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1 Introduction

The quantum Heisenberg spin chain is one of the most well-known integrable models with

a long history of research since the birth of the Bethe ansatz [1]. This seemingly simple

model has surprisingly deep and rich physical and mathematical structures hidden under

the surface and has triggered many important developments in the theory of quantum

integrability for decades, see for example [2–5] and references therein.

More recently, it has attracted considerable renewed interest from different branches of

theoretical physics ranging from statistical mechanics out of equilibrium [6–8] to AdS/CFT
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correspondence. In particular, it was found that the one-loop dilatation operator of the

planar N = 4 Super-Yang-Mills (N = 4 SYM) theory coincides with the Hamiltonian of

the Heisenberg XXX spin chain [9, 10]. This observation plays a crucial role in solving the

theory exactly [11] since one can apply the powerful tools from integrability. On the other

hand, in the quest of a better understanding of N = 4 SYM, one poses new questions on

different aspects of the Heisenberg spin chain that were not emphasized in previous studies.

One such example is the so-called semi-classical limit of the Heisenberg XXX spin

chain. This is the limit where the length of the spin chain L and the number of magnons

N are large, but with their ratio N/L = α fixed and finite. In this limit, the solutions of

the Bethe ansatz equations, or Bethe roots, condensate and form macroscopic cuts in the

complex plane. This limit was first studied by Sutherland [12] in the condensed matter

physics literature. In the context of AdS/CFT, this limit is of great interest since the

macroscopic cuts formed by Bethe roots are identified with the branch cuts of finite gap

solutions of the classical string sigma model [13, 14], which relates integrable structures

on both sides of the duality. The spectral problem in the semi-classical limit simplifies

dramatically and can be formulated in an elegant way in terms of algebraic curves [14, 15].

It was first proposed in [16, 17] that the structure constants of N = 4 SYM theory can

be computed in terms of scalar products of spin chains. This idea was further extended

and elaborated systematically in [18]. The semiclassical limit of the structure constant

was first studied in [20] for a specific type of three-point functions (BSP-BPS-non BPS).

Shortly after, a much more compact determinant formula for the structure constants was

proposed in [19]. Based on the determinant formula, the semiclassical limit of more general

three-point functions (three non-BPS operators) can be taken [21]. Studies of three-point

functions in the semiclassical limit show that structure constants in this limit also simplify

significantly and can be expressed in a compact form in terms of contour integrals of

dilogarithm functions. This same structure was obtained from weak [20–25] and strong [26–

29] coupling by rather different methods. Very recently, partial results of the same structure

were derived at any coupling [30, 31] by the clustering method. On the weak coupling side,

the semi-classical limit of the structure constant can be obtained from taking the semi-

classical limit of the scalar product of the type on-shell/off-shell, which allows a determinant

representation [32] called the Slavnov determinant.

At the same time, scalar products of Bethe states are of great importance in integrable

spin chains of their own since they are fundamental building blocks of physical observables

such as form factors and correlation functions of local spin operators [33, 34]. Therefore,

the semi-classical limit of scalar products of the Heisenberg spin chain can also be regarded

as a well-posed pure spin chain problem which is highly non-trivial and interesting in its

own right. Various methods have been developed to take the semi-classical limit of scalar

products of the Heisenberg XXX spin chain [20–25] in the past few years. It is thus a natural

question to ask whether some of these methods can be generalized to the XXZ spin chain,

which is a q-deformed version of the XXX spin chain. And if so, how does the q-deformation

affect the final result? The purpose of this paper is to investigate these interesting questions.

We find that indeed the methods [22, 23, 31] can be generalized to the XXZ case. In

the XXZ spin chain, due to the presence of an anisotropy parameter ∆, the structure of
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solutions of the Bethe ansatz equations is more complicated and depends on the range of ∆.

We find that the range |∆| > 1 allows a most straightforward definition of the semi-classical

limit that is similar to the XXX case. In this range, we take the semi-classical limit of the

scalar product of the type on-shell/off-shell and obtain the following compact result

XXX : log〈v|u〉XXX ∼
∮
Cu∪v

du

2πi

∫ gXXX(u)

0
log(1− eiµ)dµ (1.1)

XXZ : log〈v|u〉XXZ ∼
∮
Cu∪v

du

2πi

∫ gXXZ(u)

0
logq(1− eiµ)dµ

where the main difference is that the logarithm in the rational case is replaced by a q-analog

of the logarithm in the trigonometric case. The q-analog is defined as

logq(1− x) = −
∞∑
n=1

xn

[n]q
, [n]q =

qn − q−n

q − q−1
. (1.2)

The functions g(u) of the two cases are given by

gXXX(u) = −L
u

+GXXX
u (u) +GXXX

v (u), (1.3)

gXXZ(u) = − L

tanh γu
+GXXZ

u (u) +GXXZ
v (u).

where the resolvents Gu(u) for the two cases are

GXXX
u (u) =

∫
Au

ρv(v)

u− v
dv, GXXZ

u (u) =

∫
Au

ρv(v)

tanh γ(u− v)
dv (1.4)

Here Av denotes the cut on which the Bethe roots are distributed and ρu(u) is the density

of Bethe roots on the cut. The full expression can be found in section 5.

Interestingly, let us note that the semi-classical limit (1.1) of the XXZ spin chain can

actually be written in terms of Faddeev’s quantum dilogarithm function Φb(z)1 [35] as

log〈v|u〉XXZ ∼
∮
Cu∪v

du

2πi
log Φ√φ (gXXZ(u) + π) (1.5)

where the anisotropy γ = iφ, φ > 0. The definition of Φb(z) and its relation to the

dilogarithm function are given in appendix D.

The rest of this paper is structured as the follows. In section 2 we briefly review

the Algebraic Bethe Ansatz and introduce an important quantity called the q-deformed

A -functional by computing a special type of scalar product between an off-shell Bethe

state and a vacuum descendant state. In section 3, we rewrite the Slavnov determinant in

terms of the q-deformed A -functional following a similar method in [23]. In section 4 we

define more carefully the semi-classical limit in the XXZ spin chain and in section 5 we

take the semi-classical limit of the q-deformed A -functional and the Slavnov determinant

by generalizing the clustering method in [31] to the trigonometric case. We conclude in

1We thank Ivan Kostov for pointing out this fact to us.

– 3 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

section 6. Appendix A and B contain lists of commutation relations that are useful in the

main text. In appendix C we give more detail about the numerics on solving the Bethe

ansatz equations of the XXZ spin chain. In appendix D we give the definition of Faddeev’s

quantum dilogarithm function and its relation to the classical dilogarithm.

Note added. At the finishing stage of this paper, we became aware that the same prob-

lem was investigated by C. Babenko in [36] which has a significant overlap with the current

paper.

2 The q-deformed A -functional

In this section, we compute the scalar product of a generic off-shell Bethe state with a

vacuum descendant state for the XXZ Heisenberg spin chain. The vacuum descendant state

is defined by acting with generators of Uq(sl(2)) on the pseudovacuum state. In the XXX

case, this scalar product gives rise to the so-called A -functional, which plays an important

role in computing the semi-classical limit of other scalar products [22]. Similarly, we define

a q-deformed version of the A -functional, which is subsequently used for obtaining scalar

products of more general states.

Before we proceed to define the A -functional, we briefly review the Algebraic Bethe

Ansatz. This will also serve to set up our notations and conventions.

2.1 Algebraic Bethe ansatz of XXZ spin chain

The Hamiltonian of the XXZ spin chain is given by

H = J
L∑
n=1

[
σxnσ

x
n+1 + σynσ

y
n+1 + ∆

(
σznσ

z
n+1 − 1

)]
, (2.1)

where ∆ is the anisotropy. We impose a periodic boundary condition: L+1 ≡ 1. For ∆ = 1,

we recover the Hamiltonian of the XXX spin chain. The XXZ spin chain can be considered

as a q-deformation of the XXX spin chain. To see this, we define the parameters q and γ:

1

2

(
q + q−1

)
≡ cos γ ≡ ∆, q = eiγ . (2.2)

We then obtain the isotropic case ∆ = 1 in the equivalent limits q → 1 and γ → 0. The

XXZ spin chain is integrable and can be solved by the Algebraic Bethe Ansatz [37]. The

q-deformed Lax operator takes the form

L̂n,a(u) =

(
sinh γ (u+ iSzn) S−n sin γ

S+
n sin γ sinh γ (u− iSzn)

)
. (2.3)

We can cast this into a more convenient form by defining the multiplicative spectral pa-

rameter x = q−iu = eγu.2 The Lax operator in terms of multiplicative parameters is then

written as

L̃n,a(x) =

(
xqS

z
n − x−1q−S

z
n
(
q − q−1

)
S−n(

q − q−1
)
S+
n xq−S

z
n − x−1qS

z
n

)
, (2.4)

2In what follows, we use a tilde to indicate that a function whose arguments are multiplicative parameters,

and a hat for the additive parameters.

– 4 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

where we use the q-deformed operators

q±S
z
n =

(
q±

1
2 0

0 q∓
1
2

)
. (2.5)

The Lax operator satisfies the following RLL relation:

Ra,b(x, y)Ln,a(x)Ln,b(y) = Ln,b(y)Ln,a(x)Ra,b(x, y) (2.6)

where the R-matrix takes the form

Ra,b(x, y) =


a(x, y) 0 0 0

0 b(x, y) c(x, y) 0

0 c(x, y) b(x, y) 0

0 0 0 a(x, y)

 , (2.7)

with the functions

a(x, y) = q
x

y
− q−1 y

x
, b(x, y) =

x

y
− y

x
, c(x, y) = q − q−1. (2.8)

The central quantity of the Algebraic Bethe Ansatz is the monodromy matrix Ta(x)

defined by:

Ta(x) = La,1(x)La,2(x) · · ·La,L(x) =

(
A(x) B(x)

C(x) D(x)

)
. (2.9)

The monodromy matrix satisfies the following RTT -relation:

Ra,b(x, y)Ta(x)Tb(y) = Tb(y)Ta(x)Ra,b(x, y). (2.10)

This leads to the commutation relations between the elements of the monodromy matrix.

We refer to appendix A for a list of these relations. From the monodromy matrix, we

define the transfer matrix t(x) ≡ Tra Ta(x) which generates all the conserved charges of

the system.

In order to construct the eigenstates of the transfer matrix, we start with the reference

state |Ω〉 ≡ |↑L〉, with all spins pointing up. This is an eigenstate of the operators A and D:

A(x) |Ω〉 = a(x) |Ω〉 , D(x) |Ω〉 = d(x) |Ω〉 , (2.11)

a(x) =
(
xq

1
2 − x−1q−

1
2

)L
, d(x) =

(
xq−

1
2 − x−1q

1
2

)L
. (2.12)

We construct further eigenstates of the transfer matrix by acting the operator B on the

reference state:

|x〉 =
N∏
i=1

B(xi) |Ω〉 . (2.13)

Requiring that such a state is indeed an eigenstate leads to the Bethe equations for the

rapidities x. In terms of the additive spectral parameters u, the Bethe equations read(
sinh γ

(
uj + i

2

)
sinh γ

(
uj − i

2

))L =
N∏
k 6=j

sinh γ (uj − uk + i)

sinh γ (uj − uk − i)
, j = 1, · · ·N. (2.14)
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2.2 Scalar products of XXZ spin chain

The scalar products we will compute are of the form

ÃN (x) ≡ 〈Ω|
(
S+
q

)N N∏
i=1

B(xi) |Ω〉 . (2.15)

where we use the multiplicative spectral parameters xi = eγui . We call the state 〈Ω|(S+
q )N

and its dual (S−q )N |Ω〉 the vacuum descendant states. The operators S±q are defined by

S±q =
L∑
i=1

qS
z
1 ⊗ · · · ⊗ qSz

i−1 ⊗ S±i ⊗ q
−Sz

i+1 ⊗ · · · ⊗ q−Sz
L , (2.16)

where L is the length of the spin chain. These operators together with Szq = q
∑L

i=1 S
z
i

generate the quantum group Uq(sl2), reflecting the deformed symmetry of the model.3 The

commutation relations of the generators of Uq(sl2) with the elements of the monodromy

matrix can be found by performing a large-rapidity expansion of the commutation relations

obtained from the RTT -relation. In appendix B, we show how to carry out this expansion

and provide a list of the resulting relations.

By employing these commutation relations, it can be shown that for general N , the

scalar product ÃN (x) takes the following form:

ÃN (x) = (−1)Nq−(L+N−1)N/2 [N ]q!

N∏
i=1

(
x−1
i d(xi)

)
(2.17)

×
∑

α∪ᾱ=x

(
− 1

qN−1

)|α| ∏
xi∈α,xj∈ᾱ

q xixj − q
−1 xj

xi
xi
xj
− xj

xi

∏
xi∈α

(
qeip̃(xi)

)L
,

where

eiLp̃(x) =
a(x)

d(x)
,

[N ]q! = [N ]q × [N − 1]q × · · · × [1]q , [N ]q =
qN − q−N

q − q−1
.

We now group parts of this expression together:

K̃N (x) ≡ (−1)Nq−(L+N−1)N/2 [N ]q!
N∏
i=1

x−1
i (2.18)

χ̃(x) ≡ qL−N+1eiLp̃(x) (2.19)

ÃN (x) = K̃N (x)×
∑

α∪ᾱ=x

(−1)|α|
∏
xi∈α

χ̃(xi)
∏
xi∈α
xj∈ᾱ

q xixj − q
−1 xj

xi
xi
xj
− xj

xi

. (2.20)

3In fact, this point is a bit more subtle due to boundary conditions. The Hamiltonian with periodic

boundary condition does not commute with all the generators of the Uq(sl2) algebra. Only a specific choice

of boundary condition gives Hamiltonian which is Uq(sl2) invariant. For a detailed discussion of this point,

we refer to [38].

– 6 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

In terms of additive spectral parameters ui, we have

K̂N (u) ≡ (−1)Nq−(L+N−1)N/2 [N ]q!

N∏
i=1

e−γui (2.21)

χ̂(u) ≡ qL−N+1eiLp̂(u) (2.22)

ÂN (u) = K̂N (u)×
∑

α∪ᾱ=u

(−1)|α|
∏
ui∈α

χ̂(ui)
∏
ui∈α
uj∈ᾱ

sinh γ(ui − uj + i)

sinh γ(ui − uj)
. (2.23)

In the limit q → 1, the expressions (2.21) to (2.23) reduce to the A -functional for

the XXX model (in the process, the trigonometric functions are replaced by their rational

counterparts). Therefore, we take (2.23) as the base for the q-deformed A -functional,

denoted by A q
u [χ]. For notational simplicity, we rescale the variables inside the function

by uj → uj/γ, and replace the i by the parameter ε = iγ. Our final definition of the

A -functional then reads

A q
u [χ] =

∑
α∪ᾱ=u

(−1)|α|
∏
ui∈α

χ(ui)
∏
ui∈α
uj∈ᾱ

sinh(ui − uj + ε)

sinh(ui − uj)
. (2.24)

The q-deformed A -functional can be written equivalently as

A q
u [χ] =

1

∆u

N∏
j=1

(
1− χ(uj)e

ε∂/∂uj
)

∆u, (2.25)

where eε∂/∂u is the shift operator eε∂/∂uf(u) = f(u + ε) and ∆u is the trigonometric

Vandermonde determinant

∆u =
∏
j<k

sinh(uj − uk). (2.26)

Finally, let us mention that the A -functional is related to the so-called domain wall par-

tition function of the 6-vertex model and various determinant formula are known. In the

q-deformed case, a trigonometric version of the Kostov-Matsuo determinant formula [23]

and variations have been derived in [40, 41]. However, in taking the semiclassical limit

we are not using any of the determinant formula. For our purpose, it is more useful to

use the sum-over-partition formula (2.25) which can be converted to a multiple integral

representation similar to the one in [31].

3 Slavnov determinant as an A -functional

In this section, we will show that we can express the scalar product of an off-shell Bethe

state with an on-shell Bethe state in terms of the A -functional. We largely follow the

derivations presented in [32], encountering some complications due to the rational functions

being replaced by their trigonometric counterparts.
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3.1 Factorizing the Slavnov determinant

It was shown by Slavnov [32] that we can express the scalar product of a generic off-shell

Bethe state with an on-shell state in terms of a determinant. Let the set of rapidities u be

on-shell, i.e. satisfy the Bethe ansatz equations, and v be arbitrary of equal cardinality N .

The scalar product is then given by

〈v|u〉 =

N∏
i=1

a(vi)d(ui)Su,v, (3.1)

where Su,v is the Slavnov determinant,

Su,v =
1∏N

j=1 a(vj)

detj,k
∂
∂uj

Tu(vk)

detj,k
1

sinh(uj−vk)

. (3.2)

The function Tu(v) is the eigenvalue of the transfer matrix:

Tu(v) = a(v)
Qu(v − ε)
Qu(v)

+ d(v)
Qu(v + ε)

Qu(v)
, (3.3)

where Qu(v) is the Baxter Q-function defined by

Qu(v) ≡
N∏
k=1

sinh(v − uk). (3.4)

Taking derivative with respect to one of the rapidities, we find

− ∂

∂uk
Tu(v) = a(v)

Qu(v − ε)
Qu(v)

Ω(uk, v), (3.5)

where we defined the Slavnov kernel as

Ω(u, v) = t(u− v)− t(v − u)
d(v)

a(v)

Qu(v + ε)

Qu(v − ε)
(3.6)

≡ t(u− v)− t(v − u) e2ipu(v).

Here we use the same definition for the pseudo-momentum e2ipu(v) as presented in [22] and

the function t(u) is given by

t(u) =
sinh ε

sinh(u) sinh(u+ ε)
=

1

tanh(u)
− 1

tanh(u+ ε)
. (3.7)

Using the following identity

N∏
k=1

Qu(vk − ε)
Qu(vk)

det
j,k

1

sinh(uj − vk + ε)
= det

j,k

1

sinh(uj − vk)
, (3.8)

we can write the Slavnov determinant simply as

Su,v =
detj,k Ω(uj , vk)

detj,k
1

sinh(uj−vk+ε)

. (3.9)
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One crucial step in computing the semi-classical limit of the scalar product is to write the

Slavnov determinant in a factorized form of two A -functionals. In the rational case, it

is important that the function t(u) can be written in the form f(u) − f(u + ε), for some

function f . There it takes the following form:

tXXX(u) =
ε

u(u+ ε)
=

1

u
− 1

u+ ε
. (3.10)

For the XXZ spin chain, t(u) is given by trigonometric functions. Nevertheless, from (3.7),

we see that it can still be rewritten in such a ‘shifted difference’ form. We can thus write

the q-deformed Slavnov kernel as

Ω(u, v) =
(

1− e2ipu(v)eε ∂/∂v
)(

e−ε ∂/∂u − 1
)

coth(u− v + ε). (3.11)

Therefore, the numerator of (3.9) can be written as

det
j,k

Ω(uj , vk) =
N∏
i=1

(
1− e2ipu(vi)eε ∂/∂vi

) N∏
i=1

(
e−ε ∂/∂ui − 1

)
det
j,k

1

tanh(uj − vk + ε)
(3.12)

=

N∏
i=1

(
1− e2ipu(vi)eε ∂/∂vi

) N∏
i=1

(
e−ε ∂/∂ui − 1

)

· cosh

 N∑
j=1

(uj − vj) +Nε

 det
j,k

1

sinh(uj − vk + ε)
, (3.13)

where we used the fact that

det
j,k

1

tanh (uj − vk + ε)
= cosh

 N∑
j=1

(uj − vj + ε)

 det
j,k

1

sinh (uj − vk + ε)
. (3.14)

In order to proceed, we need to move the hyperbolic cosine term to the left through all the

shift operators. For convenience, we define

Ξu,v ≡
N∑
j=1

(uj − vj + ε) , Cu,v ≡ cos (Ξu,v) . (3.15)

The action of the following two operators on Cu,v is fairly simple:(
e−ε∂/∂ui − 1

)
Cu,v = Cu,v

(
ζu,ve

−ε∂/∂ui − 1
)
, (3.16)(

1− e2ipu(vi)eε∂/∂vi
)
Cu,v = Cu,v

(
1− e2ipu(vi)ζu,ve

ε∂/∂vi
)
, (3.17)

where

ζu,v =
cos (Ξu,v − ε)

cos (Ξu,v)
. (3.18)

The Slavnov determinant can then be written as

Su,v

Cu,v
=

∏N
i=1

(
1− e2ipu(vi)ζu,ve

ε ∂/∂vi
)∏N

i=1

(
ζu,ve

−ε ∂/∂ui − 1
)

detj,k
1

sinh(uj−vk+ε)

detj,k
1

sinh(uj−vk+ε)

. (3.19)
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Defining

Πu,v =
N∏
j=1

N∏
k=1

sinh(uj − vk + ε), (3.20)

the denominator of the Slavnov formula (3.9) can then be written as

det
j,k

1

sinh(uj − vk + ε)
=

∆u∆−v
Πu,v

. (3.21)

We thus have

Su,v

Cu,v
=

Πu,v

∆u∆v

N∏
i=1

(
1− e2ipu(vi)ζu,ve

ε ∂/∂vi
) N∏
i=1

(
ζu,ve

−ε ∂/∂ui − 1
) ∆u∆v

Πu,v
. (3.22)

The ∆v term can be moved to the left through all terms containing only shift operators

e
−ε ∂

∂ui without being affected. Similarly, ∆u can be moved to the right through all terms

containing only shift operators of the form e
ε ∂
∂vi . It remains to show how the shift operators

act on Π−1
u,v:

e−ε ∂/∂ujΠ−1
u,v = E+

v (uj) Π−1
u,ve

−ε ∂/∂uj , (3.23)

eε ∂/∂vjΠ−1
u,v = E−u (vj) Π−1

u,ve
ε ∂/∂vj ,

where

E±u (v) =
Qu(v ± ε)
Qu(v)

, E±v (u) =
Qv(u± ε)
Qv(u)

. (3.24)

Now we can write the Slavnov determinant formula in the following factorized form

Su,v

Cu,v
= (−1)N

1

∆v

N∏
j=1

(
1− e2ipu(vj) ζu,vE−u (vj)e

ε ∂/∂vj
)

∆v (3.25)

× 1

∆u

N∏
j=1

(
1− ζu,vE+

v (uj) e
−ε ∂/∂uj

)
∆u · 1

Let us then define two operators related to the A -functional

Â ±u [χ] =
1

∆u

N∏
j=1

(
1− χ(uj)e

±ε∂/∂uj
)

∆u. (3.26)

We can now write

Su,v

Cu,v
= (−1)N Â +

v

[
e2ipu ζu,v E−u

]
· Â −u

[
ζu,v E+

v

]
· 1. (3.27)

Note that the factorization is not complete since the first operator can act non-trivially on

the second.
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3.2 A symmetric representation

In this section, we show how to rewrite (3.27) as a single A -functional. It is more convenient

to consider the inhomogeneous XXZ spin chain, with inhomogeneities θ = {θ1, · · · , θL}.
Then we can write

a(u) = Qθ

(
u+

ε

2

)
, d(u) = Qθ

(
u− ε

2

)
. (3.28)

For convenience, we then define zj = θj + ε
2 , so that we have

d(u)

a(u)
=

1

E+
z (u)

. (3.29)

Furthermore, we rewrite the pseudo-momentum as follows:

e2ipu(v) =
1

E+
z (v)

E+
u (v)

E−u (v)
. (3.30)

These two expressions then allow us to write

Su,v

Cu,v
= (−1)N Â +

v

[
ζu,v

E+
u

E+
z

]
· Â −u

[
ζu,vE+

v

]
· 1. (3.31)

To proceed, we apply the following two identities for the A -functional [23]:

Â −u [f ] = Â +
u

[
−E−u

E+
u
f

]
, Â +

u [f ] = Â −u

[
−E+

u

E−u
f

]
(3.32)

Furthermore, from the Bethe Ansatz equation we obtain

− E+
u (uj)

E−u (uj)
=

1

E+
z (uj)

. (3.33)

Combining (3.32) and (3.33), we can rewrite the second A -functional

Su,v

Cu,v
= (−1)N Â +

v

[
ζu,v

E+
u

E+
z

]
· Â +

u

[
ζu,v

E+
v

E+
z

]
· 1, (3.34)

giving us an expression which is completely symmetric in u and v.

We now proceed to show that we can obtain another expression for the Slavnov deter-

minant formula, with only one A -functional. First, we define

Π′u,v =
∏
i,j

sinh(ui − vj) (3.35)

and note that

∆u∪v = ∆u ∆v Π′u,v (3.36)

Now from the definition of A -functional, we can write

Au∪v [f ] =
1

∆u∆vΠ′u,v

N∏
j=1

(
1− f(uj)e

ε ∂/∂uj
) N∏
j=1

(
1− f(vj)e

ε ∂/∂vj
)

∆u∆vΠ′u,v. (3.37)

– 11 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

We move the factor Π′u,v through the two products of shift operators using (3.23) and

obtain

Au∪v [f ] =
1

∆u

N∏
j=1

(
1− E+

v (uj)f(uj)e
ε ∂/∂uj

)
∆u (3.38)

× 1

∆v

N∏
j=1

(
1− E+

u (vj)f(vj)e
ε ∂/∂vj

)
∆v · 1

= Â +
u

[
E+
v f
]
· Â +

v

[
E+
u f
]
· 1.

Comparing this to (3.34), we see that we can indeed write the Slavnov determinant formula

in the following simple form:

Su,v = (−1)N Cu,v Au∪v

[
ζu,v

E+
z

]
. (3.39)

In [23], the analogous expression was computed for the XXX spin chain. We see that the

main difference between our result and the XXX case is the appearance of the terms Cu,v

and ζu,v. Putting back the anisotropy γ and ε = iγ in those two terms, we find

Cu,v = cosh γ

 N∑
j=1

(uj − vj) +Ni

 , (3.40)

ζu,v =
cosh γ

(∑N
j=1 (uj − vj) + (N − 1)i

)
cosh γ

(∑N
j=1 (uj − vj) +Ni

) . (3.41)

It is not hard to see that these factors tend to 1 in the limit γ → 0, so the formula correctly

reduces to its isotropic form.

4 Semi-classical limit of XXZ spin chain

In this section we discuss the semi-classical limit of the XXZ spin chain. The semi-classical

limit is defined as the limit where N,L→∞, while keeping their ratio α = N/L fixed. For

the XXX model, the distribution of Bethe roots in this limit condenses into macroscopic

cuts on the complex plane. An example of two root distributions with L = 1000 and N = 50

is given in figure 1. The fact that the distribution of Bethe roots forms macroscopic cuts

enables us to describe physical quantities including the scalar products in terms of the

density of Bethe roots ρ(u) instead of individual Bethe roots, which in many cases leads to

drastic simplifications. In order to make a sensible generalization of the semi-classical limit

techniques to the XXZ model, we should first make sure that we can still find solutions of

the Bethe Ansatz equations that have similar distributions. To this end, we discuss some

of the general aspects of the solutions of the XXZ Bethe Ansatz equations.
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Figure 1. An example of the root distributions and corresponding contours for an

L = 1000, N = 50 spin chain. The two sets correspond to the solutions with mode number n = 1, 2.

4.1 XXZ root distributions

We first recall the XXZ Bethe Ansatz equations:(
sinh γ

(
uj + i

2

)
sinh γ

(
uj − i

2

))L =
N∏
j 6=i

sinh γ (uj − uk + i)

sinh γ (uj − uk − i)
, i = 1, · · ·N. (4.1)

The case of an anisotropy parameter |∆| < 1 is known to give rise to complicated Bethe

root distributions [39]. However, for |∆| > 1, we can still find string solutions, similar

to those found in the isotropic case. This region of ∆ corresponds to a purely imaginary

parameter γ ≡ iφ ≡ cosh−1 ∆, φ > 0. The string solutions can then be written [39]:

uj = λ+
1

2
(M + 1− 2j) i, (4.2)

where λ is a real number, −π
φ < λ < π

φ . It is clear that all the trigonometric functions in

the Bethe equations are then periodic along the direction of the real axis, so that adding

or subtracting multiples of 2π
φ generates equivalent sets of solutions. We present a sample

of several Bethe root distributions with small anisotropy parameters in figure 2. We refer

to appendix C for more details on how these roots were obtained.

From the form of the string solutions given in (4.2), we see that the majority of the

roots will scale like |uj | ∼ N . In the semi-classical limit, we also have N ∼ L, so the uj is

of order L. We therefore can write

sin γ(uj − uk + i) = sin γL(u′j − u′k + ε′) (4.3)

where ε′ = i/L is a small parameter. In fact, the parameter ε plays the role of Planck’s

constant in this context, since we obtain the semi-classical limit by letting it approach zero.
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Figure 2. Root distributions for an L = 300, N = 12 spin chain. The rightmost set represents

the isotropic case (γ = 0). The others represent the roots for chains with small anisotropies

γ = 0.03i, γ = 0.05i, γ = 0.15i, ordered from right to left. For γ = 0.15i, the roots are already very

close to the string distribution as defined in (4.2), with λ ≈ 9.31.

As a final remark of this section, we notice that expressions like (4.3) occur frequently in

our derivations as well as in the Bethe equations and they typically take the form of a ratio

sinh γ(u− v + ia)

sinh γ(u− v + ib)
=

sinh γ′(u′ − v′ + aε)

sinh γ′(u′ − v′ + bε)
, γ′ = γL. (4.4)

For the rational case, the common factors γ′ in the numerator and denominator cancel each

other. However, in the trigonometric case we do not have such cancellations. For γ = iφ,

φ ∈ R, if |γ′| → ∞ the function sinh(γ′x) with x ∼ O(1) is quickly oscillating. This makes

the computations like solving Bethe equations tricky. Therefore, as a working assumption,

we need to keep γ′ at some reasonably finite value. This means in practice if we take large

L, we will take small γ.

5 Semi-classical limit of scalar products

We have shown in section 3 that an arbitrary on-shell/off-shell scalar product can be written

in terms of the A -functional. Therefore, the problem of computing semi-classical limits of

on-shell/off-shell scalar products in the XXZ chain reduces to obtaining the semi-classical

limit of the A -functional. In this section, we show in detail how to take the semi-classical

limit of the A -functional.

5.1 The A -functional as a grand partition function

Recall the expression for the q-deformed A -functional:

A q
u [χ] =

∑
α∪ᾱ=u

∏
ui∈α

(−χ(ui))
∏
ui∈α
uj∈ᾱ

sinh (ui − uj + ε)

sinh (ui − uj)
. (5.1)
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Using a similar method to [31], we can rewrite the A -functional in terms of a multiple

contour integral

A q
u [χ] =

∞∑
n=0

1

n!
Fn [χ] . (5.2)

where

Fn [χ] =

∮
Cu

n∏
j=1

[
dzj
2πi

]
det
j,k

1

sinh(zj − zk + ε)

n∏
j=1

Qu(zj + ε)

Qu(zj)
(−χ(zj)). (5.3)

The contour Cu is chosen so that it tightly encircles the Bethe roots u. To be more precise,

all the integration variable zj share the same contour Cu which encircles only the poles

zj = uk from the Baxter Q-functions and leaves the poles from the Cauchy determinant

outside the contour. In this paper, we take L large but finite, which means ε is small but

not exactly zero so the aforementioned choice of contour is well-defined. The n-th term in

the series then corresponds to the sum of all partitions with n roots in the set α, and the

remaining N − n roots in the set ᾱ. For n > N , the integrand is holomorphic within the

region enclosed by the contour, so these terms give a zero contribution. We can define a

slightly more general version of the A -functional

A q,κ
u =

∞∑
n=0

κn

n!
Fn. (5.4)

We rewrite the determinant in each Fn as a sum over permutations:

Fn =
∑
σ∈Sn

(−1)ε(σ)

∮
Cu

n∏
j=1

[
dzj
2πi

−χ(zj)

sinh
(
zj − zσ(j) + ε

)Qu(zj + ε)

Qu(zj)

]
. (5.5)

Then we define the function

ρ(x, y) =
1

sinh(x− y + ε)

(
Qu(x+ ε)

Qu(x)
(−χ(x))

)
, (5.6)

which allows us to write Fn in the simpler form

Fn =
∑
σ∈Sn

(−1)ε(σ)

∮
Cu

n∏
j=1

dzj
2πi

ρ
(
zj , zσ(j)

)
. (5.7)

The sum over permutations can then be transformed into a sum over conjugacy classes (see

for example section 2.8 of [42] for a more detailed treatment). Every conjugacy class of the

permutation group of order n is characterized by a set of integers {C`} where C` denotes the

number of conjugacy classes of length `. The integers C` satisfies the following constraint∑
`

`C` = n. (5.8)

Therefore the sum over permutations in the expression for Fn can be taken as a sum over

integers satisfying this constraint. We denote such a sum with a prime, i.e.
∑′
{C`}. Defining

Z` =

∮
Cu

∏̀
j=1

[
dzj
2πi

]
ρ(z1, z2)ρ(z2, z3) · · · ρ(zl−1, z`)ρ(z`, z1). (5.9)
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The term Fn then takes the form

Fn
n!

=
′∑
{C`}

∏
`

(−1)(l−1)C`ZC`
`

C`!`C`
. (5.10)

This expression becomes highly non-trivial to write down for large n due to the constraint.

However, for the A -functional we take the sum over all n. So the constraints disappear and

the numbers C` can then take any non-negative integer values. We can now interchange

the sum over C` with the product over ` and compute

A q,κ
u =

∞∑
n=0

κnFn
n!

=
∑
{C`}

∏
`

(−1)(`−1)C`κ`C`ZC`
`

C`!`C`

=
∑
{C`}

∏
`

1

C`!

(
−(−κ)`Z`

`

)C`

=
∏
`

∑
{C`}

1

C`!

(
−(−κ)`Z`

`

)C`

=
∏
`

exp

(
−(−κ)`Z`

`

)
= exp

(
−
∑
`

Z`
(−κ)`

`

)
. (5.11)

This expression is our starting point for obtaining the semi-classical limit.

5.2 Semi-classical limit of the A -functional

We consider the multiple contour integrals Z` in (5.9) following the method given in [31].

The idea is to deform the multiple contours for every zj sequentially so that they are

separated by at a distance larger than ε, as is depicted in figure 3. During the contour

deformation, one picks up poles from the Cauchy determinant zj = zk + ε, after which we

find the simpler form

Z` =

∮
Cu

∏̀
j=1

[
dzj
2πi

−G(zj)

sinh (zj − zj+1 + ε)

]
(5.12)

= (−1)l
∮
Cu

dz

2πi

G(z)G(z + ε) · · ·G(z + (`− 1)ε)

sinh `ε
, (5.13)

where

G(z) = χ(z)
Qu(z + ε)

Qu(z)
. (5.14)

We have seen in section 4 that ε is small compared to the variables uj (and therefore z) in

the semi-classical limit. This allows us to make the approximation at leading order

G(z + nε) ≈ G(z), (5.15)

which we can plug back into the expression for Z`. This can then be substituted into (5.11),

which gives us (after setting κ = 1) the final expression for the A -functional in the semi-

classical limit:

log A q
u [χ] = −

∮
Cu

dz

2πi

∞∑
n=1

(G(z))n

n sinhnε
. (5.16)
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Figure 3. Deformation of the integration contours. The contour Cu,k corresponds to the contour

for the integration variable zk.

After the contour deformation, we now have only one contour integral in the final re-

sult (5.16). This contour of this integral is chosen to be tightly encircling the support of

the Bethe roots or the cut in semi-classical limit and it can be taken as the original contour

Cu. Putting back the anisotropy explicitly and ε = iγ, we can write the semi-classical limit

of A q
u [χ] as

log A q
u [χ] ≈

∮
Cu

dz

2π

∞∑
n=1

(G(z))n

n sin γn
=

1

sin γ

∮
Cu

dz

2π

∞∑
n=1

(G(z))n

n [n]q
(5.17)

where we have used the simple fact that

[n]q =
qn − q−n

q − q−1
=

sin γn

sin γ
(5.18)

Comparing to the semi-classical limit of the A -functional of the XXX spin chain [22]

log A XXX
u [χ] ∼

∮
Cu

dz

2π

∞∑
n=1

(G(z))n

n2
(5.19)

we find that one of the factors n in the infinite series of (5.19) is q-deformed while the

other remains untouched. The interpretation is quite simple. In fact the two factors n have

different origins, one comes purely from combinatorics (5.11) which is the same for both

XXX and XXZ spin chains while the other comes from (5.12) which is model dependent.

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

In order to simplify our expression, we define formally a q-analog of the logarithm

function

logq(1− x) = −
∞∑
n=1

xn

[n]q
(5.20)

which is a q-deformation of the usual expansion

log(1− x) = −
∞∑
n=1

xn

n
. (5.21)

Then we can write the semi-classical limit of the A -functional as

log A q
u [χ] ≈ 1

sin γ

∮
Cu

du

2πi

∫ g(u)

0
logq(1− eiµ)dµ, eig(z) = G(z). (5.22)

Finally, it is interesting to note that our result (5.17) can also be written in terms of a

function known as Faddeev’s quantum dilogarithm Φb(z), which we define in (D.2). In

terms of this function, we can write

log A q
u [χ] =

∮
Cu

dz

2πi
log Φ√φ (g(z) + π) (5.23)

Recalling that the semi-classical limit of the A -functional for the XXX spin chain is given

in terms of the dilogarithm function, our result for the XXZ spin chain can be seen as a

sort of ‘quantization’ of the XXX case.

5.3 Semi-classical limit of Slavnov determinant

Now it is straightforward to take the semi-classical limit of the Slavnov determinant Su,v.

From (3.39)

log Su,v = iπN + logCu,v + log Au∪v

[
ζu,v

d(u)

a(u)

]
(5.24)

In order to write down the semi-classical limit of the Slavnov determinant, it now remains

to take the semi-classical limit of Cu,v and

G(z) = ζu,v
d(z)

a(z)

Qu(z + ε)

Qu(z)

Qv(z + ε)

Qv(z)
(5.25)

For a proper string solution u, the sum
∑

u uj is real since the roots are distributed symmet-

rically about the real axis. For the off-shell rapidities v, we assume ‘reasonable’ behavior,

meaning that the rapidities condense on some cuts and the imaginary part of
∑

v vj is not

too far from zero. First we consider the term Cu,v. Comparing to (3.40), we find in the

semi-classical limit

Cu,v = cosh γ

 N∑
j=1

(uj − vj) +Ni

 (5.26)

≈ cosh

(
γ

∫
Au

duu ρ(u)− γ
∫
Av

dv v ρ(v) + iγN

)
.

– 18 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

The semi-classical limit of G(z) can be taken easily as

logG(z) ≈ −iγ L

tanh γz
+ iγ

∫
Au

ρu(v)

tanh γ(z − v)
dv + iγ

∫
Av

ρv(v)

tanh γ(z − v)
dv (5.27)

where we have used the fact that log ζu,v is a small number of order 1. Here ρu(u) denotes

the density of Bethe roots on the cut u and Au denotes the cut on which the Bethe roots

condensate. Then the semi-classical limit of the Slavnov determinant is given by

log Su,v = iπN + logCu,v +
1

sin γ

∮
Cu∪v

du

2πi

∫ g(u)

0
logq(1− eiµ)dµ. (5.28)

Here the function g(u) is given by

g(u) = − γL

tanh γu
+Gu(u) +Gv(u) (5.29)

where Gu(u) is the resolvent defined by

Gu(u) = γ

∫
Au

ρu(v)

tanh γ(u− v)
dv. (5.30)

6 Conclusions and outlook

In this paper, we investigated scalar products of Bethe states of the type on-shell/off-shell

in the semi-classical limit for the XXZ spin chain with anisotropy |∆| > 1. We define a

quantity called the q-deformed A -functional from the scalar product between a generic

off-shell Bethe state and a vacuum descendant state. We then show the scalar product of

the type on-shell/off-shell can be written in terms of the A -functional. By generalizing the

techniques of the XXX spin chain to the trigonometric case, we are able to take the semi-

classical limit of the q-deformed A -functional and the on-shell/off-shell scalar product.

The final result can be written in terms of Faddeev’s quantum dilogarithm function, which

is a natural q-deformation of the classical dilogarithm function.

The original motivation of studying the semi-classical limit stems from AdS/CFT

correspondence. It is known that the all loop S-matrix underlying N = 4 SYM allows

a quantum deformation [43] and there are also proposals for q-deformation of superstring

theory on AdS5 × S5 [44–46]. It would be interesting to see whether our results can be

applied to the context of q-deformations of AdS/CFT correspondence.

It would also be interesting to obtain systematically the 1/L corrections for the scalar

products. This might be done by generalizing the methods in [47] or applying a Wigner-

Kirkwood method in the Fermi gas approach [48]. Finally, we only analyzed the range

|∆| > 1 in the current paper, it is thus natural to study the case |∆| < 1 where the

distribution of Bethe roots is rather different.
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A Commutation relations of operators in the XXZ model

We list the commutation relations of the elements of the monodromy matrix, obtained

from the RTT relation.

A(x)B(y) = f(y, x)B(y)A(x)− g(y, x)B(x)A(y), (A.1)

B(x)A(y) = f(y, x)A(y)B(x)− g(y, x)A(x)B(y),

A(x)C(y) = f(x, y)C(y)A(x)− g(x, y)C(x)A(y),

C(x)A(y) = f(x, y)A(y)C(x)− g(x, y)A(x)C(y),

B(x)D(y) = f(x, y)D(y)B(x)− g(x, y)D(x)B(y),

D(x)B(y) = f(x, y)B(y)D(x)− g(x, y)B(x)D(y),

C(x)D(y) = f(y, x)D(y)C(x)− g(y, x)D(x)C(y),

D(x)C(y) = f(y, x)C(y)D(x)− g(y, x)C(x)D(y),

[A(x),D(y)] = g(x, y) (C(y)B(x)− C(x)B(y)) ,

[B(x), C(y)] = g(x, y) (D(y)A(x)−D(x)A(y)) , (A.2)

[A(x),A(x)] = [B(x),B(x)] = [C(x), C(x)] = [D(x),D(x)] = 0

The functions f(x, y) and g(x, y) are defined as follows

f(x, y) =
q xy − q

−1 y
x

x
y −

y
x

, g(x, y) =
q − q−1

x
y −

y
x

. (A.3)

B Large rapidity expansion

In this appendix, we work out the behavior of the B(u) and C(u) operators in the large

rapidity regime, i.e. u → ±∞. This will give us the q-deformed spin raising and lowering

operators. In terms of the multiplicative spectral parameters, these regimes correspond to

the limits x → 0 and x → ∞. It turns out to be convenient to slightly twist the RTT

relation first, which makes it easier to compute the desired limits.

B.1 Gauge transformation

The standard RTT relation for the XXZ spin chain reads

Ra,b(x, y)Ta(x)Tb(y) = Tb(y)Ta(x)Ra,b(x, y) (B.1)

with the R-matrix as defined in (2.7), and the monodromy as in (2.9). In order to take the

limit of large spectral parameters, we first make the following ‘gauge transformation’:

T̃a(x) = Q(x)Ta(x)Q−1(x) (B.2)

R̃a,b(x, y) = Q(x)⊗Q(y)Ra,b(x, y)Q−1(x)⊗Q−1(y), (B.3)

where Q(x) is the following matrix acting in the auxiliary space

Q(x) =

(
x1/2 0

0 x−1/2

)
. (B.4)
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It is straightforward to see that the RTT relation remains the same under this transfor-

mation:

R̃a,b(x, y)T̃a(x)T̃b(y) = T̃b(y)T̃a(x)R̃a,b(x, y). (B.5)

The Lax operator now conveniently decomposes into two triangular matrices:

L̃a,n(x) = xL+
a,n − x−1L−a,n, (B.6)

where

L+
a,n =

(
qS

z
n
(
q − q−1

)
S−n

0 q−S
z
n

)
, L−a,n =

(
q−S

z
n 0

−
(
q − q−1

)
S+
n qS

z
n

)
. (B.7)

It is easy to see that after this transformation, the two limits we want to compute pick out

only one of these two terms:

lim
x→0

xL̃a,n(x) = −L−a,n, lim
x→∞

1

x
L̃a,n(x) = L+

a,n. (B.8)

Since the matrices L±a,n are triangular, it is now easy to multiply them together in order to

obtain the elements of the twisted monodromy matrix. In what follows, we denote these

elements as Ã(x), B̃(x), C̃(x), D̃(x). Making use of the twisted RTT relation, we obtain the

following commutation relations for the quantum operators:

Ã(x)B̃(y) = f(y, x)B̃(y)Ã(x)− y

x
g(y, x)B̃(x)Ã(y), (B.9)

B̃(x)Ã(y) = f(y, x)Ã(y)B̃(x)− x

y
g(y, x)Ã(x)B̃(y),

Ã(x)C̃(y) = f(x, y)C̃(y)Ã(x)− x

y
g(x, y)C̃(x)Ã(y),

C̃(x)Ã(y) = f(x, y)Ã(y)C̃(x)− y

x
g(x, y)Ã(x)C̃(y),

B̃(x)D̃(y) = f(x, y)D̃(y)B̃(x)− x

y
g(x, y)D̃(x)B̃(y),

D̃(x)B̃(y) = f(x, y)B̃(y)D̃(x)− y

x
g(x, y)B̃(x)D̃(y),

C̃(x)D̃(y) = f(y, x)D̃(y)C̃(x)− y

x
g(y, x)D̃(x)C̃(y),

D̃(x)C̃(y) = f(y, x)C̃(y)D̃(x)− x

y
g(y, x)C̃(x)D̃(y),[

Ã(x), D̃(y)
]

= g(x, y)

(
y

x
C̃(y)B̃(x)− x

y
C̃(x)B̃(y)

)
,[

B̃(x), C̃(y)
]

=
x

y
g(x, y)

(
D̃(y)Ã(x)− D̃(x)Ã(y)

)
.

We see that we recover the original untwisted commutation relations by making the sub-

stitutions

Ã(x) = A(x), B̃(x) = xB(x), C̃(x) =
1

x
C(x), D̃(x) = D(x). (B.10)
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B.2 Limiting behavior

We now compute the operators in the large rapidity regime. From the decomposition of

the twisted Lax operator, we find for x→∞

lim
x→∞

Ã(x)

xL
= qS

z
, lim

x→∞

B̃(x)

xL
=
(
q − q−1

)
S−q , lim

x→∞

C̃(x)

xL
= 0, lim

x→∞

D̃(x)

xL
= q−S

z
,

(B.11)

and for x→ 0

lim
x→0

(−x)LÃ(x) = q−S
z
, lim

x→0
(−x)LB̃(x) = 0, (B.12)

lim
x→0

(−x)LC̃(x) = −
(
q − q−1

)
S+
q , lim

x→0
(−x)LD̃(x) = qS

z
. (B.13)

Here we used the operators

q±S
z

=
L∏
n=1

q±S
z
n , S±q =

L∑
n=1

qS
z
1 ⊗ · · · ⊗ qSz

n−1 ⊗ S±n ⊗ q−S
z
n+1 ⊗ · · · ⊗ q−Sz

L . (B.14)

It remains to compute the appropriate limits of the functions f and g. For f(x, y) we have

lim
x→∞

f(x, y) = q, lim
y→∞

f(x, y) = q−1, (B.15)

lim
x→0

f(x, y) = q−1, lim
y→0

f(x, y) = q. (B.16)

For g(x, y) we find

lim
x→∞

x

y
g(x, y) = q − q−1, lim

y→∞

x

y
g(x, y) = 0, (B.17)

lim
x→0

x

y
g(x, y) = 0, lim

y→0

x

y
g(x, y) = q − q−1, (B.18)

and

lim
x→∞

y

x
g(x, y) = 0, lim

y→∞

y

x
g(x, y) = −

(
q − q−1

)
, (B.19)

lim
x→0

y

x
g(x, y) = −

(
q − q−1

)
, lim

y→0

y

x
g(x, y) = 0. (B.20)
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B.3 Commutation relations

We can now use our previous results to obtain the commutation relations of the q-deformed

operators with the original operators. They ultimately read

S−q Ã(x) = q−1Ã(x)S−q + qS
z B̃(x), (B.21)

S−q B̃(x) = B̃(x)S−q ,
S−q C̃(x) = C̃(x)S−q + qS

zD̃(x)− q−SzÃ(x),

S−q D̃(x) = qD̃(x)S−q − q−S
z B̃(x),

S+
q Ã(x) = q−1Ã(x)S+

q − q−S
z C̃(x), (B.22)

S+
q B̃(x) = B̃(x)S+

q + qS
zÃ(x)− q−SzD̃(x),

S+
q C̃(x) = C̃(x)S+

q ,

S+
q D̃(x) = qD̃(x)S+

q + qS
z C̃(x),

qS
zÃ(x) = Ã(x)qS

z
, (B.23)

qS
z B̃(x) = q−1B̃(x)qS

z
,

qS
z C̃(x) = qC̃(x)qS

z
,

qS
zD̃(x) = D̃(x)qS

z
,

q−S
zÃ(x) = Ã(x)q−S

z
, (B.24)

q−S
z B̃(x) = qB̃(x)q−S

z
,

q−S
z C̃(x) = q−1C̃(x)q−S

z
,

q−S
zD̃(x) = D̃(x)q−S

z
.

If we now perform another large parameter expansion on several of these relations, we

indeed obtain the algebra of the quantum group Uq (sl2):

qS
zS±q = q±1S±q qS

z
,

[
S+
q ,S−q

]
=
q2Sz − q−2Sz

q − q−1
. (B.25)

C Numerical solution of the XXZ Bethe equations

In this appendix, we provide more detail on how the Bethe root distributions depicted in

figure 2 were obtained. As a starting point, we took a set of solutions to the XXX Bethe

equations, with parameters L,N . When L is large compared to N , these solutions are

not hard to find. We apply the Mathematica method FindRoot on the set of of N Bethe

equations, where we take the starting point

uk =
1

2πn

(
L+ izk

√
2L+O

(
L0
))
, k = 1, · · · , N, (C.1)

where the zk are the roots of the Hermite polynomial of degree N , and n is the mode

number. These starting points are sufficiently good for Mathematica to find high-precision

– 23 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
2

Figure 4. Example of several XXX Bethe root distributions. All sets of roots have mode number

n = 1.

numerical solutions to the XXX Bethe equations. An example of resulting sets of roots

with several parameters L,N and mode number n = 1 is shown in figure 4.

With these sets of solutions to the XXX Bethe equations, we can then proceed to

obtain solutions to the XXZ equations. We recall these equations for convenience:(
sinh γ

(
ui + i

2

)
sinh γ

(
ui − i

2

))L =

N∏
j 6=i

sinh γ (ui − uj + i)

sinh γ (ui − uj − i)
, i = 1, · · ·N (C.2)

Starting from the isotropic equations (i.e. γ = 0), we raise γ step by step, with small

increments (typically 0.001 or 0.0001). We apply the FindRoot procedure at every step,

using the result from the previous step as initial guess. We found that this method provides

us with fairly accurate sets of solutions, as long as γ does not stray too far from zero. As

γ increases, the exponential aspects of the sinh-functions will give a larger contribution,

making the equations more sensitive to small changes in the variables ui. Therefore, the

root finding procedure will eventually halt at a certain value of γ, when it is unable to find

a sufficiently accurate set of solutions. It is possible to ‘push’ this boundary a little further

by lowering the step size by one or more orders of magnitude, but this turns out to result

in fairly insignificant progress.

As mentioned in section 4, the method we used for obtaining the semi-classical limit

only applies to the case of a purely imaginary parameter γ. Therefore, we mainly focused on

obtaining root distributions in this regime. As an indication of a typical ‘halting’ value of

γ: for an L = 300, N = 12 spin chain, accurate solutions could be found up to γ = 0.2028i.

We illustrate the effect of altering the chain length in figure 5, and the effect of raising the

magnon number in figure 6.

For increasing L, it is easy to see that the left-hand side of the equation will be more

and more sensitive to variations in the variables ui. Indeed, we find that for longer chains

(and similar magnon numbers N), the procedure halts at lower values of γ. For example,

keeping the magnon number N = 12 but doubling the length to L = 600 resulted in a
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(a) Bethe roots for an L = 300, N = 12 spin

chain.

(b) Bethe roots for an L = 600, N = 12 spin

chain.

Figure 5. Comparison of root distributions for two chains of differing length, but equal magnon

number. The various sets of roots correspond to different anisotropy parameters γ, as indicated in

the legend.

(a) Bethe roots for an L = 300, N = 12 spin

chain.

(b) Bethe roots for an L = 300, N = 24 spin

chain.

Figure 6. Comparison of root distributions for two chains of equal length, but different magnon

number. The various sets of roots correspond to different anisotropy parameters γ, as indicated in

the legend.

halting value of γ = 0.1355i. For L = 900, the procedure already broke down around

γ = 0.1132i.

For chains with higher magnon number, the number of equations that have to be solved

simultaneously also grows bigger, making the root finding procedure more complicated, and

therefore slower. Furthermore, the right-hand side of the Bethe equations becomes a more

complicated product, and therefore also more unstable under small changes in the variables

ui. We indeed found that increasing the magnon number makes it harder for Mathematica

to find good solutions - every step in the iteration takes longer to complete, and the

procedure breaks down for smaller values of γ compared to chains with less magnons. As

an example, we applied the procedure to a chain of length L = 300 and doubled the magnon

number to N = 24. It then broke down around γ = 0.1067i, a significantly lower value

than when we considered only 12 magnons.

D Dilogarithm and quantum dilogarithm

In this appendix, we give the definition of Faddeev’s quantum dilogarithm function which

we use in the main text. Notice that the classical dilogarithm function can be written in
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the integral form

Li2(−eiz) =
i

2

∫
R+i0

ezt

sinh(πt)

dt

t2
(D.1)

where the integral is taken along a line slightly above the real axis. When we close the

contour on the upper half plane and use the residue theorem to compute the above integral,

we obtain the usual infinite series representation of the dilogarithm function. Replacing

t2 in the denominator by t sin(b2t) and taking the exponential, we find the definition of

Faddeev’s quantum dilogarithm4

Φb(z) = exp

(
i

2

∫
R+i0

ezt

sin(b2 t) sinh(πt)

dt

t

)
(D.2)

It is easy to see that for b→ 0, the quantum dilogarithm reduces to the classical dilogarithm

Φb(z) = 1 +
Li2(−eiz)

b2
+O(1) (D.3)

Again using the residue theorem, we obtain a series expansion

Φb(z) = exp

( ∞∑
n=1

(−1)neinz

n sinh(b2 n)

)
(D.4)

It is thus clear that the semi-classical limit of the q-deformed A -functional (5.17) for γ = iφ

can be written in terms of this function as

log A q
u [χ] =

∮
Cu

dz

2πi
log Φ√φ (g(z) + π) (D.5)
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