously vary parameters to perform this analytic continuation, we must deform the

integration contour so that no poles cross it. In particular, noting that the initial contour

separates all poles due to positively charged chirals from those due to negatively charged

ones, this must also be true of the general contour Cσ.

Note this conditions does not uniquely fix the contour Cσ, however, all choices which

separate poles appropriately will give the same result by holomorphy. For p > 1, we may

in principle choose Cσ differently for the p different terms in the sum in (4.93). However,

it is always possible to find a single Cσ which separates the poles due to positively and

negatively charged fields for all m ∈ Zp, and we will always make this choice.

Example. Returning to our example of U(1)−1/2 with a charge one chiral, note from

figure 3 that for n ≥ 0, the contour Cη>0
n does not enclose any poles of the integrand. Simi-

larly, for n ≤ 0, the contribution to Cη<0
n from the charged monopole, T+, at Im(u)→ −∞,

vanishes. Thus if we choose η > 0 for n ≥ 0 and η < 0 for n < 0, there are no contributions

from the “bulk” part of the contour, shown in figure 4 as the dotted lines. All that remains

are the boundary contributions, which partially cancel between adjacent values of n, and

leave the non-compact contour Cσ.

In more detail, the contour Cσ pictured in figure 4 includes both the imaginary u axis,

as well as a horizontal piece at Im(u)→∞, which is the contribution from the uncharged

monopole, T−. This piece extends towards positive Re(u), which is a consequence of
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Figure 5. Here we take Im(τ) > 0, and note the corresponding contours, Cη>0
n and Cη<0

n . Summing

these as above to obtain the σ-contour, we see it now runs off to Re(u) < 0 as Im(u)→∞.

Figure 6. For more general choices of parameters, there may be contributions from the bulk parts of

Cηn, indicated by solid lines. Here the contour we find after summing all these pieces is homologous to

the one shown at right, which separates the poles due to the positively and negatively charged fields.

choosing Im(τ) < 0. If we take Re(τ) < 0, which is equivalent to imposing δ− < 0, then

the contribution from this horizontal piece vanishes, and Cσ is simply the imaginary u axis.

More generally, we must include this piece of the contour to obtain a convergent

integral. Note that if we instead took Im(τ) > 0, we would obtain a different JK contour,

as shown in figure 5. This leads to a contour Cσ which extends towards negative Re(u).

To understand this behavior, note from (4.72) that in order for the integral to converge as

Im(u) → ∞ we must have Im(τu) < 0. One can check that this holds provided we take

(for some δ > 0 depending on arg τ):

arg u ∈

{
(0, δ) Im(τ) < 0

(π − δ, π) Im(τ) > 0
as Im(u)→∞ (4.94)

These conditions are satisfied by the contours shown above.

Finally, we note that if we vary the parameters ν and τ , it may no longer be the

case that all the bulk pieces of the contour vanish. This is illustrated in figure 6. In
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this case, we see that the contour we found above is supplemented by a finite number of

additional pieces. The resulting contour is homologous to one which separates the poles

due to positively and negatively charged fields.

4.6.2 Relation to the Bethe-vacua formula

In this section, we have computed the partition function by supersymmetric localization,

starting from the UV action. In section 2, we computed it instead using the low energy ef-

fective action, and found it was expressed as a sum over Bethe vacua. In this subsection we

relate these two prescriptions, and we argue that they give the same result. For complete-

ness, we will present two arguments, relating the Bethe vacua formula to the JK contour

in (4.73), and then relating it directly to the σ-contour derived in the previous subsection.

Relation to JK-contour. Let us first assume that the gauge group is U(1). We start

again from the JK contour expression (4.75):

ZMg,p =
∑
m∈Z

∮
Cη0
du J (u) Π(u)m . (4.95)

where we defined J (u) as in (4.61). Note that, on the contour Cη0 , we have:

|Π(u)| < 1 if η < 0 , |Π(u)| > 1 if η > 0 . (4.96)

As before, we may choose to take η < 0 for m ≥ 0 and η > 0 for m < 0:

ZMg,p =

−1∑
m=−∞

∮
Cη>0

0

du J (u) Π(u)m +

∞∑
m=0

∮
Cη<0

0

du J (u) Π(u)m . (4.97)

Then, both sums give converging geometric series due to (4.96), and we can permute the

sum and the integral. We then obtain:

ZMg,p =

(
−
∮
Cη>0

0

+

∮
Cη<0

0

)
du

J (u)

1−Π(u)
=

∮
CBE

du
J (u)

1−Π(u)
, (4.98)

where we defined the contour:

CBE ≡ Cη<0
0 − Cη>0

0 . (4.99)

This contour precisely bounds the region M̂ remaining after all poles in the original inte-

grand have been excised. Therefore, by definition of M̂, the contour integral (4.98) does

not pick any contributions from any of the poles of J (u). On the other hand CBE is ho-

mologous to a contour that surrounds all the poles at the solutions to the Bethe equation

Π(u) = 1 in an anti-clockwise manner. This directly leads to the Bethe-vacua formula:

ZMg,p =
∑

û|Π(û)=1

2πiResu=û
J (u)

1−Π(u)

= −
∑

û|Π(û)=1

J (û)H(û)−1 =
∑

û|Π(û)=1

F(û)pH(û)g−1 Πα(û)nα .
(4.100)

where we used the identity ∂uΠ(u) = 2πiH(u)Π(u) in the second line.
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Figure 7. Taking η < 0 for n < 0 and η > 0 for n ≥ 0, the geometric series converges and we find

the integral of 1
1−Π(u)FΦ(u + ν)e−2πiτu on the region shown on the r.h.s.. This encloses a single

pole at Π = 1, corresponding to the Bethe vacuum.

Finally, if the gauge group is non-abelian (i.e., for G = SU(2) or SO(3)), we should

exclude û = 0 from the potential Bethe solutions. (At g = 0, we have a vanishing residue

due to the vector multiplet contribution, while we should exclude the û = 0 contribution

by hand in general.22) The non-zero solutions come in Weyl-equivalent pairs, {±û}, which

give the same contribution, and so we may count each pair once, cancelling the Weyl

symmetry factor |WG| = 2. We are then counting precisely the Bethe solutions (2.34), and

we reproduce in this way the Bethe-vacua expression (2.48) for theMg,p partition function.

Example. Let us see how this argument works in the example we have been considering

above. If we start from the same contour as in the l.h.s. of figure 4, note that the geometric

series in the sum over m ≥ 0, in the right half plane, converges on Cη>0
m , since |Π| < 1

there, while the sum over m < 0 converges along Cη<0
m since |Π|−1 < 1 there. Summing the

geometric series, we find:

ZMg,p = −
∫
Cη<0

0 −Cη>0
0

du
1

1−Π(u)
FΦ(u+ ν)e−2πiτu (4.101)

This is shown in figure 7. This encloses the region M̂0, and counts the residues from any

poles in this region. This includes only the single pole at Π = 1, leading to the Bethe-vacua

formula as above.

Relation to σ-contour. Next, let us start from the σ-contour formula:

ZMg,p =
1

|WG|
∑
m∈Zp

∫
Cσ
du F(u)p Π(u)m J̃ (u) . (4.102)

As noted above, Cσ is a contour which separates the poles due to the positively charged

fields (including monopole singularities at infinity) from those due to the negatively charged

ones. For p > 0, the positively-charged singularities are to the left of Cσ. By performing

22One can also argue for it by introducing a non-gauge-invariant real-mass regulator for the W -bosons [21].
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the finite sum over m and using the difference equation for F(u), we find:

ZMg,p =
1

|WG|

∫
Cσ
du
F(u)p −F(u− 1)p

1−Π(u)
J̃ (u)

=
1

|WG|

(∫
Cσ
−
∫
Cσ−1

)
du
F(u)pJ̃ (u)

1−Π(u)
=

1

|WG|

∮
C′
du
F(u)pJ̃ (u)

1−Π(u)
,

(4.103)

where C′ is a contour which encloses all the poles of the integrand between Cσ and Cσ − 1.

(Roughly speaking, it encloses the strip −1 ≤ Re(u) ≤ 0 in anti-clockwise manner.) There

are two types of poles that may occur in that region: those from the original integrand,

F(u)pJ̃ (u), and those at solutions to Π(u) = 1.

Let us first consider the poles from the original integrand. The poles due to negatively-

charged fields must lie to the right of Cσ, and so they cannot be enclosed by C′. On

the other hand, poles from positively-charged fields may lie inside C′, and suppose one

lies at some u∗. Then by assumption, there is no pole at u∗ + 1 for any m ∈ Zp, and

so F(u∗ + 1)pΠ(u∗)
mJ̃ (u∗ + 1) = F(u∗)

pJ̃ (u∗)Π(u∗)
m−p is finite. In particular, taking

m = p − 1, we see F(u∗)
pJ̃ (u∗)Π(u∗)

−1 is finite, and so F(u∗)pJ̃ (u∗)
1−Π(u∗)

is finite as well (here

we recall Π(u)→∞ for poles due to positively charged fields).

Then the only poles in (4.103) lie at solutions to Π(u) = 1. The partition function is

then given by:

ZMg,p =
1

|WG|
∑

û|Π(û)=1

2πi Resu=û
F(u)pJ̃ (u)

1−Π(u)

=
1

|WG|
∑

û|Π(û)=1

F(û)pΠα(û)nαH(û)g−1 .

(4.104)

For a non-abelian rank-one gauge group, the same comments as written after (4.100) apply.

The final formula precisely agrees with (2.48).

4.7 Higher-rank theories

In this section, we briefly discuss how some of the above considerations generalize in the

case of higher-rank gauge theories.

Higher rank “JK contour”: a conjecture. Here we present a natural conjecture for

the contour Cη appearing in (4.79), i.e.:

ZMg,p =
(−1)r

|WG|
∑
m∈Zr

p

∫
Cη
dru F(u)p Πa(u)ma Πα(u)nα e2πi(g−1)Ω(u)H(u)g . (4.105)

Although we do not derive it directly from a localization argument, it passes several con-

sistency checks, as we outline below and in appendix D.2. We leave its careful derivation

to future work.

First we recall the usual JK residue prescription [29, 32]. Generically, the integrand

in (4.105) may have non-trivial residues at the intersection of r complex-codimension-
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one singular hyperplanes associated to chiral multiplets.23 The JK prescription, which

depends on a choice of covector, η ∈ h∗, determines which of these residues one should

count. Namely, if the corresponding chiral multiplets have charges Qaα, α = 1, . . . , r, we

count this residue (with an appropriate sign) if and only if:

η ∈ Cone+(Qα) (4.106)

where the r.h.s. is the positive cone of the Qα in ih∗, spanned by positive real multiples of

the charge vectors Qα. The final answer, obtained by summing over all such residues, is

independent of the choice of η.

In our case, in order to properly deal with the “singularities at infinity” due to

monopoles, it will be convenient to define an explicit contour, Cη, also labeled by a covector

η ∈ h∗, which will turn out to be closely related to this prescription. Let us define:24

Cη = {u ∈ hC | Im(∂uaW) = −ηa, a = 1, . . . , r} (4.107)

To relate this to the usual JK residue prescription, recall that a chiral multiplet of charge

Qα may develop a pole when Qaα(pua−ma) = βk for some set of parameters βk. In addition,

there may be “poles at infinity” due to monopoles at large values of Im(ua). Then, in the

vicinity of such a singularity, one can check that:

Im(∂uaW) ∼ Qaα log εα (4.108)

where we have defined the small parameters:

εα =

{
|Qaα(pua −m)− βk| near a chiral singularity

|e±2πiua | near a monopole singularity
(4.109)

Now, let us rescale η → tη for large positive t, and consider some component of the contour

Ctη. Since Im(∂uaW) is parametrically large, this component must lie near some number,

k > 0, of singular hyperplanes. Then, in the vicinity of these k hyperplanes, we have:

Im(∂uaW) ∼
k∑

α=1

Qaα log εα (4.110)

Since the log εα are negative near the intersection, the r.h.s. is necessarily in the negative

cone spanned by the Qα. Then the only way it is possible to satisfy Im(∂uaW) = −tηa

is if k = r (generically) and η is in the positive cone of the Qaα. Explicitly, writing

23For special choices of parameters, there may be “non-regular” singularities where more than r hyper-

planes intersect, and the JK prescription in these cases is more complicated. However, moving slightly away

from such a point in parameter space we may typically resolve this into regular singularities, where we may

apply the procedure above, and then analytically continue back to the point of interest. (This is true, in

particular, in all the examples we will consider below.)
24Here we choose the overall orientation on Cη so that the top form ∧ra=1dRe(∂uaW) is positive. For

example, in the rank one case, near a singularity due to a charge Q chiral this form goes as 2πQdθ, where

u = u∗ + εeiθ, correctly reproducing the orientation discussed above. For higher rank, one can check that

this agrees with the sign convention of the usual JK residue prescription.
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ηa =
∑

α c
αQaα, for cα > 0, and taking εα = e−tc

α
we find a component of Cη which

wraps this intersection point. Thus this residue is indeed counted by the integral over

Cη, and so it counts the same residues as the usual JK prescription. In particular it is

independent of the choice of η. This can also be seen directly by noting that changing η

continuously deforms the contour while not crossing any poles of the integrand, since these

only occur when some Im(∂uaW) diverges.

We may also define the contour Cη0 in (4.80). This is contained inside the region

M0 = {u ∈ hC | 0 ≤ Re(ua) ≤ 1}. First, we define the portion of the contour in the interior

of M0:

Cη, bulk
0 = Cη ∩M0 . (4.111)

In addition to this bulk piece, the contour Cη0 includes segments along the boundary of M0,

at Re(ua) = 0 or 1 for some a, similar to the rank one case. We define:

Cη, boundary
0 = ∪ra=1 ∪ω∈{0,1} (−1)ω

{
u ∈M0

∣∣∣ Re(ua) = ω

and − Im(∂ubW)

ηb
= t , b = 1, . . . , r , t ∈ [0, 1]

}
,

(4.112)

where t runs over the interval [0, 1]. Note that this generically defines a dimension r contour

inside the boundary of M0. The prefactor sets the relative orientation of these components,

which is picked so that they match consistently with the interior components where they

meet. Then we set:

Cη0 = Cη, bulk
0 ∪ Cη, boundary

0 . (4.113)

With this definition, one can check that the integral is invariant under continuously rescal-

ing η → tη, and more generally under any continuous change of η, as with the usual

JK contour.

As evidence that this is the correct contour for defining the Mg,p partition function,

in appendix D.2 we present an argument relating the integral over this contour to the

Bethe-vacua formula for the partition function in (2.48), generalizing the rank-one case.

The σ-contour. We further conjecture that there exists an equivalent σ-contour, anal-

ogous to the one described in section 4.6.1, of the form:

ZMg,p =
(−1)r

|WG|
∑
m∈Zr

p

∫
Cσ
dru F(u)p Πa(u)ma Πα(u)nα e(g−1)Ω(u)H(u)g , (4.114)

where Cσ is a certain middle-dimensional non-compact contour connecting Im(ua)→ −∞
with Im(ua)→∞.

To define Cσ, we first note that it is straightforward to generalize the bound (4.85) to

higher rank. One finds that the chiral multiplets and monopole operators may only have

poles provided that:

Qaα(p Re(ua)−ma) < δα . (4.115)

Let us assume for simplicity that we may pick flavor symmetry parameters and R-charges

so that δα−Qαp < 0 for all α. We then conjecture that we may take Cσ to be the product
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of the imaginary ua-axes for a = 1, . . . , r. This reproduces the prescription in [2–4], which

was obtained with a slightly different choice of localizing supercharge. For more general

parameters, one may derive the appropriate contour by analytic continuation.

Relation of the σ-contour to the Bethe-vacua sum. Here we show the equivalence

of the conjectured σ-contour integral to the Bethe-vacua sum, (2.48). As above, we assume

that we may pick flavor symmetry parameters such that δα − Qαp < 0 for all α. With

such a simplification, the argument for the higher-rank case is a straightforward extension

of that of the rank-one case. We write:

ZMg,p =
1

|WG|
∑
m∈Zr

p

∫
iRr

dru J (u)

r∏
a=1

Πa(u)ma , (4.116)

where u = {ua} and m = {ma}, where a runs over a set of generators of the Cartan of the

Lie algebra, h. As before, we first perform the sum over torsion fluxes:

ZMg,p =
1

|WG|

∫
iRr

dru J (u)
r∏

a=1

1−Πa(u)p

1−Πa(u)

=
1

|WG|
∏
a

(∫
iR
−
∫
iR−1

)
dru

J (u)∏
a(1−Πa(u))

.

(4.117)

Here the contour is a product of the contour iR−(iR−1) over each direction in the Cartan.

This encloses all the poles of the integrand in the region −1 < Re(ua) < 0, a = 1, . . . , r,

and by our assumption above, these poles only arise at solutions to Πa(u) = 1, a = 1, . . . , r.

Thus we can write:

ZMg,p =
1

|WG|
∑

û |Πa(û)=1

(2πi)r Resu=û
J (u)p∏

a(1−Πa(u))

=
1

|WG|
∑

û |Πa(û)=0

F(û)pH(û)g−1 Πα(û)nα .

(4.118)

where we have used:

∂uaΠb(u) = 2πi∂ua∂ubW ≡ 2πiHab (4.119)

which contributes through a Jacobian factor of (det(∂uaΠb(u)))−1 = (2πi)−rH(u)−1 to

the residue.

Finally, in the case of non-abelian gauge groups, we should exclude those poles which

are not acted freely by the Weyl group, while we count the remaining solutions up to the

Weyl group action, canceling the symmetry factor. In this way, we arrive at the Bethe-

vacua formula (2.48). This completes the proof of the equivalence of the two prescriptions.

5 The S3 partition function and F-maximization

Consider the S3 partition function for an N = 2 supersymmetric gauge theory with in-

teger R-charges r0, and with generic flavor fugacities ν turned on. The Bethe-vacua for-

mula (2.48) reads:

ZS3(ν) =
∑
û∈SBE

F(û, ν)H(û, ν)−1 (5.1)
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in this case. As explained in section 3.1.3, this result can be analytically continued to any

allowed R-charge:

R = R0 +Qαtα , tα ∈ R , (5.2)

simply by replacing να by να + tα in (5.1). (Here tα 6= 0 only for α corresponding to the

free abelian subgroup of the flavor group.)

For any gauge theory that flows to an N = 2 superconformal theory, we define a trial

F -function as:

F̃S3(t) = − log

 ∑
û∈SBE

F(û, t)H(û, t)−1

 , (5.3)

where we have set ν = t in (5.1). The superconformal R-charge

R = R0 +Qαt∗α (5.4)

maximizes the real part of F̃S3(t) as a function of t [4, 44]. We then have:

FS3 = Re
[
F̃S3(t∗)

]
. (5.5)

In general, the right-hand-side of (5.5) is only a local maximum, and we have to use our

physical intuition to identify the correct superconformal R-charge. In practice, we choose

r0 = 1 as the integer R-charge for every elementary chiral multiplet, and we probe the tα
parameter space such that all the elementary R-charges lie between r = 0 and 1. Given

any R-charge that maximizes FS3 , we should check that no gauge-invariant chiral operator

violates the unitarity bound. A violation of the unitarity bound might signal the presence

of free fields and accidental symmetries in the infrared — see e.g. [81–83] for a discussion

of such cases.

The formula (5.3) is an alternative to the matrix-model integral formula of [2–4].

In the following, we demonstrate its utility by performing F -maximization in some simple

theories. This provides highly non-trivial consistency checks of (5.1). This F -maximization

method compares favorably to the usual method using the integral formula. The trial F

in (5.3) is given in terms of an explicit (albeit highly involved) function. In numerical

studies, the usual integral method becomes more time-consuming as the rank of the gauge

group increases, while in the present case the evaluation time depends principally on the

number of Bethe vacua. We also avoid cumbersome issues of numerical integration, and

the potential lack of convergence of the integral formula with a real σ contour.

Note that F̃S3 is generally a complex function, whose imaginary part encodes parity-

violating contact terms [25]. It is interesting to expand (5.3) around t = t∗. For instance,

for a single U(1)F flavor symmetry mixing in (5.2), we have:

F̃S3(t∗ + imF ) = FS3 + πi

(
κRR −

1

12
κg

)
− 2πκRF mF +

1

2

(
π2

2
τFF − 2πiκFF

)
m2
F + · · · ,

(5.6)

with mF the real mass for U(1)F , and the ellipsis denotes higher-order terms in mF . The

terms κRR, κg, κFR, κFF are the contact terms discussed in section 4.3.2, and τFF is the

two-point function coefficient of the U(1)F conserved current [25].
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5.1 The free chiral multiplet

Consider a chiral multiplet of R-charge r ∈ R coupled to a U(1)I vector multiplet with

charge Q ∈ Z and real mass σ. The S3 partition function reads:

ZΦ
S3(σ, r) = FΦ(r − 1 + iQσ) , (5.7)

with the function FΦ defined in (4.49), and setting u = iσ in order to compare with [7, 44].

We can easily check that:

F̃Φ
S3(σ, r) ≡ − logFΦ(r − 1 + iQσ) (5.8)

has a local maximum r = 1
2 , the superconformal R-charge of a free chiral multiplet, after

we set σ = 0. Expanding around σ = 0 at r = 1
2 , we obtain:

F̃Φ
S3(σ, r) =

log 2

2
− πi

24
− Q

2
πσ +

Q2

2

(
π2

2
+ πi

)
σ2 + · · · . (5.9)

Comparing to (5.6), we read off:

κII = −1

2
Q2 , κRI =

1

4
Q , κRR −

1

12
κg = − 1

24
. (5.10)

This corresponds exactly to the κ parameters (4.45) upon plugging in r = 1
2 , providing

another confirmation that our regularization of the chiral multiplet one-loop determinant

indeed corresponds to those contact terms. We also see from (5.9) that FS3 = 1
2 log 2 and

τFF = Q2 for a free chiral, as should be the case in any regularization scheme.

We should also note that the chiral multiplet partition function (5.7) is related to the

result Z̃Φ
S3 of [3, 4] by:

ZΦ
S3(σ, r) = e

πi
2

(r−1+iQσ)2−πi
12 Z̃Φ

S3(σ, r) . (5.11)

The discrepancy is simply because of our choice of a gauge-invariant but parity-violating

regularization, leading to contact terms κ 6= 0 in (4.45), while the regularization scheme

of [3, 4] implicitly sets κ = 0, which preserves parity but is inconsistent with gauge

invariance.

5.2 U(Nc)k theory with Nf flavors

Consider a U(Nc) theory at CS level k > 0 with Nf flavors (that is, Nf pairs of fun-

damental and antifundamental chiral multiplets, with symmetric quantization). We will

discuss this theory in more detail in section 6. The abelian subgroup of the flavor group is

U(1)A ×U(1)T , where U(1)T is the topological symmetry. We may assign a trial R-charge:

r = 1 + tA (5.12)

to the chiral multiplets, where the only allowed mixing is with U(1)A. (A Z2 symmetry

prevents any mixing with U(1)T .) The Bethe vacua correspond to all the choices of Nc

roots of the degree-(Nf + k) polynomial:

P (x) = (xyA − 1)Nf − q(−x)k(x− yA)Nf , (5.13)
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where yA = e2πiνA and q = e2πiτ are the fugacities for U(1)A and U(1)T , respectively. The

twisted superpotential of this theory reads:

W(u, νA) =
k +Nf

2

Nf∑
a=1

ua(ua + 1) +
NcNf

2
νA(νA + 1)

+
Nf

(2πi)2

Nc∑
a=1

(
Li2

(
e2πi(ua+νA)

)
+ Li2

(
e2πi(−ua+νA)

))
,

(5.14)

where we only turned on νA, setting τ and all other mass parameters to zero. Let

ûa = log(x̂a)/(2πi) (5.15)

denote a Bethe vacua, where x̂a is a choice of Nc roots of P (x). The formula (5.3) gives us:

F̃S3(r) = − log

 ∑
û∈SBE

F(û, νA)H(û, νA)−1

∣∣∣
νA=r−1

, (5.16)

with:

F(u, νA) = exp
(

2πi (W(u, νA)− ua∂uaW(u, νA)− νA∂νAW(u, νA))
)
,

H(u, νA) = (−1)
1
2
Nc(Nc−1)

Nc∏
a,b=1
a 6=b

(
1− e2πi(ua−ub)

)
det
a,b

(
∂ua∂ubW(u, νA)

)
.

(5.17)

It is easy to maximize (5.16) using Mathematica, at least for Nf + k small enough. We

present some examples in the table 1. They are in perfect agreement with results previously

reported in the literature [39, 40, 83]. There are a few cases, denoted by ∼, where our

numerical evaluation of (5.16) was inaccurate near the F -maximizing value of r. In all

other cases, we can easily reach a high precision for r and FS3 , although it becomes time-

consuming as the number of Bethe vacua,

|SBE| =

(
Nf + k

Nc

)
, (5.18)

increases. When k = 0, there are cases where naive F -maximization leads to unphysical

results, given in parenthesis in table 1; the physical values were computed in [83].

Note also that, in the special case Nc = k + Nf with k > 0, we obtain r = 1/4 and

FS3 = N2
f log

√
2. Indeed, the infrared theory consists of N2

f free mesons [39]. This is the

limiting case of the Giveon-Kutasov duality [84]. For Nc = Nf > 1 with k = 0, we should

have r = 1/4 and FS3 = (N2
f + 2) log

√
2, which can be obtained using the Aharony dual

theory [83, 85].
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k = 0 Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6 Nf = 7 Nf = 8

Nc = 1
1/3

.8724

.4085

1.934

.4370

2.838

.4519

3.679

.4611

4.486

.4674

5.272

∼ .47

∼ 6.0

.4753

6.805

Nc = 2 –
1/4

2.079

.3417

4.722

.3852

6.875

.4101

8.817

.4263

10.64

.4375

12.38

.4458

14.07

Nc = 3 – –
(.2181)

(4.162)

.3058

8.188

.3517

11.81

.3802

15.03

.3996

18.02

.4136

20.85

Nc = 4 – – –
(.3333)

(6.334)

.2809

12.19

.3276

17.51

.3574

22.15

.3783

26.42

k = 1 Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6 Nf = 7 Nf = 8

Nc = 1
.3845

1.023

.04198

1.976

.4407

2.855

.4535

3.688

.4619

4.492

.4678

5.276

∼ .47

∼ 6.0

∼ .47

∼ 6.8

Nc = 2
1/4

.3466

.3106

2.635

.3591

4.888

.3914

6.944

.4129

8.852

.4277

10.66

.4383

12.40

∼ .446

14.08

Nc = 3 –
1/4

1.386

.2878

4.939

.3278

8.592

.3600

11.98

.3839

15.11

.4015

18.07

.4147

20.88

Nc = 4 – –
1/4

3.119

.2770

7.928

.3089

13.03

.3382

17.83

.3621

22.31

.3808

26.51

Table 1. Values of the superconformal R-charges r and of FS3 , respectively, for U(Nc) SQCD with

Nf flavors, some low values of Nc and Nf and with CS level k = 0 and k = 1, determined by

F -maximization.

6 Matching ZMg,p across supersymmetric dualities

The Bethe-vacua formula (2.52) provides a simple way to study supersymmetric dualities.

If two distinct three-dimensional N = 2 gauge theories T and TD are infrared dual, their

supersymmetric partition functions and correlation functions must agree on any Mg,p.

This implies:

〈W 〉TMg,p
(ν, n) = 〈WD〉TDMg,p

(ν, n) , (6.1)

where:

〈W 〉TMg,p
=
∑
û∈SBE

W (x̂)F(û, ν)pH(û, ν)g−1 Πα(û, ν)nα ,

〈WD〉TDMg,p
=

∑
ûD∈SDBE

WD(x̂D)FD(ûD, ν)pHD(ûD, ν)g−1 ΠαD(ûD, ν)nα ,
(6.2)

in the dual theories. Here να, nα are the flavor fugacities and fluxes, respectively (the

product over the index α is implied), W is a loop operator in theory T , and WD is the loop

operator it maps to under the duality. For (6.1) to hold for arbitrary g, p, nα, and operator

W (x), it is necessary and sufficient that there exists a one-to-one “duality map” between

the supersymmetric vacua:

D : SBE → SDBE : û 7→ D(û) = ûD , (6.3)
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such that

F(û, ν) = FD(ûD, ν) , H(û, ν) = HD(ûD, ν) , Πα(û, ν) = ΠαD(ûD, ν) . (6.4)

Note that, due to the difference equation (2.44), the matching of the fibering operators,

F = FD, implies the matching of the flavor flux operators, Πα = ΠαD. Finally, the map

between Wilson loops follows from the duality map (6.3). By definition, W and WD are

dual if and only if:

W (x̂) = W (x̂D) , (6.5)

on every pair of dual vacua x̂ and x̂D. Duality relations between Wilson loops in many

infrared dualities were studied explicitly in [22, 41].

As argued in section 2.6, the fibering, flux, and handle-gluing operators evaluated at

a Bethe vacuum can be obtained from the “on-shell” twisted superpotential and effective

dilaton potential (2.53). To prove the equivalence of the partition functions, it thus suffices

to demonstrate that:

W l(ν) =W l
D(ν) , Ωl(ν) = Ωl

D(ν) , l = 1, · · · , |SBE| , (6.6)

modulo the integer-quantized branch cut ambiguities, (2.32). In this section we will prove

the equality (6.1) for a number of non-trivial dualities by checking (6.6), which then im-

plies (6.4). In most of the examples below, the matching of the handle-gluing operators

(and flux operators) was already checked in [21, 22], by considering theories on Σg × S1,

so we will mostly focus on matching the fibering operators.25

Note on conventions. In the remainder of this section, we will use a rescaled twisted

superpotential:

W̃ = (2πi)2W . (6.7)

Let us recall that a (regularized) chiral multiplet Φ and the U(1) and gravitational Chern-

Simons terms contribute:

W̃Φ(x) = Li2(x) , W̃CS(x) =
k

2
log x(log x+ 2πi)− π2

6
kg (6.8)

to W̃, respectively. In the following, it will be important to keep track of our branch-cut

conventions. We define the logarithm log z such that −π < Im(log z) ≤ π (i.e. with a

branch cut along the negative real axis), and we define the dilogarithm Li2(z) such that:

∂zLi2(z) = − log(1− z)

z
, (6.9)

with a single branch cut along the real axis with Re(z) > 1.

25In [21, 22], the duality relations H = HD were checked up to a sign. We insist that there is no sign

ambiguity once we treat the parity anomaly consistently (and include the correct signs in the classical CS

terms, as reviewed in appendix C). We will see some examples of this below.
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6.1 Two-term dilogarithm identities and abelian mirror symmetry

There are two elementary identities involving two dilogarithms:

Li2(z−1) + Li2(z) = −π
2

6
− 1

2
log2(−z) ,

Li2(1− z) + Li2(z) =
π2

6
− log(z) log(1− z) .

(6.10)

These identities correspond, at the level of the twisted superpotential, to the following

properties of 3d N = 2 theories.

Massive chiral multiplets. We already pointed out in section 2.2.1 that the first iden-

tity in (6.10) corresponds to the fact that two chiral multiplets with a superpotential

W = Φ1Φ2 is “dual” to an empty theory. More precisely, consider two chirals with U(1)

charges ±1 in the U(1)− 1
2

quantization, of R-charges r1 = r, r2 = 2 − r, respectively.

The low-energy theory corresponds to an empty theory with U(1) CS level k = −1 and

gravitational CS level kg = −2. This corresponds to:

WΦ1Φ2 = Li2(x) + Li2(x−1) = −1

2
log x(log x+ 2πi) +

π2

3
, (6.11)

where we wrote the first line of (6.10) on the principal branch of the log. This implies the

identity

FΦ(u)FΦ(−u) = eπiu
2−πi

6 (6.12)

for the fibering operators, which is independent of the branch cuts as a function of u —

both sides of (6.12) are meromorphic functions on the u plane. The low energy-theory also

has the gauge-R and RR CS levels kR = −r + 1 and kRR = −(r − 1)2, respectively. The

effective dilaton reads:

ΩΦ1Φ2 = −r − 1

2πi
log(1− x)− 1− r

2πi
log(1− x−1) = −(r − 1)u+

1

2
(r − 1) , (6.13)

which reproduces those CS levels, since:

HΦ1Φ2 = e2πiΩΦ1Φ2 = (−1)kRRxkR . (6.14)

The elementary mirror symmetry duality. Let us consider a U(1) 1
2

gauge theory

with a single chiral multiplet of charge 1 and R-charge r. The effective twisted superpo-

tential and effective dilaton read:

W(x, q) = Li2(x) +
1

2
log x(log x+ 2πi) + log q log x− π2

6
,

Ω(x, q) = −r − 1

2πi
log(1− x) ,

(6.15)

where q = e2πiτ is the fugacity for the U(1)T topological symmetry. This corresponds to

the non-zero bare contact terms κ = 1
2 (for the gauge symmetry), κR = −1

2(r − 1) and
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κRR = −1
2(r − 1)2, in addition to the FI term. The Bethe equation for this theory has a

single solution:
qx

x− 1
= 1 ⇒ x̂ =

1

1− q
. (6.16)

Substituting back into (6.15), we find the on-shell twisted superpotential and dilaton

potential:

W(1)(q) = Li2

(
1

1− q

)
+

1

2
log(1− q) (log(1− q)− 2πi)− log q log(1− q) ,

Ω(1)(q) =
r

2πi
log(1− q)− r

2πi
log q +

r

2
,

(6.17)

where Ω(1) is defined as in (2.53). To obtain the fibering operator from (6.17), we must

choose the “physical” branch of the twisted superpotential as discussed in section 2.6. This

is the condition:
∂W
∂ log x

(x̂) = 0 , (6.18)

which indeed holds for all q.

This theory is dual to a free chiral multiplet of charge 1 under the U(1)T global

symmetry, and R-charge −r + 1. This chiral multiplet can be identified with the gauge-

invariant monopole operator T+ in the original theory, whose induced charges can be com-

puted from (2.40). This chiral multiplet is quantized with κTT = −1
2 , κTR = − r

2 and

κRR = −1
2(r− 1)2 + r (mod 2), so that the dual twisted superpotential is simply given by:

WD(q) = Li2(q) , (6.19)

while the dual effective dilaton is exactly the same as Ω(1)(q) in (6.17). The non-trivial

identity of the on-shell twisted superpotentials:

WD(q) =W(1)(q) , (6.20)

directly follows from (6.10). This duality relation implies:

FΦ(û)e−2πiτû−πiû2+πi
12 = FΦ(τ) , with û = − 1

2πi
log(1− q) , (6.21)

which is the identity F (1)(τ) = F (1)
D (τ) between the on-shell fibering operators, seen as

meromorphic functions of τ . As a consistency check, one can easily check (6.21) numerically.

6.1.1 Gauging flavor symmetries and general abelian mirror symmetry

From this basic duality, it is possible to construct a mirror dual description of a more general

abelian gauge theory. The idea is to start from several decoupled copies of this duality and

gauge appropriate flavor symmetries on each side to obtain the desired theories [86]. Here

we illustrate this procedure in a simple case, constructing the mirror dual of U(1)k=−N
2

with N charge-one chiral multiplets. We focus on the on-shell twisted superpotential for

simplicity; the matching of effective dilaton can be shown similarly, and then that of the

Mg,p partition function follows from the general discussion in section 2.6.
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To construct the original theory, we start with N copies of the free chiral multiplet.

This theory has a U(N) symmetry, which we decompose as U(1)×SU(N), with correspond-

ing parameters z for the overall U(1) and yi with
∏
i yi = 1, for the SU(N).26 Then the

twisted superpotential of this theory, including a level −1
2 contact term for each chiral, is:

W̃(z, y, q) =

N∑
i=1

Li2(zyi) + log q log z . (6.22)

For later convenience, we introduced a background vector multiplet with a BF coupling

to the U(1) flavor symmetry, with a corresponding parameter q. We then gauge the U(1)

symmetry corresponding to z by solving the Bethe equation:

exp

(
∂W̃
∂ log z

)
= z

N∏
i=1

(1− zyi)−1 = 1 . (6.23)

This has N solutions, which may be inserted into (6.22) to find the on-shell twisted super-

potential for the N vacua.

To construct the mirror dual theory, we note that the N free chiral multiplets we

started with are dual to N copies of the U(1) 1
2

theory with one charged chiral multiplet.

This has twisted superpotential:

W̃D(x, z, y, q) =

N∑
i=1

(
Li2(xi) +

1

2
log xi(log xi + 2πi) + log(zyi) log xi

)
+ log q log z − Nπ2

6
.

(6.24)

Here xi are the parameters for the U(1)N gauge symmetry. If we solve the Bethe equations

for the xi and substitute the solutions, we obtain (6.22), and subsequently solving the

Bethe equation for z will give the same N solutions as above. It is more illuminating,

however, to first solve the Bethe equation for z. This gives:

∂W̃D

∂ log z
= log q +

n∑
i=1

log yi = 0 . (6.25)

To solve this, introduce the new variables x̃i∼i+N by:

log xi = − 1

N
log q + log x̃i − log x̃i+1 (6.26)

Then the twisted superpotential becomes:

W̃D(x̃, q, y) =

N∑
i=1

(
Li2

(
q−

1
N x̃ix̃

−1
i+1

)
+ log yi(log x̃i − log x̃i+1)

+
1

2
log
(
q−

1
N x̃ix̃

−1
i+1

)(
log
(
q−

1
N x̃ix̃

−1
i+1

)
+ 2πi

))
− Nπ2

6
.

(6.27)

26More precisely, U(N) ≡ (U(1)× SU(N))/ZN , and as a result, the flavor symmetry is SU(N)/ZN .
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U(1) U(1)A U(1)T U(1)R

Q 1 1 0 r

Q̃ −1 1 0 r

M 0 2 0 2r

T+ 0 −1 1 −r + 1

T− 0 −1 −1 −r + 1

Table 2. Gauge and flavor charges for Nf = 1 SQED, and for its dual.

This gives the twisted superpotential of a circular quiver with gauge group U(1)N/U(1)diag,

which is the mirror description of the original theory. The U(1)T topological symmetry of

the original theory maps to the U(1)diag flavor symmetry of the dual. The U(1)N−1 maximal

torus of the SU(N) flavor symmetry of the original theory corresponds to the topological

symmetries U(1)Ti of the quiver, while the full SU(N) is expected to be realized in the

infrared. From (6.27), one can solve the Bethe equations for the N − 1 gauge variables x̃i
to construct the on-shell twisted superpotential. This operation must give the same result

as if we perform the gauging in the opposite order. This demonstrates the matching of the

on-shell twisted superpotential across this particular mirror symmetry.

6.2 Nf = 1 SQED/XY Z model duality

Consider a U(1) theory with two chiral multiplets Q, Q̃ of gauge charges ±, respectively,

and R-charge r. The theory has a U(1)A×U(1)T flavor symmetry, with charges summarized

in table 2. We turn on the corresponding fugacities yA = e2πiνA and q = e2πiτ . The effective

twisted superpotential is given by:

W̃SQED(x, yA, q) = Li2(xyA) + Li2(x−1yA) + log q log x

+
1

2
log x(log x+ 2πi) +

1

2
log yA(log yA + 2πi)− π2

3
.

(6.28)

The CS terms in the second line appear because we choose the symmetric quantization

for the flavor Q, Q̃, such that the bare contact terms vanish. Similarly, the effective

dilaton reads:

ΩSQED(x, yA, q) = −r − 1

2πi
log(1− xyA)− r − 1

2πi
log(1− x−1yA) +

r − 1

2πi
log yA . (6.29)

The Bethe equation has a single solution:

x̂ =
qyA − 1

q − yA
. (6.30)

This theory is dual to the XY Z model, which consists of three chiral multiplets

(X,Y, Z) = (M,T+, T−) with charges given in table 2, and a cubic superpotential
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W = MT+T−. The twisted superpotential of that theory is:

W̃XY Z(yA, q) = Li2(y2
A) + Li2(qy−1) + Li2(q−1y−1

A )

+
1

2
log q(log q + 2πi) +

3

2
log yA(log yA + 2πi)− π2

2
.

(6.31)

The CS levels are again chosen so that the bare contact terms vanish. Similarly, the effective

dilaton is such that:

HXY Z(yA, q) = e2πiΩXY Z(yA,q) =
(1− qy−1

A )r(1− q−1y−1
A )r

(1− y2
A)2r−1

y3r−1
A . (6.32)

It is straightforward to check that the Nf = 1 SQED handle-gluing operator exactly re-

produces (6.32) on the Bethe vacuum:

HSQED(x̂, yA, q) = HXY Z(yA, q) . (6.33)

On the other hand, we can check that the twisted superpotentials also match on-shell:

W̃SQED(x̂, yA, q) = W̃XY Z(yA, q) (6.34)

for a particular choice of branches. This relation follows from a well-known five-term

relation for the dilogarithm, which can be written as:

Li2(w) + Li2(z)− Li2(wz) + Li2

(
(1− z)w

w − 1

)
+ Li2

(
(1− w)z

z − 1

)
= −1

2
log2

(
1− w
1− z

)
,

(6.35)

for a certain choice of branch. By plugging w = qy−1
A , z = q−1y−1

A into (6.35) and

by using (6.10) several times, one can derive (6.34). The fibering operators of the dual

theories read:

FSQED(u, νA, τ) = FΦ(u+ νA)FΦ(−u+ νA)e−πi(u
2+ν2

A)+πi
6 ,

FXY Z(νA, τ) = FΦ(2νA)FΦ(−νA + τ)FΦ(−νA − τ)e−πi(τ
2+2ν2

A)+πi
4 .

(6.36)

The relation (6.34) implies a functional relation:

FSQED(û(νA, τ), νA, τ) = FXY Z(νA, τ) . (6.37)

One can also easily check this relation numerically.

6.3 Seiberg-like dualities

Consider three-dimensional SQCD[k,Nc, Nf , Na], which consists of a U(Nc)k gauge theory

at CS level k,27 coupled to Nf fundamental and Na antifundamental chiral multiplets,

denoted by Qi and Q̃j , respectively. Without loss of generality, we consider k ≥ 0 and

Nf ≥ Nc. This theory has a flavor group:

SU(Nf )× SU(Na)×U(1)A ×U(1)T , (6.38)

with charges summarized in table 3.

27In this language, the CS level k may be half-integer, while k + 1
2
(Nf +Na) must be integer.
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U(Nc) SU(Nf ) SU(Na) U(1)A U(1)T U(1)R

Qi Nc Nf 1 1 0 r

Q̃j Nc 1 Na 1 0 r

Table 3. Charges of the chiral multiplets of 3d N = 2 SQCD.

Three-dimensional SQCD has an infrared-dual description whose precise form depends

on the parameters k and Nf − Na [40, 84, 85]. The dual theory has a gauge group

U(nf −Nc), with

nf ≡

{
k +

Nf+Na
2 if k ≥ 1

2(Nf −Na) ,

Nf if k ≤ 1
2(Nf −Na) .

(6.39)

The U(nf − Nc) vector multiplet is coupled to Na fundamental and Nf antifundamental

chiral multiplets, denoted by qi and q̃j , respectively. It also contains NfNa gauge singlets

M j
i, and dC ≤ 2 additional singlets in special cases.28 The gauge-singlets are coupled to

the gauge sector through the usual Seiberg-dual superpotential.

All these dualities can be derived by massive deformations of the so-called Aharony

duality [85], which is the case k = 0, Nf = Na. In the following, we discuss the equality of

supersymmetric partition functions for Aharony-dual theories. (We refer to [22] for a more

detailed review of Seiberg-like dualities.)

6.3.1 Aharony duality

Electric theory. Consider a U(Nc) vector multiplet coupled to Nf pairs of fundamen-

tal and antifundamental chiral multiplets Qi, Q̃
j of R-charge r. Let us introduce the

parameters:

yi = e2πiνi , ỹj = e2πiν̃j , yA = e2πiνA , q = e2πiτ , (6.40)

for the flavor group (6.38), such that:

Nf∑
i=1

νi = −
Nf∑
j=1

ν̃j = −NfνA . (6.41)

The effective twisted superpotential of this theory reads:

W̃ [Nc,Nf ]
SQCD =

Nc∑
a=1

(
log q log xa +

Nf

2
log xa(log xa + 2πi) +

Nf∑
i=1

Li2(xay
−1
i )

+

Nf∑
j=1

(
Li2(x−1

a ỹj) +
1

2
log ỹj(log ỹj + 2πi)− π2

3

))
.

(6.42)

28We have dC = 0, 1, 2 if k > 1
2
(Nf −Na), k = 1

2
(Nf −Na) > 0 or k = 1

2
(Nf −Na) = 0, respectively.
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The integer CS terms in (6.42) are chosen such that most of the bare contact terms vanish.

More precisely, we have:

κ = 0 , κAA = κAT = κTT = κg = 0 , κSU(Nf ) = −κSU(Nf )′ = −1

2
Nc , (6.43)

where κ is the gauge contact term, and κSU(Nf ), κSU(Nf )′ are the SU(Nf )×SU(Nf ) contact

terms. Similarly, the effective dilaton is given by:

Ω
[Nc,Nf ]
SQCD =

Nc∑
a=1

(
− r − 1

2πi

Nf∑
i=1

log(1− xay−1
i )− r − 1

2πi

Nf∑
j=1

log(1− x−1
a ỹj)

+
r − 1

2πi
log yA

)
− 1

2πi

Nc∑
a,b=1
a 6=b

log(1− xax−1
b ) .

(6.44)

The Bethe equations of this theory,

P (xa) = 0 , ∀a , xa 6= xb if a 6= b , (6.45)

are given in terms of a single polynomial of degree Nf :

P (x) ≡
Nf∏
i=1

(x− yi)− qy
−Nf
A

Nf∏
j=1

(x− ỹj) . (6.46)

The Weyl group is the symmetric group SNc that permutes the xa’s. Therefore, a Bethe

vacuum x̂(l) ≡ {x̂(l)
a }Nca=1 consist of a choice of Nc distinct roots of P (x), and there are

|SBE| =

(
Nf

Nc

)
(6.47)

distinct Bethe vacua.

Magnetic theory. The Aharony dual theory is a U(Nf − Nc) theory with Nf pairs of

fundamental and antifundamentals qj , q̃
i of R-charge 1−r, together with N2

f gauge singlets

M j
i of R-charge 2r, and two additional singlets T± of R-charge:

r± ≡ −Nf (r − 1)−Nc + 1 , (6.48)

and a superpotential

W = M j
i q̃
iqj + T+t− + T−t+ . (6.49)

The gauge singlets are identified with the “mesons” M j
i = Q̃jQi and with the monopole

operators T± in the U(Nc) theory. All the charges are given in table 4.

The twisted superpotential reads:

W̃D = W̃D,gauge + W̃D,singlet , (6.50)
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U(Nf −Nc) SU(Nf ) SU(Nf ) U(1)A U(1)T U(1)R

qj Nf −N 1 Nf −1 0 1− r
q̃i Nf −Nc Nf 1 −1 0 1− r
M j

i 1 Nf Nf 2 0 2r

T+ 1 1 1 −Nf 1 −Nf (r − 1)−Nc + 1

T− 1 1 1 −Nf −1 −Nf (r − 1)−Nc + 1

Table 4. Chiral multiplet charges in the Aharony dual theory.

with:

W̃D,gauge =

Nf−Nc∑
ā=1

(
− log q log xā +

Nf

2
log xā(log xā + 2πi) +

Nf∑
j=1

Li2(xāỹ
−1
j )

+

Nf∑
i=1

(
Li2(x−1

ā yi) +
1

2
log yi(log yi + 2πi)− π2

3

))
,

(6.51)

W̃D,singlet =

Nf∑
i=1

Nf∑
j=1

(
Li2(y−1

i ỹj) +
1

2
log ỹj(log ỹj + 2πi)− π2

6

)
+ Li2

(
qy
−Nf
A

)
+ Li2

(
q−1y

−Nf
A

)
+

1

2
log q(log q + 2πi)

+N2
f log yA(log yA + 2πi)− π2

3
.

(6.52)

In (6.50), we identified the dual FI parameter τD with minus the U(Nc) FI parameter,

τD = −τ , and the bare contact terms are the same as in (6.43). Similarly, the dual

effective dilaton reads:

ΩD = ΩD,gauge + ΩD,singlet (6.53)

with:

ΩD,gauge =

Nf−Nc∑
ā=1

(
r

2πi

Nf∑
j=1

log(1− xāỹ−1
j ) +

r

2πi

Nf∑
i=1

log(1− x−1
ā yi)

+
r

2πi
log yA

)
− 1

2πi

Nf−Nc∑
ā,b̄=1
ā 6=b̄

log(1− xāx−1
b̄

) ,

(6.54)

ΩD,singlet =

Nf∑
i=1

Nf∑
j=1

(
−2r − 1

2πi
log(1− y−1

i ỹj) +
2r − 1

2πi
log yA

)
− r+ − 1

2πi
log
(

1− qy−NfA

)
− r− − 1

2πi
log
(

1− q−1y
−Nf
A

)
+
Nf (Nf (r − 1) +Nc)

2πi
log yA +

1

2
(Nf −Nc) ,

(6.55)
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with r± given by (6.48). The dual Bethe equations read:

P (xā) = 0 , ∀ā , xā 6= xb̄ if ā 6= b̄ , (6.56)

in terms of the same polynomial (6.46) as the original theory. Let {x̂α}
Nf
α=1 denote the

roots of P (x). The duality map (6.3) is simply:

x̂(l) = {x̂a} 7→ x̂
(l)
D = {x̂ā} = {x̂a}c , {x̂α}

Nf
α=1 = x̂(l) ∪ x̂(l)

D . (6.57)

That is, given x̂ choice of Nc roots of P (x), the dual vacuum x̂D in the Aharony-dual theory

is given by the Nf − Nc complement set of roots. Note that the duality of section 6.2 is

also the special case Nf = Nc = 1 of Aharony duality.

Matching the fibering operators. To match the fibering operators across the duality,

we need to prove that:

W̃ [Nc,Nf ]
SQCD (x̂) = W̃D(x̂D) , (6.58)

for a particular choice of branch, where the dependence on the many flavor parameters is

left implicit. Using the first relation in (6.10), one can show that (6.58) is equivalent to:

W̃ [Nf ,Nf ]
SQCD (x̂) = W̃D,singlet , (6.59)

where x̂ in (6.59) is given by the Nf roots P (x) in {x̂α} of (6.46). Note that (6.59) is

independent of Nc. This relation corresponds to a known multi-variable generalization

of the five-term dilogarithm identity, which was studied thoroughly in the mathematical

literature [37, 87]. This implies the duality relations:

F(x̂) = FD(x̂D) , (6.60)

which are independent of branch cut ambiguities. In particular, the relation (6.59) implies:

Nf∏
α=1

Nf∏
i=1

FΦ(ûα − νi)
Nf∏
j=1

[
FΦ(−ûα + ν̃j)e

−πiû2
α−πiν̃2

j+πi
6

]
e−2πiτûα


=

Nf∏
i=1

Nf∏
j=1

[
FΦ(−νi + ν̃j) e

−πiν̃j+πi
12

]
×FΦ(τ −NfνA) FΦ(−τ −NfνA) e−πiτ

2−2πiNfν
2
A+πi

6 ,

(6.61)

where x̂α = e2πiûα are the roots of P (x). One can also check (6.61) numerically.

Matching the handle-gluing operators. To complete the proof of the equality (6.1)

for Aharony duality, we must also prove that:

H(x̂) = HD(x̂D) , (6.62)

for any pair of dual vacua. The handle-gluing operators are rational functions of the xa and

xā variables, and the relation (6.62) can be proven using rather straightforward algebraic

manipulations, as explained in [22].
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6.3.2 Decoupling limits and Seiberg-like dualities

All other dualities for SQCD[k,Nc, Nf , Na] can be derived from Aharony duality by real

mass deformation. We refer to appendix C of [22] for a detailed review.

To obtain SQCD[k,Nc, Nf , Na], we consider a particular massive deformation of

SQCD[0, Nc, nf , nf ], with nf defined in (6.39). We can take the decoupling limit at the level

of the effective twisted superpotential and effective dilaton. The number of Bethe vacua,

|SBE| =

(
nf
Nc

)
, (6.63)

stays constant upon deformation. We can then study the identities (6.6) as we take a

decoupling limit. Typically, both sides of a duality relation diverge as the mass goes to

infinity, but with an identical coefficient on both sides. Therefore, we can cancel the

divergences and deduce the identity for the IR theory from its UV parent [40]. In the

following, we demonstrate this behavior at the level of the Bethe equations.

Let us define kc ≡ 1
2(Nf −Na). Consider first the case k ≥ kc. This can be obtained

from SQCD[0, Nc, nf , nf ] by integrating out k − kc fundamental chiral multiplets Qα with

positive real mass and k+kc antifundamental chiral multiplets Q̃β with positive real mass,

while the remaining Nf fundamental chiral multiplets Qi and Na antifundamental chiral

multiplets Qj remain light. Let us denote by m0 → ∞ the real mass parameter that we

send to infinity, and by y0 → 0 the corresponding fugacity. The gauge and flavor fugacities

must be rescaled according to:

x−1 yi → x−1 yi , x ỹ−1
j → x ỹ−1

j ,

x−1yα → y0 x
−1 y−1

A , x ỹ−1
β → y0 x y

−1
A ,

q → ykc0 q ,

(6.64)

which also implies:

xnf → y−kc0 xnf , y
nf
A → yk0 y

nf
A . (6.65)

The case kc ≥ k can be obtained similarly. We start from SQCD[0, Nc, Nf , Nf ] and we

integrate out kc + k antifundamental multiplets Q̃β with positive real mass and kc − k

antifundamental multiplets Q̃γ with negative real mass. The relevant scaling is:

x−1 yi → x−1 yi , x ỹ−1
j → x ỹ−1

j ,

x ỹ−1
β → y0 x y

−1
A , x ỹ−1

γ → y−1
0 x y−1

A ,

q → ykc0 q ,

(6.66)

and

xNf → y−k0 xNf , y
Nf
A → yk0 y

Nf
A . (6.67)

It is easy to apply this scaling to any of the various operators that enter the supersymmetric

partition function. By considering the limit y0 → 0 at the level of the Bethe equations, we

obtain new Bethe equations P (xa) = 0 in terms of the polynomial:

P (x) =

Nf∏
i=1

(x− yi)− (−1)k−kcqy
QA+
A xk+kc

Na∏
j=1

(x− ỹj) , (6.68)
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where we defined:

QA+ =

{
−Nf if k ≥ kc ,
−k − 1

2(Nf +Na) if k ≤ kc .
(6.69)

We may similarly study this decoupling limit at the level of the twisted superpotential. It

is obvious from the general properties of W, and in particular from the limits (2.26), that

we reproduce in this way the correct low energy theories, including all the correct gauge

and flavor Chern-Simons levels.

6.4 The “duality appetizer”

As our last example, we consider the “duality appetizer” of [88]. It relates the following

theories: Theory A is an SU(2) gauge theory with CS level k = 1, coupled to a single

adjoint chiral multiplet Φ. Theory B is a free chiral multiplet, Z, together with a decoupled

U(1)k=2 topological sector. The operator TrΦ2 in theory A is mapped to Z in theory B.

Correspondingly, there is a single U(1)F flavor symmetry which acts on Φ with charge 1,

and on Z with charge 2.29

The handle-gluing operators across the duality were matched in [20]. Let us show that

the fibering operators match as well. The effective twisted superpotential of theory A is

given by:

W̃A(x, y) = Li2(x2y) + Li2(y) + Li2(x−2y) +
1

2
log y(log y + 2πi) + log2 x . (6.70)

The corresponding Bethe equation can be written as:

(x2 − 1)
(
(x+ x−1)2 − (1 + y−1)2

)
= 0 . (6.71)

The solutions x = ±1 correspond to fixed points of the Weyl group action, x → x−1, and

are thus discarded. The remaining four solutions come in two Weyl pairs, with:

x̂+ x̂−1 = ±(1 + y−1) (6.72)

which correspond to the two physical vacua of this theory. Let us define x̂ = α to be one of

the first solution in (6.72), so that x̂ = −α gives the other solution. Then y−1 = α+α−1−1.

Plugging this relation into the effective twisted superpotential (6.70), we find that the on-

shell twisted superpotential for the two vacua are:

W̃(±)
A (α) = Li2

(
α2

α+ α−1 − 1

)
+ Li2

(
α−2

α+ α−1 − 1

)
+ Li2

(
1

α+ α−1 − 1

)
+ log(±α)(log(±α) + 2πi)

+
1

2
log(α+ α−1 − 1)(log(α+ α−1 − 1)− 2πi) .

(6.73)

29The U(1)2 sector in Theory B also has a topological symmetry U(1)T , which we ignore. In the partition

function, we just set the U(1)2 FI parameter to zero.
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Note that, up to a change of branch:

W̃(−)
A = W̃(+)

A − π2 . (6.74)

In other words, the only difference between the on-shell twisted superpotentials in the two

vacua can be attributed to a relative gravitational CS term.

Turning to theory B, the contribution from the scalar Z is:

W̃Z = Li2(y2) + log2 y = Li2

(
1

(α+ α−1 − 1)2

)
+ log2

(
1

α+ α−1 − 1

)
, (6.75)

where we set the U(1)F CS term such that the κFF bare contact term vanishes. For the

U(1)2 sector at zero FI parameter, the two vacua contribute only gravitational CS terms

kg = 0 and kg = 6.30 This is precisely the difference (6.74) between the two vacua in Theory

A. Thus it remains only to check the matching of the twisted superpotential of one of the

vacua. The precise statement, including a relative gravitational CS term ∆kg = −2, is:

W̃(−)
A (α) = W̃B(α) ≡ W̃Z(α) +

1

3
π2 . (6.76)

This follows from the identity:

Li2

(
α2

α+ α−1 − 1

)
+ Li2

(
α−2

α+ α−1 − 1

)
+ Li2

(
1

α+ α−1 − 1

)
− 1

2
log(α+ α−1 − 1)(log(α+ α−1 − 1) + 2πi) + logα(logα− 2πi)

= Li2

(
1

(α+ α−1 − 1)2

)
+

1

3
π2 .

(6.77)

As with all identities involving dilogarithms evaluated at rational functions of a single

variable, this can be derived by repeated applications of the five-term identity. The rela-

tion (6.76) implies the matching of the dual fibering operators.

Acknowledgments

We would like to thank Ofer Aharony, Benjamin Assel, Matthias Blau, Guido Festuccia,

Sergei Gukov, Victor Mikhaylov, Daniel Park, Shlomo Razamat and Itamar Yaakov for

interesting discussions and comments. This research was supported in part by Perime-

ter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the

Government of Canada through Industry Canada and by the Province of Ontario through

the Ministry of Economic Development & Innovation. The work of HK was made possible

through the support of a grant from the John Templeton Foundation. The opinions ex-

pressed in this publication are those of the author and do not necessarily reflect the views

of the John Templeton Foundation. BW was supported in part by the National Science

Foundation under Grant No. NSF PHY11-25915. CC and HK gratefully acknowledges

support from the Simons Center for Geometry and Physics, Stony Brook University at

which some of the research for this paper was performed.

30The twisted superpotential for the U(1)2 sector is W̃top = log2 x and the Bethe equation x2 = 1 has

two solutions x = ±1, leading to W̃top = 0,−π2 on-shell.

– 72 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
4

A The Mg,p geometry

In this appendix, we briefly summarize our geometric conventions and we provide some

additional details about the geometry and topology ofMg,p. We also briefly discuss torsion

line bundles over Mg,p with p 6= 0.

A.1 The Mg,p geometry

We follow the geometry conventions of [22], which closely follows [11, 19]. Let us con-

sider the three-manifold Mg,p, a U(1) principal bundle over the Riemann surface, Σg,

with metric:

ds2(Mg,p) = β2
(
dψ + C(z, z̄)

)2
+ 2gzz̄(z, z̄)dzdz̄ = (e0)2 + e1e1̄ . (A.1)

The coordinates are (xµ) = (ψ, z, z̄), with ψ ∈ [0, 2π) an angular coordinate along the S1

fiber, and the z, z̄ local coordinates on the base Σg. The two-dimensional metric 2gzz̄ is

a complete Hermitian metric on Σg, written in a local patch. The quantity C is a U(1)

connection over Σg with first Chern number p:

1

2π

∫
Σg

dC = p . (A.2)

The complex frame (ea) = (e0, e1, e1̄) is defined in (3.9). The frame indices a = 0, 1, 1̄ are

lowered using δab with δ00 = 1 and δ11̄ = 1
2 . The orientation is such that ε011̄ = −2i and

the γ-matrices are:

{
(γa)α

β
}

=
{
γ0, γ1, γ1̄

}
=

{(
1 0

0 −1

)
,

(
0 −2

0 0

)
,

(
0 0

−2 0

)}
. (A.3)

The metric (A.1) has an Killing vector K = 1
β∂ψ. Let us also define the one-form:

ηµdx
µ = β(dψ + C) , (A.4)

which satisfies Kµη
µ = 1, and the tensor:31

Φµ
ν = −εµνρηµ . (A.5)

We have:

ηµηµ = 1 , Φµ
νΦν

ρ = −δµν + ηµηρ . (A.6)

The objects η and Φ define a metric-compatible transversely holomorphic foliation (THF)

onMg,p. This means that there exists adapted coordinates ψ, z, z̄ such that the transition

functions between patches are of the form

ψ′ = ψ − λ(z, z̄) , z′ = f(z) , (A.7)

31This notation is slightly redundant, since ηµ = Kµ with our particular choice of metric, but we find it

convenient to use η for the one-form defining the THF [11, 19].
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with λ real and f(z) a holomorphic function of z [11]. We are considering a particular

THF on Mg,p such that the foliation η is also an S1 fibration, and the leaves of the THF

are the S1 fibers. Note that, under a change of coordinates (A.7), we also have the gauge

transformation:

C′ = C + dλ , (A.8)

so that η is a well-defined one-form.

A THF is a natural three-dimensional analog of a complex structure. In the present

case, the THF is simply the uplift of the complex structure on Σg. Let us define the

projection operators:

P0
µ
ν = ηµην ,

Πµ
ν =

1

2
(δµν − iΦµ

ν − ηµην) ,

Π̃µ
ν =

1

2
(δµν + iΦµ

ν − ηµην) ,

(A.9)

which satisfy P0 + Π + Π̃ = 1. They allow us to decompose any one-form α into vertical,

holomorphic and (horizontal) anti-holomorphic components, respectively:

α = α0η + αzdz + αz̄dz̄ . (A.10)

In particular, a holomorphic one-form, ω ∈ Λ1,0Mg,p, is such that:

ωµΠµ
ν = ων . (A.11)

Its single component ωz transforms as ω′z′ = (∂zf(z))−1ωz under a change of adapted

coordinates. By definition, ωz is a section of an holomorphic line bundle over Mg,p [19].32

We call that particular holomorphic line bundle the canonical bundle, denoted by K:

ωz ∈ Γ[K] . (A.12)

K is the pull-back of the canonical line bundle on Σg, and its first Chern class is given

by (3.11). Similarly, a holomorphic vector X ∈ T 1,0Mg,p satisfies Πµ
νX

ν = Xµ, and is

given by

X = Xz(∂z − Cz∂ψ) (A.13)

in local coordinates. In the main text, we mainly use the frame basis, so that ω = ω1e
1

and X = X1∂1, with ∂1 = eµ1∂µ.

Note that the Levi-Civita connection ∇ does not commute with ηµ, and therefore

does not preserve the decomposition (A.10). We define a metric- and THF-compatible

connection ∇̂, such that

∇̂µgνρ = 0 , ∇̂µην = 0 . (A.14)

It is given by:

Γ̂µµρ = Γνµρ +Kν
µρ , Kνµρ = iH (ηνΦµρ − ηρΦµν + ηµΦνρ) , (A.15)

32This is known as an h-foliated bundle in the mathematical literature [89].
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with Γν µρ the Christoffel symbols. Here Kν
µρ is the contorsion tensor. The adapted spin

connection is:

ω̂µνρ = ωµνρ −Kνµρ . (A.16)

We will denote the adapted covariant derivative, acting on any field, simply by Dµ.33 It

commutes with the projectors (A.9) and it is therefore compatible with the decomposition

into vertical, holomorphic and anti-holomorphic component, which we used extensively in

section 3. Note that we have:

Dµψ =

(
∂µ −

i

4
ω̂µabε

abcγc

)
ψ (A.17)

on a Dirac fermion ψ, and similarly on fields of any definite three-dimensional spin. The

adapted connection has torsion:

T νµρ = Kν
µρ −Kν

ρν = 2iHηνΦµρ . (A.18)

In particular, we have:

[Dµ, Dν ]ϕ = −2iHΦµνη
ρDρϕ . (A.19)

when acting on a scalar field ϕ.

We can also check that the Lie derivative and the adapted covariant derivative are

equal along the Killing vector Kµ:

LK = KµDµ , (A.20)

for fields of any spin. This is useful in order to check that the supersymmetry transforma-

tions of section 3 realize the supersymmetry algebra (3.48). The following identities are

also useful:

dη = 2pβ dvol(Σg) , η ∧ dη = 2pβ dvol(Mg,p) , (A.21)

where dvol(Σg) and dvol(Mg,p) are the volume forms on Σg and Mg,p, respectively. We

normalized the volumes to vol(Σg) = π and vol(Mg,p) = 2π2β. Note that the volume form

dvol(Σg) is exact unless p = 0.

A.2 Cohomology and homology of Mg,p

Some useful homological properties of Mg,p are described in [13], to which we refer for

further details. Let us assume that p 6= 0. By the Gysin sequence, we have the cohomology

groups:

H1(Mg,p,Z) ∼= H1(Σg,Z) ∼= Z2g ,

H2(Mg,p,Z) ∼= H1(Σg,Z)⊕ Zp ∼= Z2g ⊕ Zp ,
(A.22)

where the torsion subgroup Zp is given by:

coker
(
c1 : H0(Σg,Z)→ H2(Σg,Z)

) ∼= Zp , (A.23)

33Dµ will also denote the R- and gauge-covariant derivative acting on charged fields.
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with c1 the first Chern class of the U(1) principal bundle over Σg. The homology of Mg,p

follows from (A.22) by Poincaré duality:

H1(Mg,p,Z) ∼= Z2g ⊕ Zp , H2(Mg,p,Z) ∼= Z2g . (A.24)

One can also define a Dolbeault-like cohomology [19, 89] of the transversely holomor-

phic foliation, which carries interesting information. For instance, infinitesimal deforma-

tions of a holomorphic line bundle L are valued in:

H0,1(Mg,p,C) ⊃ C . (A.25)

We did not compute H0,1(Mg,p,C) from first principles.34 For our purposes, it is sufficient

to note that the one-form η is a (0, 1)-form such that

∂̃η = 0 , η 6= ∂̃(· · · ) , (A.26)

in the notation of [19] — see equation (5.15) in that reference. Therefore, η generates the

one-dimensional subgroup of H0,1(Mg,p) indicated on the right-hand side of (A.25).

Deformations of holomorphic line bundles sit in H0,1(Mg,p), therefore any holomorphic

line bundle L has at least a one-parameter family of deformations. The corresponding line

bundle modulus is denoted by u or ν in the main text. In general, we can have other

deformations of the bundle, corresponding (roughly speaking) to flat connections along the

Σg base. However, those additional deformations are Q-exact in the supersymmetric field

theory [19].

A.3 Flat connection of a torsion line bundle

Let us review some elementary facts about flat connections for torsion bundles over Mg,p

(p 6= 0). We focus on the case g = 0 case — the Lens space L(p, p − 1) — where we can

write explicit formulas. The S2 base can be covered by two coordinate patches. The z

coordinate

z = tan
θ

2
eiφ (A.27)

covers the northern patch of the sphere, and the z′ = 1
z coordinate covers the southern

patch. With the standard round metric (3.36), we have the change of coordinates

ψ′ = ψ − ip

2
log
(z
z̄

)
= ψ + pφ , z′ =

1

z
, (A.28)

between the north and southern patches (each patch has topology D2 × S1, with D2 the

open disk). Consider a flat connection a for a non-trivial bundle L. On the northern patch,

we take:

a = aψdψ , (A.29)

with aψ some constant to be determined. For the holonomy exp
(
−i
∫
γ a
)

of the fiber to

be well-defined, we must also have

a′ = aψdψ
′ (A.30)

34In [19], it was shown explicitly that H0,1(M0,1,C) ∼= C for the three-sphere.
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on the southern patch. The two descriptions are related by a′ = a + dλ for some gauge

parameter λ, and comparing to (A.28) we see that:

dλ = aψp dφ . (A.31)

We must have aψp ∈ Z for this transition function to be well-defined on the overlap,

leading to:

aψ = −m

p
, m ∈ Z . (A.32)

This corresponds to a first Chern class:

c1(L) = m ∈ Zp (A.33)

for the corresponding line bundle.35 The relation (A.32) is also valid for g > 0.

B Supersymmetry on Mg,p

In this appendix, we provide additional details about the supersymmetric background

of section 3. Curved-space supersymmetry for N = 2 supersymmetric theories with an

R-multiplet is governed by the generalized Killing spinor equations [11, 69]:

(∇µ − iA(R)
µ )ζ = −1

2
Hγµζ +

i

2
Vµζ −

1

2
εµνρV

νγρζ ,

(∇µ + iA(R)
µ )ζ̃ = −1

2
Hγµζ̃ −

i

2
Vµζ̃ +

1

2
εµνρV

νγρζ̃ .

(B.1)

A supersymmetric background on a compact three-manifold M3 with Riemannian metric

gµν consist of background values for the N = 2 “new-minimal” supergravity fields:

gµν , H , Vµ , A(R)
µ , (B.2)

that preserve certain Killing spinors ζ, ζ̃.36

Consider M3 = Mg,p with the metric (A.1). Given the THF (A.4)–(A.5) and the

Killing vector Kµ = ηµ, the general solution to (B.1) preserving one ζ and one ζ̃ reads [11]:

H =
i

2
εµνρηµ∂νηρ + iκ ,

Vµ = −εµνρ∂νηρ − κηµ ,

A(R)
µ = A(R)

µ +
1

2
εµνρ∂

νηρ + ∂µs ,

(B.3)

with A(R) given by:

A(R)
µ =

1

4
Φµ

ν∂ν log
√
g (B.4)

35To check the sign, note that the relation aS = aN −mdφ is precisely the relation between the southern

and northern patch connections of a flux m Dirac monopole on S2.
36Note that A

(R)
µ = Aµ − 3

2
Vµ in the notation of [11].

– 77 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
4

in the adapted coordinates ψ, z, z̄. The function κ in (B.3) satisfies Kµ∂µκ = 0 and is

otherwise arbitrary. It couples to the real central charge Z of the three-dimensional N = 2

theory [19]. In this work, we choose:

κ = 0 . (B.5)

This leads to a simple relation between our Mg,p background and the A-twist background

on Σg. While small deformations by κ do not affect supersymmetric observables, one could

consider a “large” deformation such that κ introduces a flux for the central charge Z [19].

This would lead to a Dirac quantization condition for real mass and FI parameters. We

do not consider such backgrounds.

Note that S3 background of [2–4] corresponds to κ 6= 0 such that Vµ = 0. This does

not affect the S3 partition function, however, because there is no possible central charge

flux on S3. Therefore, our results for M0,1
∼= S3 must be in agreement with [2–4], as we

indeed find to be the case.

Setting κ = 0 in (B.3) gives us the background fields

H = ipβ , Vµ = −2pβ ηµ , A(R)
µ = A(R)

µ + pβηµ + ∂µs , (B.6)

Since Vµ = 2iHηµ, we find it convenient to use the background field H and A(R)
µ only,

as in (3.8). The Killing spinor equations (B.1) can be simplified by using the adapted

connection ∇̂, as discussed in section 3. We obtain (3.14), which is simply:

Dµζ = 0 , Dµζ̃ = 0 , (B.7)

in terms of the covariant derivative Dµ define above, including the U(1)R gauge field A(R)
µ .

B.1 A-twisted field variables

Using the Killing spinors ζ, ζ̃, we may build the one-forms:

pµ = ζγµζ , p̃µ = ζ̃γµζ̃ , (B.8)

of R-charge 2 and −2, respectively. We have:

pµdx
µ = p1̄e

1̄ = −e2ise1̄ , p̃µdx
µ = p̃1e

1 = e−2ise1 . (B.9)

In particular, p̃1 is a nowhere-vanishing section of K ⊗ (L(R))−2, where L(R) is the

R-symmetry line bundle. This implies that K ∼= (L(R))2 up to a topologically trivial

line bundle.

After decomposing any field into vertical and horizontal components, like in (A.10),

we may assign two-dimensional spins in the frame basis, as explained above (3.44). For

instance, p1 has 2d spin s0 = 1 and R-charge −2, and it has vanishing A-twisted spin (3.44).

We find it convenient to use field variables adapted to the A-twist, exactly like in [22, 31].

Let us briefly review the definitions:
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A-twisted chiral multiplet. The twisted fields in the chiral and antichiral multiplets

are related to the flat-space fields of [11] by:

A = (p̃1)
r
2 φ , Ã = (p1̄)

r
2 φ̃ ,

B =
√

2(p̃1)
r
2 ζψ , B̃ = −

√
2(p1̄)

r
2 ζ̃ψ̃ ,

C = − 1√
2

(p̃1)
r
2 p1̄ ζ̃ψ , C̃ =

1√
2

(p1̄)
r
2 p̃1 ζψ̃ ,

F = (p̃1)
r
2 p1̄ F , F̃ = (p1̄)

r
2 p̃1 F̃ .

(B.10)

Here p1̄ and p̃1 are the sections of K̄⊗L2 and K⊗L2 as defined in (B.9). By constructions,

all the A-twisted fields have R-charge zero and two-dimensional spin (3.44). In particular,

A,B have twisted spin r
2 and C,F have twisted spin r−2

2 .

A-twisted vector multiplet. The gauginos λ and λ̃ in the vector multiplet of [11] are

related to the A-twisted fields (3.51) by:

Λµ ≡ ζ̃γµλ , Λ̃µ ≡ −ζγµλ̃ . (B.11)

The gaugino supersymmetry variation can be written as:

δΛµ = iηµ(D − σH) + i (δµ
ν + iΦµ

ν)

(
∂νσ +

1

2
εν
λρfλρ

)
, δ̃Λµ = 0 , (B.12)

and similarly for Λ̃µ.

C Spin-structure dependence of the U(1) Chern-Simons action

Consider a U(1) connection a = aµdx
µ on an (oriented) three-manifold M3. Whenever aµ

is a connection on a topologically non-trivial bundle, the CS action is defined by:

SCS =
ik

4π

∫
M3

a ∧ f ≡ ik

4π

∫
N4

f ∧ f mod 2πi , (C.1)

with f = da and k ∈ Z the CS level. Here N4 is a four-manifold with boundary ∂N4 =M3,

and the three-dimensional connection is extended to the connection of a line bundle over

N4. An important subtlety is that the CS action depends on the spin structure of M3 if k

is odd. In that case, N4 must also be a spin manifold, whose spin structure restricts to the

spin structure specified on the boundary. This can introduce an explicit dependence of the

CS action (C.1) on the choice of spin structure [77]. This point was emphasized recently

e.g. in [79].37

First of all, note that the definition (C.1) is independent of the choice of N4. If we

consider two different choices of four-manifolds (with spin structures) N4 and N ′4, we have:

SCS[N4]− SCS[N ′4] =
ik

4π

∫
M4

f ∧ f = πik q(f) , (C.2)

37See also [78]. We thank Victor Mikhaylov for very illuminating discussions on the matter.
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where the compact four-manifoldM4 is the union of N4 and N ′4 (with reversed orientation)

glued alongM3. Here q(f) is a topological invariant of the U(1) line bundle onM4, which

is always integer. If we specify a spin structure onM3, thenM4 is also a spin manifold and

q(f) is an even integer [77]; therefore the definition (C.1) makes sense for any integer k.

Now, consider two distinct spin structures on the same three-manifold M3, which

we denote by M±3 , and consider some choice of bounding spin four-manifolds N±4 . The

difference between the CS actions onM+
3 andM−3 is again given by (C.2), but the compact

four-manifold M4 is not spin in general, since the spin structures on N+
4 and N−4 are not

compatible on the M3 boundary. Therefore, the CS actions on M±3 might differ by some

integer multiple of πi; in other words, the exponentiated action e−SCS might include a sign

that depends on the choice of spin structure on M3.

We are particularly interested in the three manifolds M±3 ∼= Σg × S1
±, where the spin

structures correspond to either the periodic (+) or anti-periodic (−) boundary condition

for fermions along the S1 (and with some given spin structure on Σg). In order to preserve

supersymmetry, we choose the periodic spin structure, Mg,0
∼= Σg × S1

+. Consider a U(1)

line bundle with first Chern number m ∈ Z and a flat connection aψ along the S1. We can

easily see that:

e−SCS(−) = e−2πik aψm , (C.3)

for the anti-periodic spin structure, because we can extendM−3 ∼= Σg×S1
− toN−4 ∼= Σg×D2,

with D2 a disk with S1
− as its boundary.38 On the other hand, one can show that [78]:39

SCS(+) − SCS(−) = πikm , (C.4)

and therefore:

e−SCS(+) = (−1)kme−2πik aψm . (C.5)

This is the correct result on the supersymmetry-preserving Σg × S1 background; the sign

was previously missed by [20–22]. The case T 2 × S1 is discussed explicitly in [79].

Note that a closely related sign (−1)km appears in (4.24) from the CS action on any

Mg,p with p 6= 0, with m ∈ Zp. In that case, the sign is necessary for the CS action to be

invariant under large gauge transformations, m ∼ m + p.

Incidentally, similar signs seem to be important for other supersymmetric backgrounds,

in particular for the 3d superconformal index [15, 16, 90] (the “untwisted” S2 × S1) and

the Lens space partition function [45, 46]. In those cases, ad hoc signs were introduced e.g.

in [47, 53, 91] in the sum over topological sectors. It would be interesting to review those

results accordingly.

38To see this, we can first set aψ = 0, in which case SCS(−) = 0 because a extends to a flat gauge field

along D2. The deformation by a flat connection corresponds to a shift by a well-defined one-form δa, and

the shift in the CS action is given by the three-dimensional formula
∫
δa ∧ da.

39In the general case, we have:

SCS(+) − SCS(−) =
ik

2

∫
M3

f ∪ x ,

with x ∈ H1(M3,Z2) encodes the change of spin structure between M+
3 and M−3 [78].
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D Localization and JK contours

In this appendix, we sketch the derivation of the final formula (4.73) for p 6= 0, using

supersymmetric localization. The derivation is very similar to the p = 0 discussed in

appendix B of [22], apart from subtleties regarding the contribution from infinity on the

u-plane. We focus on the case where the gauge group has rank one.

The generalization to any higher-rank gauge groups should follow from the previous

works — see [29, 30] and [20–22, 31], except for complications due to the contributions from

the “boundaries” at infinity, which we did not study rigorously. We presented a conjecture

in the main text, and we provide some additional evidence for it below (see section D.2).

D.1 Localization for G = U(1)

In section 4.1, we saw that the SYM action (3.62) admits the following scalar and one-form

zero modes in the vector multiplet:

V0 = (u , ũ , Λ0 , Λ̃0 , D̂) , VI = (αI , α̃I , ΛI , Λ̃I) , I = 1, · · · , g . (D.1)

For p 6= 0, the variable u = iβ(σ + ia0) is valued in C. In this “Coulomb branch” back-

ground, the partition function can be written as::

Zg,p = lim
e2→0

∑
m∈Zp

∫ g∏
I=1

dVI
∫

Γ
dD̂

∫
M

dudũ

β

∫
dΛ0dΛ̃0 Zm(V0,VI) , (D.2)

where M denotes the complex u-plane and Zm is the contribution from the one-loop de-

terminant and the classical action contribution at flux sector m. We also have defined the

measure

dVI =
1

βvol(Σg)
dαIdα̃IdΛIdΛ̃I . (D.3)

The normalization of the path integral is chosen for convenience. In the end, we fix the

overall normalization by comparing our result against known results [22]. For future con-

venience, we perform the change of variable ũ→ ũ′ and Λ̃0 → Λ̃′0 according to

ũ = ũ′/k2 , Λ̃0 = Λ̃′0/k
2 , (D.4)

with k some small real parameter (not to be confused with a CS level).

Note that the contribution from the one-loop determinant and classical action Zm has

singularities at {u|u = u∗} in M where the chiral multiplets become massless. There also

exists a potential singularity associated to the boundary at infinity. For singularities in the

bulk, we first define the ε-neighborhood ∆ε of these singularities as (u− u∗)(ũ′ − ũ′∗) ≤ ε2.

Then, if we take the limit ε→ 0 and e→ 0 in a way that ε is sufficiently smaller than e, we

can show that the integral gets contribution only from the region M\∆ε. We will discuss

the contribution from infinity below.

The integration over the scalar gaugino zero-modes Λ0, Λ̃
′
0 can be performed by using

the following relation from the residual supersymmetry of zero-modes:

δZm =
(
−2iβΛ̃′0∂ũ′ − D̂∂Λ0 + iΛ̃I∂α̃I

)
Zm = 0 , (D.5)
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which implies

∂Λ0∂Λ̃′0
Zm

∣∣∣
Λ0=Λ̃′0=0

=
1

D̂

(
2iβ∂ũ′ + iΛ̃I∂α̃I∂Λ̃′0

)
Zm

∣∣∣∣
Λ0=Λ̃′0=0

. (D.6)

Since there are no singularities in a compact domain of αI as long as ε > 0, the second term

which involves the total derivative ∂α̃I does not contribute to the path integral. We have

Zg,p = lim
ε,e→0

∑
m∈Zp

∫ g∏
I=1

dVI
∫

Γ

dD̂

D̂

∫
M\∆ε

dudũ′ ∂ũ′Zm|Λ0=Λ̃′0=0
. (D.7)

Here ∆ε also implicitly includes an excised region “at infinity”. The u-plane integral

in (D.7) then reduces to a sum of contour integrals over all the components of the

boundary ∂∆ε.

To evaluate Zm for non-zero D̂, we first expand the fields into the Fourier modes along

the S1 fiber:

φ =
∑
n∈Z

φn(z, z̄)einψ . (D.8)

Let us define the two-dimensional variables (until (D.24) we consider the generalization to

higher rank, as it is essentially the same argument):

Qσn =
1

iβ
(Qaua + n) , Qσ̃′n = − 1

iβ
(Qaũ′a/k

2 + n) . (D.9)

At fixed n, we can have the spectrum {λn} of the twisted Laplacian D1D1̄ on the two-

dimensional base Σg, with:

− 4D1D1̄φn(z, z̄) = λnφn(z, z̄) . (D.10)

Recall that the scalar φn is valued in the line bundle (4.39). The contribution from the full

chiral multiplet is given by:

ZΦ
∣∣
Λ0=Λ̃′0=0

= ZΦ
zeroZ

Φ
massive

∣∣
Λ0=Λ̃′0=0

, (D.11)

where the first factor is the contribution from the zero modes of D1̄ (or D1):

ZΦ
zero =

∏
n∈Z

(Qσn)nC

(
Qσ̃′n

Qσ̃′nQσn + iQD̂

)nB
. (D.12)

Here nB and nC are the number of Bn and Cn zero-modes, respectively, with nB − nC =

pn+Qm+ (g−1)(r−1) by the Riemann-Roch theorem. Evaluating (D.12) at D̂ = 0 gives

the 1-loop determinant (4.36). Since the non-zero modes pair among themselves, they do

not contribute in the limit D̂ = 0. When D̂ 6= 0, the contribution can be written as:

ZΦ
massive =

∏
n∈Z

∏
λn

[
λn +Qσ̃′nQσn

λn +Q2σ̃′nσn + iQD̂

]

×

(
1− 2i

(Qσ̃′n)(QΛ̃1̄)(QΛ1)

(λn +Q2σ̃′nσn)(λn +Qσ̃′nQσn + iQD̂)

)
.

(D.13)
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The zero modes have singularities at finite u = u∗i where the hypermultiplets with charge

Qi become massless, as well as at the infinite boundary |u| → ∞. Each singualrity defines

a “hyperplane” Hi or H∞ respectively.

First of all, let us consider the contour for the D̂-integral in (D.7). In order to ensure

convergence of the integral, we define the contour Γ by R + iδ, where δ is a real number

that satisfies |δ| < |Qiε2/k2| for all singular hyperplane Hi’s. The sign of δ is determined

by the condition η(δ) > 0, where η ∈ ih∗ ∼= R is a covector that we choose. The final

answer does not depends on the choice of η.

Let us first integrate out the one-form zero modes ΛI , Λ̃I and the flat connections on

the base Σg. This procedure is the same as in the p = 0 case. We take the limit k � ε so

that the summation over the modes that couples to ΛI , Λ̃I can be simplified: for this, we

note that

logZΦ|s-th order in D̂a

Λ̃1̄=Λ1=0

=
∑
λn,n

(
−iQa

λn +Q2σnσ̃′n

)s

=
∑
n∈Z

(−iQa)s

Γ(s)

∫ ∞
0

dt ts−1

∑
λn

e−tλn

 e−tQ
2σ̃′nσn .

(D.14)

In the small k limit (large σ̃′n limit), only the small t expansion of the heat kernel,

∑
λn

e−tλ =
1

4πt

∞∑
l=0

alt
l , (D.15)

contributes for fixed n. Performing the t integral, we obtain

logZΦ|s-th order in D̂a

Λ̃1̄=Λ1=0

=
∑
n

[
a0(−iQ)s

4π(s− 1)(Q2σ̃′nσn)s−1
+

a1(−iQ)s

4πs(Q2σ̃′nσn)s
+ · · ·

]
. (D.16)

Therefore, in the limit k → 0, we are left with the following Λ1, Λ̃1̄ and D̂ dependence:

ZΦ = exp
[
ivol(Σg)Im(∂uaWΦ)D̂a − iβvol(Σg)Λ̃

a
1̄Λb1H

Φ
ab

]
, (D.17)

where:40

HΦ
ab = QaQb

(
xQ

1− xQ

)
. (D.18)

This can be written as:

HΦ
ab = ∂ua∂ubWΦ , WΦ =

1

(2πi)2
Li2(xQ) , (D.19)

in terms of the contribution of the chiral multiplet to the twisted superpotential. The

dependence of the the classical action on the gauginos is also consistent with this expression:

e−SCS = xkm exp
[
ivol(Σg)Im(∂uaWCS)D̂a − iβvol(Σg)k

abΛ̃a1̄Λb1

]
, (D.20)

40Note that the regularization used in [22] is different from that we are using here. See section 4.3.2.
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Figure 8. We define the u-contour at infinity by limR→∞ CR, where CR is given on the left. This

contour can be decomposed into limR→∞ CR =
∑
k∈Z Ck, a sum over an infinite number of contours

around the strips of unit width, as shown on the right.

from the classical action. (Here we gave the formulas for the higher-rank case as well.)

Note that the one-loop and classical contributions do not depend on the flat connections

αI , α̃I . We have ∫ g∏
I=1

dVI Zm|Λ0=Λ̃0=0
= H(u)gZm|Λ0=Λ̃0=Λ1=Λ̃1̄=0

(D.21)

after integrating over the gaugino zero-modes Λ1, Λ̃1̄, where we have defined:

H(g) = det
a,b

Hab = det
a,b

∂ua∂ubW . (D.22)

The final formula can be written as

I =
∑
i

Ii , (D.23)

where the summation runs over all the bulk singularities:

Ii,bulk = (D.24)

lim
e→0
R→∞

∑
m∈Zp

∫
Γ

dD̂

D̂

∮
∂∆

Qi
ε

du Zm(u)H(u)g exp

[
−βvol(Σg)

2e2
D̂2 + ivol(Σg)Im(∂uW)D̂

]
,

and the contribution from the monopole singularities

I∞ = (D.25)

lim
e→0
R→∞

∑
m∈Zp

∫
Γ

dD̂

D̂

∮
CR
du Zm(u)H(u)g exp

[
−βvol(Σg)

2e2
D̂2 + ivol(Σg)Im(∂uW)D̂

]
.

We define the contour at infinity CR as shown on the left in figure 8. One can show that, once

we take the limit R→∞ sufficiently faster than e→ 0 so that eNR→∞, the integral (D.2)

does not get any contribution from the region outside of the contour CR. (To show this,
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we generally need to turn on the regulator, as in [20].) The easiest way to perform these

integrals is to use the topological property of the theory on Σg. Using the fact that the

final answer does not depend on the vol(Σg), we rescale it with a positive real µ� 1:

D̂ → µD̂ , vol(Σg)→ µ−1vol(Σg) . (D.26)

Let us take the limit µ→ 0, keeping e finite. We have

Ii = lim
e→0
R→∞

∑
m∈Zp

∫
Γ

dD̂

D̂

∮
∂∆

Qi
ε ,CR

du Zm(u)H(u)g exp
[
ivol(Σg)Im(∂uW)D̂

]
. (D.27)

Let us first assume Im(∂uW) > 0. Then we may close the contour in the upper-half D̂

plane. If η > 0, this contour surrounds no poles, so the result of the integral is zero, while

for η < 0, it surrounds the pole at D̂ = 0, and picks up the residue there. Similarly, for

Im(∂uW) < 0, we close the contour in the lower half-plane, and get a contribution only

when η > 0. Thus we find:∫
Γ

dD̂

D̂
Zm(u)H(u)g exp

[
ivol(Σg)Im(∂uW)D̂

]

=


2πi Zm(u)H(u)g if sign(Im(∂uW)) = − sign η ,

0 otherwise .

(D.28)

Let us choose η > 0 below for definiteness. For the bulk singularities, this rule picks up

the residues from the poles with positive charges, as in the p = 0 case:

Ii,bulk(η > 0) = (2πi)2


∑

m∈Zp Res
u=u∗i

Zm(u) H(u)g if Qi > 0 ,

0 if Qi < 0 .
(D.29)

As discussed in section 4, using the invariance under

u→ u+ 1 , m→ m + p , (D.30)

we can further massage this expression into

Ii,bulk(η > 0) = (2πi)2


∑

m∈Z Res
u=u∗i

0≤Re(u)<1

Zm(u) H(u)g if Qi > 0 ,

0 if Qi < 0 .

(D.31)

The contribution from the “poles at infinity” does not directly follows from the p = 0 case,

since the geometry of the boundary at infinity is different. We have

I∞ = lim
e→0
R→∞

∑
m∈Zp

∮
CηR
du 2πi Zm(u)H(u)g , (D.32)

where the contour CR has been replaced by:

CηR = {u ∈ CR | sign(Im(∂uW)) = − sign η } . (D.33)
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The contour CR consists of horizontal segments and vertical segments. For the hori-

zontal segments, where Im(u) = ±R→ ±∞, one finds:

Im(∂uW) ∼ Q∓(Im(u)) , (D.34)

where Q± are the monopole charges defined in (2.40). Thus the contributions along the

horizontal segments are included in the final contour, CηR, precisely when the sign of the

monopole charge is the same as η, just as in the p = 0 case. If Q∓ = 0, the sign of

Im(∂uW) is determined by the flavor symmetry parameters, as discussed in an example in

section 4.5.2.

Next, consider the vertical segments of CR, where Re(u) = ±R→ ±∞. Recall that:

Z(u+ n) = Π(u)−pnZ(u) , (D.35)

and therefore:

|Z(u+ n)| = |Π(u)|−pn|Z(u)| = e2πpnIm(∂uW)|Z(u)| . (D.36)

Suppose first that we take η > 0. Then see that, for Re(u)→∞, the portions of the vertical

line we are including, those with Im(∂uW) < 0, have vanishing contribution. Thus we can

ignore the vertical line on the right. However, the vertical line on the left, at Re(u)→ −∞,

has a large contribution, and can not be ignored. Similarly, for η < 0, we must include the

vertical line on the right.

It is also useful to write this expression in a way which clarifies the connection to the

p = 0 case. Starting from the contour CR, we decompose it into a sum over an infinite

number of contours Cn,

lim
R→∞

CR =
∑
n∈Z
Cn , (D.37)

as depicted in the right of figure 8. Here Cn is a contour that goes around the boundary of

an infinitely long strip iR× [n, n+ 1]. Similarly, we decompose:

lim
R→∞

CηR =
∑
n∈Z
Cηn , (D.38)

where Cηn is the portion of Cn with sign Im(∂uW(u)) = − sign η. Noting that the (D.32) is

invariant under the (D.30), we can rewrite it as:

I∞ =
∑
m∈Zp

∑
n∈Z

∮
Cηn
du 2πi Zm(u)H(u)g,

=
∑
m∈Zp

∑
n∈Z

∮
Cη0
du 2πi Zm−np(u)H(u)g

=
∑
m∈Z

∮
Cη0
du 2πi Zm(u)H(u)g .

(D.39)

In this formulation, the domain of the integration and of the sum is the same as in p = 0

case, but with a different integrand. (Note that, for p = 0, the integrand is periodic, and

so the contributions along the vertical lines in Cη0 cancel.)
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D.2 Relation of the JK contour to the Bethe-vacua formula

Here we derive the Bethe-vacua formula (2.48) for the Mg,p partition function from the

conjectured “JK contour” integral (4.80) for higher-rank gauge groups. This provides some

non-trivial evidence for the conjectured contour.

The higher-dimensional contour integral (4.80) takes the form:

ZMg,p =
1

|WG|
∑
m∈Zr

∫
Cη0
dru J (u) Πa(u)ma . (D.40)

Consider the sum over all m ∈ Zr. Let us split the sum as:

∑
m∈Zr

=

r∏
a=1

(
0∑

ma=−∞
+

∞∑
ma=1

)
=

r∏
a=1

∑
δa∈{±}

∞∑
mδ
a
a =0

(D.41)

where we define m±a ∈ Z≥0 by:

ma =

{
m+
a + 1 if ma ≥ 1 ,

−m−a if ma ≤ 0 .
(D.42)

We then rewrite (D.40) as:

ZMg,p =
1

|WG|

r∏
a=1

∑
δa∈{±}

∞∑
mδ
a
a =0

∫
Cη
δ

0

druJ (u)Πa(u)ma . (D.43)

Here we have chosen a different contour, denoted Cη
δ

0 , for each choice of signs δa, labeled

by the covector:

(ηδ)
a

= −δa|ηa|, a = 1, · · · , r . (D.44)

Fix some δa, and consider the sum over ma:

r∏
a=1

∞∑
mδ
a
a =0

∫
Cη
δ

0

druJ (u)Πa(u)ma . (D.45)

Note that along Cη
δ

0 , we have, for each a:

|Πa|δ
a

= e−2πδaIm(∂aW) = e−2π|Im(∂aW)| < 1 (D.46)

where we used the fact that sign(Im(∂aW)) = δa due to (D.44). Thus the sum over mδa
a is

a convergent geometric series. Using:

∞∑
mδ
a
a =0

Πma
a = δa

Πa

1−Πa
, (D.47)

we find:

r∏
a=1

∞∑
mδ
a
a =0

∫
Cη
δ

0

druJ (u)Πa(u)ma =

(∏
a

δa

)∫
Cη
δ

0

druJ (u)
r∏

a=1

Πa

1−Πa
. (D.48)
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Summing over all choices of δa, we have:

ZMg,p =
1

|WG|
∑

δa∈{±}

(∏
a

δa

)∫
Cη
δ

0

druJ (u)
∏
a

Πa

1−Πa

=
1

|WG|

∫
C̃η0
druJ (u)

∏
a

Πa

1−Πa

(D.49)

where we have defined:

C̃η0 =
∑

δa∈{±}

(∏
a

δa

)
Cη

δ

0 (D.50)

Now we use the independence of the answer on η, and consider taking η → εη for 0 < ε� 1.

Note that, in this limit, the boundary contributions become negligible, since the interval

in (4.112) includes a vanishingly small range of values of Im(∂aW), and so Cη0 ≈ C
η, bulk
0 .

Thus, what remains are the contours at:

Im(∂uaW) = ±εηa . (D.51)

Given their relative orientations, from (D.50), the contributions from these nearby contours

cancel everywhere except in the neighborhood of the singularities in (D.49) at Πa = 1. The

integral then captures the residues at the simultaneous solutions to:

Πa = 1, a = 1, · · · , r , (D.52)

i.e., the solutions to the Bethe equations. Then, by an argument identical to the one

leading to (4.118), summing the residues leads to the formula (2.48), given by a sum over

Bethe vacua.

E Gauging flavor symmetries using the on-shell W and Ω

In this appendix, we describe in more detail the procedure of gauging global symmetries at

the level of the Mg,p partition function. As discussed in section 2.6, this is achieved most

easily by working with the on-shell twisted superpotential and effective dilaton:

W l(ν), Ωl(ν), l = 1, . . . , |SBE| (E.1)

Namely, suppose one is given these objects for a three dimensional N = 2 theory T , but

one does not have any other information about the theory (e.g., a Lagrangian description).

Then, as explained in section 2.6, we may nevertheless use these to construct the Mg,p

partition function ZMg,p [T ]. Moreover, for any theory T̂ obtained from T by gauging

flavor symmetries, we can use this data to construct the on-shell superpotential and effective

dilaton for T̂ , and therefore also its Mg,p partition function.

Let us recall here how this gauging operation works, and elaborate on some of the

details. Suppose the theory T̂ is obtained by gauging the flavor symmetry associated to

some subset S of the flavor symmetry generators, whose parameters we relabel νi → vâ,
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â = 1, . . . , |S|.41 Then we claim that we should simply write the Bethe equation for vâ, in

terms of W l, i.e.:

Πl
â = exp

(
2πi

∂W l

∂vâ

)
= 1, â ∈ S, (E.2)

These equations should be solved for each l, and may have zero, one, or several solutions

for each l. The vacua of the new gauge theory is the union of these solutions for all l. That

is, the set ŜBE of Bethe vacua of T̂ is:

ŜBE =
⋃

l∈SBE

Ŝ lBE ,

Ŝ lBE ≡

{
v̂l,jâ | exp

(
2πi

∂W l

∂vâ

)∣∣∣∣
vâ=v̂l,jâ

= 1

}
.

(E.3)

An important consistency check of this procedure is the following. Suppose we are

told the on-shell objects in (E.1) actually come from a gauge theory. That is, they were

obtained by starting with a twisted superpotential, W(u, v, ν), which is a function of some

gauge variables, ua, a = 1, . . . , rk(G), and solving the Bethe equations:

SBE =

{
ula |

∂W(ul, v, ν)

∂ua
= 0, a = 1, . . . , rk(G)

}
, (E.4)

such that:

W l(v, ν) =W(ûl(v, ν), v, ν) . (E.5)

Then, another way to obtain the theory T̂ is to gauge all the variables ua, vâ at once. In

that case, we would find the Bethe equations:

exp

(
2πi

∂W
∂ua

)
= 1, exp

(
2πi

∂W
∂vâ

)
= 1 (E.6)

which we should solve simultaneously as a function of the ua and vâ. This procedure must

lead to the same Bethe vacua and Mg,p partition function as we obtained by starting

from (E.1).

First, to see that we get the same set of vacua, note that if we solve the first set of

equations in (E.6) as a function of ua, and for fixed ûa, we find the solutions ula in (E.5).

Next, we can plug in the ula, where we consider all choices of l, and find the ûâ which solve

the second set of equations in (E.6), that is:

1 = exp

(
2πi

∂W
∂vâ

)∣∣∣∣
ua=ula

(E.7)

However, from (2.56), the r.h.s. is equal to Πl
â, and so this is equivalent to solving (E.2).

It remains to check that the various ingredients in the Mg,p partition function that

we obtain by the two methods agree. For the fibering and flux operators, this follows

41Here for simplicity we assume the group we are gauging is abelian; it is straightforward to extend the

argument to the non-abelian case.
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straightforwardly from (2.56). For the handle gluing operator, if we gauge ua and vâ
simultaneously, we find, for l̂ ∈ ŜBE:

Hl̂(ν) = eΩ(ûl̂,v̂l̂,ν) det


∂W

∂ua∂ub

∂W
∂ua∂vb̂

∂W
∂vâ∂ub

∂W
∂vâ∂vb̂

∣∣∣∣
u=ûl̂,v=v̂l̂

(E.8)

On the other hand, starting from W l and Ωl and solving the Bethe equations for the vâ,

we would find, in the notation of (E.3):

Hl,j(ν) = eΩl(v,ν) det
∂W l

∂vâ∂vb̂

∣∣∣∣
vâ=vl,jâ

=

((
eΩ(u,v,ν) det

∂W
∂ua∂ub

)∣∣∣∣
u=ul

det
∂W l

∂vâ∂vb̂

)∣∣∣∣
v=vl,j

(E.9)

At first sight, the expressions (E.8) and (E.9) look quite different. To see that they agree,

let us first introduce the notation:
∂W

∂ua∂ub

∂W
∂ua∂vb̂

∂W
∂vâ∂ub

∂W
∂vâ∂vb̂

 ≡
(
Aab Bab̂
Câb Dâb̂

)
(E.10)

Then the determinant in (E.8) can be written:

det

(
Aab Bab̂
Câb Dâb̂

)
= det

ab
Aab det

âb̂
(Dâb̂ − CâbA

−1
ab Bab̂) (E.11)

Next, we rewrite the matrix appearing in second factor in (E.9) as:

∂W l

∂vâ∂vb̂
=

∂W
∂vâ∂vb̂

+
∂ula
∂vâ

∂W
∂ua∂vb̂

= Dâb̂ +
∂ula
∂vâ

Bab̂ . (E.12)

We differentiate (2.55) to find:

0 =
∂

∂vb̂

∂W
∂ua

(ula(νi), νi) =
∂2W
∂ua∂vb̂

+
∂2W
∂ua∂ub

∂ulb
∂vb̂

= Cab̂ +
∂ulb
∂vb̂

Aab

⇒
∂ulb
∂vb̂

= −A−1
ab Cab̂ (E.13)

Plugging this into (E.12) gives:

∂W l

∂vâ∂vb̂
= Dâb̂ − Cab̂A

−1
ab Bab̂ (E.14)

and so the determinants in (E.9) can be written as:

detAab det(Dâb̂ − CâbA
−1
ab Bab̂) (E.15)

agreeing with (E.11) (after identifying the solution corresponding to l̂ with that corre-

sponding to the pair (l, j)), and completing the proof that (E.8) agrees with (E.9).
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