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1 Introduction & conclusions

The study of Renormalization Group (RG) fixed points within the framework of quantum

field theory (QFT) has been remarkably rich, fruitful, alluring and incisive to universality

across various realms of physics. Among these, one of the most sought after are theories

that are quantum chromodynamics (QCD)-like, in which matter fields in adjoint (gluons)

and fundamental (quarks) representation of an SU(Nc)-gauge group constitute the degrees

of freedom. An early study in QCD-like theories that reveal a vanishing beta-function, in

presence of both adjoint and fundamental matter fields, is the so-called Caswell-Banks-Zaks

fixed point [1, 2].
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The class of asymptotically free QCD-like theories has been under much scrutiny as a

function of the number of flavours, or more precisely, as a function of the ratio of number of

flavours, Nf , and the number of colours, Nc. It is known that depending on Nf/Nc, there

is a conformal window : a region in the theory parameter space. Within the conformal

window, the corresponding infrared physics is governed by a non-trivial fixed point, which

the RG-flow leads to. Such behaviour generalizes to supersymmetric theories, as well.

Perhaps it is a good place to mention that, if not all,1 much of these studies are perturbative

in some loop expansion.

Given the already flavoured -richness, there are, however, rather outstanding questions

that confront current theoretical tools, and understanding. One of those is the understand-

ing of the ground state of a QCD-like theory with non-vanishing density (or, chemical po-

tential) at strong coupling. A perturbative approach is not useful; lattice techniques are,

at best, limited at non-vanishing density, due to the so-called “sign-probem”. Though it

is possible to construct supersymmetric theories with all desired ingredients, that perhaps

remains tractable to exact and analytical results, it seems to be a still less-explored avenue.

We will, instead, take a different route: we want to view the Gauge-String duality, or

the AdS/CFT correspondence [3] as a framework of studying quantum field theories, at

strong coupling. In [4], fundamental matter field was introduced by virtue of explicitly in-

troducing a D-brane probe in a background geometry. This brane was introduced in the so-

called probe limit, in which Nf � Nc, and the geometry does not receive any correction due

to the brane source. While this limit has, since then, been explored in details (see e.g. [5, 6]),

relatively less is understood away from the probe limit. On the other hand, physically, the

flavour back-reaction is rather interesting, specially in view of the possibility of exotic states

such as colour superconductivity at high density [7]. We note that a large and extensive lit-

erature on back-reaction by fundamental flavours already exists, which we will not attempt

to enlist here. For our current purpose, we will specifically cherrypick a few observations

of [8–11]. The infrared (IR) is non-perturbative in back-reaction and there seems to be a

notion of finite-density universality in the IR: a certain scaling symmetry is emergent.

We intend to explore the above two observations with a somewhat different edge. The

differences are manifold, of which a few highlighted ones are: (i) We will merely emulate

the back-reaction of flavours. Instead of constructing a completely stringy embedding, we

will consider an effective gravity theory, where the matter source is described by a Dirac-

Born-Infeld action. (ii) We will forcefully turn the dilaton off, that is motivated essentially

on the grounds of simplicity. This enforcement is certainly correlated to our inherently

bottom up approach. (iii) We will consider space-filling or partially space-filling Brane

sources, and in the latter case with convenient smearing along the transverse directions.

This, for our purpose, means that we will use a DBI-action of the same dimension as the

gravity action. For this article, we will not consider any Wess-Zumino term. The idea of

treating flavour back-reaction in a so-called bottom up model is not new, a large body of

literature already exists exploring various aspects of QCD-like features, see e.g. [12–19].

1For example, in supersymmetric theories, certain perturbative results are exact.
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Clearly, the subsequent results that we obtain and further analyze are not immune to a

possible lack of an UV-complete description, i.e. we will not be able to clearly rule in or rule

out a stringy embedding of everything that we observe. In this article, we are motivated

by the somewhat universal and, perhaps with some literary freedom, the attractor-type

behaviour of an IR scaling-symmetric (technically speaking, the Hyperscaling-violating

Lifshitz) geometry obtained in [8]. Thus persuaded, we will consider turning on two types

of bulk gravitational fields that presumably correspond to, via the Gauge-String duality,

a non-zero density (or, chemical potential) and a constant magnetic field. Both these

correspond to relevant deformations of an UV CFT of certain dimensions, and the defor-

mations are applied explicitly by the fundamental sector. As we consider the gravitational

back-reaction by solving the resulting Einstein equations (along with a Maxwell-type one),

we observe that, the deep infrared receives a qualitative correction. This correction, in

an appropriate sense, is inherently non-perturbative in that a simple Nf/Nc correction is

unlikely to yield the same.

The solutions that we obtain are of the following type: starting with an AdSd+1-

dimensional UV, the density driven IR is given by an AdS2×Rd−1. On the other hand, the

magnetically driven IR turns out to be an AdSd−1 × R2. We are, however, unable to find

an analytical solution when both density and magnetic deformations are present; should

an analytical solution exist, it is certainly not of scaling type. Note that, in both cases

one turns on a bulk two-form field. In the density-driven case, the directions parallel to

the Hodge dual of the two-form decouples from the dynamics; on the other hand, in the

magnetically driven case, the directions parallel to the two-form do.

The emergence of an effective AdS2, or an AdSd−1 IR is not new. Similar physics is ob-

served in e.g. taking the near-horizon limit of an extremal Reissner-Nordstrom black hole,

and in the solutions described in e.g. [20]. An AdS2 has also been obtained in [13], from

a bottom up construction of Veneziano limit, in e.g. [21–23] within the context of Gauge-

Gravity duality, and earlier in e.g. [24–26] from a purely gravitational perspective, with an

action similar to the one that we consider.2 Our work is along the lines of these earlier

works, in which we explore this AdS2 from a different perspective and with a complemen-

tary analysis, to e.g. emphasize the non-perturbative nature of the IR. Moreover, we also

obtain anisotropic solutions, which have not previously appeared in this context. On the

other hand, compared to [20], there is another important physical difference: the IR is fun-

damental matter dominated, be it density or the magnetic field. We can equivalently state

that our oversimplified model is sufficient to capture these features, which are nonetheless

present in more rigorous top down stringy constructions. Thus, one perhaps does not need

to resort to a precise stringy construction for addressing sufficiently general issues.3

We also construct explicit flows to the corresponding IR CFTs, which are only nu-

merical. It should be possible to construct a perturbative solution around each CFTs, or

the AdS-fixed points. Already, the leading order perturbation, which we explicitly perform

2We thank Javier Tarŕıo for pointing out these references to us.
3We should mention that the IR CFTs that emerge in our model, may as well remain in a more involved

construction [8], if the dilaton vanishes at this point. In general though, including a non-trivial dilaton is

more generic. We are currently exploring this and other possibilities.
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for each case, the corrections encode crucial information about the deformation, e.g. the

dimension of the corresponding operator. Treating the example of 5-bulk dimensions, we

observe that density perturbation is more relevant towards the IR. This is further corrobo-

rated by the linearized analysis near the IR fixed points: via a density perturbation around

the magnetically driven AdS3×R2 and a magnetic perturbation around the density-driven

AdS2 × R3 solutions. While the former is a relevant deformation, the latter is logarith-

mic. Towards the IR, this logarithmic divergence can simply be tamed by introducing an

event horizon. Therefore, in the limit of a small magnetic field, the deep IR is dominated

by a (thermal) AdS2 and a corresponding asymptotic solution can be constructed. The

AdS2, on the other hand, will be drastically modified at the UV — a property usual to

AdS2-gravity. See e.g. [27] for a general analysis of back-reaction in AdS2 from a different

perspective. It would be interesting for us to understand and explore the flow to the AdS2

further, in view of the current interests in AdS2/CFT1 [28–30].

In carrying out the linearized analysis, we observe the following: the scale of back-

reaction and the scale of conformal symmetry breaking are distinct. While the back-

reaction always appears as a power law correction, the breaking of conformal symmetry is

only perceived as the appearance of a log-term, i.e. by inducing a conformal anomaly [31].

For example, conformal symmetry breaking seems to happen at a different scale that is

closer to the e.g. AdS3 × R2 fixed point, than the back-reaction scale.

We also find anisotropic solutions. For example, when a density is turned on, encoded

in the gauge field F = A′t(r)dt ∧ dr, we find an AdS2×EAdSd−1 geometry. Similarly, an

AdSd−1×EAdS2 solution exists with the two-form F = dA, where A = Ay(x)dy. Interest-

ingly, such solutions also exist with the unflavoured action: Einstein gravity with a negative

cosmological constant.4 The main difference between the flavoured and the unflavoured

cases is: in the former the curvature scales for the AdS and the EAdS can be arbitrary,

whereas for the latter these two scales are locked. It is also straightforward to check that

one can trivially introduce event horizon in these geometries. In the limit of vanishing

event horizon, i.e. vanishing temperature in the dual field theory, AdS2×EAdSd−1 and

AdSd−1×EAdS2 are related simply by an analytic continuation. This is expected, since

the unbroken Lorentz invariance allows us to trade freely between the (bulk) electric and

magnetic configurations.

The case of d = 3 is special, due to a (bulk) electric-magnetic duality (S-duality). In

this case, contrary to the general story, an analytic scaling solution exists with both density

and magnetic fields turned on. The anisotropic solution, in this case, is characterized by the

usual scaling in the radial coordinate, along with a scaling in y with a shift in x direction.

This is irrespective of the “electric” or the “magnetic” nature of the gauge field.

In one dimension higher, d = 4, the features are more generic. The density driven phase

singles out an AdS2 and the decoupled 3-manifold can be either R3 or an EAdS3. The latter

is an anisotropic solution of Bianchi type-V. In the latter, a shift in the x-direction along

with rescaling in y and z-directions constitute the corresponding symmetry. These are the

only homogeneous and anisotropic solutions within the scaling ansatz.

4We are not aware whether this observation has been manifestly presented before. This generalizes to

AdS and EAdS of various dimensions.
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In order to make connection with the existing literature, we note that in [32–34] various

anisotropic solutions of different Bianchi types were found within Einstein gravity with

negative cosmological constant and a massive Proca field. This was also a bottom up or

a phenomenological approach, in which the mass of the gauge field was treated a free

parameter in the theory. In the limit of vanishing mass, no anisotropic solution survives.

The putative dual field theory, in these cases, does not have any fundamental matter; the

only degrees of freedom are adjoint fields. Thus, one can only switch on a density or a

magnetic field in the adjoint sector. It is interesting to note that, with fundamental matter,

the qualitative physics remains somewhat similar, e.g. the effective dimensional reduction

with a magnetic field, resulting from a frozen dynamics at the lowest Landau level.5 It

would be revealing to demonstrate this phenomenon in a suitable weakly coupled field

theory, which we leave for a future work.

We briefly discuss the case of partially-filling brane sources. In this case, the DBI

source has a reduced dimensionality compared to the one in which Einstein gravity is

defined. This corresponds to introducing the fundamental matter sector as defects in a

system of adjoints. To simplify the problem, we also smear the partially-filling branes

along the transverse directions, thereby reducing the problem to unknown functions of

only one, namely the radial, variable. It turns out, however, that within the scaling ansatz

we find AdSp+1 × Rd−p solutions, which are non-perturbative in back-reaction. The back-

reacting brane is (p + 1)-dimensional, living in a (d + 1)-dimensional geometry. These

geometries are purely coloured and flavoured, with no additional fields turned on. We do

not find any analytical solution with a density or a magnetic field, in these cases.

This article is divided in the following sections: in section two, we introduce the action

and explicitly write down the corresponding equations of motion. We discuss various

solutions, in details, for the special case of d = 3 in section 3. Subsequently, we comment

on the general case in the next section. A detailed analysis, including a discussion of the

dimension of various operators corresponding to the density and the magnetic field, from

the perspective of various fixed points, is discussed in section 5, with the sufficiently general

example in d = 4. Finally, we offer a few comments on the partially-filling brane sources

in the next section.

2 The action and the EOMs

Our starting point is the following action:

Sfull = Sgravity + SDBI , (2.1)

Sgravity =
1

2κ2

∫
dd+1x

√
−detg (R− 2Λ) , (2.2)

SDBI = −τ
∫
dd+1x

√
−det (g + F ) . (2.3)

5With fundamental matter in the probe limit, this effective dimensional reduction is often thought to be

responsible for the breaking of chiral symmetry as observed in various holographic models in e.g. [37–42].
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Here Sgravity represents Einstein-gravity that is typically dual to the adjoint sector of a

gauge theory and SDBI corresponds to the action of a brane that is dual to the fundamental

sector of the field theory. Also, κ represents the Newton’s constant, τ represents the “brane

tension”. The field F is a U(1)-gauge field living on the brane. In the limit of small

fields, SDBI reduces to a simple Maxwell term, SMaxwell. An AdS-solution is obtained if

Λ = −d(d− 1)/2L2, where L represents the radius of AdS.

The equations of motion resulting from the variation of the action are:

Rµν −
1

2
(R− 2Λ) gµν = Tµν , (2.4)

∂µ

(√
−det (g + F ) Aµν

)
= 0 , (2.5)

where

Aµν = −
(

1

g + F
· F · 1

g − F

)µν
, (2.6)

Tµν =
κ2τ√
−detg

(
δSDBI

δgµν
+
δSDBI

δgνµ

)
= −

(
κ2τ
) √−det (g + F )√

−detg
Sµν , (2.7)

Sµν =

(
1

g + F
· g · 1

g − F

)µν
. (2.8)

In calculating the above, Aµν or Sµν can be evaluated by simply treating g and F as

matrices, and then using the formulae in (2.6), (2.8).

To proceed further, we begin by fixing a dimension. For reasons of convenience, d = 3 is

a good choice: below this, gravity is non-dynamical and everything is essentially encoded

within diffeomorphisms. Moreover, for d = 3, the putative dual field theory is (2 + 1)-

dimensional, and thus it can support a finite density, as well as a non-vanishing magnetic

field along the field theory directions. We will, in due course of our discourse, discuss the

physics in various dimensions.

3 The ansatz and the solutions: d = 3

We begin our discussion in d = 3, i.e. in four bulk dimensions. We will discuss the gener-

alizations afterwards. To warm up to the cause, let us start with the following ansatz:

ds2 = −gtt(r)dt2 + grr(r)dr
2 + gxx(r)dx2 + gyy(r)dy

2 , (3.1)

where the metric data {gtt(r), grr(r), gxx(r), gyy(r)} are functions of the radial coordinate

r only. Now, we will discuss two distinct cases, in which we excite a gauge field in the

DBI-sector that corresponds to a bulk electric field and a bulk magnetic field, respectively.

These will be designed to, subsequently, correspond to a non-vanishing density (or a non-

vanishing chemical potential) and a non-vanishing magnetic field in the conjectural dual

field theory. We duly refer to these two cases as “electric” and “magnetic”.

3.1 The electric case

We will discuss two inequivalent solutions in this section. The distinction lies in the be-

haviour of the metric.

– 6 –
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3.1.1 The AdS2 × R2 solution

Let us begins with the following gauge-field ansatz:

Aµ = {At(r), 0, 0, 0} , (3.2)

and work with the following scaling-ansatz for the metric coefficients and the gauge field:

gtt(r) = rα, grr(r) = rβ , gxx(r) = gyy(r) = rδ and At(r) = Qer
α1 . (3.3)

In what follows, we will explicitly discuss the strategy to obtain exact scaling-type solutions,

that we use repeatedly in this article. In later sections, however, we will be terse.

First, the equations of motion for the gauge field becomes:

α1Qer
α1+δ−1

(
rα+β+2(α− 2α1 + β − 2δ + 2) + 2δα2

1Q
2
er

2α1
)

2
(
rα+β+2 − α2

1Q
2
er

2α1
)3/2 = 0 . (3.4)

The tt, rr, xx components of the Einstein’s equation become:

−4Λ− 4κ2τr
1
2

(α+β+2)√
rα+β+2 − α2

1Q
2
er

2α1
+ δ(2β − 3δ + 4)r−β−2 = 0 ,

2αδ + δ2 + 4rβ+2

(
Λ +

κ2τr
1
2

(α+β+2)√
rα+β+2 − α2

1Q
2
er

2α1

)
= 0 ,

rα
(
α2 + α(δ − β − 2)− (β + 2)δ + δ2 + 4Λrβ+2

)
+4κ2r2τ

√
rα+β−2

(
rα+β+2 − α2

1Q
2
er

2α1
)

= 0 ,

(3.5)

respectively.

It can now be seen from eq. (3.4), that, for having a non-trivial scaling solution we

must choose

α1 =
α+ β + 2

2
, (3.6)

which, in turn and to solve eq. (3.4), requires

δ = 0 . (3.7)

With the above choices, the Einstein equations are solved by

β = −2 , Λ = − 1

Q2
e

, τ =

√
4−Q2

eα
2

2Q2
eκ

2
, (3.8)

At this point we note the following: in the above equation, Λ and τ define a bulk theory

and can take any value. Given these, Qe and α, which are integration constants of the

particular solution, can be solved for using the above relations. In all subsequent cases,

we write similar equations. These are to be interpreted as determining the integration

constants, i.e. Qe and α, in terms of the parameters of the theory, i.e. Λ and τ .

– 7 –
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Observe that, in the final solution, α remains undetermined:

ds2 = −rαdt2 +
dr2

r2
+ dx2 + dy2 . (3.9)

The reason is that we are working in units where an overall length scale is set to unity.

In other words, one can start from the metric in eq. (3.9) and perform a coordinate

transformation:

r = r̃
α
2 and t =

2

α
t̃ , (3.10)

such that we obtain

ds2 =
4

α2

[
−r̃2dt̃2 +

dr̃2

r̃2

]
+ dx2 + dy2. (3.11)

The above clearly factors out an overall numerical constant. Basically, we obtained an

AdS2 × R2 solution, in which the AdS2 length-scale is determined by α. This length

can always be factored out by rescaling the coordinates x, y and, hence, has no physical

consequence. Certainly, we can work in units where α = 2, i.e. choosing the AdS2 radius

to be unity, and we obtain the solution:

α = 2 , α1 = 1 , β = −2 , Λ = − 1

Q2
e

, τ =

√
1−Q2

e

Q2
eκ

2
. (3.12)

We end this section with a comment. Note that, by looking at (3.12), it náıvely seems that

a well defined τ = 0 limit exists and it is obtained by setting Qe = 1. This, however, is

untrue. Going back to the original equation in (3.4), it is straightforward to check that

setting Qe = 1 also exacts the denominator to vanish, thereby annulling the subsequent

analysis, altogether. Alternatively, it can also be checked explicitly that AdS2 × R2 does

not extremize the action in (2.1), when τ = 0. We can arrange Qe approach as close to

unity as possible, subsequently tuning τ → 0. This, however, is non-perturbative, since Qe
needs to be tuned to the maximum allowed value. Thus, the solution is non-perturbative

in back-reaction.6

3.1.2 The AdS2 × EAdS2 solution

With the same gauge field, there is another exact solution which we discuss below. Now,

the metric and gauge field scaling-ansatz goes as:

gtt(r) = L1r
α , grr(r) = L1r

β , gxx(r) = L2r
δ , gyy(r, x) = L2e

−2xrδ ,

and At(r) = Qer
α1 .

(3.14)

6We will discuss this in some details, in section 3.4. One can look for the case when AdS2 and R2

come with separate length-scales, denoted by L1 and L2, such that ds2
AdS2

= L2
1

(
−r2dt2 + dr2/r2

)
, and

ds2
R2 = L2

2

(
dx2 + dy2

)
. As expected, the solution is L2-independent, since it merely rescales the spatial

coordinates. The AdS-radial scale, however, sets the maximum value of Qe, via the following relation:

τ =

√
L2

1 −Q2
e

Q2
eκ2

. (3.13)
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The difference from the previous case clearly lies in the explicit x-dependence of the gyy-

component, and hence, the geometry is homogeneous, but not isotropic. Note, also, that

we have introduced two different length scales, L1 and L2. However, as we will see, only

there ratio is physical.

It can be checked that there is solution of the following form:

α = −β = 2 , δ = 0 , α1 = 1 , Λ =
L2

1−L1L2−Q2
e

L2Q2
e

, τ =
(L2−L1)

√
L2

1−Q2
e

κ2L2Q2
e

. (3.15)

It is clear that L1, L2 appears only in the dimensionless combination of (L1/L2), i.e. the

ratio of the two radii of EAdS2 and AdS2 geometries.7

Interestingly, note that in the case L1 = L2, the DBI part of the action decouples from

the system, since τ = 0. This suggests that there is a similar AdS2×EAdS2 geometry with

Einstein gravity and a negative cosmological constant:

α = −β = 2 , δ = 0 , Λ = − 1

L1
, τ = 0 , (3.16)

that can also be explicitly checked. On the contrary, this is not true for the AdS2 × R2

solution, for which a non-vanishing contribution from DBI is necessary.

It is worth noting that the two solutions discussed above, i.e. AdS2 × R2 and AdS2 ×
EAdS2, are the only two possible homogeneous, but not necessarily isotropic, solutions

within the scaling-ansatz.

3.2 The magnetic case

As before, we will also discuss two inequivalent solutions in this section. We will also

present some of the details in this section.

3.2.1 The AdS2 × R2 solution

Now, consider the following gauge field:

Aµ = {0, 0, Ax(y), 0} , (3.17)

with the following scaling-ansatz for the metric coefficients and the gauge field:

gtt(r) = rα , grr(r) = rβ , gxx(r) = gyy(r) = rδ and Ax(y) = Qmy . (3.18)

The equation for the gauge field is identically satisfied. The Einstein’s equations yield:

κ2τ
√
Q2
m + r2δrβ−δ + Λrβ +

δ(2α+ δ)

4r2
= 0 ,

−4Λ− 4κ2τr−δ
√
Q2
m + r2δ + δ(2β − 3δ + 4)r−β−2 = 0 ,

κ2τr2δ√
Q2
m + r2δ

+
1

4

(
α2 + α(−β + δ − 2) + δ(−β + δ − 2)

)
r−β+δ−2 + Λrδ = 0 .

(3.19)

7That the geometry in (3.14) corresponds to an AdS2×EAdS2 is best seen using the following coordinate

change: x = log u.
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One solution of the equations above is:

δ = 0 , β = −2 , Λ = −
α2
(
Q2
m + 1

)
4Q2

m

, τ =
α2
√
Q2
m + 1

4κ2Q2
m

. (3.20)

Once again, α remains undetermined, and we get:

ds2 = −rαdt2 +
dr2

r2
+ dx2 + dy2 . (3.21)

Thus, we get a similar AdS2 × R2 solution with the choice α = 2,

Λ = −
(
Q2
m + 1

)
Q2
m

, τ =

√
Q2
m + 1

κ2Q2
m

. (3.22)

There is, however, an important difference between the solution described in (3.12) and the

one in (3.22). While the one in (3.12) has a well-defined τ → 0 limit, the above solution

does not. The easiest way to see this is to express Qm in terms of τ , in the limit τ → 0:

Q2
m =

α2

16κ4τ2
+ 1 +O(τ3) , (3.23)

which is singular.

3.2.2 The AdS2 × EAdS2 solution

As before, we also get the AdS2 × EAdS2 solution. The corresponding metric functions

and the gauge field are:

gtt(r) = L1r
α , grr(r) = L1r

β , gxx(r) = L2r
δ , gyy(r, x) = L2e

−2xrδ ,

Ay(x) = Qme
−α1x .

(3.24)

The corresponding solution is obtained by

α = −β = 2 , δ = 0 , α1 = 1 , Λ = −−L1L2 + L2
2 +Q2

m

L1Q2
m

,

τ =
(L2 − L1)

√
L2

2 +Q2
m

κ2L1Q2
m

.

(3.25)

As before, in the limit L1 = L2, the DBI sector decouples and this can be obtained as

a solution of Einstein gravity with a negative cosmological constant. Once again, τ → 0

limit is singular, unless we also tune L1 → L2, and the above solution cannot be obtained

treating the DBI backreaction perturbatively.

Before discussing the general case, let us make an explicit connection between the

electric and the magnetic solutions that are related by an S-duality. It is straightforward

to check that, under the following map:

ϕS−dual : Q2
m →

L2
2Q

2
e

L2
1 −Q2

e

, (3.26)

the corresponding solutions are mapped as:

ϕS−dual : (3.12)→ (3.22) , ϕS−dual : (3.15)→ (3.25) . (3.27)
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3.3 The electric-magnetic case

As a natural continuation of the above results, let us now explore the gauge field with both

magnetic and electric components. The gauge field and the metric data are:

Aµ = {At(r), 0, Ax(y), 0} , with Ax(y) = Qmy , At(r) = Qer
α1 ,

gtt(r) = L1r
α , grr(r) = L1r

β , gxx(r) = gyy(r) = L2r
δ .

(3.28)

The AdS2 × R2 solution is simply obtained to be:

α1 =
α

2
= 1 , δ = 0 , β = −2 , Λ = −

L1

(
Q2
m + L2

2

)
L2

2Q
2
e + L2

1Q
2
m

,

τ =
L2

√(
Q2
m + L2

2

) (
L2

1 −Q2
e

)
κ2
(
L2

2Q
2
e + L2

1Q
2
m

) .

(3.29)

Clearly, τ → 0 limit is smooth if we tune Qe → 1, but it is singular if we hold Qe 6= 1 fixed.

On the other hand, the AdS2×EAdS2 solution can be characterized by the following

data: first, we write down the ansatz for the metric and the gauge field as:

Aµ = {At(r), 0, Ax(y), 0} ,
gtt(r) = L1r

α , grr(r) = L1r
β , gxx(r) = L2r

δ , gyy(r, x) = L2e
−2xrδ

and Ay(x) = Qme
−α1x , At(r) = Qer

α2 .

(3.30)

The solution is given by

α1 = 1 , α2 = 1 , δ = 0 , β = −2 , α = 2 ,

Λ =
L2

1L2 − L1

(
L2

2 +Q2
m

)
− L2Q

2
e

L2
1Q

2
m + L2

2Q
2
e

,

τ =
(L2 − L1)

√
(L1 −Qe)(L1 +Qe)

(
L2

2 +Q2
m

)
κ2
(
L2

1Q
2
m + L2

2Q
2
e

) .

(3.31)

As before, L1 = L2 limit exists, corresponding to τ = 0, in which the DBI sector decouples.

3.4 Perturbative or non-perturbative

In this section, we will formally define and subsequently classify the already discussed

solutions as perturbative or non-perturbative in back-reaction. The action in (2.1)–(2.3)

has two paramaters: Λ and κ2τ . The solutions are characterized by four other parameters:

Qe, Qm, L1, L2, which are related to the parameters of the action. Each corresponding

solution also comes with a regime of validity for these parameters. Now, we will define a

solution as perturbative, provided: (i) One can tune κ2τ → 0 within the regime of validity

for various parameters characterizing the solution, (ii) the same solution is obtained by

setting κ2τ = 0, which corresponds to the zeroth order result. A solution that violates

either of these two conditions, will be characterized as non-perturbative.
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Now, from (3.12) we get:

Q2
e =

2

1 +
√

4κ4τ2 + 1
=⇒ Qe < 1 . (3.32)

Since we cannot reach Qe = 0, it already violates condition (ii) above. On the other hand,

for the solution in (3.22) the limit κ2τ → 0 is singular and thus violates condition (i) above.

Thus, both solutions are non-perturbative. Furthermore, even though the κ2τ → 0 limit

seems to have distinct behaviours in (3.12) and (3.22), we argue below that this is not the

case according to our criteria set above. Towards that, note the following:

Q2
e = 1− κ4τ2 +O

(
κ8τ4

)
, (3.33)

Q2
m =

1

κ4τ2
+ 1− κ4τ2 +O

(
κ8τ4

)
, (3.34)

along with the corresponding regimes of validity: 0 < Qe < 1 and 0 < Qm < ∞. In both

cases, κ2τ → 0 limit is connected to the Qe → 1 or Qm → ∞ limit, respectively; while

setting κ2τ = 0 demands us to set Qe = 1 or Qm = ∞, respectively. These features are

identical in both solutions.

Now, let us consider (3.15). Any solution characterized by L1/L2 6= 1 cannot be ob-

tained with κ2τ = 0, even though at precisely L1 = L2, the solution exists with κ2τ = 0.

Thus, since condition (ii) is violated, the solution in (3.15) is also non-perturbative. A sim-

ilar conclusion can be drawn for the solution in (3.25). When both Qe and Qm are present,

one can expand in κ2τ keeping either of these fixed, and arrive at a similar conclusion.

Thus, in brief, all solutions are non-perturbative in back-reaction.

4 The ansatz and the solutions: general dimensions

In view of the AdS2×R2 solution that we obtained with both electric and magnetic sources

in the previous section, we will now comment on the higher dimensional generalization. The

generalization turns out to be rather simple and intuitive: with a purely electric field, in

(d + 1)-bulk dimensions, i.e. when the boundary field theory is d-dimensional, there is an

AdS2 × Rd−1 solution. With a magnetic field, however, the analogous exact solution is

AdSd−1 × R2. For d = 3, they are both AdS2 × R2, which we have explicitly obtained

before. In the dual d-dimensional field theory, this implies that at non-vanishing density

the IR-phase is always dominated by a (0 + 1)-dimensional CFT. On the other hand, if

we couple the system with a constant magnetic field, then the IR-phase is dominated by a

(d− 2)-dimensional CFT.

In this section we briefly discuss explicit solutions. In the purely electric case, let us

begin with the following scaling ansatz:

At(r) = Qer
α1 , Ar = Ai = 0 , for all i = 1, · · · , d− 1 .

ds2 = −gtt(r)dt2 + grr(r)dr
2 + g11(r)

d−1∑
i=1

dx2
i ,

gtt(r) = L1r
α , grr(r) = L1r

β , g11(r) = L2r
δ .

(4.1)
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The corresponding AdS2 × Rd−1 solution is given by

α = 2 , α1 = 1 , β = −2 , Λ = −L1

Q2
e

, τ =

√
L2

1 −Q2
e

Q2
eκ

2
. (4.2)

On the other hand, we can consider a magnetic field, to be concrete in (d+ 1)-bulk dimen-

sions, of the following form:

Ax1(x2) = Qmx2 , Ar = At = Ai = 0 , for all i = 3, · · · , d− 4 .

ds2 = −gtt(r)dt2 + grr(r)dr
2 + g11(r)(dx2

1 + dx2
2) + g33(r)

d−4∑
i=3

dx2
i ,

gtt(r) = L1r
α , grr(r) = L1r

β , g11(r) = L2r
δ , g33(r) = L1r

σ .

(4.3)

To be concrete, we consider the example of d = 4. In this case, we find an AdS3 × R2

solution as given below:

α = σ = 2 , δ = 0 , β = −2 , Λ = − 1

L1

(
2L2

2

Q2
m

+ 3

)
, τ =

2L2

√
Q2
m + L2

2

L1κ2Q2
m

. (4.4)

It is now straightforward to check that, according to the criteria set in section 3.4, the

above solutions are also non-perturbative in back-reaction.

5 The ansatz and the solutions: d = 4

Now we specifically consider a (4 + 1)-dimensional bulk. The action that we extremize

remains the same as in eq. (2.1). We will also explore homogeneous, but anisotropic

solutions. The AdS2 × R3 (electric) and AdS3 × R2 (magnetic) solutions evidently exist

and are given by (4.2) and (4.4). Note that, in this case, both AdS3 and AdS2 appear in

the IR, depending on the UV-deformation.

These solutions are already discussed as a part of the general story in (d + 1)-bulk

dimensions. We will, now, comment on the physics. First, let us comment on the op-

erators that we turn on at the UV — that is described by a (3 + 1)-dimensional CFT

— corresponding to the bulk magnetic and the electric deformations. We will do this by

performing a perturbative analysis around the AdS5-asymptotics.

In the case of a magnetic field, it is straightforward to check that F = Qmdx
1 ∧

dx2 satisfies (2.5) trivially, irrespective of the geometry; thus we need not concern with

a perturbative solution for the gauge field. Assuming that Qm is “small”, equivalently

expanding around the AdS5-asymptotics, one can easily calculate corrections to the metric

at the leading order in Q2
m. Renaming g11 = gyy and g33 = gxx, this yields:

Λ = −6 + L1κ
2τ

L1
, (5.1)

gtt = L1r
2 (1 + δgtt) , gxx = L1r

2 (1 + δgxx) , gyy = L1r
2 (1 + δgyy) , (5.2)

grr = L1r
−2 (1 + δgrr) , (5.3)
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where

δgtt = Q2
m

[
α

(1)
t

r4
+
α

(2)
t

r4
log (r)

]
, δgxx = Q2

m

[
α

(1)
x

r4
+
α

(2)
x

r4
log (r)

]
, (5.4)

δgyy = Q2
m

[
α

(1)
y

r4
+
α

(2)
y

r4
log (r)

]
, δgrr = Q2

m

[
α

(1)
r

r4
+
α

(2)
r

r4
log (r)

]
, (5.5)

(5.6)

with the following constraints:

α(2)
x = α

(2)
t , α(2)

y = α
(2)
t +

κ2τ

2L1
, α(2)

r = −4α
(2)
t −

κ2τ

L1
, (5.7)

α(1)
r = −α(1)

t + α
(2)
t − α(1)

x − 2α(1)
y +

κ2τ

3L1
. (5.8)

Thus, náıvely, the deformation is characterized by four free parameters. Note, also, that the

magnetic perturbation behaves like a relevant deformation (since it grows towards the IR),

and corresponds to a (mass scaling) dimension 2 operator.8 The leading order correction

also involves a logarithmic contribution, that encodes breaking of conformal symmetry

associated with the explicit scale set by the magnetic field. Without any loss of generality,

we can set δgrr = 0. This specifically yields:

ε+ px + 2py =
1

12

κ2τ

L1
, (5.9)

with the following identifications:

ε = α
(1)
t , px = α(1)

x , py = α(1)
y . (5.10)

See e.g. equation (A.2). In the equation of state, given in (5.10), ε, px and py are energy,

pressure parallel and perpendicular to the magnetic field, respectively — as viewed in the

dual field theory. The equation of state has a non-vanishing right hand side, which signals

breaking of conformal invariance. Recall that, typically, κ2 ∼ N−2
c and τ ∼ NfNc. Thus,

conformal invariance is broken at O (Nf/Nc), which is, intuitively, expected. All in all, the

number of free parameters is reduced to two: the energy and the anisotropy in pressure.

For the bulk electric field, which is dual to turning on a density perturbation on

the boundary CFT, a similar calculation can be done, and the result can succinctly be

presented as:

Λ = −6 + L1κ
2τ

L1
, (5.11)

gtt = L1r
2 (1 + δgtt) , gxx = L1r

2 (1 + δgxx) , gyy = L1r
2 (1 + δgyy) , (5.12)

grr = L1r
−2 (1 + δgrr) , (5.13)

8Recall that, the asymptotic fall-off behaviour Φ ∼ ()1 r
−∆ +()2 r

∆−d applies to the metric components

as well [43], where Φ is a generic bulk field. Here ∆ is the mass scaling dimension of the operator. In this

case, with d = 4, we get ∆ = 4, which is the correct dimension of a boundary stress-energy tensor. Of

course, the stress-tensor has twice the dimension of the magnetic field.
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where

δgtt =
ε

r4
+Q2

e

β
(1)
t

r6
, δgxx =

px
r4

+Q2
e

β
(1)
x

r6
= δgyy , δgrr = Q2

e

β
(1)
r

r6
, (5.14)

and ∂rAt(r) =
Qe√
L1

1

r3
, (5.15)

with the following constraints:

β(1)
x = β

(1)
t −

κ2τ

6L2
1

= β(1)
y , β(1)

r = −6β
(1)
t +

5κ2τ

6L2
1

. (5.16)

In the above, we have written down the large r-asymptotic solution, in which energy and

pressure terms are leading compared to the density perturbation. The metric deformation

here corresponds to the addition of a (mass) dimension 6 operator, and thus the gauge field

deformation corresponds to turning on a (mass) dimension 3 operator. As before, setting

δgrr = 0, we completely specify all asymptotic data:

β
(1)
t =

5

36

κ2τ

L2
1

, β(1)
x = − 1

36

κ2τ

L2
1

, (5.17)

which are also O (Nf/Nc).

Now that we have a basic understanding of the operators turned on at the UV-

boundary, we would like to perform a similar analysis in the IR. This is particularly

facilitated by the fact that the IR is also a CFT, either an (1 + 1)-dimensional or a (0 + 1)-

dimensional one, depending on the magnetic or the density deformation, respectively. Now

we want to comment on the physics when both deformations are present, in which we do

not find any analytical scaling-type solution. However, we can certainly estimate — as

viewed from the respective CFT — what operator is turned on at the AdS3 and the AdS2

fixed points, corresponding to a density and the magnetic deformations, respectively.

We begin with the AdS3 fixed point. Recall that this solution is given by (see (4.4))

ds2 = L1

(
−r2dt2 + r2dx2 +

dr2

r2

)
+ L2d~y2

2 , (5.18)

Λ = −3Q2
m + 2L2

2

L1Q2
m

, τ =
2L2

L1Q2
mκ

√
L2

2 +Q2
m . (5.19)

Now we consider the following linearization

gtt = L1r
2 (1 + δgtt) , gxx = L1r

2 (1 + δgxx) , gyy = L2 (1 + δgyy) , (5.20)

grr = L1r
2 (1 + δgrr) , F = Qmdy1 ∧ dy2 + δF . (5.21)

Without any loss of generality, we can choose δgrr = 0. This yields:

δgtt =
ε

r2
−Q2

e γ
(1)
t

1

r2
−Q2

e γ
(2)
t

log r

r2
, (5.22)

δgxx =
px
r2

+Q2
e γ

(2)
x

log r

r2
, (5.23)

δgyy = Q2
e γ

(1)
y

1

r2
, (5.24)

δF =
Qe
r
dt ∧ dr , with ε+ px = 0 . (5.25)
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The various constants are:

γ
(1)
t =

2L2
2

(
Q2
m + L2

2

)
Q2
mL

2
1

(
3Q2

m + 4L2
2

) , γ
(2)
t =

(
Q2
m + L2

2

)
Q2
mL

2
1

, (5.26)

γ(2)
x =

Q2
m + L2

2

Q2
mL

2
1

, γ(1)
y =

Q4
m + 3Q2

mL
2
2 + 2L4

2

2Q2
mL

2
1

(
3Q2

m + 4L2
2

) . (5.27)

Clearly, the equation of state, given in equation (5.25), remains unaffected. Also, both gtt
and gxx receive a logarithmic correction sourced by the density deformation. This met-

ric deformation, as viewed from the CFT2 perspective, is relevant, has mass dimension

2 (therefore, the density perturbation turns on an operator with dimension 1) and grows

towards the IR. The logarithmic correction is absent in gyy, but the deformation is still rel-

evant. The presence of the logarithm function is associated with the breaking of conformal

invariance due to non-vanishing density. One can, thus, identify two natural length scales:

one where conformal symmetry is broken, and the other where density begins dominating

the IR. The former can be identified by setting O
(
Q2
e γ

(2)
t

log r
r2

)
∼ O(1), while the latter

is located at O
(
Q2
e γ

(1)
t

1
r2

)
∼ O(1). Thus, the density dominated phase appears at a scale

much lower than the scale of breaking conformal invariance.

We now move on to discussing the other IR: AdS2 × R3. The corresponding solution

is given by (see equation (4.2))

ds2 = L1

(
−r2dt2 +

dr2

r2

)
+ L2

(
dx2 + d~y2

2
)
, (5.28)

Λ = −L1

Q2
e

, τ =

√
L2

1 −Q2
e

Q2
eκ

2L1
. (5.29)

As before, we write down the following linearization:

gtt = L1r
2 (1 + δgtt) , gxx = L1r

2 (1 + δgxx) , gyy = L2 (1 + δgyy) , (5.30)

grr = L1r
2 (1 + δgrr) , F = −Qedt ∧ dr + δF . (5.31)

This yields:

δgtt = Q2
m

2

3

L2
1 −Q2

e

L2
2Q

2
e

, δgrr = Q2
m

1

3

L2
1 −Q2

e

L2
2Q

2
e

, (5.32)

δgxx = Q2
m

4

3

L2
1 −Q2

e

L2
2Q

2
e

log r = −δgyy , (5.33)

δF = Qm dy1 ∧ dy2 . (5.34)

In writing the above, we have explicitly left out the homogeneous solutions that are explic-

itly given in equations (A.14)–(A.16). Quite clearly, gtt and grr are merely renormalized,

while gxx and gyy receive logarithmic corrections. Viewed from a purely AdS2 perspective,

this growth destroys the AdS2 asymptotic, as well as the AdS2 IR. One simple way to

protect the IR is to excite the mode in (A.15), which corresponds to introducing an event

horizon. Note that, in this case, the scale of breaking conformal invariance and the scale
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Figure 1. The numerical interpolating solution is shown here. We have obtained this particular

solution with the following values: C1 = 1, CH = 1 and Qe = 0.5 (see (B.6), (B.7)) and (B.8),

in units of the AdS2 radius. The CH mode is irrelevant, see (B.8). The numerical integration is

performed from r = 10−3 to r = 10.

of magnetic domination are one and the same, obtained by setting O (δgxx) ∼ O(1). Thus,

it is likely that, an RG flow connects the AdS3×R2 UV to the AdS2×R3 IR. This is con-

sistent with the AdS5 asymptotic analysis, in which density deformation is more relevant

compared to the magnetic one.

Finally, we will end this section with numerical solutions that interpolate between the

AdS2 or the AdS3-IR and the AdS5-UV. The interested reader will find relevant details

in appendix B, explaining how we construct the numerical solutions. Here we will just

present a few numerical results demonstrating our claim.

First, let us consider the AdS2 × R3 to AdS5 flow. We have outlined the details,

containing admissible boundary conditions, in equations (B.6), (B.7)) and (B.8). As a

representative example, we choose C1 = 1, CH = 1 and Qe = 0.5, all in units of the

AdS2-radius. The corresponding numerical solution9 is shown in figure 1. The other

interpolating solution from AdS3 × R2 to AdS5 is shown in figure 2. Here also, we have

chosen a representative example, in which D1 = −2, CH = 0.5 and Qe = 0.8, in units of

the AdS3 radius.
9It was pointed out to us by Javier Tarŕıo that the extremal case can be analytically solved and the

solutions are given in [22, 23].
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Figure 2. The numerical interpolating solution is shown here. We have obtained this particular

solution with the following values: D1 = −2, CH = 0.5 and Qe = 0.8 (see (B.10), (B.12)) and (B.13),

in units of the AdS3 radius. The CH mode is irrelevant, see (B.12). The numerical integration is

performed from r = 10−3 to r = 10.

5.1 Bianchi from DBI: electric field

In this section we will present a particular anisotropic solution that falls under the Bianchi

type-V class. The solution is equivalent to an AdS2 × EAdS3 geometry. As before, the

general metric ansatz that we will assume is of the following kind

ds2 = −gtt(r)dt2 + grr(r)dr
2 + gxx(r)dx2 + gyy(r, x)dy2 + gzz(r, x)dz2 ,

Aµ = {At(r), 0, 0, 0, 0}, with At(r) = Qer
α1 .

(5.35)

Here we are allowing for the possibility that either one or both of the metric coefficients

gyy, gzz are considered to be functions of the coordinates r, x, where the other ones are

only functions of the radial coordinate.

For this Bianchi type-V solution the specific metric ansatz further takes the form:

gtt(r) = L1r
α , grr(r) = L1r

β , gxx(r) = L2r
δ ,

gyy(r, x) = L2r
δe−2x , gzz(r, x) = L2r

δe−2x .
(5.36)

The algebra of the the Bianchi type-V, generated by the generators of the 3-dimensional
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subspace spanned by the coordinates x, y, z is:

ζ1 = ∂x + y∂y + z∂z , ζ2 = ∂y , ζ3 = ∂z ,

[ζ1, ζ2] = −ζ2 , [ζ2, ζ3] = 0 , [ζ3, ζ1] = ζ3 .
(5.37)

The corresponding solution is given by

α1 = 1 , δ = 0 , β = −2 , α = 2 ,

Λ =
2L2

1 − L1 − 3Q2
e

L2Q2
e

, τ =
(L2 − 2L1)

√
(L1 −Qe)(L1 +Qe)

κ2L2Q2
e

.
(5.38)

The metric takes the form:

ds2 = L1

(
−r2dt2 +

dr2

r2

)
+ L2

(
dx2 + e−2xdy2 + e−2xdz2

)
, (5.39)

which, after the following coordinate transformation

x = log u , (5.40)

looks like:

ds2 = L1

(
−r2dt2 +

dr2

r2

)
+ L2

(
du2 + dy2 + dz2

u2

)
. (5.41)

Here we can explicitly see that the {t, r} corresponds to an AdS2, while {u, y, z} represents

an EAdS3. As before, in the limit L2 = 2L1, the DBI sector decouples and we obtain the

same AdS2 × EAdS3 solution sourced entirely by a negative cosmological constant. Note

that, for arbitrary d we similarly obtain an AdS2 × EAdSd−1 solution.

Within the same ansatz, there is another algebraic solution, described by:

β = α− 2 , δ = 0 , α1 = α , Λ =

2L2
1

α2Q2
e
− 3

L2
, τ = −2L1

√
L2

1 − α2Q2
e

α2κ2L2Q2
e

. (5.42)

The corresponding line-element, written in x = log u, r = ev plane, takes the form:

ds2 = L1e
αv
(
−dt2 + dv2

)
+ L2

(
du2 + dy2 + dz2

u2

)
. (5.43)

Upon the following further coordinate transformation, and an analytic continuation, all

given by

ṽ =
1

α

[
e
α
2

(v+t) + e
α
2

(v−t)
]
, t̄ =

1

α

[
e
α
2

(v+t) − e
α
2

(v−t)
]
, (5.44)

t̄ = it̃ , z = iz̃ , and Q̃e = iQe , (5.45)

the line-element turns out to be:

ds2 = L1

(
dt̃2 + dṽ2

)
+ L2

(
du2 + dy2 − dz̃2

u2

)
. (5.46)

Thus, we get the known AdS3 × R2 solution, already given in (4.4).
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5.2 Anisotropy with magnetic field: AdS3 solution

We will now discuss anisotropic solution sourced by magnetic field. Let us begin with

the ansatz:

ds2 = −gtt(r)dt2 + grr(r)dr
2 + gxx(r)dx2 + gyy(r)dy

2 + gzz(r, y)dz2 ,

Aµ = {0, 0, 0, 0, Az(y)} , with Az(y) = Qme
−α1y ,

(5.47)

with
gtt(r) = L1r

α , grr(r) = L1r
β , gxx(r) = L1r

α ,

gyy(r) = L2r
δ , gzz(r, y) = L2r

δe−2y .
(5.48)

The solution is described by

α = −β = 2 , α1 = 1 , δ = 0 ,

Λ =
L2(L1 − 2L2)− 3Q2

m

L1Q2
m

, τ =
(2L2 − L1)

√
L2

2 +Q2
m

κ2L1Q2
m

.
(5.49)

With a variable change of y = log u, the corresponding metric can be written as:

ds2 = L1

(
−r2dt2 +

dr2

r2
+ r2dx2

)
+ L2

(
du2 + dz2

u2

)
. (5.50)

Here we can explicitly see that the {t, r, x} part describes an AdS3, whereas {u, z}
part describes an EAdS2. Setting L1 = 2L2 again decouples the DBI-matter. In general

(d+ 1)-bulk dimensions, one obtains an AdSd−1 × EAdS2 solution.

The other algebraic solution, which is given by

α = 0 , α1 = 1 , δ = 0 ,

Λ =
L2

Q2
m

, τ = −
√
L2

2 +Q2
m

κ2Q2
m

,
(5.51)

with the corresponding line-element:

ds2 = L1

(
−dt2 + rβdr2 + dx2

)
+ L2

(
dy2 + e−2ydz2

)
= L1

(
−dt2 + dv2 + dx2

)
+ L2

(
du2 + dz2

u2

)
.

(5.52)

6 Partially filling branes

In the spirit of emulating explicit D-brane sources, we will briefly comment on the case

when the D-brane is partially filling e.g. an AdS5 spacetime. To simplify the problem,

we will further smear the partially-filling branes along the transverse directions, such that

the resulting Einstein equations still remain ordinary differential equations. We intend to

study the following action:

Sfull = Sgravity + SDBI , (6.1)

Sgravity =
1

2κ2

∫
dd+1x

√
−detg(d+1) (R− 2Λ) , (6.2)

SDBI = −τ
∫
dp+1x

√
−det

(
g(p+1) + F

) ∫
dd−px . (6.3)
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Note that, in writing the matter action, we have manifestly lost covariance in the (d− p)-
directions, those directions are, however, still symmetries of the system. The field F is a

U(1)-gauge field living on the (p + 1)-dimensional brane. An AdSd+1-solution is obtained

if Λ = −d(d − 1)/2L2, with τ = 0, where L represents the radius of AdS. In the above,

g(p+1) is essentially the components of g(d+1), restricted on to the worldvolume directions

of the brane. We are certainly assuming that the brane embedding profile is trivial.

The Maxwell equation remains same as in (2.5). The Einstein equations of motion

split into two parts:

Rµν −
1

2
(R− 2Λ) gµν

∣∣∣∣
(p+1)

= Tµν , Rµν −
1

2
(R− 2Λ) gµν

∣∣∣∣
(d−p)

= 0 , (6.4)

where, as before,

Tµν = −
(
κ2τ
) √−det

(
g(p+1) + F

)√
−detg(d+1)

Sµν , (6.5)

Sµν =

(
1

g(p+1) + F
· g(p+1) ·

1

g(p+1) − F

)µν
(6.6)

For example, one finds the following solutions:

d = 4 , p = 3 , ds2 = L1

(
−r2dt2 +

dr2

r2
+ r2

(
dx2

1 + dx2
2

))
+ dx2

3 , (6.7)

d = 4 , p = 2 , ds2 = L1

(
−r2dt2 +

dr2

r2
+ r2dx2

1

)
+ dx2

2 + dx2
3 , (6.8)

d = 4 , p = 1 , ds2 = L1

(
−r2dt2 +

dr2

r2

)
+ dx2

1 + dx2
2 + dx2

3 . (6.9)

These are AdS4×R, AdS3×R2 and AdS2×R3, respectively. The transverse directions to

the brane source decouples and becomes an Rd−p. Interestingly, within the scaling ansatz,

these are the only solutions. Furthermore, the solutions are also non-perturbative in back-

reaction (preserving the AdS-asymptotics), which is best reflected in how the cosmological

constant and the radius of curvature are related to the other parameters in the theory:

Λ = −(p+ 1)

2
κ2τ , L1 =

p

κ2τ
. (6.10)

Clearly, the formula for L1 does not have a well-defined τ → 0 limit. Unfortunately, in

this case, there is no exact solution within a scaling ansatz once the gauge fields on the

DBI-worldvolume are turned on. We note, however, that akin to the “ABJM-case” studied

in [8], at non-vanishing density, the IR may asymptote to an AdS2 in a suitable radial

expansion. We leave this for future exploration.

– 21 –



J
H
E
P
0
3
(
2
0
1
7
)
0
7
1

Acknowledgments

AK would like to thank A. F. Faedo, D. Mateos, C. Pantelidou and J. Tarŕıo for the
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A Perturbation around AdS: various cases

In this appendix, we will collect some useful results and elaborate on the various modes

that appear as pure gravity fluctuations (i.e. without any sources). Thus we consider

fluctuations in metric components only, and solve Einstein equations. From this, one is

able to extract e.g. the stress energy tensor of the dual field theory. We will review this

exercise in three distinct cases: the UV AdS5, the magnetically driven AdS3 ×R2 and the

density driven AdS2 × R3.

Let us begin with the UV AdS5 case. In the absence of any DBI-source (the fundamen-

tal matter), the solution is characterized by a negative cosmological constant: Λ = −6/L1.

Within the same truncation, i.e. keeping τ = 0, we can consider linear fluctuations and

solve Einstein equations to obtain:

gtt = r2L1 (1 + δgtt) , gxx = r2L1 (1 + δgxx) , grr = r−2L1 (1 + δgrr) , (A.1)

δgtt =
ε

r4
, δgxx =

p

r4
, δgrr = 0 , with ε+ 3p = 0 . (A.2)

The last relation is the rather familiar equation of state for a (3 + 1)-dimensional CFT, in

which ε and p correspond to the energy and pressure, respectively. Also, setting δgrr = 0

is a gauge choice. The linearized Einstein equations do not have any other non-trivial

solution.10

Let us now discuss the magnetically driven AdS3 × R2 case. The solution, already

described in (4.4), is characterized by the following cosmological constant, and DBI-tension:

Λ = − 1

L1

(
2L2

2

Q2
m

+ 3

)
, τ =

2L2

√
Q2
m + L2

2

L1κ2Q2
m

. (A.3)

Linearizing and solving Einstein equations now yields:

gtt = r2L1 (1 + δgtt) , gxx = r2L1 (1 + δgxx) , grr = r−2L1 (1 + δgrr) , (A.4)

gyy = L2 (1 + δgyy) , (A.5)

δgtt =
αt
r∆

, δgxx =
αx
r∆

, δgyy =
αy
r∆

, δgrr = 0 , (A.6)

10It can also be checked trivially, that, in the presence of a non-vanishing τ , with no other fields turned

on, the physics is identical. It only changes the cosmological constant which is now given by Λ = − 6
L1

−κ2τ .
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with

∆ = 2 , αt = ε , αx = px , αy = 0 , with ε+ px = 0 . (A.7)

In the above, ε, px and py are energy, pressure parallel and perpendicular to the magnetic

field, respectively. The equation of state is also reminiscent of an (1+1)-dimensional CFT.

There are also other modes, which we write down for completeness (working in the

δgrr = 0 choice):

∆ = 1±

√
19
3 + 34

3 Q
2
m + 5Q4

m

1 +Q2
m

, (A.8)

αt
αy

= ∓ 1

8 + 6Q2
m

[√
57 + 102Q2

m + 45Q4
m ±

(
13 + 9Q2

m

)]
=
αx
αy

. (A.9)

Interestingly, ∆± corresponds to a relevant and an irrelevant mode with reference to the

AdS3 conformal fixed point.

A similar exercise can be carried out at the AdS2 ×R3 fixed point, which is described

by (3.12):

Λ = −L1

Q2
e

, τ =

√
L2

1 −Q2
e

Q2
eκ

2
. (A.10)

Linearizing and solving Einstein equations now yields:

gtt = r2L1 (1 + δgtt) , gxx = r2L1 (1 + δgxx) , grr = r−2L1 (1 + δgrr) , (A.11)

gyy = L2 (1 + δgyy) , (A.12)

δgtt =
αt
r∆

, δgxx =
αx
r∆

, δgyy =
αy
r∆

, δgrr =
αr
r∆

, (A.13)

where the various modes are:

∆ = 1 , αy +
αx
2

= 0 , αt + αr = 0 , (A.14)

∆ = 2 , αy = 0 = αx , αt + αr = 0 , (A.15)

∆ = −1 , αx = αy ,
αt
αy

=
1

3
− Q2

e

L2
1

,
αr
αy

=
8

3
− 2Q2

e

L2
1

. (A.16)

Note that, there are a couple of relevant modes and an irrelevant one, as viewed from

the AdS2-fixed point. Also note that, in choosing δgrr = 0, one would have missed the

irrelevant mode altogether. This is unlike the other two cases discussed above, i.e. setting

δgrr = 0 does not loose any information for those.

B Constructing interpolating solutions: numerical

In this appendix we consider constructing numerical interpolating solutions between the

various fixed points discussed in section 5. Our goal is to demonstrate that the deep

IR solution is indeed AdS2 × R3 (electric), or AdS3 × R2 (magnetic). We show this by

numerically integrating, using Mathematica, outwards from the near horizon AdS2 × R3

(or AdS3 × R2) IR and establishing that the system asymptotes to an AdS5-UV.
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B.1 AdS2 × R3 to AdS5

The metric corresponding the interpolating geometry is of the form:

ds2 = L1

(
−gtt(r)dt2 +

dr2

gtt(r)

)
+ g11(r)(dx2 + dy2 + dz2) . (B.1)

Here r is the radial coordinate and r → 0,∞ corresponds to the IR and the UV, respectively.

The IR is of the AdS2 × R3 type, specified by

gtt(r) = r2 , g11(r) = 1 . (B.2)

At(r) = Qe r . (B.3)

For completeness, let us also recall that this solution is further characterized by:

Λ = −L1

Q2
e

, τ =

√
L2

1 −Q2
e

κ2Q2
e

. (B.4)

To proceed further, we will choose the unit L1 = 1. The IR is now an one-parameter

family of solutions, characterized by Qe. Now, starting with the AdS2×R3 IR in eq. (B.2),

eq. (B.3) we show that, by adding a suitable perturbation which grows in the UV, this

solution is matched to an AdS5-UV. The perturbation is given by

gtt(r) = r2 (1 + ε δgtt(r))

g11(r) = 1 + ε δg11(r)

At(r) = Qe r (1 + ε δAt(r))

(B.5)

with

δgtt(r) = C1 r
ν , δg11(r) = C2 r

ν , δAt(r) = C3 r
ν . (B.6)

where C1, C2, C3 are constants to be determined. Note that the expansion in eq. (B.5)

is a perturbation in rν , and we have kept a book-keeping parameter ε to determine the

order in that expansion, and later we will set this parameter to be unity. Substituting

eq. (B.5), (B.6) back in the equations of motion and solving them upto linear order in ε

allows us to obtain a perturbation that grows towards UV, which is given by

ν = 1 , C3 = C1

(
6

3Q2
e − 7

+
3

2

)
, C2 =

6C1

3Q2
e − 7

. (B.7)

As we can see from the above expression, we have a free tunable parameter C1 which we

will have to ultimately fix for the numerical interpolation.

Before proceeding further, it should be noted that the perturbations obtained in

eq. (B.5), (B.6), (B.7) are for an extremal (i.e. zero temperature) near horizon geome-

try of the form AdS2 × R3. A near extremal solution (i.e. small but finite temperature)

eq. (B.2) will be characterized by

gtt(r) = r2

(
1 +

CH
r2

)
, g11(r) = 1 . (B.8)
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The free parameter CH sets the Hawking temperature. However, temperature deformation

is irrelevant towards the UV, and it will die down as we move out from r ∼ 0 towards larger

r. Therefore, at least for small enough temperature (CH < 1), the same perturbation, as in

eq. (B.5), (B.6), (B.7), will be strong enough to drive the near horizon and near extremal

electric solution to as asymptotic AdS5. Finally, for numerically integrating out the set

of second order differential equations, starting from deep IR, one must provide two initial

conditions for each of the three variables: gtt, g11, At. These are provided in accord with

the forms as written in eq. (B.5), (B.6), and (B.7).

B.2 From AdS3 × R2 to AdS5

A very similar analysis can be done for the AdS3 ×R2 to AdS5 interpolation. The general

metric is of the form:

ds2 = L1

(
−gtt(r)dt2 +

dr2

gtt(r)
+ g22(r)dz2

)
+ L2g11(r)(dx2 + dy2) . (B.9)

The AdS3 × R2-IR is given by

gtt(r) = r2

(
1 +

CH
r2

)
, g11(r) = 1 , g22(r) = r2 , Ax(y) = Qm y , (B.10)

with

Λ =
−2L2

2
Q2
m
− 3

L1
, τ =

2L2

√
L2

2 +Q2
m

κ2L1Q2
m

. (B.11)

We will work in units where L1 = 1, L2 = 2.

The corresponding perturbation that grows towards UV is of the following form:

gtt(r) = r2

(
1 +

CH
r2

)
(1 +D1 r

ν) , g11(r) = 1 +D2 r
ν ,

g22(r) = r2 (1 +D1 r
ν) ,

(B.12)

where

ν =

√
5Q4

m + 136Q2
m

3 + 304
3

Q2
m + 4

− 1 ,

D2 = −
D1

(
15Q2

m + 2
√

45Q4
m + 408Q2

m + 912 + 76
)

6Q2
m + 56

.

(B.13)

With these, one can now numerically integrate the set of the differential equations.
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