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Abstract: We construct the Supersymmetric Effective Field Theory of Inflation, that is

the most general theory of inflationary fluctuations when time-translations and supersym-

metry are spontaneously broken. The non-linear realization of these invariances allows us

to define a complete SUGRA multiplet containing the graviton, the gravitino, the Gold-

stone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary

gauge where only the graviton and the gravitino are present, we write the most general

Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spa-

tial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a

suitable Stückelberg transformation, we introduce the Goldstone boson of time translation

and the Goldstino of SUSY. No additional dynamical light field is needed. In the high en-

ergy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple

from the graviton and the gravitino, greatly simplifying the analysis in this regime. We

study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic

dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations

at loop level. The UV modes running in the loops generate three-point functions which

are degenerate with the ones coming from operators already present in the absence of su-

persymmetry. Their size is potentially as large as corresponding to f equil., orthog.
NL ∼ 1 or, for

particular operators, even � 1. The non-degenerate contribution from modes of order H

is estimated to be very small.
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1 Introduction and main ideas

This paper is rather long and technical. For this reason, we provide here quite a long

introduction that presents all the main ideas and results in a as least technical way as

possible. For an executive summary, see the Conclusions in section 5.
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The Effective Field Theory of Inflation. Most of the information that we have about

inflation comes from the observation of the cosmological perturbations. It is therefore very

important to study the most general dynamics for the fluctuations. Doing this amounts

to studying the so-called Effective Field Theory of Inflation (EFTofI) [1]. In the EFTofI,

inflation is thought of as a period of time in the early universe where there is a physical

clock whose evolution defines a preferred time-slicing. In this case, time diffeomorphisms

(diffs.) are spontaneously broken, while time-dependent spatial diffs. are not. This means

that in the spectrum of the theory there must be a Goldstone boson, usually referred to as

π, that non-linearly realizes the spontaneously broken time-diffs.. As typical with the case

of non-linearly realized symmetries, the Lagrangian for the fluctuations around the vacuum

is highly constrained by the symmetries, and can be constructed without any knowledge

of the mechanism spontaneously breaking the symmetry.

This is particularly important from both an in-principle and a practical point of view.

In principle, we could imagine that inflation is realized by a theory that is fundamentally

Lorentz invariant, by which we mean that the theory admits a formulation where all matter

fields transform linearly under diffs.. Usually there is a vacuum solution which gives a

maximally symmetric spacetime such as Minkowski or (A)dS. The description of the theory

around this maximally symmetric vacuum might be very inappropriate to describe the

theory around the inflationary solution. Over the years, we have become familiar to the

phenomenon that theories are very different around different vacua by studying dualities

in supersymmetric field theory, where the power of unbroken supersymmetry has allowed

us to confidently study the regime of theories at strong and at weak coupling. Historically,

this is not a novel effect: since coupling constants depend on energy, we have already

experimentally verified that at high energy quarks dynamics is efficiently described by

QCD, but at low energies this description is inappropriate, while a much more appropriate

description is given by the chiral Lagrangian. It is indeed extremely complicated to describe

the dynamics of pions using QCD. Not always the description of a given physics changes

radically within some interval of energies or coupling constants: for example the standard

model Electroweak Theory offers an appropriate descriptions practically for all phenomena

of experimental relevance. But this does not necessarily need to be the case, as QCD and

supersymmetric field theories have indeed taught us. Coming back to the theory of inflation,

when we describe it in terms of a slow rolling inflationary scalar field, we are indeed

assuming that we can describe the inflationary background in terms of a perturbatively

small deviation of the theory around the Minkowski, or the maximally symmetric, solution.

But this does not necessarily need to be the case, and the EFTofI allows us to cover all in

one Lagrangian even the cases where the theory around the inflationary background is very

different than the one around the maximally symmetric vacuum (see figure 1 for a pictorial,

somewhat historical, representation). Because of this, the EFTofI is important also from

a practical point of view: it allows us to study the observational signatures of inflationary

models without the unnecessary and limiting constraint of being able to describe the theory

around the maximally symmetric vacuum.

As for any EFT, in constructing the EFTofI it is essential to declare a priori the sym-

metries that are non-linearly realized. Of particular interest, for several different reasons
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Maximally Symmetric Vacuum

Inflationary Vacuum

Hic Sunt Leones

Figure 1. The description of the theory around the maximally symmetric vacuum can be very

different than the one around the inflationary vacuum. It might not be possible to perturbatively

describe the transition from one vacuum to the other.

that go from solving the hierarchy problem of the electroweak interactions to formulating a

consistent UV completion of gravity, is the case in which we include supersymmetry among

the symmetries of Nature. This is highly motivated from an additional aesthetic point of

view, as supersymmetry is the only possible extension of the spacetime symmetries given

by the Poincaré group (see for example [2]). However, supersymmetry must be at best

spontaneously broken at energies accessible at current particle colliders, and therefore it is

conceivable that it could be better probed by higher energy observables, such as inflation in

case its energy scale is sufficiently high. The implications of supersymmetry as a symmetry

of Nature for the theory of the fluctuations during inflation will be the subject of this paper.

Gauge redundancies. In our construction, gravity is self-evidently very important. In

the presence of gravity, the Poincaré group is gauged,1 the gauge group being spacetime

diffs., if one uses the metric as the dynamical field, or spacetime diffs. times local Lorentz, if

one uses the vierbein field. Since supersymmetry is a non-trivial extension of the Poincaré

group, in the sense that the supersymmetry currents and the Poincaré currents do not

commute, in the presence of gravity also supersymmetry is gauged to become what is known

as supergravity (SUGRA). So, in this paper we will be mostly dealing with SUGRA.

This leads to what we consider a deeper point of view, that will be very important in our

construction. A gauge redundancy is a nuisance that is usually included in a theory to allow

us to construct a local Lorentz-invariant Lagrangian that describes the dynamics of massless

particles. To describe massless helicity-1 particles, we have the usual gauge redundancy of

1Sometimes, gauge redundancies are erroneously assumed to be symmetries, but they are not symmetries

because the action of the gauge group on a state leads to the same state.
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Yang-Mills theory, where the gauge group commutes with Poincaré. In the case of gravity,

the graviton is a massless helicity-2 particle, and to construct its Lagrangian we introduce

the gauge redundancy associated to spacetime diffs.. Finally, if we want to describe a

massless helicity-3/2 particle, we need to introduce another gauge redundancy, which turns

out to be the gauging of the supersymmetry transformations. Quite interestingly, the

SUGRA algebra requires the gauging of Poincaré, that, as we mentioned, is associated to

the presence of a helicity-2 massless particle. So, a massless helicity-3/2 particle requires

the presence of a massless helicity-2 particle. It is for this reason that the helicity-3/2

massless particle is usually called the gravitino. One can make this statement somewhat

more intuitive by realizing that the SUGRA algebra can be thought of as diffs. acting on

a spacetime manifold with additional Grassmann directions, i.e. a supermanifold: as the

graviton is the gauge boson associated to the gauging of ordinary diffs. the gravitino is one

associated to the diffs. in the Grassmann directions (see for example [2]).

Softly Broken Gauge Invariances. Let us consider now a massive particle either of

spin 1, 2 or 3/2. Clearly, there is no need to introduce a gauge redundancy to construct

a local Lorentz-invariant Lagrangian that describes the dynamics of such a particle. This

Lagrangian can in general be split into terms that, if we were to reintroduce the gauge

redundancy, will be gauge invariant, and terms that instead are not gauge invariant. If

it happens that all the operators that break gauge invariance are relevant and the mass

scale identified by these operators is larger than the mass of the states, then we say that

(linearly-realized) gauge invariance is softly broken. It is then useful to think of this the-

ory as actually the theory where the gauge redundancy is non-linearly realized. In fact

one can introduce the gauge redundancy that would normally be introduced to describe

massless particles, and find that, at energies above the mass of the states, the spectrum of

the theory effectively splits into helicity 1, 3/2 or 2 particles plus an additional particle,

of lower helicity, the latter being effectively decoupled. The presence of this additional

particle can be understood to be required to preserve the overall number of degrees of

freedom of the theory: a massive particle of spin 1, 2 or 3/2 has more than two degrees of

freedom. Furthermore, as we will see, the Lagrangian of the smaller helicity particle typi-

cally coincides with the one of the Goldstone boson associated to the spontaneous breaking

of the global group that is obtained by taking the global limit of the gauge group, up to

small mixing terms.2 Evidently, the introduction of the gauge redundancy is consistent

only if one imposes the additional massive particle to transform non-linearly under the

gauge transformation. For this reason, we say that in this case the gauge invariance is

non-linearly realized, or, with a slight misuse of language, spontaneously broken.3 In this

case, the introduction of the gauge redundancy significantly simplifies the analysis. In fact,

for example, it is the Goldstone boson that first becomes strongly interacting as we move

2Subtleties associated with this statement will be discussed in section 3.
3We say spontaneously broken because if a field transforms linearly under the gauge transformations

and takes a vev that is not invariant under the gauge transformations, the fluctuations of this field around

the new vev will transform non-linearly under the gauge transformation. So, everytime gauge invariance is

spontaneously broken, it is non-linearly realized and therefore (linearly-realized) gauge invariance is softly

broken. Of course, physical states that are related by a gauge transformations are still identified.
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to higher energies. Notice that the existence of a regime of energies where the Goldstone

boson is decoupled is nontrivial. However, this happens when the gauge coupling is weak

and the operators that break the gauge symmetry are all relevant operators (while the

kinetic term is a marginal operator). This means that the effects of these operators on the

quadratic Lagrangian becomes smaller and smaller as we push the energy scale above some

scale, allowing to think of the spectrum as a split one.

Unitary Gauge Lagrangians. Such softy broken gauge theories have played a crucial

role in the history of Physics. Most notable, the Lagrangian that describes the massive

W -bosons of the Standard Model of Particle Interactions is usefully thought of as the La-

grangian of a softly broken gauge symmetry at energies below the Higgs mass. A simplified

Lagrangian that contains the relevant physical information is given by

S[A] =

∫
d4x

{
Tr
[
F 2
µν

]
+m2Tr

[
A2
µ

]
+ . . .

}
, with Aµ = Aaµ τ

a , (1.1)

where τa are the generators of the gauge group and . . . represents higher order terms in the

number of fields and derivatives. The mass term clearly breaks Gauge invariance. In the

Standard Model, the mass m arises from the Higgs field taking a vev and softly breaking

the gauge symmetry.

The same idea is what leads to the construction of the EFTofI (in the absence of

supersymmetry). Here, as anticipated, we assume that during the epoch of inflation the

gauge theory of spacetime diffs. is spontaneously broken by the presence of some physical

clock that controls the duration of inflation to a theory where only time-dependent spacial

diffs. are unbroken. Analogously to the case of massive gauge bosons, the EFTofI is written

by writing the most general Lagrangian invariant under the residual gauge invariance and

using the fields at our disposal, in this case just the metric, and being careful in ensuring

that the time diffs. are broken only by relevant operators. Schematically, neglecting, in

this introduction, irrelevant numerical factors and indices, this leads to [1]

SEFTofI[g] =

∫
d4x
√
−g L [Rµνρσ, g

µν ,Kµν ,∇µ, t] = (1.2)

=

∫
d4x
√
−g
{
M2

PlR

+M2
PlḢ(t)g00+M2

Pl(H(t)2+Ḣ(t))+M(t)4
(
g00+1

)2
+. . .+M̄(t)3

(
g00+1

)
δK+. . .

}
,

where δKµν represents the fluctuations of the extrinsic curvature of the equal time slices,

and H(t) is the Hubble rate in Friedmann Robertson Walker (FRW) spacetime, and where

all uncontracted tensor indices are upper 0’s. (g00 + 1) is first order in the fluctuations

as the background value of g00 is equal to −1. . . . represent higher order terms in the

fluctuations or the derivatives.

The same logic applies unaltered to the case in which we declare that the ultimate

spacetime gauge invariance is not just the gauging of Poincaré, but the gauging of super-

symmetry (SUSY). The SUSY algebra, schematically of the form

{Q, Q̄} = Pµσµ , (1.3)

– 5 –
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where Q are the SUSY charges, tells us that if time diffs. are not a gauge redundancy of

the theory, SUSY cannot be a redundancy either. Therefore, in an inflationary background

where we assume that time diffs. are are spontaneously broken, so is SUSY. According to

this logic, we do not need to force the theory to be invariant under SUSY, but simply we

write the most general Lagrangian invariant under the residual gauge invariance (which is

time-dependent spacial diffs.), using the fields at our disposal, which in this case are the

metric and the gravitino, ψµ, and being careful in ensuring that the time diffs. and SUSY

are broken only by relevant operators. As usual when dealing with spinors in a curved

spacetime, it is useful to introduce local Lorentz invariance and the vierbein eaµ as

gµν = eaµe
b
νηab , (1.4)

where µ, ν, . . . represent spacetime indices , and a, b, . . . represent local Lorentz indices.

Using the notation of Wess and Bagger [2], we are schematically led to

SSEFTofI =

∫
d4x
√
−g L

[
Rµνρσ, e

a
µ,Kµν , ψ

µ,∇µ, t
]

= (1.5)

= SEFTofI[g] +

+M2
Pl

∫
d4xe

[
1

2
εµνρσψ̄µσ̄νDρψσ+m3/2(ψµσ

µνψν)+m0(ψµσ
µ0ψ0)+m?(ψµψ

µ+ψ0ψ0)+c.c.

+ im̃1(ψ̄0σ̄µψµ−ψ̄µσ̄µψ0)+im̃2ε
µνλ0(ψ̄µσ̄νψλ)+δg00(m(3)ψµψ

µ+c.c.)+. . .

]
,

where . . . represent higher order terms in the fluctuations or the derivatives, of which we

wrote just one representative, the term proportional to m(3). Setting m? = 0 for the rest

of the introduction, it will be later useful to notice that the terms in the action (1.5) that

are quadratic in the gravitinos can be recast as

SSEFTofI[g, ψ]=SEFTofI[g] +
1

2
M2

Pl

∫
d4x e

[
εµνρσψ̄µσ̄νDρψσ+δg00(m(3)ψµψ

µ + c.c.)+. . .
]
,

(1.6)

where Dµ is a covariant derivative that acts on spinors χ as

Dµχ = Dµχ−
i

2

[(
m3/2 +

1

2
m0g

00

)
σµ −m0tµ(tνσ

ν)

]
χ̄− i

2

[
m̃2tµ − im̃1(tνσ

ν)σ̄µ

]
χ ,

(1.7)

where tµ = δ0
µ and Dµ is the ordinary covariant derivative in curved spacetimes.

The action in (1.5) is one of the main results of this paper. It is a Lagrangian for the

metric and the gravitino, invariant only under time-dependent spatial diffs.. It is the most

general Lagrangian for the fluctuations in an FRW background where time diffs. and SUSY

are spontaneously broken. The first term in the third line represents the standard SUSY

invariant kinetic term for the gravitino. The remaining terms in the third line and the

terms in the fourth line represent mass terms for the gravitino, interaction terms between

the metric and the gravitino, and higher order terms in an expansion in the number of the

fluctuations and of the derivatives. It is an action directly for the fluctuations around this

symmetry breaking background. No fields need to take a vev in this action in order to

obtain the physical action.

– 6 –
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Notice, contrary to the normal treatment of supersymmetric field theories, that there

are no auxiliary fields in this action. Indeed, as we will explain in detail later, when SUGRA

is non-linearly realized, the auxiliary fields, that for linearly realized SUSY are introduced

to enforce the equal number of bosonic and fermionic off-shell degrees of freedom and

closure of the algebra, are not needed. This is an additional simplification of our formalism.

Additionally, notice that the presence of the gravitino has enforced no constraints on the

terms we could write in the bosonic case: all of the terms that are allowed in absence of

supersymmetry are allowed now, no restriction is imposed on them by SUSY.

Reintroducing Gauge Invariance. Since all the Lagrangians in (1.1), (1.2) and (1.5)

represent Lagrangians where a gauge invariance is softly broken, as we discussed earlier it

is useful to make the theory gauge invariant by reintroducing a matter field that transforms

non-linearly under the gauge transformation.

In general, for any gauge invariance, this is achieved by performing what is normally

called the Stückelberg trick: one performs a gauge transformation under which the La-

grangian is not invariant. Since the Lagrangian is not gauge invariant to start with, one

then promotes the parameters of the gauge transformation that are present in the La-

grangian after the gauge transformation to fields that transform non-linearly under the

gauge transformation. These fields are slightly improperly called Goldstone fields. This

procedure makes the Lagrangian manifestly gauge invariant, at the cost of reintroducing

fields that transform non-linearly under the gauge group. In practice, this amounts to

replacing the fields that are present in the action with so-called Stückelbergized fields, that

are combinations of the original fields and the Goldstone fields.

For the Gauge Boson example of eq. (1.1), we can restore the gauge invariance by

introducing Goldstone bosons α ≡ πaτa, packaged in U = e−α for simplicity, and replacing

the fields Aµ with the Stückelbergized fields Âµ given by

Aµ
Stü−−→ Âµ[Aµ, π

a] ≡ U
(
Aµ +

i

g
∂µ

)
U−1 . (1.8)

Notice Âaµ is then gauge invariant upon assigning the non-linear transformation of the

Goldstone fields4

U → Uw−1 . (1.9)

At this point,

S[A, π] =

∫
d4x

{
Tr
[
F 2
µν

]
+m2Tr

[
Â2
µ

]
+ . . .

}
, (1.10)

is gauge invariant, with gauge invariance non-linearly acting on the Goldstone bosons.

Notice that since Tr
[
F 2
µν

]
is gauge invariant, one has that Tr

[
F̂ 2
µν

]
= Tr

[
F 2
µν

]
. We can now

4Indeed,

Âaµτa = UAµU
−1 + U∂µU

−1

→ U
[
(Aµ + ∂µ)w−1]wU + Uw−1∂µ(wU−1) = UAµU

−1 + U∂µU
−1 + U(∂µw

−1w + w−1∂µw)U−1

= Âaµτa .

– 7 –
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understand why the action in (1.1) is sometimes called unitary gauge action: since gauge

invariance is non-linearly realized, one gauge, called unitary gauge, is the one obtained by

setting the Goldstone bosons to zero. In this gauge, the action in (1.10) takes the form (1.1).

The construction in terms of Stückelbergized fields has led us to realize of an ad-

ditional (though equivalent) way to look at the building of gauge invariant Lagrangians

where gauge invariance is non-linearly realized. One builds Stückelbergized fields that,

under a non-linearly realized transformation, transform as under a linearly realized one

(if none is present, than the Stückelbergized fields are invariant), and one builds an ac-

tion using the Stückelbergized fields, Âµ, that is invariant only under the linearly realized

transformations. Once expressed in terms of the original fields, Aµ and π for example, the

resulting action will be automatically invariant under the additional non-linearly realized

gauge transformation. This is the renown CCWZ construction [3, 4], applied to the case

of gauge transformations. In the case of the gauge bosons in (1.1), there was no linearly

realized gauge transformation, and the Stückelbergized fields Âµ transformed as scalars

under the non-linearly realized gauge symmetry.

Similarly, for the case of the bosonic EFTofI, we can replace gµν with the diffs.

Stückelbergized fields ĝµν given by [5]

gµν
Stü−−→ ĝµν [g, π] ≡ ∂α(xµ + πµ)∂β(xν + πν)gαβ , (1.11)

where the Goldstone fields associated to the four diffs., πµ, are defined as πµ = {π, ~π}.
Under a diff. of parameter ξµ, x̃µ = xµ − ξµ(x), they transform as

πµ(x) → π̃µ(x̃) = πµ(x(x̃)) + ξµ(x(x̃)) . (1.12)

Since our Lagrangian does not break spatial diffs., the Goldstone bosons associated to

spatial translations will disappear from the action and only π will appear, however the

introduction of the Goldstones of spatial diffs. ~π is useful to write (1.11) in a covariant

form. In practice, only the fields that appear in operators that are not invariant under time

diffs. need to be Stückelbergized, in fact, Stückelbergization in diff. invariant operators will

cancel. The action resulting from this procedure is invariant under non-linearly realized

time diffs. and schematically reads [1]:

SEFTofI[g, π] =

∫
d4x
√
−g
{
M2

PlR+M2
PlḢ(t̂)ĝ00[gµν , π] +M2

Pl(H(t̂)2 + Ḣ(t̂)) (1.13)

+M(t̂)4
(
ĝ00[gµν , π] + 1

)2
+ . . .+ M̄(t̂)3

(
ĝ00[gµν , π] + 1

)
δK̂[gµν , π] + . . .

}
,

where t̂ = t+ π and a similar definition holds for δK̂ (see [1]).

Similarly to the gauge boson case, an additional, equivalent, way to look at the con-

struction of this Lagrangian is to write a Lagrangian in terms of ĝ and t̂, that is just

invariant under time-dependent spatial diffs.. The resulting Lagrangian, once expressed in

terms of g and π, will be invariant under non-linearly realized time diffs..

Again, a similar construction can be done to make the theory invariant under non-

linearly realized SUGRA transformations. Again, we are going to perform a Stückelberg

trick: we introduce Stückelbergized fields that are obtained after acting on the fields with

– 8 –
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a SUGRA transformation, and promoting the parameter of the transformation to be a

dynamical field. Contrary to the case of gauge transformations where the parameter is a

boson, in the case of local supersymmetry the parameter is a Grassmann variable, so that

the dynamical field that is introduced is a spin-1/2 spinor, it takes the name of Goldstino,

and we denote it with the symbol λ. We also introduce a field π, the Goldstone boson of

time translations, when we perform a time diff. as part of a general SUGRA transformation.

The action in (1.6) takes the form

SSEFTofI[e, ψ, π, λ] = (1.14)

= SEFTofI[e, π] +
1

2
M2

Pl

∫
d4x e

{
εµνρσ

¯̂
Ψµ[ψ, λ, e, π]σ̄νD̂ρΨ̂σ[ψ, λ, e, π]

+m(3)
ˆδg00[e, π]Ψ̂µ[ψ, λ, e, π]Ψ̂µ[ψ, λ, e, π] + . . .+ c.c.

}
,

where

Ψ̂µ ≡ ψµ − 2D̂µλ+ (3 fermion) , (1.15)

where “(3 fermion)” means terms that are cubic in fermionic fields ψ and λ (and that will

be negligible for our phenomenological applications). Ψ̂µ is the full (including time diffs.)

SUGRA-stückelbergized gravitino ψµ (where we did not stückelbergize the µ index because

it is contracted in a diff. invariant way). Notice, as we will discuss in the text, that there

is no need to SUGRA-stückelbergize the veilbein.

This is one of the major results of this paper. It is the most general action where

local supersymmetry and time-diffs. are non-linearly realized. In particular, it is the action

that describes the model independent signatures of spontaneously broken supersymmetry

in inflation. It is an action that contains the following physical degrees of freedom: two

helicity-2 states in the graviton g, two helicity-3/2 states in the gravitino ψ, one helicity-

0 state π non-linearly realizing time diffs., two helicity-1/2 state λ non-linearly realizing

local SUSY. No additional scalar partner of the Goldstone boson π (and in particular of

the inflaton), is required to be light by supersymmetry. No auxiliary fields are present. No

fields take a vev: this is the action directly for the fluctuations. Because of these features,

this action is remarkably simple.

No Auxiliary Fields. So far, we have neglected to include any auxiliary field and we

have constructed a Lagrangian realizing SUGRA as a symmetry. Since Stückelbergizartion

is an off-shell procedure, the reader familiar with the Supersymmetric literature might

wonder how it is possible to realize SUGRA without the inclusion of auxiliary fields. When

SUGRA is non-linearly realized, it is possible to construct operators out of the Goldstino

that, under SUGRA, transform identically to the auxiliary fields. This means that one can

substitute the auxiliary fields with these operators in any expression where they appear,

without changing the algebra and the transformation properties of the remaining fields. At

this point, the auxiliary fields have disappeared yet the algebra still closes off shell.5 In fact,

5It is quite common in the SUGRA literature to dispense of the auxiliary fields by integrating them out

from a specific Lagrangian and substituting the solutions to their equations of motion in the transformations

of the physical fields. This procedure leads to transformation laws for these fields that are Lagrangian

dependent and the algebra does not close off shell. This is different from our construction, that instead

leads to Lagrangian-independent transformations, which close off shell.
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in (1.15), the Stückelberg transformation should be meant as the SUGRA transformation

obtained after this substitution.

Decoupling Limit. As anticipated, the reason why it is useful to introduce a non-linearly

realized gauge redundancy is that, when it is softly broken, there is a limit of energies where

the Goldstone bosons (including the fermionic Goldstino) decouple from the gauge bosons

(generally meant to include the vector bosons, gravitons and gravitinos). Let us see how

this happens first in the case of internal gauge invariance.

If we expand the action in (1.10), we find that the mass term of the gauge bosons

induces many terms, among which a kinetic term for the π’s, a mixing term with the

gauge bosons, and self interactions for the Goldstone. We have, dropping group indices for

simplicity:

S[A, π] ⊃
∫
d4x

m2

g2

[
(∂π)2 + π2(∂π)2 + gAµ∂

µπ + . . .
]
. (1.16)

The canonically normalized Goldstone field is given by πc = m/g·π. The quartic interaction

tells us that the theory becomes strongly coupled at Λ ∼ 4πm/g. The mixing term tells

us that the Goldstone boson mixes with a helicity-0 component of Aµ, ∂µA
µ. Since the

theory is gauge invariant, Aµ carries only two helicity-1 dynamical degrees of freedom, and

therefore ∂µA
µ is a constrained variable. In fact, in the gauge where A0 = 0, the equation

of motion for ∂µA
µ = ∂iA

i is not dynamical, and it can be solved in terms of π to give

∂2
jAi ∼

m2

g
∂iπ , ⇒ ∂µA

µ ∼ m2

g
π . (1.17)

Plugging this in the action, we see that the contribution of the mixing term becomes

arbitrarily irrelevant for energies E2 � m2. It is also easy to check that interactions

between the Goldstones and the gauge bosons are also parametrically suppressed with

respect to the Goldstone self-interactions in the same limit. As advertised, if g � 1, there

is a parametrically large window in which the Goldstone bosons are weakly coupled and

decoupled from the gauge bosons. This is the essence of why it was useful to think of this

theory as the theory of a spontaneously broken gauge invariance.

As the reader should by now expect, a similar story applies to the (bosonic) EFTofI.

After Stückelbergization, the action (1.13) contains kinetic, mixing, and interaction terms.

The only complication is that here there are more relevant operators, so the parameter

space is larger. For example, if we focus on the tadpole term ĝ00, we have

SEFTofI,tad ∼
∫
d4x
√
−g ḢM2

Pl

[
(∂π)2 + g0i∂iπ + . . .

]
. (1.18)

Because the theory has a gauge redundancy, g0i is a constrained variable whose solution

to the equation of motion reads schematically of the form

M2
Pl∂

2
j g

0i ∼ ḢM2
Pl∂iπ , ⇒ ∂ig

0i ∼ Ḣπ . (1.19)

Notice that the l.h.s. of the first equation above comes from the Einstein-Hilbert term of

the action (we just need to notice that it has two (spatial) derivatives acting on g0i), while

– 10 –



J
H
E
P
0
3
(
2
0
1
7
)
0
6
3

the source on the r.h.s. comes from the matter action, and is therefore proportional to Ḣ.

Plugging back in the action, we see that the mixing term between π and g0i leads to a mass

term for π of size Ḣ. This mass becomes more and more irrelevant as we move to higher

energies starting from Ḣ: E2 � Ḣ. Since in inflation Ḣ � H2 and we typically compute

correlation functions at energies of order H, this tells us that the Goldstone is decoupled

from the gravitons [1].

Let us observe the same phenomenon for the case of the supersymmetric EFTofI

of (1.14). Expanding the action in terms of gravitino ψ and Goldstino λ fields, the part of

the action that is quadratic in the fermionic fields reads

SSEFTofI =

∫
d4x e M2

Pl ε
µνρσ

(
1

2
ψ̄µσ̄νDρψσ − ψ̄µσ̄ν [Dρ,Dσ]λ+Dµλ̄σ̄ν [Dρ,Dσ]λ

)
+ c.c.

+m(3)δg
00 (ψµψµ−2Dµλψµ+4DµλDµλ+c.c.) + . . . . (1.20)

This expression is remarkably simple, and is again one of the main results of our paper.

The Goldstino receives a kinetic term and a mixing term with the gravitino, whose prefac-

tors are proportional to [Dρ,Dσ]. Since this is a commutator of two covariant derivatives

defined in (1.7), it contains no ordinary derivatives, but contains several contributions, one

of which is clearly the Riemann tensor that is indeed defined by the commutator of the

standard curved-spacetime covariant derivatives on helicity-1/2 fields: Dµ. In an inflation-

ary background, this is of size at least H2. This is an important fact to which we will

return later. The Goldstino mixes with a helicity-1/2 component of the gravitino that,

because of gauge invariance, must be a constrained variable. In the SUGRA gauge where

σ̄iψi = 0, which kills one helicity-1/2 component, the equation of motion for the remaining

helicity-1/2 component, ψ0, is a constrain equation, which leads to the following solution:

M2
Plσ̄

i∂iψ
0 ∼M2

Pl[D,D]λ , ⇒ σ̄i∂iψ
0 ∼ H2λ , (1.21)

where we replaced [D,D] ∼ H2. Plugging back in (1.20), we see that gravitino-Goldstino

mixing is subleading when E2 � H2. Unless there are (at-least-apparently) tuned can-

cellations in [Dρ,Dσ], the decoupling between the Goldstino and the gravitino occurs only

at energies at least above the Hubble scale. This originates from the fact that de Sitter

space already breaks SUGRA, which in turn means that the Goldstino kinetic and mixing

terms are born with a large wavefunction (of order H2M2
Pl). This means that generically in

inflation there is no sense in computing observable consequences of the Goldstino without

including the gravitino, limiting the usefulness of the decoupling limit in the context of

inflation. This is to be contrasted with the case of the Goldstone of time translation π:

the fact that time translations are minimally broken by Ḣ, rather than by H, often allows

to use the decoupling limit for π all the way to the Hubble scale.

Subtleties in the decoupling limit. Let us focus on the very important decoupling

at the level of the quadratic Lagrangian. We notice that in all of the gauge redundancies

that we have considered here, the decoupling becomes better and better as we move to

higher energies in a way which is quadratic with the energy. However, the decoupling limit

occurs in a much more non-trivial way in the supersymmetric theory than in the bosonic
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cases. In fact, in the bosonic cases, the Goldstones are introduced in the action with one

more derivative than the gauge boson (e.g. Âµ ∼ Aµ + ∂µπ), so that, modulo cancellations

that indeed are not present, the kinetic term of the Goldstones have more derivative than

the mixing term (ex. Aµ∂µπ). This induces a quadratic suppression of the mixing term at

high energies. In fact, the sourcing of the constrained variable has one less derivative than

the gauge-invariant two-derivative kinetic term (e.g. ∂2
jAi ∼ ∂iπ), so that the sourcing of

the gauge boson by the Goldstones is suppressed by one derivative at high energies. This

leads to a solution for the constrained variable that, once plugged back in the mixing term,

leads to a term doubly suppressed to the kinetic term of the Goldstone (e.g. Aµ∂µπ ∼ π2).

The situation is much more subtle for the supersymmetric case. Let us concentrate to

the case where only m3/2 is non-vanishing for simplicity. Let us try to run the same logic and

focus on the leading derivative terms introduced by the Stückelbergization Ψµ ∼ ψµ+∂µλ.

The structure of the gravitino mass term makes the Goldstino kinetic term with the highest

number of derivatives vanish (Lm3/2
∼ m3/2∂νλσ

µν∂νλ = 0 ). This is indeed a fortunate

event as otherwise the Goldstino would contain a ghost. But this has the consequence

that there is no kinetic term at all for the Goldstino, while there is just a mixing term

(e.g. m3/2ψµσ
µν∂νλ). If this were the end of the story, the Goldstino would inherit its

kinetic term just from mixing, and therefore at high energies we would never recover a

regime where the Goldstino is decoupled, no matter how softly we were to break the gauge

invariance. Luckily, there is a solution. In the supergravity transformation that needs to be

non-linearly realized, it is useful to keep track of the zero derivative terms, and in particular

to perform a field redefinition of the gravitino field, so that its Stückelberg transformation

reads schematically as Ψµ ∼ ψµ + Dµλ ∼ ψµ + ∂µλ + m3/2λ, where the Dµ can be easily

read off by writing the gravitino kinetic term as εµνρσψµσνDρψσ. Once this is done, one

obtains the action in (1.20) which has manifest decoupling. We learn that decoupling is not

a simple power counting argument, but it can be important to keep the subleading terms

in the gauge or Stückelberg transformation. This is what led to our expression (1.14).6

Multifield. Our formalism allows for a very straightforward generalization to the case

of multifield inflation. Here, by multifield, we mean the fact that there are additional

light degrees of freedom on top of the ones that are strictly required by the symmetry

breaking pattern [6]. Once the additional fields are specified, the procedure to construct the

general effective Lagrangian with non-linearly realized SUGRA is very simple. In unitary

gauge, we write the most general Lagrangian function of the graviton, gravitino and the

additional fields, that is invariant just under time-dependent spatial diffs., softly breaking

time-diffs. and SUGRA. Then, we reintroduce the Goldstone and Goldstino by the same

Stückelberg trick we have performed so far. This procedure can be implemented without

any knowledge of the transformations of the matter fields under SUSY, as it amounts to

first dressing them with the Goldstino so that they transform under SUSY as under a

linearly-realized transformation, and then working directly with the dressed fields. It is

immediately clear from this procedure that, as in the single-field bosonic case, all the terms

6The same phenomenon can happen also for bosonic gauge invariances, we will describe an example later

in section 3.3.1.
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that were allowed in the absence of SUSY are allowed even in this case. Furthermore, in

this basis for the fields, any coupling between the Goldstino and the new fields will only

be inherited from those unitary-gauge operators which describe interactions between the

new fields and the gravitino.

Reheating. In constructing general predictions for inflation when there are multiple

degrees of freedom that are light, we need to take into account of possible dependence of ζ

from these additional fields induced after horizon crossing or at the time of reheating [6].

In general, at t = trh being the reheating time, we should write the most general local

relation between ζ and the fluctuating fields invariant under time-dependent spatial diffs.:

ζ(~x, trh) = ζbosonic (ĝαβ(e(~x, trh), π(~x, trh))) (1.22)

+a1 ψ̂µ (e(~x, trh), π(~x, trh)) ψ̂µ (e(~x, trh), π(~x, trh))

+a2 ψ̂
0 (e(~x, trh), π(~x, trh))) ψ̂0 (e(~x, trh), π(~x, trh)) + . . . ,

where . . . represents higher order terms in the derivatives and the number of fields, and

ai represent unknown parameters that are determined by the specific way in which the ψ

fluctuations are converted into metric fluctuations in the sixty or so e-foldings from horizon

crossing to reheating. This formula is useful because it needs to be evaluated at reheating

time, when the gradients are negligible, so that the functional form of the contributions is

highly constrained and cannot completely alter the predictions from horizon crossing time.

By substituting ψ̂µ with Ψ̂µ in (1.22), one can evaluate this formula in every SUGRA-gauge.

Phenomenology. After having developed the formalism to construct the effective La-

grangian associated to the spontaneous breaking of SUGRA during inflation, we are ready

to study its observational consequences. We first study the dispersion relations of the

Goldstino, finding that it can either have a linear dispersion relation, ω ∼ cλk, with cλ− 1

as large as O(1), or, in the presence of a non-zero m?, a quadratic dispersion relation,

ω ∝ m? k
2. Requiring subluminal propagation of the sound waves imposes some bounds on

the coefficients of (1.6), and in particular that the quadratic dispersion relation can occur

only for an order one range of wavenumbers, at scales shorter than H.

The model-independent signature of SUGRA is associated to the presence of the grav-

itino (and of the Goldstino). Since these are fermions, they can only affect ζ correlation

functions at loop level where, at leading level, they appear in internal lines, while ζ (or

π) appear as external lines. We consider two different class of couplings. The so-called

‘minimal couplings’ between the fermions and the metric or π, which arise from covarianti-

zation of the mass terms in the unitary gauge Lagrangian in (1.6), and the ‘non-minimal’

ones that come from additional couplings that we write in unitary gauge. For all of these

coupling, the nature of the loop-induced signal splits into two distinct contributions. When

in the internal lines we consider momenta that are much greater than H, the resulting con-

tribution to the correlation function has the same functional form of the one produced by

the operators in the bosonic single-field case, parametrized by f equil.
NL [7] and forthog.

NL [8, 9]

for the case where we assume an approximate shift symmetry for π. The fact that the

contribution has this shape must be so by renormalizability of the theory. How large this

contribution is cannot be reliably estimated within the EFT, because it depends on the
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UV completion. However, it is possible to estimate an upper bound to its size, which is ob-

tained by cutting off the loops at the unitarity bound of the theory. Barring the presence of

unexpected cancellations, the induced signal can be as high as to produce f equil., orthog.
NL ∼ 1

for the minimal couplings, while it can be f equil., orthog.
NL � 1 for the non-minimal couplings.

When instead in the loop we run momenta of order H, the shape of the induced

non-Gaussianity is not expected to be exactly degenerate with the one induced by the

operators of the bosonic EFT. Detecting their signal would probably be a ‘smoking gun’

of the presence of supersymmetry as a non-linearly-realized symmetry of nature. We do

not compute explicitly these shapes because we find that the induce signal is very small in

practically all cases. We can summarize our findings by saying that the most natural signal

of SUGRA being spontaneously broken during inflation seems to be the natural induction

of sizable non-Gaussianities of the shape produced by the bosonic sector, up to the level

of f equil., orthog.
NL ∼ 1, or, for non-minimal couplings, even � 1. Detecting such a shape

would not be a direct indication of additional light fields present during inflation, but it

would still be a spectacular signal that would teach us about the interacting structure of

the theory of Inflation, and will motivate additional theoretical and observational studies.

The prospects of detecting f equil., orthog.
NL ∼ 1 seems rather hard at the moment. The

current best limits come from the Planck analysis [10], that constrain f equil., orthog.
NL . 102.

Reaching f equil., orthog.
NL ∼ 1 requires us to be able to access many additional modes. At

the moment, the best reasonably-short term opportunity seems to come from Large Scale

Structure surveys. Recently, much progress in understanding their dynamics from an an-

alytical point of view has been made with the introduction of the so-called Effective Field

Theory of Large Scale Structures [11–14]. If the new understanding conveyed by this novel

theoretical approach, or by improving on former numerical approaches, will be powerful

enough for us to reach such observational bounds is yet to be established, even though it

will probably be challenging [15]. However, since Cosmology and cosmologists have faced

many challenges in their past, we hope that they will successfully address this novel trial.

Structure of the paper. After this ample introduction, the rest of the paper will be

devoted to present explicit formulas and construction of the ideas and the logic presented

in this section. Since many of the subtle points needed to construct the Supersymmetric

EFTofI are already present in the simpler case where the spacetime is maximally sym-

metric and only SUSY is spontaneously broken, we will start by describing this case in

section 2. We will then move to the FRW case in section 3. In section 4 we will describe

the observational signatures of the models we described. We conclude in section 5.

Relation to former literature. The Inflationary supersymmetric and supergravity lit-

erature is, needless to say, extremely large. Our paper starts with investigating the non-

linear realization of SUGRA and the supersymmetric Higgs mechanism in the context

of maximally symmetric spacetimes. This of course traces back to the remarkable work

of [16], which was then completed to recover the full group structure of the non-linear

realization [17] and all the literature that followed. A short sample of the very most recent

literature on SUGRA in inflation is [18–29].

In the context of inflation and EFT, after the advent of the EFTofI [1], the first attempt

to apply the same techniques to study the observable consequences of SUSY in inflation
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was made in [6], where a supersymmetric multifield sector that was interacting with the

inflaton only gravitationally was considered. Since the inflaton breaks SUSY at a scale

ḢM2
Pl, stronger-than-gravity interactions with it are extremely dangerous. Restricting to

gravitational interactions offered instead a sufficient sequestering from the SUSY breaking

sectors. Ref. [6] found that some relations between observables were protected by unbroken

supersymmetry. Our results show that these findings were model dependent. Indeed, if one

asks for just a nob-linear realization of SUSY, every multifield Lagrangian can be made in

this sense supersymmetric.

Subsequently, ref. [30] attempted to describe in an EFT way also the inflaton sector.

They found that a second scalar field, a partner of the Goldstone π, was generically present

with mass of order H. Its interactions with the Goldstone could lead to potentially large

non-Gaussianities with the typical shapes of quasi-single-field inflation [31]. We find that

these results are very model dependent. We find there is no reason for a second scalar to be

light during inflation: we find that only the Goldstino (or equivalently the gravitino) are

sufficient to non-linearly realize SUGRA. From this, needless to say, many additional differ-

ences follow, as for example in the structure of the operators. Concerning the presence of

an additional second scalar, direct interaction with the Goldstone will generically make an

additional light field that is unprotected by any additional symmetry very massive, unless

it is just gravitationally interacting, which tends to imply the lack of observable signatures.

The spectrum that we find here is in fact coincident with the one already pointed out

in [32] as sufficient for non-linearly realizing SUGRA during inflation: a Goldstone and

a Goldstino (see also [33–35] for having already showed through particular models that

this minimal spectrum can non-linearly realize SUGRA). However, our findings are quite

different with respect to the structure of the Lagrangian and the resulting phenomenology.

In fact, our construction is remarkably simple: there is no superspace needed, nor auxiliary

fields, nor do we make any use of constrained superfields. This is not just a formal achieve-

ment, because the resulting simplified formalism allows us to explore in more generality the

phenomenology of inflation. In fact, the main difference between our construction and the

one in [32] resides in the organization of the perturbative expansion. In [32], the theory is

written around the maximally symmetric spacetime. The inflationary background is then

obtained giving small vevs to the operators, so that the inflationary solution is perturba-

tively close to the maximally symmetric one.7 We call these models of inflation as slow-roll

inflation, and, in this sense, ref. [32] constructs the EFT of supersymmetric Slow-Roll In-

flation. On the contrary, as we stress also in the introduction, the connection between the

theory around the maximally symmetric spacetime and the inflationary one can be very

complicated, and in general not even describable with perturbative techniques. We build

instead directly the theory of the fluctuations, with no need of any knowledge of the back-

ground solution. This makes the assessment of the importance of an operator straightfor-

ward: every operator starts with a given number of fluctuations and derivatives. This allows

us to explore in full generality the phenomenology of the consequences of SUSY in Inflation.

7In particular, higher dimension operators that contribute to the theory of the fluctuations by substi-

tuting some fields with their vevs are counted as a small perturbation.

– 15 –



J
H
E
P
0
3
(
2
0
1
7
)
0
6
3

This is indeed made possible by the fact that our construction makes use of very analogous

techniques that are used to construct the bosonic EFTofI, such as writing the theory of the

fluctuations by going to unitary gauge, performing the Stückelberg trick and identifying

the decoupling limit, generalizing from diff. breaking to SUGRA breaking. In practice, the

difference with [32] can be also shown with a series of examples. At a given order, even at

the leading ones, we have many more operators and therefore physical effects. Furthermore,

we find that the Goldstino can have a linear dispersion relation ω = cλk with cλ−1 that can

be up to order one; or it can even have a quadratic dispersion relation ω ∝ k2. On the con-

trary, [32] finds only a linear dispersion with cλ−1 ∼ O(ε). We find that the Goldstino is al-

ways mixed with the gravitino at energies of order H, so that it does not make sense to study

the gravitino without the Goldstino in making inflationary prediction. Instead ref. [32] does

not seem to discuss the relevance of the mixing between Goldstino and gravitino in inflation-

ary phenomenology. Additionally, we find that our EFT can predict non-Gaussianites with

f equil., orthog.
NL ∼ 1 and even� 1, while ref. [32] finds only very small corrections. This makes

it clear that our approach is very different to the one of [32], which is correct if one is trying

to describe what we define to be slow-roll inflation, but not a general inflationary solution.

2 Maximally symmetric spacetimes

Some of the ideas and formalisms that we need to construct the Supersymmetric

EFTofI (SEFTofI) are already relevant in the simpler case in which diffeormorphisms are

unbroken, but supergravity is softly broken. This situation is interesting on its own, and

we present it here. The logic will be exactly as spelled out in the Introduction, but now

the details will be given.

2.1 Non-linear representation of the supergravity algebra

We start by considering the pure supergravity multiplet {eaµ, ψµ, m, bµ}, realizing local

supersymmetry as [2]8

δεe
a
µ = iψµσ

aε̄+ c.c. , (2.1a)

8We follow the notation of [2] throughout this paper. The covariant derivative Dµ in the ( 1
2
, 0) and

(0, 1
2
) representations is given by

D
( 1
2
,0)

µ = ∂µ +
1

2
ωabµ σab , D

(0, 1
2

)
µ = ∂µ +

1

2
ωabµ σ̄ab ,

where

σab =
1

4
(σaσ̄b − σbσ̄a) , σ̄ab =

1

4
(σ̄aσb − σ̄bσa) ,

and σa are the ordinary Pauli matrices. The spin connection can be taken to be

ωabµ = ebν∇µeaν .

This form of the spin connection does not include torsion terms, and, contrary to what would result from

using the second order formalism, it does not depend on the Lagrangian. Different forms of the spin

connection are degenerate with adding different higher dimension operators to the Lagrangian, which are

included anyway.
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δεψµ = −2Dµε−Kab
µ σabε+ i

[
mσµε̄+ bµε+

1

3
bν(σµσ̄νε)

]
, (2.1b)

δεm = −1

3
ε
(
σµσ̄νψµν + ibµψµ − 3iσµψ̄µm

)
, (2.1c)

δεb
a =

3

8
(ψ̄µν σ̄

aσµσ̄νε)− 1

8
(ψ̄µν σ̄

µσν σ̄aε)− 3i

2
m∗(εψa) (2.1d)

− i

8
bc(εσ

cσ̄aσµψ̄µ) +
i

4
ba(εσµψ̄µ) +

i

8
bc(ψ̄µσ̄

aσcσ̄
µε) + c.c. ,

Here ε is a Weyl fermion parametrizing the SUSY transformation,

Kab
µ =

[(
− i

4
ψaσbψ̄µ −

i

8
ψaσµψ̄

b + c.c.

)
− (a↔ b)

]
. (2.2)

and ψµν = Dµψν + 1
2K

ab
µ σabψν − (µ↔ ν). Notice that Dµ contains only the (torsion-free)

connection ωabµ (e) = ebν∇µeaν .9

The SUGRA algebra is given by

[δε′ , δε] =
(
δdiff
y + δLΛ + δε̂

)
, (2.3)

[δε, δ
diff
ξ ] = δξµ∂µε ,

[δε, δ
L
Λ] = δ 1

2
Λabσabε

,

with

yµ = −2i(ε′σµε̄− εσµε̄′) ,

Λab = yµ
(
ωabµ (e) +Kab

µ

)
−
[
4mε̄σ̄abε̄′ +

2

3
εσ[a

�bσ
b]ε̄′ + c.c.

]
,

ε̂ = ψµy
µ/2 , (2.4)

where �b = bµσ̄µ. Notice that the algebra closes on field dependent transformations: this

peculiar fact is quite standard when we add internal gauge symmetries to spacetime diffs..

In order for the supermultiplet in (2.1) to linearly realize the SUGRA algebra, two

auxiliary fields m and bµ needed to be added on top of the ones that we are interested in,

eaµ and ψµ. This requirement can be easily seen to be necessary to enforce the equality of

fermionic and bosonic off-shell degrees of freedom or equivalently off-shell closure of the

algebra. However, here we are interested in the case in which SUGRA is softly broken.

Therefore, we add to this multiplet a Goldstino λ. To derive the transformation of the

Goldstino, one can implement the CWZ construction [3], which gives

δελ = −ε+i(λσµε̄−εσµλ̄)

(
−1

2
(ψµ + δλψµ) +

i

3
mσµλ̄

)
+(λε)

(
2m∗λ− 4

3
�bλ̄

)
+(4 ferm.)ε ,

(2.5)

9In [2], the spin connection is chosen to be

ωabµ Wess-Bagger = ebν∇µeaν +

[(
− i

4
ψaσbψ̄µ −

i

8
ψaσµψ̄

b + c.c.

)
− (a↔ b)

]
= ωabµ (e) +Kab

µ .

so that DµWess-Baggerε = Dµε + 1
2
Kab
µ σabε. As we explain in footnote 8, here we take the spin connection

ωabµ to be ωabµ = ebν∇µeaν , and we consider (2.1) with (2.2) simply as a definition of the transformation of

the gravitino field.
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where here and henceforth “(n fermion)” refers to terms containing n physical fermions

(ψµ or λ) which will not play a role in our analysis10 The first explicit realization of this

construction was obtained long ago by Kapustnikov in [17] (see also [36]).

The presence of the Goldstino allows us to construct dressed fields from the matter

fields in a as

A = DG

[
eλ(x)·Q

]
◦ a . (2.7)

Under a general symmetry, these will transform as under a linearly realized symmetry h

(this is the renown CCWZ construction [4]):

A → A′ = DG

[
eλ
′(x′)·Q

]
◦ a′ = DG

[
h(λ, g, ψ) eλ(x)·Q g−1g

]
◦ a = DG [h(λ, g, ψ)] ◦A ,

(2.8)

10If the structure constants depend on the fields, it is not obvious that the proof of CWZ [3] still works,

but it does. Let us repeat here the relevant steps. If the group G is broken to a subgroup H, let us

parametrize the coset G/H with e−λ·Q ∈ G/H and a group element as e−λ·Qh ∈ G, with h ∈ H, and Q

representing the broken generators. Then for g ∈ G, g e−λ·Q is a group element and as such can be uniquely

parametrized (close to the identity) as

g e−λ·Q = e−f(a,g)(λ)·Qh(λ, a, g) , (2.6)

where a represents some set of fields on which the structure constants of the algebra depend, transforming

under some representation of the group G: a → a′ = DG(g) ◦ a. In our case the fields a are given by the

{e, ψ,m, b} supermultiplet. Eq. (2.6) defines a non-linear realization of G on the multiplet {λ, a}, λ(x) →
λ′(x′) = f(a,g) (λ(x)), a(x)→ a′(x′) = DG (g) ◦ a(x). The difference with the usual CWZ construction here

is that the group element h(λ, a, g) and the tranformation f(a,g) depend explicitly on the matter fields a.

This in particular means that the fields a participate to the multiplet of the Goldstone bosons. To show

that this construction is a faithful representation of G, we act with an additional transformation on (2.6):

g̃ g e−λ·Q = g̃ e−f(a,g)(λ)·Qh(λ, a, g) = e−f(a′,g̃)(f(a,g)(λ))·Q h
(
f(a,g) (λ) , a′, g̃

)
h(λ, a, g) ,

where in the second step we acted on e−f(a,g)(λ)·Q and where we remind that a′ = DG(g) ◦ a. On the other

hand, this same object may also be written as

(g̃g) e−λ·Q = e−f(a,(g̃g))(λ)·Qh(λ, a, g̃g) .

Comparing these two expressions, uniqueness of the parametrization shows that

f(a,(g̃g)) (λ) = f(a′,g̃)

(
f(a,g)(λ)

)
and h(λ, a, g̃g) = h

(
f(a,g)(λ), a′, g̃

)
h(λ, a, g) ,

which tells us that this is a reparemetrization. In particular, h(λ, a, g) is an homomorphism from G to H.

Uniqueness of the parametrization holds in a basis of generators of the group such that [Q,T ] ∼ Q, where

T are the unbroken generators. The SUGRA algebra of (2.3) satisfies this requirement.

If now we introduce matter fields B that transform under a (non-necessarily linear) representation of

H: B → B′ = DH(h) ◦ B, then the same fields inherit a representation of the full group G through their

transformations under h ∈ H: B → B′ = DH (h(λ, a, g)) ◦ B. In particular, the fields B can be obtained

by decomposing the multiplet A = DG
[
eλ(x)·Q

]
◦ a into submultiplets that transform irreducibly under H.

Just for clarity, we check that B → B′ = DH (h(λ, a, g)) ◦B is a faithful non-linear representation of G by

simply noticing that

DH (h(λ, a, g̃g)) = DH
(
h
(
f(a,g)(λ), a′, g̃

)
◦ h(λ, a, g)

)
= DH

(
h
(
f(a,g)(λ), a′, g̃

))
DH (h(λ, a, g)) .

We will call the fields B as ‘dressed’ or ‘Stückelbergized’ fields.
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where h is a diff. and a local Lorentz transformation. In the second passage, we

have used the transformation property of the Goldstino (see footnote 10): eλ
′(x)Q =

h(λ, g, ψ)eλ(x)Q g−1. This is particularly useful for us because it allows us to impose the

following constraints, invariant under all symmetries:

M = 0 , Bµ = 0 . (2.9)

These can be solved for the original auxiliary fields m and bµ in terms of the remaining

fields

m =
2

3
(λσµνψµν) + . . . , ba = −3

8
(ψ̄µν σ̄

aσµσ̄νλ) +
1

8
(ψ̄µν σ̄

µσν σ̄aλ) + c.c. + . . . , (2.10)

where . . . stands for higher fermion terms, which can be obtained in a perturbative

manner. Upon substituting these values for the auxiliary fields everywhere they appear

in the transformation of the fields and in the algebra, we construct a representation of

SUGRA that does not contain the auxiliary fields, which we can forget from now on.11

Notice that imposing this constraint is similar, but not equivalent, to integrating out the

auxiliary fields. In fact, integrating out the auxiliary fields would set them to the value

that satisfies their equations of motion, which are Lagrangian dependent. At this point,

the transformations of the remaining fields would become Lagrangian dependent, but this

would imply that the algebra would close only on-shell, or equivalently only on a residual

Lagrangian-dependent transformation (see for example [37]). The constraint we impose

11One might wonder if this replacement of the auxiliary fields might change the SUGRA algebra. The

answer is ‘no’, once we express the auxiliary fields in terms of the dynamical fields, as in (2.10). Let us

give more details on how this happens. Consider a gauge invariant constraint F (χ, φi) = 0 through which

we express χ in terms of the other fields: χ = χ̃(φi). We would like to show that after substituting χ with

χ̃ the algebra does not change. In fact, an even a stronger statement holds: the variation of an arbitrary

functional of fields f(χ̃(φi), φi) under gauge transformations remains unchanged:

∂f(χ, φi)

∂χ
δχ+

∂f(χ, φi)

∂φi
δφi =

∂f(χ, φi)

∂χ

∂χ̃(φi)

∂φi
δφi +

∂f(χ, φi)

∂φi
δφi . (2.11)

Since the transformations are unchanged, so it will be the algebra. Eq. (2.11) follows from showing that

δχ = ∂χ̃(φi)
∂φi

δφi. In turn, this follows from the implicit function theorem which we review for the case in

hand. Indeed, for an arbitrary variation of fields φi

∂F (χ, φi)

∂χ

∣∣∣∣
χ=χ̃(φ)

dχ̃(φi) = − ∂F (χ, φi)

∂φi

∣∣∣∣
χ=χ̃(φ)

dφi ,

Also, since F (χ̃(φi), φi) = 0 is gauge invariant, for an infinitesimal gauge transformation δ we have

∂F (χ, φi)

∂χ

∣∣∣∣
χ=χ̃(φ)

δχ = − ∂F (χ, φi)

∂φi

∣∣∣∣
χ=χ̃(φ)

δφi.

Now setting dφ = δφ and dividing the two last equations by ∂F (χ, φi)/∂χ|χ=χ̃(φ), we get:

dχ̃(φi)
∣∣∣
dφi=δφi

≡ ∂χ̃(φi)

∂φi
δφi = δχ.

Hence (2.11).
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here instead is Lagrangian independent, and, since it is invariant under all symmetries,

the algebra obtained by substituting this constraint into the original algebra still closes

off shell. The fact that our construction had to be possible could have been expected from

noticing that, in the context of global SUSY, the Volkov-Akulov Lagrangian [38] does not

contain auxiliary fields, and in fact, our construction is related to the analogous one done

for global SUSY long time ago by Rocek [39].

The construction we just implemented can also be thought of in the following way.

Once the Goldstino is in the spectrum, we can construct operators out of the Goldstino,

the vierbein and the gravitino that transform under a general SUGRA transformation as

the auxiliary fields m and bµ. At this point, nothing forbids us to substitute m and bµ with

these operators, and obtaine a closed algebra and multiplet.

It will be useful when studying the action to perform the following field redefinition

ψ′µ = ψµ − im∗3/2σµλ̄ . (2.12)

The gravitino now transforms as

δεψ
′
µ = −2Dµε−Kab

µ σabε+ i

[
mσµε̄+ bµε+

1

3
bν(σµσ̄νε)

]
+ (4 ferm.)ε

= −2Dµε+ (2 ferm.)ε ,

(2.13)

where Kab
µ is the ψψ bilinear defined in (2.2), m and bµ are the ψλ bilinears (to leading

order in fermions) defined in (2.10), and where we have defined a generalized covariant

derivative as

Dµλ = Dµλ−
i

2
m∗3/2σµλ̄ , (2.14a)

Dµλ̄ ≡ Dµλ = Dµλ̄−
i

2
m3/2σ̄µλ . (2.14b)

The convenience of introducing the covariant derivative (2.14) has been explained in the

introduction and we will comment on it again later.

The auxiliary fields m, bµ appearing in the local SUSY transformation of the grav-

itino ψµ are necessary for the off-shell closure of the algebra (2.1) in the pure supergravity

multiplet, but do not otherwise participate in the dynamics. When SUSY is non-linearly

realized, there is no need of fermion-boson degeneracy, so it is expected that these fields

should not be needed. This is what we have achieved in this construction. This is particu-

larly convenient for our purposes, as it allows us to get rid of the auxiliary fields from the

outset without spoiling the algebra. Specifically, the multiplet eaµ, ψ
′, λ transforms as

δεe
a
µ = i

(
ψ′µ − im∗3/2λ̄σ̄µ

)
σaε̄+ c.c. + (3 fermion) · ε , (2.15a)

δεψ
′
µ = −2Dµε+ (2 fermion) · ε , (2.15b)

δελ = −ε+ i(λσµε̄− εσµλ̄)(Dµλ−
1

2
ψ′µ) + (4 ferm.)ε (2.15c)
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We conclude this section with some important comments. Field redefinitions do not

change the algebra,12 so that the transformations of the new multiplet {eaµ, ψ′µ, λ} still

satisfy the commutation relation (2.3), with m and b replaced by (2.10), which means

they offer a non-linear representation of the SUGRA algebra without any auxiliary fields.

This means that, if we work with this multiplet, auxiliary fields can be omitted in the

construction of non-linearly realized SUSY invariant actions. This is in contrast to linear

realizations of SUSY, where the appearance of auxiliary fields in the transformation of

physical fields is inevitable. Dropping from the start the auxiliary fields will be the approach

we will take in this paper.

2.2 Stückelberg trick

The Stückelberg trick consists in using the fields which non-linearly realize the sponta-

neously broken symmetries to construct objects that, under any symmetry, transform as

under a (field dependent) linearly realized symmetry. If these Stückelbergized objects are

then assembled into an action invariant under the linearly realized symmetries, the action

will automatically be invariant under the full symmetry group — this is the strategy we

will use in section 2.3 to construct SUSY invariant actions.

In the case at hand, the Stückelberg trick is implemented by using the Goldstino λ,

which non-linearly realizes SUSY. As given in eq. (2.7), we define dressed fields as

Eaµ ≡ eaµ + δλe
a
µ + . . . = eaµ + i (ψµ −Dµλ)σaλ̄+ c.c. + (4 fermion) , (2.18a)

Ψµ ≡ ψ′µ + δλψ
′
µ + . . . = ψ′µ − 2Dµλ+ (3 fermion) , (2.18b)

where δλ ≡ λQ represents a SUGRA transformation with parameter λ. One can verify

that symmetries now act on the Stückelbergized objects Eaµ, Ψµ as field-dependent linearly

12Here is the proof. Imagine we have a set of fields ϕa satisfying the algebra

[δε, δε′ ] ϕ
a = δε′′(ε,ε′,{ϕl})ϕ

a , (2.16)

where the form of ε′′(ε, ε′, {ϕl}) is dictated by the group structure. Notice that, as it happens for SUGRA,

we have allowed for a dependence on the fields themselves in the closure of the algebra. Consider a field

redefinition of the fields ϕ̃a = ϕ̃a({ϕb}). The new fields ϕ̃a satisfy the algebra

[δε, δε′ ] ϕ̃
a = δε

(
∂ϕ̃a

∂ϕb
δε′ϕ

b

)
− δε′

(
∂ϕ̃a

∂ϕb
δεϕ

b

)
(2.17)

=
∂2ϕ̃a

∂ϕc∂ϕb

(
δεϕ

cδε′ϕ
b − δε′ϕcδεϕb

)
+
∂ϕ̃a

∂ϕb

(
δεδε′ϕ

b − δε′δεϕb
)

=
∂2ϕ̃a

∂ϕc∂ϕb

(
δεϕ

cδε′ϕ
b − (±)δε′ϕ

bδεϕ
c
)

+
∂ϕ̃a

∂ϕb

(
δε′′(ε,ε′,{ϕl})ϕ

b
)

=
∂2ϕ̃a

∂ϕc∂ϕb

(
δεϕ

cδε′ϕ
b − δεϕcδε′ϕb

)
+ δε′′(ε,ε′,{ϕl({ϕ̃m})})ϕ̃

a

= δε′′(ε,ε′,{ϕl({ϕ̃m})})ϕ̃
a ,

⇒ [δε, δε′ ] ϕ̃
a = δε′′(ε,ε′,{ϕl({ϕ̃m})}) ϕ̃

a .

In the third line we have used that ∂2ϕ̃a/(∂ϕc∂ϕb) = ±∂2ϕ̃a/(∂ϕb∂ϕc) to relabel the indices in the second

term, with the minus sign holding when both fields are Grassmann. In the fourth line, we have commuted

δεϕ
cδε′ϕ

b in the second term, keeping track of the relevant sign that cancels the former ±. We conclude

that the field-redefined fields still satisfy the identical algebra, namely with the same field-dependence in

the structure constant once expressed in terms of the original fields ϕl.
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realized symmetries, i.e. diffeomorphisms or local Lorentz, as expected on general grounds

for non-linearly realized symmetries [3, 4]. For example, the action of an infinitesimal local

SUSY transformation on Eaµ is given by

δεE
a
µ = −iDµεσaλ̄+ iDµλσaε̄+ c.c. + (3 fermion) · ε

=
1

2
(δεδλ − δλδε) eaµ + (3 fermion) · ε

=
1

2

(
δdiff
ξ + δLΛξ

)
Eaµ + (3 fermion) · ε ,

(2.19)

where we used the supergravity algebra, and where the diff. and local Lorentz transforma-

tion parameters are given by

ξµ = −2i(εσµλ̄− λσµε̄) , Λabξ = ξµωabµ . (2.20)

It is also easy to see that to this order in fermion fields

δεΨµ = 0 + (2 fermion) · ε , (2.21)

which is compatible with δεΨµ = 1
2

(
δdiff
ξ + δLΛξ

)
Ψµ. Consequently, any action S[E,Ψ]

written in terms of the Stückelbergized fields that is invariant under the linearly realized

symmetries — diffeomorphisms and local Lorentz transformations — will automatically be

invariant under local supersymmetry transformations as well.

2.3 Construction of the action

The Stückelberg trick (or CCWZ construction) guarantees that any action

S[E(e, ψ′, λ),Ψ(e, ψ′, λ)] invariant under diffs. is automatically invariant under local

supersymmetry as well. We remind the reader that the reason auxiliary fields can be

ignored in this construction is that since supersymmetry is non-linearly realized, the

physical fields can be rearranged in a reduced multiplet that is closed under the action of

SUSY, as shown in section 2.1.13

As a further simplification, we perform an additional field redefinition, and define the

fundamental vierbein to be Eaµ. This is useful because the relevance of the Stückelberg

trick is to extract the helicity-1/2 component out of the gravitino, which is left with only

the helicity-3/2 components; it does not appear that a particular simplification incurs

from extracting a Goldstino out of the vierbein. We are then left with the simple task

of constructing actions S[E,Ψ(e(E,ψ′, λ), ψ′, λ)] that are invariant under diffeomorphisms

and local Lorentz transformations. This can be further simplified if one neglects 4 fermion

terms in the action. Since Eaµ and eaµ differ by a 2 fermion term (2.18), we have

S[E,Ψ(e(E,ψ′, λ), ψ′, λ)] = S[E,Ψ(E,ψ′, λ)] + (4 fermion) . (2.22)

13We further remind the reader of what we discussed in the Introduction. Since SUSY is a gauge invariance

that is non-linearly realized, one could circumvent the Stückelberg trick entirely by working in SUSY unitary

gauge where λ = 0 and where the action is only invariant under the linearly realized symmetries. Both

approaches are equivalent. The advantage of the Stückelberg trick, as we will see, is that it makes it

explicit the presence of the dynamical helicity-1/2 component of the gravitino (the Goldstino), which plays

a particular role in the dynamics.
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For ease of presentation, in the following the “dressed” vierbein Eaµ will be denoted by a

lower-case eaµ and we will drop the prime to identify the redefined gravitino ψ′µ.

As anticipated in the introduction, we remind the reader that, contrary to the S matrix,

field redefinitions do not keep correlation functions invariant. Therefore, if one were to be

interested in correlation functions of the original fields, one would have to keep track of

the field redefinitions. We will come back to this point in the context of inflation.

We illustrate our method by constructing the low energy effective theory of supergrav-

ity in maximally symmetric spacetimes. This can be seen as a novel way to construct the

Volkov-Akulov Lagrangian [38, 40] in these spacetimes, and to couple it to a dynamical

metric (see for e.g. [25]).14 In our formalism, this is simply achieved with the unitary gauge

action

SdS[e, ψ] = SS̄G + Sm3/2
−
∫
d4x eΛ , (2.23)

where the pure supergravity action without auxiliary fields is given by15

SS̄G[e, ψ] =
1

2
M2

Pl

∫
d4x e

[
−R+ εµνρσ(ψ̄µσ̄νDρψσ + c.c.)

]
, (2.24)

and

Sm3/2
= M2

Pl

∫
d4x em3/2(ψµσ

µνψν) + c.c. . (2.25)

Sm3/2
can be neatly repackaged into the gravitino kinetic term by making use of the gen-

eralized covariant derivative (2.14). In this case we simply have

SS̄G + Sm3/2
=

1

2
M2

Pl

∫
d4x e

[
−R+ εµνρσ(ψ̄µσ̄νDρψσ + c.c.)

]
. (2.26)

The unitary gauge action (2.23) is manifestly invariant under the linearly realized symme-

tries; invariance under all symmetries can be restored with the Stückelberg trick described

in section 2.2. As a result, the action

SdS[e,Ψ(e, ψ, λ)] , (2.27)

with Ψµ = ψ − 2Dµλ + (3 fermions), is invariant under local SUSY transformations in

addition to diffeomorphisms and local Lorentz transformations. A nice feature of this

construction is that the operators that in the standard supersymmetric formalism are gen-

erated or receive contributions by spontaneous SUSY breaking, here can be written directly

in the Lagrangian. An example is a positive cosmological constant, that we can simply and

14In this paper we will stop at quadratic order in the fermionic fields, but one could carry on our procedure

at higher orders.
15We define the Levi-Civita tensor as

εµνρσ = eµae
ν
b e
ρ
ce
σ
d ε
abcd = εµνρσ/e ,

with e = det(eaµ) and ε0123 = 1. For example, in this notation

F ∧ F ∝ εµνρσFµνFρσd4x = e εµνρσFµνFρσd
4x .
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directly write in (2.23), while in the normal formalism it cannot be written, and instead it

emerges after plugging the solutions of the equations for the auxiliary variables and matter

in the action. More generally, there need not to be any relation between m3/2 and Λ.

The action (2.27) can be spelled out more explicitly: after integration by parts the

fermionic part of the action is quite elegantly found to be16

1

e
(Lψψ+Lψλ+Lλλ) = M2

Pl ε
µνρσ

(
1

2
ψ̄µσ̄νDρψσ − ψ̄µσ̄ν [Dρ,Dσ]λ+Dµλ̄σ̄ν [Dρ,Dσ]λ

)
+c.c. .

(2.28)

Notice the appearance of the commutator

[Dµ,Dν ]λ =

(
1

2
Rµναβ − |m3/2|2gµαgνβ

)
σαβλ . (2.29)

that we inserted thanks to the antisymmetry of the ε symbol.

In particular this commutator vanishes if

Rµναβ = |m3/2|2(gµαgνβ − gµβgνα) ; (2.30)

The Riemann tensor takes this form in Anti-de Sitter (AdS) space with the m3/2-related

cosmological constant Λ = −3M2
Pl|m3/2|2 — the fact that no kinetic term for the Gold-

stino is introduced in the Stückelberg procedure if the cosmological constant takes this

value (since [Dµ,Dν ]|AdS background = 0 in (2.28)) reflects the well known result that (2.23)

is already invariant under local SUSY transformations, and describes pure supergravity

around AdS [41]. In this case, the Goldstino that we obtain is, at best, strongly coupled

at all energies, and, since we know that the Lagrangian in (2.23) linearly realizes SUGRA

in this specific AdS spacetime, every appearance of the Goldstino in this Lagrangian will

be cancelled by a field redefinition of the vierbein.17 For a generic cosmological constant

the background solution to the action (2.23) is instead de Sitter or Anti de-Sitter, with

Rµναβ = − Λ

3M2
Pl

(gµαgνβ − gµβgνα) , (2.31)

so that the commutator does not generically vanish, and the quadratic fermionic action is

1

e
Lψψ = M2

Pl

(
1

2
εµνρσψ̄µσ̄νDρψσ +m3/2ψµσ

µνψν

)
+ c.c. , (2.32)

1

e
Lψλ = −i

(
Λ + 3M2

Pl|m3/2|2
)
ψ̄µσ̄

µλ+ c.c. ,

1

e
Lλλ = −i

(
Λ + 3M2

Pl|m3/2|2
)
λ̄��Dλ+ 2

(
Λ + 3M2

Pl|m3/2|2
)
m3/2λλ+ c.c. ,

16In obtaining this expression, it is useful to realize that the generalized covariant derivatives appearing

in this expression can be integrated by parts. More explicitly, we have:∫
d4x e M2

Pl ε
µνρσDµλ̄σ̄νDρDσλ+ c.c. = −

∫
d4x e M2

Pl ε
µνρσλ̄σ̄νDµDρDσλ+ c.c. .

17Notice that since we are not introducing any auxiliary field, the linearly realized SUGRA under which

our Lagrangian is invariant in this limit closes only on shell, and not off shell. Still, this is enough to

guarantee that the propagating degrees of freedom have just helicity 2 and 3/2 (see [37] for details).
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with ��D = σ̄µDµ. In particular, in de Sitter space Λ > 0 and none of the terms above

vanish — a Goldstino is thus required to realize supergravity in this spacetime. Note that

stability of the Goldstino kinetic term imposes Λ > −3M2
Pl|m3/2|2.

Notice that the action in (2.32) manifestly shows that the Goldstino and the grav-

itino decouple at high energies: the mixing term has the form ψ̄µσ̄
µλ, which has one less

derivative than the kinetic terms, and becomes more and more irrelevant at energies

E � Emix ∼
∣∣∣∣ Λ

M2
Pl

+ 3|m3/2|2
∣∣∣∣1/2 . (2.33)

Though expected on general grounds, obtaining this was not obvious, as already emphasized

in [42]. In fact, this was achieved only thanks to a careful redefinition the gravitino, so

that its SUGRA transformation is proportional to the covariant derivative in (2.14) of

the SUGRA parameter. This implies that in the mixing term the ordinary derivatives

only appear in the form of a commutator of covariant derivatives, which has no ordinary

derivative left acting on the fermions. In a sense, this construction achieves the fact that

SUGRA is spontaneously broken not directly by the mass term operators, but by the

commutator of the covariant derivatives, which gives rise to a lower dimension operator,

proportional to the spacetime curvature or to the square of the gravitino mass (instead of

the gravitino mass to the single power). Indeed, after the field redefinition, the gravitino

transformation is the one such that the Lagrangian in AdS with Λ = −3M2
Pl|m3/2|2 would

be invariant. The breaking is proportional to Λ/M2
Pl −m2

3/2. In this way, SUGRA can be

thought of as being softly broken by an operator which is more relevant that the naive effect

generated by the mass terms: an operator with the same dimensions as the one associated

to the spacetime curvature. This fact makes decoupling manifest.

It is interesting to make the following observation. Naively, in the decoupling

limit, we are expected to obtain the renowned Volkov-Akulov Lagrangian [38]. How-

ever, this is achieved only in the limit E2 � Max(m2
3/2,Λ/M

2
Pl) where spacetime is

flat. There is an intermediate parametric regime where we still have a decoupling La-

grangian, but it is different from the Volkov-Akulov one. This is obtained when we tune

Emix ∼
∣∣∣ Λ
M2

Pl
+ 3|m3/2|2

∣∣∣1/2 to be much smaller than the curvature of the spacetime and the

gravitino mass (3|m3/2|2 ' −Λ/M2
Pl in this limit). In this case, the Goldstino decouples

from the gravitino, but the action is the one of a massless Goldstino in rigid AdS space.

As an application of the action (2.27) in the rigid dS limit, we will derive in appendix A

the dispersion relation of the helicity-1/2 mode in de Sitter space.

3 Breaking time diffeomorphisms

In the former section we constructed the most general Lagrangian where SUGRA is softly

broken while keeping diffs. unbroken. We started by writing an action in unitary gauge that

respected only the unbroken symmetries. Then a Goldstino was introduced by performing

a Stückelberg transformation to reintroduce the non-linearly realized SUGRA gauge invari-

ance. From this, we were able to identify a decoupling limit where the Goldstino decouples
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from the gravitino. Several subtleties were addressed in this construction — for example

care had to be taken to make the algebra and the field transformations independent of the

auxiliary fields, and to chose a particular basis of fields which made decoupling manifest.

We now turn to the main case of interest for this paper, which is the one in which

we decide to break time diffs. in addition to SUGRA. This will be relevant for FRW

spacetimes and to describe the theory of inflation, which we postulate to be a period of

FRW expansion where time diffs. are spontaneously broken. As most of this section will

mirror the construction in the previous section, only the subtleties specific to breaking both

SUGRA and time diffs. will be explained at length here.

3.1 Unitary gauge action

The construction follows very similarly the logic of the former section, with the differences

that were explained in the introduction. We start by writing a unitary gauge action where

the only dynamical fields are the graviton and the gravitino. In this case, the action will

be invariant only under time-dependent spatial diffs.. The bosonic unitary gauge action

was studied in ref. [1], to which we add the gravitino kinetic term and all the relevant

(i.e. non-marginal) operators involving the gravitinos that are allowed under the linearly

realized symmetries. The full unitary gauge action is

SSEFTofI = SEFTofI[g] + (3.1)

+M2
Pl

∫
d4xe

[
1

2
εµνρσψ̄µσ̄νDρψσ+m3/2(ψµσ

µνψν)+m0(ψµσ
µ0ψ0)+m?(ψµψ

µ+ψ0ψ0)+c.c.

+ im̃1(ψ̄0σ̄µψµ − ψ̄µσ̄µψ0) + im̃2ε
µνλ0(ψ̄µσ̄νψλ) + δg00(m(3)ψµψ

µ + c.c.) + . . .

]
,

where . . . denotes higher derivative terms and terms with a number of fluctuations greater or

equal to three (the term in m(3) being an example of these). The absence of ghosts imposes

the specific form of the m? term as well as of the m̃1 term. There is no loss of generality in

taking m̃1, m̃2 ∈ R. The other coefficients are complex m3/2, m0, m? ∈ C. Notice, quite

interestingly, that m̃1,2 preserve the U(1)-chiral symmetry ψµ → eiαψµ. The term in m(3)

starts cubic in the fluctuations, and represents just one of the many that we could write, and

which are included in the . . .. Notice furthermore that since no linear term in the gravitino is

allowed, the tadpoles of the Lagrangian are the same as in the case of the standard EFTofI.

For the moment, we will ignore the m? term. If we focus first only on the part of the

action that contributes to the quadratic Lagrangian of the gravitino, S
(k)
ψψ , the action can

again be packaged into a modified kinetic term

S
(k)
ψψ =

1

2
M2

Pl

∫
d4x e εµνρσψ̄µσ̄νDρψσ + c.c. , (3.2)

where now

Dµλ = Dµλ−
i

2

[(
m∗3/2 +

1

2
m∗0g

00

)
σµ −m∗0tµσ0

]
λ̄− i

2

[
2m̃2tµ − im̃1σ

0σ̄µ

]
λ ,

Dµλ̄ = Dµλ̄−
i

2

[(
m3/2 +

1

2
m0g

00

)
σ̄µ −m0tµσ̄

0

]
λ+

i

2

[
2m̃2tµ + im̃1σ̄

0σµ

]
λ̄ ,

(3.3)
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with tµ = δ0
µ. Some of the terms appearing in (3.3) already appeared in ref. [43], though

in a very different context. Mirroring the maximally symmetric case, we work with the

redefined field ψ′µ,

ψ′µ = ψµ − i
[(
m∗3/2 +

1

2
m∗0g

00

)
σµ −m∗0tµσ0

]
λ̄− i

[
2m̃2tµ − im̃1σ

0σ̄µ

]
λ , (3.4)

whose transformations are still given by (2.15), with now Dµ given by the more general

form (3.3) above. We will drop the primes from now on unless when they are needed for

clarity.

3.2 Stückelberg trick: time diffeomorphims and local SUSY

Following ref. [1], invariance under time diffeomorphisms can be restored by performing

a broken transformation and promoting the transformation parameter to a field π. This

amounts to replacing any upper “0” index in (3.1) as A0 = Aµtµ → Â0 = Aµ∂µ(t + π).

Similarly, local supersymmetry can then be introduced by performing a SUGRA trans-

formation and promoting the transformation parameter to a field λ, as described in the

former section. Since Poincaré is a subgroup of SUGRA, this procedure can be performed

in two steps: first reintroduce Poincaré and then reintroduce SUGRA (the opposite order

is not allowed as SUSY is not a subgroup of SUGRA). For example, on the field g00, this

procedure amounts to the following transformation:

g00 = ηabe0
ae

0
b

diff. Stück.−−−−−−−→ ĝ00 = ηabeµae
ν
b∂µ(t+ π)∂ν(t+ π) (3.5)

SUSY Stück.−−−−−−−−→ Ĝ00 = ηabEµaE
ν
b ∂µ(t+ π)∂ν(t+ π) ,

where Ĝ00 indicates the Stückelbergized field g00 (not to be confused with the Einstein

tensor). The similar expression for the gravitino is given in (1.15) that we repeat here:

Ψ̂µ ≡ ψ′µ − 2D̂µλ+ (3 fermion) . (3.6)

Here we neglected to Stückelbergize the overall µ index, whose Stückelbergization we keep

explicit for convenience. Notice the appearance of ψ′ and of the particular covariant

derivative. The undressed Dµ’s are given by (3.3) and the dressed D̂µ’s are obtained

by the standard procedure, but neglecting to Stückelbergize the overall µ index, whose

Stückelbergization we keep explicit for convenience. More explicitly, we have

D̂µλ = Dµλ−
i

2

[(
m∗3/2 +

1

2
m∗0ĝ

00

)
σµ −m∗0δ̂0

µσ̂
0

]
λ̄− i

2

[
2m̃2δ̂

0
µ − im̃1σ̂

0σ̄µ

]
λ , (3.7)

where δ̂0
µ = ∂µ(t+π). As we will comment later, the appearance of the covariant derivative

will be essential to obtain manifest decoupling of the Goldstino from the gravitino. In

summary, we work with a SUGRA multiplet that contains the metric, the gravitino, the

Goldstone of time diffs. and the Goldstino.

We observe that the SUSY Stückelberg transformation in (3.5) did not affect the Gold-

stone field π. In other words, we assumed that we could assign a transformation law to π
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under SUGRA such that π transform as under a time-diff., without needing to field-redefine

it with the Goldstino. This is indeed expected to be possible from what we discussed in foot-

note 10 where we generalized the CWZ, construction. In fact, we explained there that if we

have matter fields that transform under H in a non-linear representation DH , they inherit

automatically a non-linear representation of G where they transform under g ∈ G through

the homomorphism h(λ, a, g) that goes from G to H. In our case, at the step of introducing

SUGRA, time-diffs. are part of H, and therefore it is possible to assign to π a transforma-

tion law under SUGRA such it transforms as under a time diff.. In particular, the explicit

parameter of the time-diffs. induced by SUGRA can be read off from the transformation of

the other Stückelbergized fields, see for e.g. (2.19). We have that the parameter of the diff. is

ξµ = −2i(εσµλ̄− λσµε̄) (the parameter of the Lorentz transformation is irrelevant because

π is a Lorentz scalar). Therefore, we have the following transformation property for π:18

δεπ =
1

2
(δdiff
ξ +δLΛξ)π+. . . =

1

2
(ξ0+ξµ∂µπ)+. . . = −i(εσ0λ̄−λσ0ε̄)−i(εσµλ̄−λσµε̄)∂µπ+. . . ,

(3.8)

where . . . denote four fermion terms. Notice furthermore that the π transformation must

be proportional to λ, because one cannot break time-diffs. without at the same time

breaking SUSY.

As in the maximally symmetric case we will define Eaµ to be the physical vierbein, and

denote it by eaµ in the following. After both Stückelberg steps, the action

SSEFTofI = SEFTofI[g, π] +
1

2
M2

Pl

∫
d4x e εµνρσ

¯̂
Ψµσ̄νD̂ρΨ̂σ +m(3)

ˆδG00Ψ̂µΨ̂µ + c.c. + . . . ,

(3.9)

is fully invariant under diffeomorphisms, local Lorentz transformations and local super-

symmetry. Note that SEFTofI[g, π] is purely bosonic, and all interactions between π and ψµ
or λ are contained in the terms involving the gravitino in (3.9). Action (3.9) represents the

most general low energy action when SUSY and time-diffs. are spontaneously broken.

3.3 Decoupling limit

As we have already described, the Stückelberg trick is particularly useful because it extracts

from the gravitino the spin-1/2 degree of freedom, which we will show decouples at high

energies. To show that this is the case, we focus for the moment on the kinetic and mass

terms for the gravitinos S
(k)
ψψ , which are the relevant terms. Diff. invariance of these terms

induces couplings to gravity and π that we also discuss. The part of the kinetic action of

the gravitinos which is quadratic in the fermions has the same form as eq. (2.28):

1

e
(L(k)

ψψ+L(k)
ψλ+L(k)

λλ ) = M2
Pl ε

µνρσ

(
1

2
ψ̄µσ̄νD̂ρψσ − ψ̄µσ̄ν [D̂ρ, D̂σ]λ+ D̂µλ̄σ̄ν [D̂ρ, D̂σ]λ

)
+c.c. ,

(3.10)

18It is straightforward to show that this transformation satisfies the algebra (2.3):

[δε′ , δε]π = −2i(ε′σ0ε̄− εσ0ε̄′)− 2i(ε′σµε̄− εσµε̄′)∂µπ + (4 fermion)

= δdiff
yµ π + (4 fermion) = (δdiff

yµ π + δLΛ + δε̂)π + (4 fermion) ,

with parameters defined in equation (2.4).
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The commutator of derivatives is

[D̂µ, D̂ν ]λ = (3.11){
1

2
Rµναβ−

[
|M̂ |2−m̃2

1ĝ
00
]
gµαgνβ+2

[
m̃2

1+ ˙̃m1−Re(M̂m∗0)
]
δ̂0

[µgν]αδ̂
0
β−2m̃1

[
∇[µδ̂

0
α

]
gν]β

}
σαβλ

+
{
− im∗0δ̂0

[µ

[
∇ν]δ̂

0
α

]
−
[
2M̂∗m̃2 + im̃1(M̂∗ −m∗0ĝ00)

]
δ̂0

[µgν]α − i∂[µM̂
∗gν]α

}
σαλ̄

with M̂ = m3/2 + 1
2m0ĝ

00. We kept ĝ instead Ĝ in (3.11) because at the order at which we

work, where we neglect four-fermion terms, the difference is negligible.

In the case of maximally symmetric spacetimes, we found that in the limit in which

the space time was AdS with Λ = −3M2
Pl|m3/2|2, SUGRA was linearly realized. This

revealed itself in our formalism by the fact that no healthy Goldstino was introduced by the

Stückelberg procedure. In turn, this originated from the fact that [Dµ,Dν ]|background = 0.

We are now going to ask the same question for FRW spacetimes where time diffs. are

broken. This amounts to finding metrics for which the commutator (3.11), with π = 0 and

δgµν = 0, vanishes. We are not able to find an FRW solution for the most generic case, but

we find a few interesting examples when restricting ourselves to certain special parameters.

If we set m3/2 = c eim̃2t, m̃2 = const, and all other parameters equal to zero, the resulting

spacetime is the usual AdS space with Λ = −3M2
Pl|m3/2|2. For m0 6= 0 or m̃2 6= 0 and

constant, and all other parameters equal zero, we find Minkowski space. Finally, if we set

m̃1 6= 0, m̃2 6= 0 and constant, and all other parameters equal to zero, we find a closed

FRW with vanishing Hubble rate. The condition that [Dµ,Dν ]|background = 0 implies that

on these spacetimes there exists, barring topological obstructions, a killing Weyl spinor χ

(Dµχ = 0). In turn, this guarantees that in the rigid limit one can define a SUSY invariant

theory living on this manifold [43]. The case of m3/2 = c eim̃2t, m̃2 = const in AdS

with Λ = −3M2
Pl|m3/2|2 has a stronger property. In fact, this theory still possesses linearly

realized gauge invariance. This can be seen by performing the field redefinition ψ → eim̃2tψ.

In this case, the Lagrangian reduces to the one of standard SUGRA in AdS. Therefore it is

SUGRA invariant without the introduction of a Goldstino and a Goldstone.19 Notice that

the theory is not strictly equivalent to AdS SUGRA, because the original gravitino has a

gap, giving an effect similar to a chemical potential (see related discussion in [32]).

Around generic geometries, the commutator (3.11), with π = 0, does not vanish, and

the theory contains a Goldstino. The Goldstino-gravitino mixing is given by

1

M2
Ple
L(k)
ψλ = (3.12)

19One might wonder if on the other manifolds with non-vanishing killing spinors one can define a full

SUGRA invariant theory. In order to do so, one needs to be able to add matter to support the relevant

manifold as a solution, while at the same time preserving time diffs. and boson-fermion degeneracy, thus

preserving SUGRA. For the case of Minkowski, in principle the Lagrangian could just break boosts and

not time translations. In this case, one would just need to introduce the three Goldstone bosons of boost

breaking (see for example [44, 45]). The counting of on-shell degrees of freedom tells us that additional

massless matter needs to be added to make this theory SUGRA invariant. It seems hard to achieve this.

Similar considerations apply to the case of S3×R. We leave further explorations on this topic to future work.
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−i
{
Rµν −

1

2
Rgµν − 2

[
m̃2

1 + ˙̃m1 − Re(M̂m∗0)
]
∂µ(t+ π)∂ν(t+ π)− 2m̃1∇µ∂ν(t+ π)

+
[
3|M̂ |2+gρσ∂ρ(t+π)∂σ(t+π)

(
−m̃2

1+2 ˙̃m1−2Re(M̂m∗0)
)

+2m̃1∇ρ∂ρ(t+π)
]
gµν

}
ψ̄µσ̄νλ

+

{
4

(
−2iM̂∗m̃2+m̃1(M̂∗−m∗0gρσ∂ρ(t+π)∂σ(t+π))+

1

2
m∗0∇ρ∂ρ(t+π)

)
gµα∂β(t+π)

+ 4gµα∂βM̂
∗−2m∗0 [(∇µ∂α(t+π))∂β(t+π)+gµα∂

γ(t+π)∇β∂γ(t+π)]

}
ψ̄µσ̄αβλ̄

+c.c.+ 4 fermion ,

where ∇µ is the usual covariant derivative, and Dµ was defined in footnote 8. Here and in

the following equations (3.13), (3.14), and (3.15), every mass coefficient should be evaluated

at a time equal to t+ π. The Goldstino kinetic term is similarly given by

1

M2
Ple
L(k),kin
λλ =

1

e
Lψλ[λ, ψµ → −Dµλ] (3.13)

= i

{
Rµν −

1

2
Rgµν − 2

[
m̃2

1 + ˙̃m1 − Re(M̂m∗0)
]
∂µ(t+ π)∂ν(t+ π)− 2m̃1∇µ∂ν(t+ π)

+
[
3|M̂ |2+gρσ∂ρ(t+π)∂σ(t+π)

(
−m̃2

1+2 ˙̃m1−2Re(M̂m∗0)
)

+2m̃1∇ρ∂ρ(t+π)
]
gµν

}
Dµλ̄σ̄νλ

−
{

4

(
−2iM̂∗m̃2+m̃1(M̂∗−m∗0gρσ∂ρ(t+π)∂σ(t+π))+

1

2
m∗0∇ρ∂ρ(t+π)

)
gµα∂β(t+π)

+ 4gµα∂βM̂
∗−2m∗0 [(∇µ∂α(t+π))∂β(t+π)+gµα∂

γ(t+π)∇β∂γ(t+π)]

}
Dµλ̄σ̄αβλ̄

+c.c.+ 4 fermion ,

where in (3.12) and (3.13), M̂ = m3/2 + 1
2m0g

µν∂µ(t+ π)∂ν(t+ π).

Finally, the Goldstino mass term is easily, though lengthly, obtainable from (3.12) with

the following replacement

L(k),mass
λλ = L(k)

ψλ [λ, ψµ → −(D̂µ −Dµ)λ] (3.14)

= L(k)
ψλ

[
λ, ψµ →−

i

2

[(
m∗3/2+

1

2
m∗0ĝ

00

)
σµ−m∗0δ̂0

µ(δ̂0
νσ

ν)

]
λ̄− i

2

[
2m̃2δ̂

0
µ−im̃1(δ̂0

νσ
ν)σ̄µ

]
λ

]
.

This term contains additional couplings between λ and π, schematically of the form λλ∂π

and λλ∂π∂π. For example, in the case where only m̃2 6= 0, the mass term is given by

1

M2
Ple
L(k),mass
λλ = −2m̃2

(
Rµν − 1

2
Rgµν

)
(λ̄σ̄µλ)∂ν(t+ π) . (3.15)

Expressions (3.12), (3.13) and (3.14) are exact up to quadratic orders in the fermionic

fields, and to all orders in bosonic perturbations, i.e. the metric was not assumed to be

FRW. On the other hand, in the FRW metric, these expressions drastically simplify, as

shown in appendix B.

Since the mixing terms between λ and ψµ do not have any derivative acting on the

fermions, decoupling is manifest at sufficiently high energies. Again, as in the case of
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maximally symmetric spacetimes, this was achieved thanks to a careful redefinition of the

fields so that the Stückelberg transformation contained subleading mass terms with the

covariant derivative D.20

Even though the expressions are a bit lengthy, estimates are readily simplified if we

realize the following. For the purpose of inflation, we are usually interested in energy scales

of order Hubble. Exceptions to this case are present when the approximate continuous shift

symmetry of π is softly broken to a discrete one [46, 47]. Apart for these exceptions, that

we do not study here and that can be studied in a similar way in future work, if the mass

parameters that we introduce in (3.1) are much larger than H, then the gravitino can be

integrated out and we are left with the standard EFT of Inflation.21 Therefore, we can

limit ourself to study the case where all the parameters

m3/2 ∼ m0 ∼ m̃1 ∼ m̃2 ∼ m? . H . (3.16)

This is a technically natural choice, as we discuss later. In this regime, we have that the

canonical gravitino and Goldstino fields are

ψµ =
ψµc
MPl

, λ ∼ λc
HMPl

, (3.17)

so that, schematically

L(k)
ψλ ∼M

2
PlH

2ψµσµλ ∼ Hψµc σµλc . (3.18)

We find that, barring cancellations that we do not find to be justified by any symmetry

reason if we are close to an inflationary background, decoupling between the Goldstino

and the gravitino will occur above energies of order Emix ∼ H. In particular, this tells us

that for inflationary calculations where π is protected by an approximate continuous shift

symmetry, calculations of inflationary correlation functions cannot be reliably performed

by considering only the Goldstino and not the gravitino. This is to be contrasted with

the purely bosonic inflationary case, where the mixing scale between π and the graviton is

often much smaller than H, and so inflationary correlation functions can be computed in

the decoupling limit.

It is interesting at this point to study the speed of propagation cλ of Goldstino fluc-

tuations. Superluminal propagation would imply that the effective theory cannot be UV

completed by a Lorentz-invariant local unitary theory [48]. We study the properties of the

20The fact that this covariant derivative exists can be understood in the following way. In the maximally

symmetric case, the covaraint derivative was chosen so that it was equal to the transformation of the

gravitino in the linearly-realized SUSY in AdS. This made evident that it was the curvature, and not the

mass, to break SUSY. In the FRW case, we discussed just above that, if we turn on one parameter at the

time, we can find manifolds for which [Dµ,Dν ]|background = 0. This makes it clear that, the breaking of SUSY

in the quadratic Lagrangian will be either proportional to the product of two masses, which has dimension

two instead of one as it would be for the mass, or the curvature of the spacetime, which has dimension two.

Effectively this makes manifest that the breaking of SUSY is due to a operator as relavent as the curvature.
21This scale might have to be modified in the case the Goldstino has a speed of sound much smaller than

one. As we will discuss next, this is not expected to be the case unless there are unexpected cancellations

among the different parameters of the EFT.
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Goldstino propagation in appendix B, and the requirement of subluminal propagation on

the parameters introduced in (3.1). We find that subluminal propagation requires

cλ ≤ 1 ⇔ β2 ≥ α2 + |γ|2 (3.19)

where β, α and γ are combinations of the parameters in (3.1) that are defined in ap-

pendix B, eq. (B.5). We also find that, even if we move away from the parameter region

identified by (3.16), the speed of sound of the Goldstino is order one unless there are unex-

pected cancellations among the different parameters of the EFT, justifying the choice made

in (3.16). Our finding is in contrast with former literature of the subject, which argued

that cλ − 1 ∼ O(ε), while we argue that the technically-natural parameter range includes

cλ − 1 ∼ O(1). Therefore, we focus on the regime cλ − 1 ∼ O(1) for the rest of the paper.

3.3.1 δKδg00 and subtle decoupling in the bosonic case

In order to obtain manifest decoupling, we had to perform a careful field redefinition of

the gravitino. Such subtleties with decoupling are of course not unique to SUGRA. Similar

situations, where the subleading terms in the Stückelberg transformation are important,

also happen in the bosonic EFTofI. For example, let us consider the following term in the

unitary gauge Lagrangian SEFTofI[g] in (3.1):∫ √
−gM̄3δKδg00 . (3.20)

Since the breaking of time diffs. is due to a dimension three operator, while the standard

terms such as (δg00)2 are dimension two, we expect that manifest decoupling will not hap-

pen after the usual replacement gµν → ĝµν given in (1.11). Indeed, with the transformation

in (1.11), one finds terms of the form

∼ M̄3
(
H(∂iπ)2 − ∂iδg00∂iπ − 2∂iδg

0iπ̇ − δġiiπ̇
)
. (3.21)

The mixing term above has the same number of derivatives as the kinetic terms for π and

δgµν , which shows that decoupling will not happen manifestly. Indeed, the equations for

the constrained variables will read M2
Pl∂

2δg ∼ M̄3∂2π ⇒ δg ∼ M̄3

M2
Pl
π. Upon plugging

back this solution into (3.21), we see that the mixing term contributes to a term in (∂π)2

which has the same number of derivatives as the original kinetic term: decoupling has not

manifestly happened.

All of these harming mixing terms can be removed by means of a field redefinition for

gµν that involves π with no derivatives acting on it. If we redefine

g′µν = gµν + 4
M̄3

M2
Pl

g0µg0νπ + 2
M̄3

M2
Pl

gµνπ , (3.22)

then the transformation of g′µν under time diffs. gets modified accordingly, so that the

Stückelberg transformation for it reads:

ĝ′µν = ∂α(xµ + πµ)∂β(xν + πν)g′αβ − 4
M̄3

M2
Pl

g′0µg′0νπ − 2
M̄3

M2
Pl

g′µνπ + . . . , (3.23)
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where we neglected quadratic terms in π. The action written directly in terms of ĝ′ rather

than ĝ has manifest decoupling in terms of the fields δg′ and π. This is completely analogous

to what we saw in sections 2 and 3 where in the presence of the m terms it was important

to perform suitable field redefinitions on ψ and g so that the action after a Stückelberg step

that kept track of the terms proportional to the m’s inside D̂ had manifest decoupling.22

3.4 m? 6= 0 and a very non-relativistic dispersion relation

The remaining kinetic unitary gauge term that has not yet been discussed is the one

proportional to m? in (3.1)

SSEFTofI ⊃M2
Pl

∫
d4x em?(ψµψ

µ + ψ0ψ0) + c.c. . (3.24)

This particular linear combination of ψµψ
µ and ψ0ψ0 is required to avoid a Goldstino

kinetic term of the form λ̇λ̇ which would propagate a ghost. As mentioned earlier, this term

cannot be repackaged into the gravitino kinetic term with the help of a modified covariant

derivative D. Consequently, decoupling in this theory is not automatic by construction, so

we check it explicitly here. The Stückelberg transformation leads to

SSEFTofI ⊃M2
Pl

∫
d4x em?Ψ̂

µΨ̂ν(gµν + δ̂0
µδ̂

0
ν) + c.c. . (3.25)

For the purposes of showing decoupling, the action above can be simplified. First, we will

focus on the action quadratic in fermions (i.e. set the bosonic perturbations π, δg to zero),

so that Ψ̂µ → Ψµ and δ̂0
µ → δ0

µ. Second, since the FRW background alone implies that

the Goldstino and gravitino are mixed up to Emix ∼ H and m? can at most increase the

mixing energy, we will assume Emix & H from the start, which allows us to neglect the

mass terms in the covariant derivative

Ψµ = ψµ − 2Dµλ ∼ ψµ + ∂µλ . (3.26)

We are thus lead to the following form of quadratic action

1

eM2
Pl

L2f ∼ ψ∂ψ +H2λ∂λ+m?

[
∂iλ∂

iλ+ ψi∂iλ
]
. (3.27)

The term in H2λ∂λ comes from the gravitino kinetic term. Since m? alone does not

generate any kinetic term λλ̇, it is important to include the curvature contribution above

in order to have a healthy theory. The Goldstino dispersion has therefore the very non-

relativistic form

ω ∼ k +
m?

H2
k2 . (3.28)

Notice that despite the kinetic Goldstino-gravitino mixing ψi∂iλ in (3.27), the Goldstino

decouples at high energies. Indeed, in the gauge σ̄iψi = 0 and for wavevectors k � H, the

gravitino equation of motion leads to

∂iψi ∼ σ0i∂iψ0 ∼ m?σ
i∂iλ̄ ⇒ ψi ∼ m?σ

iλ̄ . (3.29)

22The only non-analogous aspect of this construction is the notation: in the main text, we dropped the

prime “ ’ ” in ĝ in (3.23) because in the case of SUSY Stückelberg there was no risk of confusion as we used

capitalized letters for the Stückelbergized fields.
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So the mixing term is negligible at high wavevectors k � m?:

m?ψ
i∂iλ ∼ m2

?λ̄σ̄
i∂iλ� m?(∂iλ)2 . (3.30)

The mixing energy in this case is

Emix ∼ kmix +
m?

H2
k2

mix ∼ m?

(
1 +

m2
?

H2

)
. (3.31)

For m? . H, which is the regime of interest, mixing due to the background curvature is

comparable or more important, as it gives Emix ∼ H.

Notice finally that as we move to very high wavenumbers, the speed of propagation

of Goldstino waves will become superluminal, forbidding the UV completion of this La-

grangian with a local, Lorentz invariant one. We will come back on this important point

in section 4.1.4.

3.5 Multifield inflation: including additional degrees of freedom

So far, we have provided a formalism that allows us to construct the most general La-

grangian for the fluctuations in FRW spacetime where SUGRA is spontaneously broken

and where the only relevant degrees of freedom are the graviton eaµ, the gravitino ψµ, the

Goldstone π and the Goldstino λ. In general, however, the theory could contain additional

light degrees of freedom, whose inclusion is not required by the non-linear realization of

SUGRA. Our formalism makes the inclusion of these additional degrees of freedom quite

straightforward. We follow the same logic as used for constructing the EFT of Multifield

Inflation [6] and our supersymmetric extension of the single field case. We start by writing

an action in a gauge that is unitary both for the SUSY transformations and for time diffs..

On top of the graviton eaµ and the gravitino ψµ, we now have additional light degrees of

freedom. We therefore write the most general Lagrangian for the fluctuations with these

fields, invariant just under time-dependent spatial diffs., softly breaking SUGRA and time

diffs.. The result is a Lagrangian that is the sum of the single field supersymmetric EFTofI

which we have developed so far, SSEFTofI, of the non-SUSY multifield EFT of Inflation

(removing of course the part that is common to the two), that we call S ˜multiEFTofI
, the tilde

signifying the removal of the single field part, and of a new part. The new part consists of

terms that couple the additional fields to the gravitino. If for simplicity we focus on one

single scalar additional fields, σ, endowed by a shift symmetry, the leading terms will be

bilinear in the gravitino field, taking schematically the form

SSmultiEFTofI = SSEFTofI + S ˜multiEFTofI
(3.32)

+M2
Pl

∫
d4x e

[
c3/2,1σ̇(ψµσ

µνψν) +
(
c0,1σ̇(ψµσ

µ0ψ0) + ∂ρσ
(
c0,2ψµσ

µρψ0 + c0,3ψµσ
µ0ψρ

))
+
(
c?,1σ̇ψµψ

µ + c?,2∂µσψ
µψ0 + c?,3σ̇ψ

0ψ0
)

+ . . .+ c.c.
]
.

In (3.32), we have not been careful in writing all the leading terms, as the systematic

construction, including also additional fields, is at this point very simple and will be done

elsewhere.
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It is now easy to reintroduce non-linearly realized SUGRA with exactly the same pro-

cedure as we performed in section 3.2 for the single field case. In particular, the Goldstino

is reintroduced by performing the replacement in (1.15)

ψµ → Ψ̂µ = ψµ − 2D̂µλ+ (3 fermion) , (3.33)

For the matter field σ, we have

σ → Σ̂ . (3.34)

Similarly to what we did for the vierbein field, we can chose the fundamental field σ′ ≡ Σ̂

and work directly with them. This implies that no knowledge of the transformations of the

matter fields under SUSY is required for this construction.

While we do not give the full details of the action, as it is lengthy but straightforward,

it is important to highlight a few important lessons. First, every term that we could have

written in the non-SUSY EFT of multifield inflation is still allowed. This is reminiscent

of what we found in the single field case: all terms that were allowed in the non-SUSY

single field case were still allowed by the SUSY case. Second, due to the presence of a new

particle, the gravitino, SUGRA indirectly allows for new operators coupling the light fields

in multifield inflation and the gravitino. Third, it is only these operators that introduce

couplings between the Goldstino and the light fields in multifield inflation.

We add a fourth important comment. Though so far we have implicitly assumed that

the spacetime algrebra is SUGRA, as described in (2.3), this procedure of coupling addi-

tional matter to our SEFTofI applies also to the case in which the additional matter is

required by an enlargement of the spacetime symmetry group we consider. For example, we

could add to SUGRA an R-symmetry, which is also spontaneously broken. This is very sim-

ilar to the enlargement of the spacetime symmetry group we had when we passed from ordi-

nary diffs. to SUGRA. From the point of view of the EFTofI, adding a spontaneously broken

R-symmetry amounts to including in the EFT the additional Gauge bosons of this gauge

invariance. Let us call them Vµ. To write the EFT Lagrangian, we can go to a gauge that

is unitary with respect to time diffs., SUSY and R-symmetry, and write an action invariant

only under time-dependent spatial diffs. out of the fields eaµ, ψµ and Vµ. By introducing the

Goldstone boson associated to the R-symmetry, that we can call φ, on top of the usual π and

λ, we can then define Stückelbergized fields that transform under a general SUGRA+R-

symmetry as under a linearly realized diff.. The parameter of the time-dependent diff.,

now possibly depending also on φ and Vµ, will be such that the fields realize the extended

SUGRA algebra. To obtain the decoupling limit, we can perform exactly the same field

redefinitions as we did in the case of normal SUGRA and that leads to the introduction

of the Goldstone π and λ, with the only difference that now the Goldstone of R-symmetry

will appear in the non gauge invariant terms containing V µ, schematically V̂ µ ∼ Vµ + ∂µφ.

The resulting action is therefore made of the same action as we add for the SEFTofI, plus a

novel contribution containing the terms in V µ and φ. It follows that all what we discussed

in this section applies unaltered to the case in which we extend the spacetime symmetries.
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3.6 Reheating

We have so far constructed a Lagrangian (or Lagrangians including the case of multifields),

that describe the consequences of the spontaneous breaking of SUGRA in the context of

Inflation. However, we have not yet shown how to compute observables. We do this in this

subsection. In cosmology, observables corresponds to in-in correlation functions. In the case

of purely adiabatic fluctuations, we are interested in in-in correlation functions of a variable

ζ which is constant outside the horizon (the generalization to include isocurvature fluctu-

ations is straightforward and will not be done explicitly here, see for e.g. [6]). In a setup

where more than one light degree of freedom is present, as in this case, the fluctuation ζ is

not determined just by the physics at horizon crossing, as in single field inflation, but can be

affected by the fluctuating fields even when a certain mode is outside the horizon. However,

the fact that this influence occurs when all modes of interest are outside of the horizon al-

lows us to simply parametrize this effect in the following way [6]. At the reheating time t =

trh, we write the most general local relation between ζ(~x, trh) and the fields that are present

in the theory, that is invariant under time dependent spatial diffs.. Schematically, we have

ζ(~x, trh) = ζbosonic (ĝαβ(e(~x, trh), π(~x, trh))) (3.35)

+a1 ψ̂µ (e(~x, trh), π(~x, trh)) ψ̂µ (e(~x, trh), π(~x, trh))

+a2 ψ̂
0 (e(~x, trh), π(~x, trh))) ψ̂0 (e(~x, trh), π(~x, trh)) + . . . ,

where . . . represents higher order terms in the derivatives and the number of fields, and

ai represent unknown parameters that are determined by the specific way in which the

ψ fluctuations are converted into metric fluctuations in the sixty or so e-foldings from

horizon crossing to reheating. ζbosonic = −Hπ+ . . ., where . . . represent higher order terms

in the fluctuations (and, incidentally, slow roll corrections), is the relation between ζ and

the metric fluctuations in the case of single field inflation [1].

We can write expression (3.35) in a generic SUGRA gauge by noticing that any scalar

gravitino bilinear in the SUGRA-unitary gauge where λ = 0, such as ψ̂0ψ̂0, can be written

as

ψ̂0ψ̂0
∣∣∣
x, SUGRA unitary

= Ψ̂0Ψ̂0
∣∣∣
x+ξµ/2+...

= Ψ̂0Ψ̂0
∣∣∣
x

+ (4 fermions) , (3.36)

which follows from the fact that in unitary gauge ψµ = Ψµ and that, under a generic

SUGRA transformation, Ψ̂0Ψ̂0 is a scalar. Making this substitution for all the fields ap-

pearing in (3.35), we obtain

ζ(~x, trh) = ζbosonic

(
ĝαβ(E(~x, trh), π(~x+ ~ξ(λ)/2, trh + ξ0(λ)/2) + ξ0(λ)/2)

)
+a1Ψ̂µ

(
E(~x, trh), ψ′(~x, trh), π(~x, trh), λ(~x, trh)

)
Ψ̂µ
(
E(~x, trh), ψ′(~x, trh), π(~x, trh), λ(~x, trh)

)
+a2Ψ̂0

(
E(~x, trh), ψ′(~x, trh), π(~x, trh), λ(~x, trh)

)
Ψ̂0
(
E(~x, trh), ψ′(~x, trh), π(~x, trh), λ(~x, trh)

)
+ . . . . (3.37)

To avoid confusion, we have reverted to denoting the redefined vierbein and gravitino as

E and ψ′, as in-in correlation functions are not invariant under field redefinitions. . . .

represents additional terms that are quadratic in the fields (and that we did not write for

brevity), and higher order terms.
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4 Phenomenology

Having developed the general formalism to construct an inflationary Lagrangian where

SUGRA is spontaneously broken, we are now ready to study its observational signatures.

First, we will explore what are the natural parameter regions of the theory (3.9), and

determine the associated unitarity bounds. In this section we will drop all Lorentz and

spacetime indices except in the very few cases when neglecting them can cause confusion.

4.1 Unitarity bounds

In this section we determine the unitarity bounds of the different parameter regions of the

theory (3.9) by estimating the energies at which radiative corrections become order one.

As discussed before, we can safely assume that all the mass terms in the unitary gauge are

at most of order Hubble

m3/2, m0, m̃1, m̃2, m? . H . (4.1)

This parameter range is radiatively stable, as is evident from the unitary gauge action (3.1).

In fact, for any interacting operator of the form mψcO/Λn in (3.12), where c refers to

canonically normalized fields (see in (3.17)), there is one in (3.13) where the gravitino is

replaced by the Goldstino giving m
H ∂λcO/Λ

n, in formulas

m

Λn
ψcO → m

HΛn
∂λcO . (4.2)

Modulo cancellations, that one can easily check are generically not present, for m ∼ H,

the unitarity bound of the theory is Λ. Since in unitary gauge all mass terms softly break

SUSY, radiative corrections need to be proportional to the mass itself and must be cutoff

at most at Λ. This implies that the radiatively generated gravitino masses will be at most

of order H, with potentially just a logarithmic correction in Λ, and the theory is therefore

technically natural.23 One can similarly check that in this parameter range the bosonic

operators do not receive large radiative corrections.

For each choice of the parameters, we identify the leading operators that set the

unitarity bound. In this sense, the action (3.9) has four qualitatively different regimes

which we will treat separately. First, we consider the case {m̃1, m0} = 0, where the

leading operator is ∂πλ∂λ. Next, we assume at least one of m̃1 or m0 is non-vanishing, in

which case there is a ∂2πλ∂λ term which reduces the unitarity bound and thus changes

the analysis. Another interesting regime occurs when the ‘non-minimal’ cubic terms in the

unitary gauge action of the form δg00ψψ are important. These ‘non-minimal couplings’ to

the metric reduce the unitarity bound by generating a ∂π∂λ∂λ term and lead to enhanced

23It is interesting to notice that the radiatively generated gravitino masses are in fact further suppressed

than naive power counting would suggest. This can be understood by various discrete transformations (such

as P , T or ψ → iψ) which only leave the unitary gauge action invariant if certain masses are flipped m→
−m. Therefore, any radiative correction to the mass terms must have the same “parity” under the relevant

Z2 symmetry as the bare mass. These discrete symmetries, that can even allow to consistently keep some

mass terms to zero, are not required for radiative stability of the theory, so we will not discuss them further.
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non-Gaussianities. Finally, we turn on m? 6= 0, which leads to a non-relativistic Goldstino

at high energies ω ∼ k2.

Let us point out two interesting simplifications. First, it was shown in section 3.3 that

in the absence of unexpected cancellations among the different parameters, the technically

natural region for the Goldstino speed of sound covers the values cλ − 1 ∼ O(1) in a

FRW universe. Therefore, non-Gaussianities and other observables cannot be significantly

enhanced by powers of 1/cλ, so we will assume cλ−1 ∼ O(1) in the following. On the other

hand, the Goldstone can have a technically natural low speed of sound, the phenomenolog-

ical consequences of which can be found in refs. [1, 8]. In the present work, we will focus

on the physical effects of non-linearly realized SUSY, and therefore only consider cπ ' 1.

Second, the fact that the mixing energy between the Goldstino and the gravitino is

of order H implies that they are decoupled at energy scales much greater than H, which

is the regime of interest for radiative corrections. So, while in order to make inflationary

predictions we cannot neglect the mixing of λ with ψµ, we can neglect it to study radiative

corrections, which greatly simplifies the treatment.24

4.1.1 Effects of m3/2 6= 0 or m̃2 6= 0,
[
{m̃1, m0, m(3), m?} = 0

]
In this parameter region, the Lagrangian quadratic in fermions (and including for clarity

also the π kinetic term) has the form

1

eM2
Pl

L2f ∼ Ḣ(∂π)2 + ψ∂ψ +H2
[
λ∂λ+ ∂πλ∂λ+ ∂πψλ

]
, (4.3)

where we are assuming m3/2(t) 6∝ eim̃2t, otherwise there are no interactions between π and

fermion bilinears.25 The Lagrangian for the canonical fields (see (3.17))

ψc = MPl ψ , λc ∼MPlH λ , πc ∼
√
εMPlH π , (4.4)

is given by

L2f ∼ (∂πc)
2 + ψc∂ψc + λc∂λc +

1√
εMPlH

∂πcλc∂λc +
1√
εMPl

∂πcψcλc . (4.5)

The unitarity bound can be read off from the Goldstone-Goldstino interaction and corre-

sponds to the energy scale at which Goldstino or Goldstone loops should be cut off in order

to give . O(1) radiative corrections. Accounting for the 1/(4π)2 suppression of loops, it is

approximately given by

Λ4 ∼ (4π)2ε(MPlH)2 ⇒ Λ ∼ H
(

4π

ζ

)1/2

, (4.6)

where here ζ ≡ 〈ζ2〉1/2 ∼ H/(
√
εMPl) ∼ 3 ·10−5 is the magnitude of curvature fluctuations.

24Another interesting regime where the decoupling might be usefully used is the case in which we

spontaneously break the continuous shift symmetry of π to a discrete subgroup. In this case, a resonance

occurs at energies parametrically larger than H (see [46] for a discussion of this in the EFT context).

In this situation, the Goldstino decoupled Lagrangian might be employed. We leave the study of the

phenomenology of this case to future work.
25The Goldstino kinetic term does not vanish in this limit because it gets a contribution from the space-

time curvature of order HMPl. This means that the theory with m3/2(t) ∝ eim̃2t appears to be a quite

uninteresting limit, as the coupling between the Goldstino and the Goldstone is only mediated by gravity.
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Note that in this section we have set to zero certain mass terms which lead to higher

derivative terms such as (∂π)(∂λ)2 and ∂2π(λ∂λ), and are treated in the following sections.

These terms are radiatively generated in the present regime as well, but are suppressed

with higher powers of the unitarity bound (4.6).

4.1.2 Effects of m̃1 6= 0 or m0 6= 0,
[
{m(3), m?} = 0

]
When either m̃1 or m0 are non-vanishing, the Lagrangian quadratic in fermions takes the

form

1

eM2
Pl

L2f ∼ ψ∂ψ+H2
[
λ∂λ+

(
∂π+ (∂π)2

)
λ∂λ+

(
∂π+ (∂π)2

)
ψλ
]

+H
[
∂2πλ∂λ+∂2πψλ

]
.

(4.7)

Here we have assumed that if m0 6= 0, m0 ∼ H. However, as discussed in appendix B, if

only m0 6= 0, m3/2 = m0/2, and all the other mass parameters are set to zero, subluminally

of the fluctuations requires |m0| . εH. However, this restriction does not seem to apply

in the generic case where all the parameters considered in this subsection are set to be

comparable, and we restrict to this case here.26 After canonical normalization, the action

in (4.7) becomes

L2f ∼ ψc∂ψc +

[
1 +

∂πc√
εMPlH

+

(
∂πc√
εMPlH

)2
]
λc∂λc +

1√
εMPlH2

∂2πcλc∂λc

+

[
∂πc√
εMPlH

+

(
∂πc√
εMPlH

)2
]
ψcλc +

1√
εMPlH

∂2πcψcλc .

(4.8)

With respect to the former case, the unitarity bound is lowered by the vertex ∂2πλ∂λ to

Λ6 ∼ (4π)2(
√
εMPlH

2)2 ⇒ Λ ∼ H
(

4π

ζ

)1/3

. (4.9)

4.1.3 Effects of m(3) 6= 0, [{m?} = 0]

Let us now add the ‘non-minimal coupling’ terms of the form m(3)δg
00ψψ in the unitary

gauge action.27 These give contributions to the quadratic fermion action of the form

L2f ⊃
m(3)√
εMPlH3

(∂πc)(∂λc)
2 +

m(3)

εM2
PlH

4
(∂πc)

2(∂λc)
2 . (4.10)

26The presence of superluminal fluctuations implies that the theory cannot be UV completed in a local

Lorentz invariant one [48]. An alternative, but somewhat more radical, point of view with respect to the

one we develop here would be to nevertheless study the phenomenology of this consistent EFT, giving up

on the locality and Lorentz invariance of the UV completion.
27Here we are generically treating all unitary gauge terms that couple δg00 to gravitino bilinears. In

reality, however, the most interesting ones are those where the structure of the gravitino bilinear is such

that, upon reintroduction of the Goldstino, the maximal derivative term does not cancel. In particular this

implies that these terms could no be obtained by promoting the mass terms m̃1, m̃2, . . . to functions of

g00. One example of such a term is δg00ψµψµ which cannot be absorbed into a mass term ψµψ
µ, since this

mass term would lead to a ghost.
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These terms, just like the m̃1 and m0 terms of the previous section, lower the unitarity

bound to

Λ3 ∼ 4π
√
εMPlH

2 · H

m(3)
⇒ Λ ∼ H

(
4π

ζ

)1/3( H

m(3)

)1/3

, (4.11)

if m(3) & H. If m(3) . H, the cutoff is still given by the one of the former section. We

need to check the radiatively generated gravitino mass to see if there is an upper bound

on m3. The operator δg00ψµψµ contains a term of the form

m(3)δg
00ψµψµ ⊃ m(3)

π̇2
c

(
√
εHMPl)

2ψψ , (4.12)

which induces a mass term of order

m ∼
m(3)

16π2

Λ4

(
√
εHMPl)

2 . (4.13)

Once we plug (4.11) in the above equation, we see that the correction is very small. Simi-

larly, it is easy to check that the additional diagram obtainable by using two insertions of

the π̇ψψ vertex induces a small gravitino mass as well. Therefore m(3) is not restricted to

be . H. It is nevertheless bounded, since we require the theory to be weakly coupled at

the Hubble scale:

H � Λ ⇒ m(3) � H
4π

ζ
. (4.14)

4.1.4 Effects of m? 6= 0

Since the m? term in the action does not give a kinetic term λ∂0λ for the Goldstino,

the theory is sick around flat space. This pathology is regulated by the FRW (or even

de Sitter) background. Around such a background, the action quadratic in fermions at

energies ω � H has the form

1

eM2
Pl

L2f ∼ ψ∂ψ +H2 [λ∂λ+ ∂πλ∂λ+ ∂πψλ]

+m?

[
∂iλ∂

iλ+ ψi∂iλ+ ∂λψ∂π + ∂π(∂λ)2 + ψ(∂π)2∂λ+ (∂λ∂π)2
]
.

(4.15)

The m? term leads to the following Goldstino dispersion at high energies:

ω ∼ k +
m?

H2
k2 for ω � H . (4.16)

There is a cross-over between a linear and a quadratic dispersion at Ecr ∼ H2/m? & H:

ω ∼

{
k for H . ω . Ecr ,

m?

H2
k2 for Ecr . ω . Λ .

(4.17)

Above Ecr, the group velocity of Goldstino waves is approximately cλ,group ∼ ∂ω/∂k ∼
1 + k/Ecr, where we neglected order one numbers. Imposing subluminal propagation tells

us that the dispersion relation can be quadratic only for an order one range of wavenumbers,

making the study of the phenomenology of this situation not much different than what we
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found with the other dispersion relations. In particular, it better be that superluminal

propagation occurs only for energies above the unitarity bound, where we do not trust the

theory. This requires m? . H(ζ/4π)1/2, which it can be checked is indeed the maximum

size that we expect it to be radiatively generated by loops of the interactions introduced

earlier on (potentially with higher time derivative operators as well). Therefore, unless

we tune cλ in ω = cλk to be very small, we expect the quadratic dispersion to be only

marginally important, and we neglect it from now on (see footnote 26).

4.2 Observational signatures

We are now ready to study the observational signatures predicted by the supersymmetric

EFTofI. We will focus on non-Gaussian signatures. Since the Goldstino and the gravitino

affect density perturbations only through their coupling to the Goldstone π, non trivial π-

correlation functions are introduced only at loop level. These interactions in the decoupling

limit are expected by the non-Abelian nature of the group being spontaneously broken,

SUSY, in contrast for example with the case in which we break only time diffs., where π

can be free in the decoupling limit.

Given a certain loop diagram, there are two regimes of interest. One consists of the

contributions from internal modes much greater than H, and the opposite from modes of

order H. Modes much longer than H are not expected to contribute relevantly because

of the nature of the couplings and because the fluctuations of fermions, even more so

for massive one like ours, are expected to decay outside of the horizon; of course these

modes will contribute to generate the (mildly) squeezed limit of correlation functions,

which however is expected to be a subleading signal (See for e.g. [49–52] for studies of

radiative contribution in inflationary correlation functions with emphasis on an EFT

interpretation.). Therefore we concentrate on external legs with momenta of order H.

Apart for an exponentially small contribution, the contribution from modes running in

the loops that are much shorter than H has the same functional form as the one from

operators in the bosonic EFT. Indeed, this has to be so for the theory to renormalizable.

The UV contribution of these loops cannot be reliably estimated within the EFT, and we

know only that they have to be cutoff at scale Λcut below the unitarity bound Λ. The

origin of this fallacy is easy to realize by the simple fact that the UV contribution of the

diagrams is UV dominated, and so it depends on the UV completion, and so is not model

independent, which is what the EFT is able to parametrize. Assuming there is no tuned

cancellation between the radiative corrections and the bosonic EFT parameters, an upper

bound to the UV contributions is estimated by cutting off the loops at the unitarity bound.

As mentioned, these contributions are degenerate with the ones produced by the bosonic

EFTofI. At leading derivative level, for the three-point function, they are well described

by a linear combination of the equilateral [7] and orthogonal [8] templates, whose sizes are

parametrized by the coefficients f equil.
NL and forthog.

NL . Similar templates exist for the four-

point function (see for example [53]), though we leave the study of the four-point function

to future work (See the results of the Planck analysis for the current best limits [10].).

The contribution from modes of order H running in the loops leads instead to a

functional form of the correlation function that is different, at least in principle, to the one
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induced by the bosonic EFTofI operators. This contribution, if detected, will be probably

associated quite uniquely to Goldstinos and gravitinos running in the loops, and would

therefore represent a ‘smoking gun’ signature of supersymmetry as a non-linearly realized

symmetry in our universe. We will not evaluate explicitly the loops, so we will not study

possible accidental similarity in shape with bosonic EFTofI operators. We leave this to

future work. Since we will assume no cancellation between the UV contribution to the shape

and the terms in the bosonic EFTofI, the signal associated with the UV contribution will be

generically much larger than the ‘smoking gun’ one coming from internal modes of order H.

In brief, we will find the following. For the ‘minimal couplings’ to the metric that are in-

duced by diff. invariance of the mass terms, we find that in general the UV contribution from

loops leads to three-point functions of the shape produced by the bosonic EFTofI with f equil.
NL

or forthog.
NL that can be as large as order one. The ‘smoking gun’ signatures from low-energy

momenta running in the loops are irremediably small. This leaves a reasonable detection

prospect. The situation is even better for the ‘non-minimal’ couplings of the form δg ψψ.

In this case, the UV modes lead to a possibly very large f equil.
NL or forthog.

NL , while the Hubble

scale modes lead to a still very small, though much larger than in the other cases, fNL � 1.

All of this is quite good news: it gives us a strong motivation to reach f equil.
NL or forthog.

NL of

order one. Furthermore, at least for the non-minimal couplings, it gives a (still challenging)

hope to detect the smoking gun signals of SUSY through cosmological observations.

4.2.1 Effects of m3/2 6= 0 or m̃2 6= 0,
[
{m̃1, m0, m(3), m?} = 0

]
The strength of non-Gaussianities can be estimated by finding the radiatively generated

Goldstone three-point function. For example, the EFTofI operator π̇3
c is generated by a

Goldstone loop with three insertions of the ∂πcλc∂λc/(
√
εMPlH) vertex with the following

coefficient:

∼ 1

(
√
εMPlH)3

1

(4π)2

∫
d4p

p3

p3
∼ Λ4

cut

(
√
εMPlH)3(4π)2

.
1√

εMPlH
, (4.18)

where in the last step we have cutoff the loop at the unitarity bound (4.6). The strength

of non-Gaussianities is then estimated as

f equil., orthog.
NL ζ∼ L3

L2

∣∣∣∣
E∼H

.
(∂πc)

3

(
√
εMPlH)(∂πc)2

∣∣∣∣
E∼H
∼ H2

√
εMPlH

∼ζ ⇒ f equil., orthog.
NL .1 ,

(4.19)

with equality holding when the loop is cutoff at the unitarity bound. This contribution is

of course degenerate with the contribution from the bosonic theory, though it motivates a

somewhat large signal from it. The “smoking-gun” signature of SUSY comes from the Gold-

stone three-point function that is generated by internal Goldstinos at energies of order H,

as this contribution is not degenerate with a local operator in the bosonic EFT. Its size can

be estimated by taking the loop on the left hand side of (4.18) at energies of order H, giving

∼ H4

(
√
εMPlH)3

∼ ζ2

√
εMPlH

, (4.20)
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which leads to the following very small estimate for non-Gaussianities

f smok. gun
NL ζ ∼ H6

(
√
εMPlH)3

∼ ζ3 ⇒ f smok. gun
NL ∼ ζ2 ∼ 10−9 . (4.21)

Here and in the rest of this section, for these contributions from modes of order H, we

will not be careful with factor of (4π)2 or with the ambiguity of the scale at which to

compute the loops (e.g. ∼ H or ∼ 2H), as keeping track of these differences does not

change relevantly the conclusion.

4.2.2 Effects of m̃1 6= 0 or m0 6= 0,
[
{m(3), m?} = 0

]
The Lagrangian (4.8) generates the following cubic operators at one loop

L3 ⊃ (∂π)3 , (∂2π)(∂π)2 , (∂2π)2(∂π) , (∂2π)3 . (4.22)

Following very similar steps as in (4.2.1), the radiatively generated non-Gaussianities are

in all cases small and are given by

f equil., orthog.
NL ζ ∼ L3

L2

∣∣∣∣
E∼H

. ζ

(
ζ

4π

)2/3

⇒ f equil., orthog.
NL .

(
ζ

4π

)2/3

∼ 10−4 . (4.23)

Since all fermion loops above have a quadratic divergence, the non-Gaussianities produced

by fermions at energy E ∼ H are suppressed by H4/Λ4 ∼ ζ4/3, and are thus again given by

f smok. gun
NL ∼ ζ2 ∼ 10−9 . (4.24)

Again, this is very small.

4.2.3 Effects of m(3) 6= 0, [{m?} = 0]

The two extra terms in (4.10) coming from the non-minimal couplings lead to more

appreciable non-Gaussianities. The (∂π)3 operator can be generated either with three

∂π(∂λ)2 vertices, or one ∂π(∂λ)2 vertex and one (∂π)2(∂λ)2. The radiatively generated

non-Gaussianities can be large, respectively

f equil., orthog.
NL

(a) ∼
m(3)

H

(
Λcut

Λ

)6

.
m(3)

H
, and f equil., orthog.

NL
(b) ∼

(
Λcut

Λ

)6

. 1 , (4.25)

Note that there is a slight subtlety in computing the first diagram, where the leading

divergence cancels because the integrand is odd under inversion of the loop momentum. The

contribution of the first term can be very large, and indeed is basically just constrained by

current limits on f equil., orthog.
NL from the CMB [10]: m(3) . 102H (Λ/Λcut)

6. The signature

SUSY non-Gaussianities is in this case given by

f
smok. gun,(a)
NL ∼ f

equil.,orthog.,(a)
NL

(
H

Λcut

)6

. 102

(
H

Λcut

)6

, (4.26)

f
smok. gun,(b)
NL ∼

(
Λcut

Λ

)6( H

Λcut

)6

� 1.

The signature SUSY non-Gaussianities are much larger than in former cases, but still,

unless we keep Λcut close to H, or we evaluate the loops at a somewhat larger scale than

H (where however the difference with respect to the f equil., orthog.
NL terms is decreased), they

appear hardly detectable in the not so distant future.
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4.2.4 Slow-roll power counting

As we mentioned in the introduction, we have constructed the EFT based only on the

symmetries that are present in the most general inflationary solution. However, one might

consider the case in which the inflationary solution is perturbatively close to the maximally

symmetric one. By perturbatively close, we mean that, in constructing the theory of the

fluctuations from a complete theory, every insertion of a vev of the time derivatives of

the fields is taken as a suppression. We call these models of inflation as slow-roll inflation

models, and we call the parameter representing this suppression as αsl � 1. In the case of a

slowly rolling scalar field, we expect αsl ∼ φ̇/Λ2, with Λ representing some high energy scale.

In this case, we expect an hierarchy in size among the different operators. Basically,

every upper zero index that is associated to the breaking of Lorentz invariance carries a

factor of αsl. In this counting, we naturally expect, roughly, m0 ∼ m̃1 ∼ m̃2 ∼ αslH, and

m? ∼ m̃(3) ∼ α2
slH.

4.2.5 Contributions from reheating

So far in this section we have focussed on the contribution from Horizon crossing. Eq. (3.37)

tells us that there is a contribution to the ζ correlation functions coming directly from the

reheating time. Even in this case, since the fermions appear quadratically in the expression

for ζ, the contribution to ζ correlation functions in Fourier space will consist of convolutions

of correlation functions of Goldstino or gravitinos. Since these fields are not expected to

obtain scale-invariant power spectra, the resulting contribution will not be scale invariant,

and therefore will be negligible at the observed scales. If the power spectra were to be

accidentally scale invariant, then there will be a scale invariant contribution, of the form

of the so-called local shapes. For the three-point function, the size of this shape is usually

quantified by f loc.
NL .

5 Conclusions

We have constructed the Supersymmetric Effective Field Theory of Inflation, i.e. the most

general action for the fluctuations in an inflationary background in the case where super-

symmetry happens to be a fundamental symmetry of Nature. The action was constructed

with the following logic. Because of the structure of the algebra, the inflationary back-

ground, that we assume to be a quasi de Sitter expansion where time translations are spon-

taneously broken, spontaneously breaks SUSY. In the presence of gravity, supersymmetry

is gauged to supergravity, which is therefore spontaneously broken as well. Constructing

the Supersymmetric Effective Field Theory of Inflation in this case reduces therefore to

constructing the most general Lagrangian that non-linearly realizes SUGRA and time diffs..

Several simplifications follow from the fact that SUSY is spontaneously broken. In partic-

ular, we can get rid of the auxiliary fields, and write an action directly for the fluctuations,

where no fields need to take a vev. In fact, the non-linear realization of time translations

and SUSY, that implies the presence of a Goldstone boson and a Goldstino, allows us to

choose a gauge where both these fields are set to zero. In this gauge, we write the most
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general Lagrangian with the fields at our disposal, i.e. the graviton and the gravitino, com-

patible with the residual gauge invariance of the problem, which is time-dependent spatial

diffs., and including only the operators that softly break time diffs. and SUGRA.

Time diffs. and SUGRA invariances are then introduced by performing a Stückelberg

transformation. In particular, we can choose a field redefinition where the SUGRA trans-

formation is such that, after Stückelbergization, the Goldstino appears only in terms that

in unitary gauge contain a gravitino. Furthermore, the same field redefinition allows us to

define a Goldstino that decouples at high energies from the gravitino. Though expected on

general grounds, such decoupling follows from a non-trivial construction and allows for a

major simplification of the theory at high energies. We have also discussed the formalism

to include additional light fields and the parametrization for the effects coming from the

reheating epoch. We stress that no additional light particle on top of the Goldstone and the

Goldstino is required to non-linearly realize SUGRA: in inflation, the essential signatures

of SUSY as a symmetry of Nature are associated to the gravitino and the Goldstino.

We find that, contrary to the case of the Goldstone boson of time translations, the

Goldstino is mixed with the gravitino at energy scales of order and below the Hubble scale

H. This means that to compute inflationary observables there is in general no sense in

which one can neglect the gravitino for the Goldstino. We find that the Goldstino can have

either a linear dispersion relation, ω ∼ cλk, with cλ − 1 up to order one, or a very non-

relativistic quadratic dispersion relation ω ∝ k2. Imposing subluminal propagation imposes

some bounds on the parameter space. In particular the quadratic dispersion relation occurs

only for an order one range of wavenumbers that are much larger than H.

We then studied the observable consequences of our Lagrangian. Since the fundamen-

tal particles associated to non-linearly realized SUGRA, the gravitino and Goldstino, are

fermions, they can affect the density perturbation of the universe only through loop effects.

We estimated the size of these loop contributions. We found that modes larger than H run-

ning in the loops give an effect that is degenerate with the one induced by the operators of

the standard bosonic EFTofI, parametrized by f equil., orthog.
NL . This contribution is UV depen-

dent and cannot be estimated within the EFT, but we showed that it can be as large as to

induce f equil., orthog.
NL ∼ 1, and, for some non-minimal couplings, even f equil., orthog.

NL � 1. In-

stead, the contribution from modes of order H is not degenerate with the one from the stan-

dard EFTofI, and detection of this effect would therefore represent a smoking gun for SUSY

as a symmetry of Nature. Unfortunately, we find that the effect is expected to be very small.

Several exploratory directions open up after our construction. For example, on the

theory side, it would be interesting to relax the continuous shift symmetry of the Goldstone

to a discrete one as well as to explore more the presence of additional fields. On the

signature side, it would be interesting to better investigate the shape of the induced non-

Gaussianities, in particular in the squeezed limit. More generally, our findings offer further

motivation for improving our exploration of primordial non-Gaussianities, identifying again

f equil., orthog.
NL ∼ 1 as an interesting threshold to reach [54]. Unfortunately, obtaining such a

sensitivity requires a strong improvement in our capability of understanding the evolution

of the primordial fluctuations in large scale structures. As it has done in the past, we hope

that the cosmology community will be able to conquer this novel challenge.
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A Goldstino dispersion relation in de Sitter space

As an application of the action (2.27), we will derive the dispersion relation of the

helicity-1/2 mode in de Sitter space. As we will see, there exists a decoupling energy above

which mixing of the Goldstino with the constrained helicity-1/2 modes of the gravitino

can be ignored, and the Goldstino dispersion relation reduces to that of a massless Weyl

fermion in Minkowski space, the spacetime that is relevant at those energies. As it is

already quite evident from (2.32), we will find that the decoupling energy is Emix & H,

with equality holding for m3/2 = 0. Notice that the helicity-1/2 components of ψµ are

non-dynamical, so that the dynamics of the Goldstino is not completely transparent

from (2.28). The correct way to proceed is to fix the SUGRA gauge and integrate out

the constrained variables in the action. It is useful to define Λ̃ ≡ Λ + 3M2
Pl|m3/2|2. The

gravitino equation of motion 0 = δS/δψ̄µ gives

0 = M2
Pl

(
εµνρσσ̄νDρψσ + 2m∗3/2σ̄

µνψ̄ν

)
− Λ̃(iσ̄µλ) . (A.1)

Contracting the equation of motion with σµ one has28

M2
Pl

(
��Dσ̄µψµ +∇µψµ −

3i

2
m∗3/2σ

µψ̄µ

)
= 2Λ̃λ . (A.2)

The µ = 0 component of the equation of motion can be expressed as

M2
Pl(σ

iDiσ̄
νψν +∇iψi + σ0σ̄i∇iψ0 − im∗3/2σ

iψ̄i) = Λ̃λ . (A.3)

After fixing the SUGRA gauge freedom to σ̄iψi = 0, which eliminates one of the helicity-1/2

components of the gravitino, equations (A.2) and (A.3) can be combined to give

M2
Pl

(
σ0σ̄i∇iψ0 +

3i

2
m∗3/2σ

0ψ̄0

)
= −Λ̃λ , (A.4)

28Here ∇µ is the full covariant derivative, which acts on the gravitino as ∇µψν = Dµψν − Γρµνψρ. In

eq. (A.3), for instance, the terms should be read as

∇iψi = giµ(Dµψi − Γνµiψν) and ∇iψ0 = Diψ0 − Γµi0ψµ .
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which eliminates the remaining helicity-1/2 component of the gravitino ψ0. This constraint

equation together with the Goldstino equation of motion 0 = δS/δλ̄, which gives

2(��Dλ+ 2im∗3/2λ̄) = σ̄µψµ , (A.5)

leads to a dispersion relation for the helicity-1/2 degree of freedom of the form

2M2
Pl

(
σ0σ̄iDiσ0(��Dλ+ 2im∗3/2λ̄)− 3i

2
m∗3/2(��Dλ̄+ 2im3/2λ)

)
= Λ̃λ . (A.6)

This expression can be simplified using the modified covariant derivative (2.14):

2M2
Plσ

0σ̄iDiσ0��Dλ = Λ̃λ . (A.7)

Now focusing for simplicity on the case m3/2 = 0, the solution is given by

λ(τ, z) = c1
eik(z−τ)τ5/2

3i+ 2kτ

(
1

0

)
+ c2

eik(z+τ)τ5/2

3i− 2kτ

(
0

1

)
, (A.8)

where c1 and c2 are two (Grassmann) constants, τ = −1/(aH) is the conformal time and

Λ = 3M2
PlH

2. This expression agrees with that found in ref.s [55, 56] in a different gauge.

Eq. (A.8) makes it clear that decoupling only happens for modes satisfying ω ∼ k/a� H.

In this regime, after rescaling, the solution reduces to that of a free massless Weyl fermion

in Minkowski space.

B Goldstino dispersion relation in the decoupling limit

In this appendix we study the Goldstino dispersion relation in the decoupling limit and

perform a first study that the requirement of subluminal propagation has on the parameter

space of the EFT. For simplicity, we restrict to m? = 0, whose implication for the dispersion

relation are discussed in the main text. As also discussed in the main text, we are interested

in the regime where

m3/2 ∼ m0 ∼ m̃1 ∼ m̃2 . H . (B.1)

For energies and momenta E, k � H, the Goldstino decouples from the gravitino, and

the mass term can be ignored (Lkin
λλ � Lmass

λλ ). Here we are interested in the Goldstino

dispersion in an FRW background

eaµ = diag [1, a(t), a(t), a(t)] , (B.2)

where various tensors take the simple form

Γ0
µν = H(gµν + δ0

µδ
0
ν) , Rµν = 2Ḣδ0

µδ
0
ν − (Ḣ + 3H2)gµν , R = −6Ḣ − 12H2 . (B.3)

The Goldstino kinetic term (3.13) can then be expressed as

1

M2
Ple
Lkin
λλ =

i

2
α(λ̄��Dλ) +

i

2
(α+ β)(λ̄σ̄0D0λ) + γ(λ̄σ̄0µDµλ̄) + c.c. , (B.4)
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with

1

2
α(t) = 3|M |2 + m̃2

1 − 2 ˙̃m1 + 2Re(Mm0)− 4m̃1H + 2Ḣ + 3H2 , (B.5a)

1

2
(α(t) + β(t)) = 2

[
−m̃2

1 − ˙̃m1 + Re(Mm0) + m̃1H + Ḣ
]
, (B.5b)

γ(t) = 4
[
−iMm̃2 + m̃1(M +m∗0) + Ṁ −m∗0H

]
. (B.5c)

In the decoupling limit one can take Dµ → ∂µ, and the kinetic term becomes

1

M2
Ple
Lkin
λλ ' iαλ̄σ̄i∂iλ− iβλ̄σ̄0∂0λ+

(
γλ̄σ̄0i∂iλ̄+ c.c.

)
= iα̃χ̄σ̄i∂iχ− iβ̃χ̄σ̄0∂0χ ,

(B.6)

where in the second line we absorbed the γ term with the field redefinition

χ = λ+ zσ0λ̄ , with z = ieiArg(γ) |γ|
α+

√
α2 + |γ|2

, (B.7)

and α = α̃(1− |z|2), β = β̃(1 + |z|2). χ enjoys a fairly simple dispersion relation, with

0 = det[α̃kiσi + β̃Ωσ0] = β̃2Ω2 − a2α̃2k2 . (B.8)

Requiring that the speed of propagation is subluminal thus imposes

1 ≥ c2
λ =

α̃2

β̃2
=
α2

β2

1 + |z|2

1− |z|2
=
α2 + |γ|2

β2
⇔ β2 ≥ α2 + |γ|2 . (B.9)

It is interesting to see if we could have a value of cλ � 1. Inspection of (B.9) tells us

that a necessary condition to have cλ � 1 is to have β � α. But from (B.5) one easily

see that if one pushes β to be very large, then, unless we enforce some to-us unexpected

cancellations among the parameters, α will be driven to α→ β, and cλ → 1. We conclude

that we expect cλ − 1 ∼ O(1).

Let us now return to (B.5) to see how the constraint (B.9) affects the Lagrangian

parameters. To get a better sense of what this condition implies, we consider some special

cases.

• Turn on only m3/2 6= 0 — in this case eq. (B.9) becomes

3εH2(H2 + |m3/2|2) ≥ |ṁ3/2|2 , (B.10)

where we wrote ε ≡ −Ḣ/H2 and taken ε > 0 (as it is imposed by requiring that the

kinetic term of π has the healthy sign, in the case the π sector is similar to slow-roll

inflation). This is well satisfied for example if ṁ3/2/m
2
3/2 ∼ Ḣ/H2 ∼ ε, which is a

technically natural regime.

• Turn on only m̃1 = const 6= 0 — in this case eq. (B.9) becomes

(2H2 − 3Hm1 +m2
1)(2H2ε−Hm1 +m2

1) ≥ 0 . (B.11)
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Figure 2. Striped regions are regions of the parameter space forbidden by superluminality in the

case in which only the parameter m̃1 = const is turned on.

Neither term in the brackets is positive definite. Any negative value for m1 is allowed,

however to leading order in ε� 1 the l.h.s. changes sign at m1/H = 2ε, 1− 2ε, 1, 2.

This leads to the forbidden (striped) regions of parameter space that are shown in

figure 2.

• Turn on only m̃2 = const 6= 0 — m̃2 alone does not contribute to the speed of sound,

and eq. (B.9) becomes

1 ≥ cλ = 1 +
4Ḣ

|β|
, (B.12)

with β = −6H2. Thus cλ ≤ 1 as long as Ḣ ≤ 0, and to leading order in the slow-roll

expansion cλ = 1 − 2
3ε + O(ε2). In this case, the speed of sound of the Goldstino

agrees with what found in [32]. We stress however that this is particular to the case

where the gravitino has no mass term in the unitary gauge (or just m̃2).

• Turn on only m0 = const 6= 0 — assuming for simplicity that M = 0 (i.e. m3/2 =
1
2m0) eq. (B.9) becomes

1 ≥ c2
λ =

(
1− 2

3
ε

)2

+
2

3

|m0|
H

. (B.13)

This leads to the following constraint for m0 from requiring subluminal propagation

|m0| ≤ 2εH +O(ε2). (B.14)
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