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1 Introduction

The question of formation of Black hole singularity as a result of collapse of shell or ball of

matter, despite many years of study is still unresolved. In a classical scenario a spherical

shell or a ball of matter collapses and passing the Schwarzschild radius moves toward

the singularity as far as classical Einstein equation is valid i.e. where quantum effects

take the lead. It bounds the fate of singularity to a theory for quantum gravity. Of

course one need not go this far to revise the scenario since at least Hawking radiation

will certainly change the effective mass and will affect the final outcome but does not

remove the singularity at the center. The question is whether there are other effects that

can result in big change in the picture to the extent of obstructing the formation of the

singularity. It is shown in [1–3] that Hawking radiation is not strong enough to prevent

formation of neither the horizon nor the singularity but will delay the process. Also in

a previous work [4] the authors have shown that in the context of dilatonic theory the

primordial black holes are strongly modified due to Hawking radiation but the horizon

is formed although adiabatically changes. It is shown that other singularities such as

big bang singularity [5] are modified considerably when quantum gravitational effects are

considered. Similar considerations were applied to Black holes in several articles arguing

that the collapse shall stop before the singularity is formed [3, 6–22]. They either rely on

arguments based on quantum gravity or Hawking radiation. In particular in the context of

loop quantum gravity Rovelli et al. [8] have argued that quantum corrections can impede

the collapse of a matter to the extent that it be stopped much before the black hole

radius reaches the Planck length by a factor
(
M
Mp

) 1
3
, hence preventing the formation of

the singularity, forming what is called Planck Star. In addition, in the context of weakly

nonlocal quantum gravity the similar behaviour is expected [23–26]. The analysis follows

the previous observation by Ashtekar and coworkers [5] who suggested formation of a

bounce radius based on gravitational quantum effects for big bang when we go back in

time. There has also been attempts to find a transition from black holes to white holes as

the effect of quantum gravity as the collapse process [21, 22].

There are also other arguments in support of the resolution of the singularity. The-

oretical arguments suggesting that the information is carried out by black hole radiation
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leads to phenomenon such as firewall [27, 28]. But if information is trapped inside, the final

stage of the black hole evaporation carries the amount of information that would hardly

be compatible with the Planck length [29–31]. In order to resolve this problem Giddings

suggested that the size of the black hole at the final stage of its evaporation must be much

larger than the Planck length [32]. Based on these arguments and as a consequence of loop

quantum cosmology Rovelli and Vidotto [8] suggested that instead of singularity, a new

object will form, Planck Star at a so called bounce radius much larger than the Planck

length which may help to provide a resolution of the BH information Paradox.

The question we consider in this note is whether Quantum Field Theory (QFT) effects

can substantially modify the process of collapse. The particular effect we consider is the

change of the vacuum energy of fields living in the black hole background. Since the

fields are coupled to the background geometry, we explore whether the zero point energy

of the field(s) can lead to significant correction to the Einstein equation and modify the

solution (in our case the Schwarzschild solution) and the process of collapse in particular

the formation of the singularity. Here, as the matter proceeds during the collapse, zero

point or vacuum energy of the fields become more and more relevant to the fate of the

collapsing shell since it depends on curvature through higher power terms which modify

the Einstein equation giving rise to an inner horizon, inside the Schwarzschild radius,

much larger than the Planck length. The zero point energy resembles the Casimir energy

inserting an (outward) pressure on the boundary of the collapsing shell opposing the process

of collapse. Is this pressure strong enough to stop it?

We can put the question in a different way; is the energy transferred to the environment

large enough to modify the Schwarzschild solution significantly and stop the collapse? We

answer this question affirmatively by taking the contribution of the zero point energy due

to trace anomaly. We will take the advantage of the trace anomaly which is exact going

through the regions beyond the validity of semi-classical approximations at the center of

the black hole. In fact we shall show that the collapsing shell first enters the inner horizon,

much larger than the Planck length, then stops at a so called bounce radius RB, before

the formation of the singularity, where all of the relativistic kinetic energy of the shell is

transferred to the background vacuum. The shell reaches and stops at the turning point,

bounce radius, which is also much larger than the Planck length and after that the process

is reversed.

We also consider the geodesics of an infalling particle in the quantum corrected metric

and show that the geometry acts like an effective potential preventing it from reaching the

center. Then the particle returns inside the inner horizon and moves in outward direction.

The field theory we consider is a massless free theory (non-interacting) coupled only to

gravity. By considering the trace anomaly we are able to extract trace part of the energy

momentum tensor, the pressure due to vacuum fluctuation of the fields.

We are able to show that QFT effects through trace anomaly can result in resolution of

the BH singularity for the process of collapse and QG need not be turned on. Interestingly,

our considerations give the same behaviour for the bounce radius found for the Planck

star in the context of quantum gravity [8]. Although we only consider the effect of trace

anomaly that is a part of the quantum correction, we expect that other quantum effects
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strengthen the phenomena. This argument is also supported by Israel and Poisson [33]

where they state that the vacuum polarization can regularize the metric replacing the

center by a sub-Planckian core extracting the possible form of grr.

A suitable model is provided by the collapse of an infinitely thin spherical shell from

a homogeneous ideal fluid. This model is adopted for simplicity and provides the essence

of the phenomena.

We follow the standard treatment of Israel [34] to match the internal and external

solutions, using the geometrical notion of extrinsic curvature of the hypersurface embedded

in the surrounding space-time (see also [35–37]).

The vacuum expectation value of the energy-momentum tensor can be divided

into anomalous part and traceless part. The anomalous part is calculated exactly by

many authors [38–43] (see also [44, 45]), while the other part is given by approximate

methods [46, 47].

It is worth mentioning that there are pioneer attempts to account for effects of trace

(conformal) anomaly in solution of Einstein equation by Bardeen [3], Hawking effect [48] by

Christensen and Fulling and [20] by Kawai, and Yokokura, and [49–51] by Balbinot, and,

Fabbri, and Shapiro as well as effects in the stellar context [52–55] by Odintsov, Nojiri,

Elizalde, and Bytsenko and holographic black holes [56, 57] by Casadio and Germani.

In this setup energy density of the required fields ρ = −〈T tt 〉 plays significant role (fields

with positive energy density obstruct the formation of the singularity [33]). Based on [14,

58] this energy density for freely falling observer is positive and starts to rise and ultimately

diverges as the singularity is approached. In the cosmological backgrounds similar effect

takes place [59, 60]. It worth to add that the positive vacuum energy density is among

the assumptions employed in the construction of the non-singular black holes [18, 33]. In

this paper all the particles obstruct the formation of the singularity.1 On the grounds

that for particles dealt with in this paper the trace anomaly cannot be cancelled [43],

its contribution to the collapse cannot be disregarded. Since massive particles have less

important contributions in zero point energy, we ignore their effects and limit ourself to

massless cases.

Several scenarios can be envisaged as the result of Hawking radiation. They all point

to merging of the inner and outer horizons [18]. The detail and the timing of the effect is

central to the scenario. In this paper we have not addressed the question.

The setup we consider is the same setup that leads to formation of Schwarzschild black

hole i.e. no conserved charge is taken to exist and the background is taken to be empty.

This is in contrast to realistic collapse that definitely carries baryon charge and live in non-

empty surrounding. The dust and background radiation [61, 62] is not considered in the

setup and issues will be addressed elsewhere. Note that such realistic conditions will help

the impeding of the collapse and will strengthen the final result. We make the standard

assumptions to analyse the back reaction of the change in the energy momentum tensor

induced by the coupling of the fluctuations of the Quantum fields to gravity [1, 63]; the

1Although for vector particles cA is negative, higher order corrections stay positive inside the core such

that the final result does not change.
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metric inside the shell is Minkowski metric, the collapse is spherically symmetric with no

rotation, and the Einstein equation is modified to the form,

Gµν = 8π(tµν + 〈Tµν〉). (1.1)

In the next section we first obtain the quantum corrected metric arising from the trace

anomaly and existence of extremal solution and a lower bound for mass of the black hole.

Then we derive the trajectory of an infalling particle in this background. Lastly we present

the main results by determining the gravitational collapse of a shell in this background.

We also obtain trajectory of the shell, and bounce radius and discuss about the stability of

the final state of the black hole. Finally, in the last section we end with concluding remarks

and future plans.

2 Gravitational collapse considering vacuum energy effects

We assume and shall analyse the Einstein equation (1.1) generalized to include the zero

point energy resulting from the fluctuation of the fields with the flat space contribution

subtracted, 〈Tµν〉. As in the standard case we concentrate on the formation of Schwarzschild

black hole from the collapse of a rotationally symmetric spherical thin shell of radius R.

According to the classical picture [34–37] inside the shell we will have a flat and outside a

Schwarzschild metric (r > R).

Note that at the classical level this background is Ricci flat (Rµν = R = 0).

ds2 = −
(

1− 2M

r

)
dt2 +

dr2

(1− 2M
r )

+ r2(dθ2 + sin2 θdφ2) (2.1)

where M is ADM mass of the black hole.

We will study the backreaction of the QFT energy released to the part of the space

whose metric changes from flat to Schwarzschild to the collapse process. To go beyond

the classical approximation and include the QFT effects we take 〈Tµν〉 in the background

of the classical solution, and solve for the correction to the new equation. Note that the

added term in the equation changes as the collapse goes on.

We calculate 〈Tµν〉 from the trace anomaly of the fields coupled to the gravity. In a

general four dimensional curved space-time, the trace anomaly takes following form [45],

〈T ρρ 〉 =
~

32π

{
(cA + c′A)

(
F +

2

3
�R

)
− c′AE + c′′A�R

}
, (2.2)

where

E = ∗Rµνρσ ∗Rµνρσ = RµνρσRµνρσ − 4RµνRµν +R2 (2.3)

and

F = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
R2

3
(2.4)
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with Rµνρσ the Riemann curvature tensor, ∗Rµνρσ = εµναβRαβρσ/2 its dual, and Cµνρσ
the Weyl conformal tensor, where

cA =
1

90π

(
n0 +

7

4
nM1/2 +

7

2
nD1/2 − 13n1 + 212n2

)
(2.5)

and

c′A =
1

90π

(
1

2
n0 +

11

4
nM1/2 +

11

2
nD1/2 + 31n1 + 243n2

)
(2.6)

[43, 64, 65] are independent of the state in which the expectation value of the stress tensor

is computed, and do not depend on any ultraviolet short distance cutoff [38–42]. Here ns
represents the number of particles for a particular spin s. For fermions superscripts M and

D indicate the real (Majorana) spinors and complex (Dirac) spinors respectively.

The covariant form of the energy momentum tensor in Einstein equation (1.1) is

given by,

〈Tµν〉 =
~

64π

{
(cA + c′A)

(
F +

2

3
�R

)
− c′AE + c′′A�R

}
gµν +

1

8π
Rµν (2.7)

One can separate this tensor into anomalous 〈TAµν〉 and traceless 〈T Tµν〉 part, 〈Tµν〉 =

〈TAµν〉 + 〈T Tµν〉. These two parts should be conserved separately ∇µ〈TAµν〉 = ∇µ〈T Tµν〉 =

0, as they have quite different origins. This is also in agreement with Bardeen [3] and

Christensen and Fulling [48] as they separated different parts of the energy momentum

tensor including the conserved anomalous part.

In this note we only consider the effect of anomalous part. The traceless part is

responsible for the Hawking radiation effect [3]. For the anomalous part we have, ρA =

−〈TAtt〉, pAr = 〈TArr 〉, and pA⊥ = 〈TAθθ 〉 = 〈TAφφ〉.
Furthermore, Dymnikova and Bardeen also indicated that zero point energy [66, 67]

including the conformal anomaly part [3] (see also [68, 69]) should respect all of the sym-

metries of the Schwarzschild geometry which contains the invariance of Schwarzschild cur-

vature tensor under radial boosts (an infalling observer in this geometry cannot measure

the radial component of his velocity with respect to the zero point energy). So in this case,

symmetry of the anomalous source is reduced from the full Lorentz group in flat space-time

to the Lorentz boosts in the radial direction only. Therefore we obtain, −ρA = pAr , and

from trace equation, 2pA⊥ = 〈T ρρ 〉 − 2pAr . So we have,

−ρA = pAr =
1

r4

∫ r

+∞
r′3〈T ρρ 〉dr′. (2.8)

In order to obtain the quantum corrected metric, one needs to solve Einstein equa-

tion with quantum sources (ρA, pAr , p
A
⊥). Exact solution of this equation is a challenging

task since it is nonlinear and involves source terms with different higher powers of curva-

ture (2.2). In addition, as coefficients of higher order terms are a superposition of different

curvature terms it is extremely difficult to guess the recurrence relation. Intuitively, these

terms grow along with the curvature and create inner horizon at the point where they
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start to dominate the Einstein equation. In order to give an example for more clarification,

let us consider the Reissner-Nordström black hole where we have inner horizon. In this

example inner horizon is created in a place where the fields which are on the other side of

the Einstein equation (Gµν = 8πtµν = 8π(FµρF
ρ
ν − 1

4gµνFρσF
ρσ)) dominate the Einstein

tensor Gµν . Evidently, the exact solution approaches the Schwarzschild vacuum at infinity

where the source terms vanish. So, the only natural approach is perturbation around the

Schwarzschild vacuum. Accordingly in the Schwarzschild background the energy momen-

tum 〈Tµν〉 takes the form,

〈T νµ 〉 = −3cA
4π


1 0 0 0

0 1 0 0

0 0 −2 0

0 0 0 −2

 l2pM
2

r6
(2.9)

Inside the shell V − the metric is taken to be flat and for the region outside V +, we

solve the new Einstein equation with above 〈Tµν〉.
Let us assume the following form consistent with rotational symmetry, for the new

metric in exterior region V +,

ds2 = −eνdt2 + eλdr2 + r2(dθ2 + sin2 θdφ2) (2.10)

If we denote derivatives with respect to t and r by dot and prime, respectively, then

the three independent components of the Einstein equations (Gθθ = Gφφ are dependent on

the others) in first order of ~ are [70, 71],

Gtt = −e−λ
(
λ′

r
− 1

r2

)
− 1

r2
= −

6cAl
2
pM

2

r6
, (2.11)

Grt = e−λr−1λ̇ = 0 , (2.12)

Grr = e−λ
(
ν ′

r
+

1

r2

)
− 1

r2
= −

6cAl
2
pM

2

r6
. (2.13)

Subtracting the first and second equation gives,

λ′ + ν ′ = 0, (2.14)

and integration gives,

λ+ ν = h(t), (2.15)

where h(t) is an arbitrary function of integration and λ is a function of r. Hence we

will have,

(re−λ)′ = 1−
6cAl

2
pM

2

r4
. (2.16)

where upon integration we obtain,

eλ =

(
1− 2M

r
+

2cAl
2
pM

2

r4

)−1

(2.17)
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0 0.5 1 1.5 2

0
1
2

(r/2M )1/2

f
(r
)

RB

R−
R0

R+

Figure 1. Quantum corrected metric of Schwarzschild black hole (f(r) = 1 − 2M
r +

2cAl2pM
2

r4 ) at

shell’s minimum radius RB (inside the shell is flat region). Note that in the plot RB < R0 and as

a result m > R−. Dashed line represents the continuation of the quantum corrected Schwarzschild

solution inside the shell. Numerical value is cAl
2
p/(2M)2 = 2(R0/2M)3 = 10−4.

Finally, redefining the time coordinate we obtain the line element (f(r) = eν = e−λ) as,

ds2 = −
(

1−2M

r
+

2cAl
2
pM

2

r4

)
dt2+

(
1−2M

r
+

2cAl
2
pM

2

r4

)−1

dr2+r2(dθ2+sin2 θdφ2) (2.18)

There are two horizons namely r+ as outer horizon and r− as inner horizon given by,

r+ '
2M

1 +
(
R0
2M

)3 r− '
R0

1− R0
6M

, R0 =

(
cA

M

Mp

) 1
3

lp (2.19)

We see that the outer horizon r+ is slightly smaller than Schwarzschild radius 2M

and the inner horizon2 r− is slightly bigger than R0 where it is defined by f(R0) = 1 (see

figure 1).

Note that for M =
√

32
27cAMp the factor f(r) will have a double root and there will

be an extremal black hole. For M <
√

32
27cAMp the solution will have a naked singularity

and no horizon is formed. This value of M sets a lower bound for the black hole mass.

Interestingly its Hawking temperature will vanish.

The quantum corrected temperature of this black hole given by surface gravity is,

TH+ =
κ+

2π
=

1

8πM

(
1− 2

(
R0

2M

)3
)
. (2.20)

Using the quantum modified metric we first obtain the geodesics of an infalling particle.

We assumed that in this process it will be in region V + (outside the collapsing shell and

not striking the shell) in all its trajectory. In a gravitational field, equation of motion of

this particle is given by,
d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0, (2.21)

2As the equation (2.19) shows inner horizon is created for positive cA. For vector particles cA is negative,

but higher order corrections stay positive inside the core such that the final result does not change.
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where m and ω are mass and energy of the particle respectively. Solution of this equation

gives the geodesics of infalling massive particle [72],

m2

(
dR

dτ

)2

+ V (R) = ω2 (2.22)

where V (R) = f(R)(m2 +J2/R2) displays effective potential of black hole for classical

particle. In this equation R represents the position of the particle. Later we use it as as

radius of the collapsing shell. τ is time in inertial frame and ω is energy of this particle

with angular momentum J .

Due to quantum corrections to the metric the potential barrier prevents the particle

from falling into the singularity. This particle then moves in opposite direction as outgoing

particle. Setting Ṙ = dR
dτ = 0 gives the stopping point f(RS) = (ω/m)2 of this infalling

radial particle (J = 0). For ω
m � ( M

MP
)1/3, this point is given by,

RS '
R0

1 + R0
6M

(
( ωm)2 − 1

) (2.23)

For a particle crossing the shell it can enter the flat region V − inside the shell.

Now let us determine the properties of gravitational collapse or time evolution of R.

We assume also that the shell is made of pressureless matter. The dynamics of the radius is

dictated by the matching condition of the inner and outer metrics. This matching condition

has been known for a long time [34].

Let us take a time-like hypersurface Σ, which divides the Riemannian space-time into

two four-dimensional regions V − and V +. On Σ, the intrinsic co-ordinates ξa, and in V −

and V +, the mutually independent coordinate charts xa− and xa+ are introduced.

In the exterior region V + the metric is given by (2.18) and the region V −, interior to

the shell is flat,

(ds2)− = −dt2− + dr2 + r2(dθ2 + sin2 θdφ2) (2.24)

The interior and exterior co-ordinates do not necessarily join continuously (t+ 6= t−
on Σ). The induced metric on the surface of the shell should be the same computed from

either side, of course up to a diffeomorphism. In addition, if the shell is freely falling, its

motion is determined by matching the extrinsic curvature of the geometry across the shell.

Now that we have found the quantum correction to the Schwarzschild solution, we

can proceed to study the problem of collapse. The motion of the shell is expressed by the

equation r = R(τ) where τ is the co-moving time. The line element of the shell, induced

both by the exterior element (2.18) and the interior element (2.24) is given by

ds2 = −dτ2 +R(τ)2(dθ2 + sin2 θdφ2) (2.25)

The derivative with respect to τ is denoted by a dot.

The energy momentum tensor for a spherically-symmetric shell of pressureless dust

following a radial trajectory R(τ) and with density σ is given by

tµν = σuµuνδ(r −R(τ)) (2.26)

– 8 –
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where uµ is the velocity of the shell, satisfying uµu
µ = −1. It fails to obey local conservation

law because of the conformal anomaly, vacuum polarization, and Hawking radiation effects.

The mechanical properties of matter are described by the surface energy-momentum

tensor tµν . An observer which moves with an element of the shell finds that the momentum

of matter is always restricted to the surface of the shell, so that the normal components of

momentum and momentum current remain zero. This means that

tµνn
ν = 0, on Σ,

tµν = 0 outside Σ. (2.27)

where,

uµ± = (ṫ±, Ṙ, 0, 0), n±µ = (−Ṙ, ṫ±, 0, 0) (2.28)

The surface energy-momentum tensor tµν is therefore represented by the intrinsic ten-

sor Sab for an observer on Σ. For ideal fluid, the intrinsic energy-momentum tensor for a

spherically-symmetric shell of pressureless dust has the form

Sab = σuaub (2.29)

Here the Latin indices run through 0, 1, 2. The metric of the time-like hypersurfaces

has the signature (−,+,+).

Thereby, σ is the rest mass density of the surface of the shell. The energy-momentum

tensor in the region V + outside the shell originated exclusively from the vacuum energy

induced by quantum fluctuations 〈Tµν〉 coupled to strong gravitational field similar to

the effects known as vacuum polarization, conformal anomaly, and particle creation in

Hawking radiation.

The energy-momentum tensor inside the shell (flat region) originates exclusively from

the vacuum energy called Casimir energy. Since inside the shell the geometry is flat and

anomaly vanishes its contribution is neglected.

Now we proceed to apply the matching conditions; first we consider the continuity of

the metric [gij ] = 0 which implies f2
±(dt±/dτ)2 = (dR/dτ)2 + f± and R2 = R(τ)2 and

secondly the discontinuity of the extrinsic curvatures [Kij ] 6= 0 due to nonvanishing surface

stress-energy. The extrinsic curvatures on V ± [37] are

Kτ
±τ = β̇±/Ṙ, (2.30)

Kθ
±θ = Kφ

±φ = β±/R, (2.31)

where

β+ =

√
Ṙ2 + 1− 2M

R
+

2cAl2pM
2

R4
(2.32)

β− =
√
Ṙ2 + 1 (2.33)

The surface stress-energy is defined by

Sab = −([Kab]− [K]hab) (2.34)

where hab = gab + uaub is an induced metric on Σ.
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The surface stress-energy can be evaluated,

−σ = Sττ =
1

4πR
(β+ − β−), (2.35)

0 = Sθθ =
1

8πR
(β+ − β−) +

1

8πṘ
(β̇+ − β̇−). (2.36)

The second equation can be integrated immediately, giving (β+ − β−)R = constant.

Substituting this into the first equation yields

4πR2σ ≡ m (2.37)

where m is the constant of integration and (β− − β+) = m/R.

The first equation states that m, the shell’s rest mass, stays constant during the

evolution and the second one gives the dynamics of the radius of the shell,

M = m
√
Ṙ2 + 1− m2

2R
+
cAl

2
pM

2

R3
(2.38)

This equation has a nice physical interpretation. The first term on the right-hand side is

the shell’s relativistic kinetic energy, including rest mass. The second term is the shell’s

binding energy, the work required to bring all its parts together. The last term is the

energy eaten up by the vacuum. They are extracted from the initial energy of the matter

M at long past where it is dilute and the background is flat. The sum of these is the

total (conserved) energy, and this is equal to the shell’s gravitational mass M at infinity.

Equation (2.38) illustrates the general statement that all forms of energy contribute to the

total gravitational mass.

Equations (2.37) and (2.38) are the shell’s equations of motion. (2.38) can be alterna-

tively written in the form,

Ṙ2 + Veff(R) = 0, (2.39)

where the effective potential is given by

Veff(R) = 1− 1

m2

(
M +

m2

2R
−
cAl

2
pM

2

R3

)2

. (2.40)

We divide the problem into two cases (m ≤ R− and m > R−). First let us investigate

the case m ≤ R−. Considering the equation (2.39) and (2.40) and setting Ṙ2 = −Veff(R) =

0 gives the bounce radius RB which is between R0 and R−. Therefore we have,(
1− m

RB

)2

= f(RB), m ≤ R−, R0 ≤ RB ≤ R−. (2.41)

In this case for infinitely light shell m → 0, bounce radius tends to RB → R0 =(
cA

M
Mp

) 1
3 lp (this radius is inside the inner horizon of the black hole), and for m = R−

bounce radius becomes RB = R− (see figure 2).
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Figure 2. Plot of bounce radius as a function of rest mass m. Numerical value is cAl
2
p/(2M)2 =

2(R0/2M)3 = 1.25× 10−8.

RB

Space

τ

Figure 3. Spherical gravitational collapse and its expansion in co-moving coordinates. Dashed line

indicates bounce radius RB which is inside the inner horizon R−.

For the second case (m > R−), effective potential for this equation is the same as

the former, (2.40). Therefore bounce radius (see figure 2) in this case which is between√
2cAlp < RB < R− is given by,(

1− m

RB

)2

= f(RB), m > R−. (2.42)

One can determine the trajectory of this shell in terms of its radius and time in an

arbitrary frame which we choose to be the co-moving one. For a co-moving frame (see

figure 3) this trajectory is given by,

τ = ±
∫

2m

R

dR√
((1− m

R )2 − f(R))((1 + m
R )2 − f(R))

(2.43)

where+ and − refer to direction of the shell’s trajectory.

For a co-moving frame shown in the figure 3 we see that the shell expands after reaching

the bounce radius. It is worth considering the trajectory in terms of a non-singular metric

such as ingoing Eddington-Finkelstein coordinates,

ds2 = −f(r)dv2 + 2dvdr + r2(dθ2 + sin2 θdφ2) (2.44)
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so the ingoing time ν = t+ r∗ is given by,

v =

∫
dR

f(R)

(
1− 1− f(R)− m2

R2√
((1− m

R )2 − f(R))((1 + m
R )2 − f(R))

)
(2.45)

It can be easily verified that the above ingoing trajectory is regular at r±. After the bounce

which is inside the inner horizon, the shell expands and the trajectory becomes outgoing

(Ṙ > 0). Therefore we have,

v =

∫
dR

f(R)

(
1 +

1− f(R)− m2

R2√
((1− m

R )2 − f(R))((1 + m
R )2 − f(R))

)
(2.46)

It can be seen that the outgoing trajectory is singular at r±. Therefore the outgoing shell

cannot exit the horizon as long as the trapping surfaces exist i.e. the coordinate singularity

remains in the metric. In other words the shell cannot exit the horizon within a finite time.

Hawking radiation will result in decrease of the mass and hence slow shrinking of the

outer and inner horizons (see figure 4). Similar to Vaidya solution this can be represented

in the metric by time dependence of the gravitational mass M(t). Finally the two horizons

merge at R+ = R− = RH creating an extremal black hole. In this case the temperature of

the black hole vanishes and the black hole as it has no conserved charge becomes stable.

According to the third law of black hole thermodynamics this is not achieved in finite

time (steps).

3 Conclusion and discussion

We have shown that QFT corrections due to trace anomaly, as terms induced in the Einstein

equation can provide mechanism in the Schwarzschild black hole that are strong enough to

obstruct the formation of singularity of a collapsing shell far from the center at the radius

of order (M/Mp)
1/3lp. This radius can be much larger than the Planck length. We used

the benefit of the exactness of trace anomaly that allows us to track the regions beyond the

reliability of semi-classical approximations. Without invoking Quantum Gravity in any of

its forms and only using QFT effects we have addressed the fate of the collapsing shell. The

effect is similar to the Casimir energy effects where the difference in the vacuum energy

density results in a pressure on the boundary surface of a closed region. Also as can be

seen from the (2.39) in the ingoing phase it is clearly similar to the classical motion of a

particle in the potential Veff(R).

The backreaction of the induced QFT effects has strong consequences for the solu-

tion; it changes the Schwarzschild radius and creates a new inner horizon, it also prevents

the formation of a black hole with mass less than
√

32
27cAMp. Solutions with mass equal√

32
27cAMp form extremal Schwarzschild black hole with zero temperature. The extremal

black holes are free of any charges hence will have only gravitational interaction. We ex-

pect it be the final state of a black hole after Hawking radiation which will be reached

asymptotically and becoming stable due the third law of black hole thermodynamics (see

figure 4). This changes have profound effects on the process of collapse and prevents the
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AP 

EH 

r=
0

CH 

Figure 4. This figure represents the penrose diagram of gravitational collapse of a shell and

its expansion. The collapsing shell is indicated by solid line dividing the interior flat region and

exterior quantum modified Schwarzschild geometry. In our scenario trapping horizons (the external

evaporating one, and the internal shrinking one) uniting and forming a stable extremal black hole

at future infinity are represented by dashed line. Thick straight dashed line represents event horizon

(EH) [73, 74]. Apparent horizons (AH) are indicated by either dashed and dotted curves [73–76]. On

the other hand, the dotted straight line represents the Cauchy horizon (CH) [77] and our ignorance

on the resolution of the instability and blueshift effect. The two trapping horizons (the external

evaporating one, and the internal accreting one) according to the Hayward scenario represented

by dotted line [8, 18, 78]. Hawking radiation (outgoing and ingoing) is represented by ingoing

and outgoing arrows. Straight thin dashed lines indicate the two (inner and outer) horizons for

non-evaporating black hole.

formation of singular object. The turning point, the bounce radius, is inside the inner

horizon. Moreover the quantum corrections to the background energy modifies the surface

gravity. The surface area of the black hole is reduced and in turn this will change the

Hawking temperature.

In this background the shell reaches to the point inside the inner horizon where the

repulsive force due to vacuum energy overcomes the gravitational attraction and the process

of the collapse reverses.

The turning point has the radius, RB in accordance with the conservation of energy;

all the kinetic energy is transferred to the empty region out of the shell, mainly between

the shell and the Schwarzschild radius. Energy is extracted from the shell in two forms, the

Hawking radiation which is emitted and goes out to infinity, and the energy stored in the

background as the zero point energy and grows with the second power of the curvature.

We have explored the immediate consequence of the second type that arises from the

trace anomaly.
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After reaching the bounce radius the matter expands back. From the point of view

of the external observer, due to large time dilation this process takes a very long time

in comparison to the evaporation time. Hence for a long period the star resembles the

standard black hole.

Among the sources that can strongly affect the result is the traceless part, which

includes Hawking radiation, not studied in detail in this paper. It will affect the lifetime

of the black hole and consequently the expansion time. In general it also contributes to

damping of the collapse and giving rise to a loss of original mass, it will increase the

bounce radius.

As discussed earlier the energy density of the fields induced from trace anomaly play

the essential role in the obstruction of the singularity. In the lowest order of perturbation

they are represented by 1/r4 term in the metric components. If it’s coefficient is positive,

as in most cases, it results in the obstruction of the formation of the singularity. They

have given positive coefficient as we go further. The next term we encounter is of the order

of 1/r7 and then 1/r10 and etc. In this case the formation of the inner horizon happens

before the higher powers of 1/r are turned on. But there may be case where the coefficient

of this term is negative. In such cases we have to go further in our perturbation series and

consider higher powers of 1/r. Taking into account of quadratic terms in trace anomaly, we

have considered the series up to 1/r22. The formation of the inner horizon happens at the

first positive term. Although it is a challenging task for obtaining the exact solution and

giving general statement, from our primary investigations and also numerical calculations

the contribution to the effective term is positive inside the core. Classification of different

field combinations leading to different first positive terms is under investigation and will

presented elsewhere.

There are also other scenarios (see figure 4); according to the scenario proposed by

Hayward [18] (see [3, 8, 78, 79]), the endpoint of evaporation defined by the disappear-

ance of trapped surfaces, occurs when the outer and inner section of the trapping horizon

unite and disappear. In this time measured by outside observer this shell emerges. For a

non-evaporating (non-physical) scenario the shell emerges at past infinity [80] in another

universe [6].

We have also shown that a similar phenomenon happens for an infalling particle in this

quantum corrected background. The geometry acts like an effective potential preventing

the particle reaching the center.

The phenomena can be extended to other black holes such, Reisner-Nordström and

Kerr without much toil. Application of this method to other black holes such as dilaton,

AdS, Reissner-Nordström, and Kerr is under investigation.

Similar analysis can modify the behavior of any singularity of curvature including big

bang solutions. QG considerations predict resolution of big bang singularity at a bounce

radius, called big bounce [5, 81, 82]. We expect similar effect from QFT corrections.

The consequence of our result for the problem of information loss is also consistent with

the observation made for Planck star [8, 78]. So quantum corrections may also provide a

way to solve the information loss problem. The above issues are under investigation and

will be addressed in detail elsewhere.
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[28] S.L. Braunstein, S. Pirandola and K. Życzkowski, Better late than never: information

retrieval from black holes, Phys. Rev. Lett. 110 (2013) 101301 [arXiv:0907.1190] [INSPIRE].

[29] S.B. Giddings and W.M. Nelson, Quantum emission from two-dimensional black holes, Phys.

Rev. D 46 (1992) 2486 [hep-th/9204072] [INSPIRE].

[30] D.N. Page, Information in black hole radiation, Phys. Rev. Lett. 71 (1993) 3743

[hep-th/9306083] [INSPIRE].

[31] S. Hossenfelder and L. Smolin, Conservative solutions to the black hole information problem,

Phys. Rev. D 81 (2010) 064009 [arXiv:0901.3156] [INSPIRE].

[32] S.B. Giddings, Black holes and massive remnants, Phys. Rev. D 46 (1992) 1347

[hep-th/9203059] [INSPIRE].

[33] E. Poisson and W. Israel, Structure of the black hole nucleus, Class. Quant. Grav. 5 (1988)

L201 [INSPIRE].

[34] W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B 44

(1966) 1.

[35] K. Kuchar, Charged shells in general relativity and their gravitational collapse, Czech. J.

Phys. B 18 (1968) 435.

[36] S.B. Giddings and A. Nudelman, Gravitational collapse and its boundary description in AdS,

JHEP 02 (2002) 003 [hep-th/0112099] [INSPIRE].

– 16 –

http://arxiv.org/abs/1407.7119
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.7119
http://dx.doi.org/10.1103/PhysRevLett.96.031103
http://dx.doi.org/10.1103/PhysRevLett.96.031103
http://arxiv.org/abs/gr-qc/0506126
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0506126
http://dx.doi.org/10.1142/S0217751X13500504
http://arxiv.org/abs/1302.4733
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4733
http://dx.doi.org/10.1142/S0217751X15500918
http://arxiv.org/abs/1409.5784
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5784
http://dx.doi.org/10.1142/S021827181442022X
http://dx.doi.org/10.1142/S021827181442022X
http://arxiv.org/abs/1407.1391
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.1391
http://dx.doi.org/10.1088/0264-9381/32/3/035012
http://arxiv.org/abs/1409.1501
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.1501
http://dx.doi.org/10.1103/PhysRevLett.115.051102
http://arxiv.org/abs/1505.00492
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.00492
http://dx.doi.org/10.1007/JHEP06(2015)107
http://arxiv.org/abs/1504.00412
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.00412
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.015
http://dx.doi.org/10.1016/j.nuclphysb.2014.10.015
http://arxiv.org/abs/1407.8036
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.8036
http://dx.doi.org/10.1103/PhysRevD.86.044005
http://arxiv.org/abs/1107.2403
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2403
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
http://dx.doi.org/10.1103/PhysRevLett.110.101301
http://arxiv.org/abs/0907.1190
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1190
http://dx.doi.org/10.1103/PhysRevD.46.2486
http://dx.doi.org/10.1103/PhysRevD.46.2486
http://arxiv.org/abs/hep-th/9204072
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204072
http://dx.doi.org/10.1103/PhysRevLett.71.3743
http://arxiv.org/abs/hep-th/9306083
http://inspirehep.net/search?p=find+EPRINT+hep-th/9306083
http://dx.doi.org/10.1103/PhysRevD.81.064009
http://arxiv.org/abs/0901.3156
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3156
http://dx.doi.org/10.1103/PhysRevD.46.1347
http://arxiv.org/abs/hep-th/9203059
http://inspirehep.net/search?p=find+EPRINT+hep-th/9203059
http://dx.doi.org/10.1088/0264-9381/5/12/002
http://dx.doi.org/10.1088/0264-9381/5/12/002
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,5,L201"
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1007/BF02710419
http://dx.doi.org/10.1088/1126-6708/2002/02/003
http://arxiv.org/abs/hep-th/0112099
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112099


J
H
E
P
0
3
(
2
0
1
6
)
1
3
5

[37] E. Poisson, A relativist’s toolkit: the Mathematics of black-hole mechanics, Cambridge

University Press, Camrbidge U.K. (2004).

[38] M.R. Brown, A.C. Ottewill and D.N. Page, Conformally invariant quantum field theory in

static Einstein space-times, Phys. Rev. D 33 (1986) 2840 [INSPIRE].

[39] D.M. Capper and M.J. Duff, Trace anomalies in dimensional regularization, Nuovo Cim. A

23 (1974) 173.

[40] S. Deser, M.J. Duff and C.J. Isham, Nonlocal conformal anomalies, Nucl. Phys. B 111

(1976) 45 [INSPIRE].

[41] M.J. Duff, Observations on conformal anomalies, Nucl. Phys. B 125 (1977) 334 [INSPIRE].

[42] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav. 11 (1994) 1387

[hep-th/9308075] [INSPIRE].

[43] P. Pascual, J. Taron and R. Tarrach, The spin-2 gravitational trace anomaly, Phys. Rev. D

39 (1989) 2993 [INSPIRE].

[44] N.D. Birrell and P.C.W. Davies, Quantum fields in curved space, Cambridge University

Press, Cambridge U.K. (1984).

[45] E. Mottola, New horizons in gravity: the trace anomaly, dark energy and condensate stars,

Acta Phys. Polon. B 41 (2010) 2031 [arXiv:1008.5006] [INSPIRE].

[46] A. Belokogne and A. Folacci, Renormalized stress tensor for massive fields in Kerr-Newman

spacetime, Phys. Rev. D 90 (2014) 044045 [arXiv:1404.7422] [INSPIRE].

[47] V.P. Frolov and A.I. Zelnikov, Vacuum polarization of massive fields near rotating black

holes, Phys. Rev. D 29 (1984) 1057 [INSPIRE].

[48] S.M. Christensen and S.A. Fulling, Trace anomalies and the Hawking effect, Phys. Rev. D 15

(1977) 2088 [INSPIRE].

[49] I.L. Shapiro, Effective action of vacuum: semiclassical approach, Class. Quant. Grav. 25

(2008) 103001 [arXiv:0801.0216] [INSPIRE].

[50] R. Balbinot, A. Fabbri and I.L. Shapiro, Vacuum polarization in Schwarzschild space-time by

anomaly induced effective actions, Nucl. Phys. B 559 (1999) 301 [hep-th/9904162]

[INSPIRE].

[51] R. Balbinot, A. Fabbri and I.L. Shapiro, Anomaly induced effective actions and Hawking

radiation, Phys. Rev. Lett. 83 (1999) 1494 [hep-th/9904074] [INSPIRE].

[52] E. Elizalde, S. Nojiri and S.D. Odintsov, Possible quantum instability of primordial black

holes, Phys. Rev. D 59 (1999) 061501 [hep-th/9901026] [INSPIRE].

[53] A.A. Bytsenko, S. Nojiri and S.D. Odintsov, Quantum generation of Schwarzschild-de Sitter

(Nariai) black holes in effective Dilaton-Maxwell gravity, Phys. Lett. B 443 (1998) 121

[hep-th/9808109] [INSPIRE].

[54] S. Nojiri and S.D. Odintsov, Quantum evolution of Schwarzschild-de Sitter (Nariai) black

holes, Phys. Rev. D 59 (1999) 044026 [hep-th/9804033] [INSPIRE].

[55] S. Nojiri and S.D. Odintsov, Thermodynamics of Schwarzschild-(Anti-)de Sitter black holes

with account of quantum corrections, Int. J. Mod. Phys. A 15 (2000) 989 [hep-th/9905089]

[INSPIRE].

– 17 –

http://dx.doi.org/10.1103/PhysRevD.33.2840
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D33,2840"
http://dx.doi.org/10.1007/BF02748300
http://dx.doi.org/10.1007/BF02748300
http://dx.doi.org/10.1016/0550-3213(76)90480-6
http://dx.doi.org/10.1016/0550-3213(76)90480-6
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B111,45"
http://dx.doi.org/10.1016/0550-3213(77)90410-2
http://inspirehep.net/search?p=find+J+"Nucl.Phys.,B125,334"
http://dx.doi.org/10.1088/0264-9381/11/6/004
http://arxiv.org/abs/hep-th/9308075
http://inspirehep.net/search?p=find+EPRINT+hep-th/9308075
http://dx.doi.org/10.1103/PhysRevD.39.2993
http://dx.doi.org/10.1103/PhysRevD.39.2993
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D39,2993"
http://arxiv.org/abs/1008.5006
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.5006
http://dx.doi.org/10.1103/PhysRevD.90.044045
http://arxiv.org/abs/1404.7422
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7422
http://dx.doi.org/10.1103/PhysRevD.29.1057
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D29,1057"
http://dx.doi.org/10.1103/PhysRevD.15.2088
http://dx.doi.org/10.1103/PhysRevD.15.2088
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D15,2088"
http://dx.doi.org/10.1088/0264-9381/25/10/103001
http://dx.doi.org/10.1088/0264-9381/25/10/103001
http://arxiv.org/abs/0801.0216
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.0216
http://dx.doi.org/10.1016/S0550-3213(99)00424-1
http://arxiv.org/abs/hep-th/9904162
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904162
http://dx.doi.org/10.1103/PhysRevLett.83.1494
http://arxiv.org/abs/hep-th/9904074
http://inspirehep.net/search?p=find+EPRINT+hep-th/9904074
http://dx.doi.org/10.1103/PhysRevD.59.061501
http://arxiv.org/abs/hep-th/9901026
http://inspirehep.net/search?p=find+EPRINT+hep-th/9901026
http://dx.doi.org/10.1016/S0370-2693(98)01330-6
http://arxiv.org/abs/hep-th/9808109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808109
http://dx.doi.org/10.1103/PhysRevD.59.044026
http://arxiv.org/abs/hep-th/9804033
http://inspirehep.net/search?p=find+EPRINT+hep-th/9804033
http://dx.doi.org/10.1142/S0217751X00000483
http://arxiv.org/abs/hep-th/9905089
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905089


J
H
E
P
0
3
(
2
0
1
6
)
1
3
5

[56] R. Casadio and C. Germani, Gravitational collapse and black hole evolution: do holographic

black holes eventually ‘anti-evaporate’?, Prog. Theor. Phys. 114 (2005) 23 [hep-th/0407191]

[INSPIRE].

[57] R. Casadio and C. Germani, Gravitational collapse and evolution of holographic black holes,

J. Phys. Conf. Ser. 33 (2006) 434 [hep-th/0512202] [INSPIRE].

[58] S. Singh and S. Chakraborty, Black hole kinematics: The “in”-vacuum energy density and

flux for different observers, Phys. Rev. D 90 (2014) 024011 [arXiv:1404.0684] [INSPIRE].

[59] L.H. Ford, Quantum vacuum energy in a closed universe, Phys. Rev. D 14 (1976) 3304

[INSPIRE].

[60] L.H. Ford, Quantum vacuum energy in general relativity, Phys. Rev. D 11 (1975) 3370

[INSPIRE].

[61] J.T. Firouzjaee and G.F.R. Ellis, Cosmic matter flux may turn Hawking radiation off, Gen.

Rel. Grav. 47 (2015) 6 [arXiv:1408.0778] [INSPIRE].

[62] J.T. Firouzjaee and R. Mansouri, Radiation from a dust dynamical LTB black hole,

Europhys. Lett. 97 (2012) 29002 [arXiv:1104.0530] [INSPIRE].

[63] R. Brout, S. Massar, R. Parentani and P. Spindel, A primer for black hole quantum physics,

Phys. Rept. 260 (1995) 329 [arXiv:0710.4345] [INSPIRE].

[64] L. Parker, Aspects of quantum field theory in curved space-time: effective action and

energy-momentum tensor, in Recent developments in gravitation , M. Lévy and S. Deser eds.,
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