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Abstract: We construct and study the first supersymmetric black-hole and black-string

solutions of non-Abelian-gauged N = 1, d = 5 supergravity ( N = 1, d = 5 Super-Einstein-

Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes

and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for

black strings and also for certain black holes that are well defined solutions only for very

specific values of all the moduli. Instantons, as well as colored monopoles do not contribute

to the masses and tensions but do contribute to the entropies.

The construction is based on the characterization of the supersymmetric solutions

of gauged N = 1, d = 5 supergravity coupled to vector multiplets achieved in ref. [1]

which we elaborate upon by finding the rules to construct supersymmetric solutions with

one additional isometry, both for the timelike and null classes. These rules automatically

connect the timelike and null non-Abelian supersymmetric solutions of N = 1, d = 5 SEYM

theory with the timelike ones of N = 2, d = 4 SEYM theory [2, 3] by dimensional reduction

and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently

studied in ref. [4] plays a crucial role.
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1 Introduction

The search for classical solutions of General Relativity and theories of gravity in general

has proven to be one of the most fruitful approaches to study this universal and mysterious

interaction. This is partially due to the non-perturbative information they provide, which

we do not know how to obtain otherwise. It is fair to say that some of the solutions

discovered (such as the Schwarzschild and Kerr black-hole solutions, the cosmological ones

or the AdS5×S5 solution of type IIB supergravity) have opened entire fields of research.
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Some of the most interesting solutions are supported by fundamental matter fields

and a large part of the search for gravity solutions has been carried out in theories in

which gravity is coupled to different forms of matter, usually scalar fields, Abelian vector

and p-form fields coupled in gauge-invariant ways among themselves and to scalars, as

suggested by superstring and supergravity theories, for instance. The solutions of gravity

coupled to non-Abelian vector fields have been much less studied because of the complexity

of the equations. Most of the genuinely non-Abelian solutions found so far, such as the

Bartnik-McKinnon particle [5] and its black hole-type generalizations [6], in the SU(2)

Einstein-Yang-Mills (EYM) theory, are only known numerically, which makes them more

difficult to study and generalize.

Supersymmetry can simplify dramatically the construction of classical solutions, pro-

viding in some cases recipes to construct systematically whole families of solutions that

have the property of being “supersymmetric” or “having unbroken supersymmetry”, or

being “BPS” (a much less precise term) because these solutions satisfy much easier to solve

first-order differential equations.1 These techniques can be applied to non-supersymmetric

theories if we can “embed” them in a larger supersymmetric theory from which they can

be obtained by a consistent truncation that, in particular, gets rid of the fermionic fields.

In order to apply these techniques to the case of theories of gravity coupled to fun-

damental matter fields we must embed the theories first in supergravity theories. d = 4

EYM theories can be embedded almost trivially in N = 1, d = 4 gauged supergravity cou-

pled to vector supermultiplets, but there are no supersymmetric black-hole or more general

particle-like solutions in N = 1, d = 4 supergravity: all the supersymmetric solutions of

these theories belong to the null class2 and describe, generically, massless solutions such as

gravitational waves and also black strings (whose tension does not count as a mass). This

could well explain why there are no simple analytic solutions of the EYM theory.

Embedding of d = 4 EYM theories in extended (N > 1) d = 4 supergravity theories

turns out to be impossible, since the latter always include additional scalar fields charged

under the non-Abelian fields which cannot be consistently truncated away. On the other

hand, these scalar fields (or part of them) can also be interpreted as Higgs fields and we

can think of those supergravities (which we will call Super-Einstein-Yang-Mills (SEYM)

theories) as the minimal supersymmetric generalizations of the Einstein-Yang-Mills-Higgs

(EYMH) theory. Actually, some solutions of the SEYM theories are also solutions of the

EYMH theory, but this is not generically true and we cannot say that the EYMH theory

is embedded in some SEYM theory.

At any rate, analytic supersymmetric solutions of SEYM or more general gauged su-

pergravity theories should be much easier to find than solutions of the EYM theory and,

at the same time, much more realistic, since we know there are scalar fields charged under

non-Abelian vector fields in Nature.

This expectation turns out to be true. In 1991 Harvey and Liu [8] and in 1997 Chamsed-

dine and Volkov [9, 10] found globally regular gravitating monopole (“global monopole”)

1For a general review on the construction of supersymmetric solutions of supergravity theories, including

some of those that we are going to study here, see ref. [7].
2The Killing spinor of the supersymmetric solutions in the null (resp. timelike) class gives rise to a null

(resp. timelike) Killing vector bilinear.
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solutions to gaugedN = 4, d = 4 supergravity, a theory that can be related to the Heterotic

string. In 1994, a 4-dimensional black-hole solution with non-Abelian hair was obtained

by adding stringy (Heterotic) α′ corrections to an a = 1 dilaton black hole [11]. This

solution was singular in the Einstein frame.3 More recently, the timelike supersymmetric

solutions of gauged N = 2, d = 4 and N = 1, d = 5 were characterized, respectively, in

refs. [2, 13] and [1, 14],4 so the form of all the fields in those solutions is given in terms of

a few functions that satisfy first-order equations.

In the 4-dimensional case, these first-order equations are straightforward generaliza-

tions of the well-known Bogomol’nyi monopole equations [15] whose more general static and

spherically symmetric solutions for the gauge group SU(2) were obtained by Protogenov

in ref. [16]. Then, the characterization of timelike supersymmetric solutions was immedi-

ately used to construct, apart from global monopole solutions, the first analytical, regular,

static, non-Abelian black-hole solutions which cannot be considered as pure Abelian em-

beddings [2], showing how the attractor mechanism works in the non-Abelian setting [2, 3].

Colored black holes5 and two-center non-Abelian solutions were constructed, respectively,

in [17] and [12] by using, respectively, “colored monopole” and two-center solutions of the

Bogomol’nyi equations.

In the N = 1, d = 5 SEYM case, the characterization obtained in refs. [1, 14] has not

yet been exploited. Doing so to construct non-Abelian black-hole and black-string solutions

is our main goal in this paper. It is a well-known fact, one that also holds in the Abelian

(ungauged) case, that the vector field strengths of the timelike supersymmetric solutions

of these theories are the sum of two pieces, one of them self-dual in the hyperKähler base

space, i.e. an instanton in the base space. In the non-Abelian case we are interested in, this

fact can be exploited in an obvious way to add non-Abelian hair to black hole solutions.

As we are going to see, it will be convenient to refine the general characterization ob-

tained in those references to obtain a simpler recipe to construct supersymmetric solutions

with one additional isometry. These solutions are still general enough and can also be

related to the timelike supersymmetric solutions of N = 2, d = 4 SEYM. In the timelike-

to-timelike reduction, we recover the relation between self-dual instantons in hyperKähler

spaces with one isometry and BPS monopoles in E
3 found by Kronheimer in ref. [18]. As

we have shown in ref. [4] this redox relation brings us from singular colored monopoles

to globally regular BPST instantons and vice-versa and it will allow us to obtain regular

black holes with a BPST instanton field.

The recipes we have obtained can be applied to any model of N = 1, d = 5 super-

gravity coupled to vector multiplets in which a non-Abelian subgroup of the perturbative

duality group can be gauged. The explicit solutions we will construct will belong to a

particular model, the ST[2, 5] model which is the smallest of the ST[2, n] family of models

admitting a SU(2) gauging. These models are consistent truncations of N = 1, d = 10

3We will see, though, that it is closely related to the 4-dimensional black-hole solutions studied in [12]

and to the 5-dimensional ones presented here.
4In the N = 1, d = 5 case, the null supersymmetric solutions were characterized as well.
5Colored black holes have non-Abelian hair but vanishing asymptotic charges. The charges must be

screened at infinity because they contribute to the near-horizon geometry and to the entropy.
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supergravity coupled to a number of vector multiplets on T 5 and, for low values of n, they

can be embedded in Heterotic string theory. The SU(2) gauging can be associated to the

enhancement of symmetry at the self-dual radius U(1)×U(1) →U(1)×SU(2), although, in

order to study the details of the embedding of our model in Heterotic string theory (which

will be our next goal) more work will be necessary.

This paper is organized as follows: in section 2 we review the gauging of a non-

Abelian group of isometries of an N = 1, d = 5 supergravity theory coupled to vector

multiplets. The result of this procedure is what we call an N = 1, d = 5 Super-Einstein-

Yang-Mills (SEYM) theory. In section 3 we review and extend the results of ref. [1] on the

characterization of the supersymmetric solutions ofN = 1, d = 5 SEYM theories, giving the

recipe to construct those admitting additional isometries and showing how they are related

to the analogous supersymmetric solutions of N = 2, d = 4 SEYM theories characterized

in ref. [3, 13]. We will then use these results in section 4 to construct black holes and black

strings (in the timelike and null cases, respectively) of the SU(2)-gauged ST[2, 5] model of

N = 1, d = 5 supergravity and to study their relations, via dimensional reduction, to the

non-Abelian timelike supersymmetric solutions (black holes and global monopoles) of the

SU(2)-gauged ST[2, 5] model of N = 2, d = 4 supergravity (see ref. [12]). Our conclusions

are given in section 5. Appendix A reviews the reduction of ungauged N = 1, d = 5

supergravity to a cubic model of N = 2, d = 4 supergravity, with the relation between the

5- and 4-dimensional fields for any kind of solution (supersymmetric or not). This relation

remains true for gauged supergravity theories under standard dimensional reduction (which

does not change the gauge group). Finally, appendix B review the spherically-symmetric

solutions of the Bogomol’nyi equation in E
3 for SU(2).

2 N = 1, d = 5 SEYM theories

In this section we give a brief description of generalN = 1, d = 5 Super-Einstein-Yang-Mills

(SEYM) theories. These are theories of N = 1, d = 5 supergravity coupled to nv vector

supermultiplets (no hypermultiplets) in which a necessarily non-Abelian group of isome-

tries of the Real Special manifold has been gauged. These theories can be considered the

simplest supersymmetrization of non-Abelian Einstein-Yang-Mills theories in d = 5. Our

conventions are those in refs. [1, 19] which are those of ref. [20] with minor modifications.

The supergravity multiplet is constituted by the graviton eaµ, the gravitino ψi
µ and the

graviphoton Aµ. All the spinors are symplectic Majorana spinors and carry a fundamental

SU(2) R-symmetry index. The nv vector multiplets, labeled by x = 1, . . . ., nv consist of a

real vector field Ax
µ, a real scalar φx and a gaugino λi x.

The full theory is formally invariant under a SO(nv +1) group6 that mixes the matter

vector fields Ax
µ with the graviphoton Aµ ≡ A0

µ and it is convenient to combine them

into an SO(nv +1) vector (AI
µ) = (A0

µ, A
x
µ). It is also convenient to define a SO(nv +1)

vector of functions of the scalars hI(φ). These nv + 1 functions of nv scalar must satisfy a

6The theory will only be invariant under a subgroup of SO(nv + 1).
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constraint. N = 1, d = 5 supersymmetry determines that this constraint is of the form

CIJKhI(φ)hJ(φ)hK(φ) = 1, (2.1)

where the constant symmetric tensor CIJK completely characterizes the theory and the

Special Real geometry of the scalar manifold. In particular, the kinetic matrix of the vector

fields aIJ(φ) and the metric of the scalar manifold gxy(φ) can be derived from it as follows:

first, we define

hI ≡ CIJKhJhK , ⇒ hIhI = 1, (2.2)

and

hIx ≡ −
√
3hI ,x ≡ −

√
3
∂hI

∂φx
, hIx ≡ +

√
3hI,x, ⇒ hIh

I
x = hIhIx = 0. (2.3)

Then, aIJ is defined implicitly by the relations

hI = aIJh
I , hIx = aIJh

J
x. (2.4)

It can be checked that

aIJ = −2CIJKhK + 3hIhJ . (2.5)

The metric of the scalar manifold gxy(φ), which we will use to raise and lower x, y

indices is (proportional to) the pullback of aIJ

gxy ≡ aIJh
I
xh

J
y = −2CIJKhIxh

J
yh

K . (2.6)

The functions hI and their derivatives hIx satisfy the following completeness relation:

aIJ = hIhJ + gxyh
x
Ih

y
J . (2.7)

By assumption, the real Real Special structure is invariant under reparametrizations

generated by vectors kI
x(φ)7

δφx = cIkI
x, (2.8)

satisfying the Lie algebra8

[kI , kJ ] = −fIJ
KkK . (2.9)

The invariance of the metric gxy implies that the vectors kI
x(φ) are Killing vectors. The

invariance of the constraint eq. (2.1) implies the invariance of the CIJK tensor

− 3fI(J
MCKL)M = 0. (2.10)

Multiplying this identity by hJhKhL we get another important relation:

fIJ
KhJhK = 0. (2.11)

7Some of these vectors may be identically zero. This is the price to be paid for labeling the gauge vectors

and the Killing vectors with the same indices.
8Some of the structure constants may vanish identically, but it is assumed that some of them do not

because, otherwise, we would be dealing with an ungauged supergravity.
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The functions hI(φ), in their turn, must be invariant up to SO(nv+1) rotations, that is

kI
x∂xh

J − fIK
JhK = 0, ⇒ kI

x = −
√
3fIJ

KhxKhJ , ⇒ hIkI
x = 0 . (2.12)

If the real special manifold is a symmetric space, then the tensor CIJK satisfies the

identity

CIJKCJ(LMCNP )K =
1

27
δI (LCMNP ) , (2.13)

where CIJK = CIJK . In these spaces we can solve immediately hI in terms of the hI

hI = 27CIJKhJhK , ⇒ CIJKhIhJhK =
1

27
. (2.14)

To gauge this global symmetry group we promote the constant parameters cI to arbi-

trary spacetime functions identifying them with the gauge parameters of the vector fields

ΛI(x) cI → −gΛI(x). The gauge transformations scalars φx, the functions hI and the AI
µ

take the form

δΛφ
x = −gΛIkI

x, (2.15)

δΛh
I = −gfJK

IΛJhK , (2.16)

δΛA
I
µ = ∂µΛ

I + gfJK
IAJ

µΛ
K ≡ DµΛ

I , (2.17)

where Dµ is the gauge-covariant derivative. Dµh
I has the same expression as DµΛ

I and

have the same gauge transformations as hI and ΛI . We also have

DµhI = ∂µhI + gfIJ
KAJ

µhK , (2.18)

DµCIJK = 0. (2.19)

On the other hand, the gauge-covariant derivative of the scalars is given by

Dµφ
x = ∂µφ

x + gAI
µkI

x, (2.20)

and transforms as

δΛDµφ
x = −gΛI∂ykI

x
Dµφ

x. (2.21)

The gauginos λi x transform in exactly the same way as Dφx and their gauge-covariant

derivatives are identical to the second covariant derivative of φx:

DµDνφ
x = ∂µDνφ

x − Γρ
µνDρφ

x + Γyz
x
Dµφ

y
Dνφ

z + gAI
µ∂ykI

x
Dνφ

y. (2.22)

The gauge-covariant vector field strength has the standard form

F I
µν = 2∂[µA

I
ν] + gfJK

IAJ
µA

K
ν . (2.23)

The bosonic action of N = 1, d = 5 SEYM is given in terms of aIJ , gxy, CIJK and the

structure constants fIJ
K by

S=

∫

d5x
√
g

{

R+
1

2
gxyDµφ

x
D

µφy− 1

4
aIJF

I µνF J
µν+

1

12
√
3
CIJK

εµνρσα√
g

[

F I
µνF

J
ρσA

K
α

– 6 –
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−1

2
gfLM

IF J
µνA

K
ρA

L
σA

M
α +

1

10
g2fLM

IfNP
JAK

µA
L
νA

M
ρA

N
σA

P
α

]}

. (2.24)

Observe that this action does not contain a scalar potential V (φ) because

V (φ) =
3

2
g2hIhJkI

xkJ
ygxy , (2.25)

(the expression that follows from the general formula in ref. [20]) vanishes identically for

the kind of gaugings considered here, owing to the property eq. (2.12). This fact is asso-

ciated to the vanishing of the corresponding fermion shift in the gauginos’ supersymmetry

transformations.

The equations of motion for the bosonic fields are

Eµν ≡ 1

2
√
g
ea(µ

δS

δeaν)

= Gµν −
1

2
aIJ

(

F I
µ
ρF J

νρ −
1

4
gµνF

I ρσF J
ρσ

)

+
1

2
gxy

(

Dµφ
x
Dνφ

y − 1

2
gµνDρφ

x
D

ρφy

)

(2.26)

EIµ ≡ 1√
g

δS

δAI
µ

= Dν

(

aIJF
J νµ

)

+
1

4
√
3

εµνρσα√
g

CIJKF J
νρF

k
σα + gkI xD

µφx (2.27)

Ex ≡ −gxy√
g

δS

δφy

= DµD
µφx +

1

4
gxy∂yaIJF

I ρσF J
ρσ. (2.28)

The supersymmetry transformation rules for the bosonic fields are

δǫe
a
µ =

i

2
ǭiγ

aψi
µ,

δǫA
I
µ = − i

√
3

2
hI ǭiψ

i
µ +

i

2
hIxǭiγµλ

i x, (2.29)

δǫφ
x =

i

2
ǭiλ

i x.

and the corresponding transformation rules for the fermionic fields evaluated on vanishing

fermions are

δǫψ
i
µ = ∇µǫ

i − 1

8
√
3
hIF

I αβ (γµαβ − 4gµαγβ) ǫ
i, (2.30)

δǫλ
i x =

1

2

(

/Dφx − 1

2
hxI /F

I
)

ǫi, (2.31)

where ∇µǫ
i is just the Lorentz-covariant derivative on the spinors, given in our conventions

by

∇µǫ
i =

(

∂µ − 1

4
/ωµ

)

ǫi. (2.32)

– 7 –
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The equations of motion and the supersymmetry transformation rules are the straight-

forward covariantization of those of the ungauged theory, except for the addition of a source

to the Maxwell equations corresponding to the charge carried by the scalar fields.

3 The supersymmetric solutions of N = 1, d = 5 SEYM theories

In this section we are going to review first the results of ref. [1] particularized to the case

in which there are no hypermultiplets nor Fayet-Iliopoulos terms. We will simply focus on

the final characterization of the supersymmetric solutions. Then, we will analyze the form

of the solutions that admit an additional isometry and can, therefore, be dimensionally

reduced to d = 4, following refs. [19, 21].

Let us start by reminding the reader that a solution of one of the N = 1, d = 5 SEYM

theories is said supersymmetric if the so-called Killing spinor equations

δǫψ
i
µ = 0 , δǫλ

i x = 0 , (3.1)

written in the background of the solution can be solved for at least one spinor ǫi(x), which is

then called Killing spinor. The supersymmetric solutions of these theories can be classified

according to the causal nature of the Killing vector that one can construct as a bilinear

of the Killing spinor V a = iǭiγ
aǫi as timelike (V aVa > 0) or null (V aVa = 0). These two

cases must be discussed separately.

3.1 Timelike supersymmetric solutions

The fields of the timelike supersymmetric solutions of N = 1, d = 5 SEYM theories are

completely determined by

1. A choice of 4-dimensional (obviously Euclidean) hyperKähler metric

dŝ2 = hmn(x)dx
mdxn . (3.2)

Fields and operators defined in this space are customarily hatted.

2. Vector fields defined in the hyperKähler space, ÂI , such that their 2-form field

strengths, F̂ I(Â) are self-dual

⋆̂F̂ I = +F̂ I , (3.3)

with respect to the hyperKähler metric. This implies that ÂI defines an instanton

solution of the Yang-Mills equations in the hyperKähler space.

3. A set of functions in the hyperKähler space f̂I satisfying the equation9

D̂
2f̂I −

1

6
CIJK F̂ J · F̂K = 0 . (3.4)

Given hmn, Â
I , f̂I , the physical fields can be reconstructed as follows:

9The coefficient of the second term is wrong by a factor of 2 in refs. [1, 19] although all subsequent

formulae are correct.
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1. The functions f̂I are proportional to the hI(φ) defined in eq. (2.2). The proportion-

ality coefficient is called 1/f̂ :

hI/f̂ = f̂I . (3.5)

The functions hI(φ) satisfy a model-dependent constraint (analogous to the constraint

satisfied by the functions hI(φ), eq. (2.1)). This constraint can be obtained by solving

eq. (2.2) for the hI and substituting the result into eq. (2.1). Therefore, the constraint

has the form F (h·) = 1 where F is a function homogeneous of degree 3/2 in the hI
and, substituting the above equation, one gets

f̂−3/2 = F (f̂·) . (3.6)

Using this result in eq. (3.5) one gets all the hI as in terms of the f̂I

hI = f̂IF
−2/3(f̂·) , (3.7)

and, using the expression of the hI in terms of the hI , one also gets the hI in terms

of the functions f̂I .

If the real special scalar manifold is symmetric, then we can use eq. (2.14) to get

f̂−3 = 27CIJK f̂I f̂J f̂K . (3.8)

2. The scalar fields φx can be obtained by inverting the functions hI(φ) or hI(φ). A

parametrization which is always available is

φx = hx/h0 = f̂x/f̂0 . (3.9)

3. Next, we define the 1-form ω̂ through the equation

(

f̂dω̂
)+

=

√
3

2
hI F̂

I+ . (3.10)

4. Having solved the above equation for ω̂ we have determined completely the metric of

the timelike supersymmetric solutions, which is given by

ds2 = f̂ 2(dt+ ω̂)2 − f̂ −1hmndx
mdxn , (3.11)

5. Also, the complete 5-dimensional vector fields are given by

AI = −
√
3hIe0 + ÂI , where e0 ≡ f̂(dt+ ω̂) , (3.12)

so that the spatial components are

AI
m = ÂI

m −
√
3hI f̂ ω̂m . (3.13)

The field strength can be written in the form

F I = −
√
3D̂(hIe0) + F̂ I , (3.14)

where D̂ is the covariant derivative in the hyperKähler space with connection ÂI .
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3.1.1 Timelike supersymmetric solutions with one isometry

We are particularly interested in the supersymmetric solutions that have an additional

isometry. Following refs. [21, 22] we assume that the additional isometry is a triholomorphic

isometry of the hyperKähler metric (i.e. an isometry respecting the hyperKähler structure),

in which case, as shown in ref. [23] it must be a Gibbons-Hawking multi-instanton met-

ric [24]. Assuming z is the coordinate associated to the additional isometry, these metrics

can always be written in the form

hmndx
mdxn = H−1(dz + χ)2 +Hdxrdxr , r = 1, 2, 3 , (3.15)

where the z-independent function H and 1-form χ = χrdx
r are related by

dχ = ⋆3dH , (3.16)

⋆3 being the Hodge operator in E
3. Assuming now that the rest of the bosonic fields of

the timelike supersymmetric solutions are z-independent one can simplify eqs. (3.3), (3.4)

and (3.10).

Let us start with eq. (3.3) and let us assume that the selfduality of F̂ I has been defined

with respect to the frame and orientation

ê z = H−1/2(dz + χ) , ê r = H1/2δrrdx
r , εz123 = +1 . (3.17)

Then, following Kronheimer [18],10 eq. (3.3) can be rewritten as Bogomol’nyi equations for

a Yang-Mills-Higgs (YMH) system in the BPS limit in E
3 [15]

D̆rΦ
I =

1

2
εrstF̆

I
st , (3.18)

where the 3-dimensional Higgs field and the vector fields are given by11

2
√
6ΦI ≡ HÂI

z ,

2
√
6ĂI

r ≡ −ÂI
r + χrÂ

I
z .

(3.19)

Thus, we can always construct a selfdual YM instanton in a Gibbons-Hawking

space from a (monopole) solution of the Bogomol’nyi equation of a YMH system in E
3

(ΦI , ĂI
r) [18]. Many solutions of these equations are known, specially in the spheri-

cally symmetric case.12 In ref. [4] this relation has been explored precisely for the SU(2)

monopoles and instantons we are interested in, and we will make use of those results later.

We can now use this result into eq. (3.4), rewriting the 4-dimensional gauge vector

in terms of the 3-dimensional gauge vector and Higgs field defined above and using the

harmonicity of H and the Bogomol’nyi equation to get rid of F̆ I and D̆
2ΦI (which vanishes

identically). The result is the equation in E
3

D̆
2f̂I − g2fIJ

LfKL
MΦJΦK f̂M − 8CIJKD̆

2
(

ΦJΦK/H
)

= 0 . (3.20)

10See also ref. [4].
11We have rescaled the 3-dimensional fields by a factor of −1/(2

√
6) to conform to the normalization of

the fields in N = 2, d = 4 supergravity. See appendix A.
12See ref. [16] for the SU(2) case and ref. [25] and references therein for more general gauge groups.
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Defining

f̂I ≡ LI + 8CIJKΦJΦK/H , (3.21)

and using the condition eq. (2.10) we find a linear equation for the functions LI :

D̆
2LI − g2fIJ

LfKL
MΦJΦKLM = 0 . (3.22)

Finally, let us consider eq. (3.10). Defining ω̂ as

ω̂ = ω5(dz + χ) + ω , where ω = ωrdx
r , (3.23)

eq. (3.10) gives an equation for ω5 whose general solution is

ω5 = M + 16
√
2H−2CIJKΦIΦJΦK + 3

√
2H−1LIΦ

I , where d ⋆3 dM = 0 , (3.24)

and the following equation for ω:

⋆3 dω = HdM −MdH + 3
√
2
(

ΦI
D̆LI − LID̆ΦI

)

, (3.25)

whose integrability condition d2ω = 0 is satisfied wherever the above equations for

H,M,ΦI , LI are satisfied.

Summarizing: we have identified a set of z-independent functions M,H,ΦI , LI and

1-forms ω,AI , χ in E
3 in terms of which we can write all the building blocks of the 5-

dimensional timelike supersymmetric solutions admitting an isometry as follows:

hI/f̂ = LI + 8CIJKΦJΦK/H , (3.26)

ω̂ = ω5(dz + χ) + ω , (3.27)

ω5 = M + 16
√
2H−2CIJKΦIΦJΦK + 3

√
2H−1LIΦ

I , (3.28)

ÂI = 2
√
6
[

H−1ΦI(dz + χ)− ĂI
]

, (3.29)

F̂ I = 2
√
6H−1

[

D̆ΦI ∧ (dz + χ)− ⋆3HD̆ΦI
]

, (3.30)

provided that they satisfy the following set of equations:

d ⋆3 dM = 0 , (3.31)

⋆3dH − dχ = 0 , (3.32)

⋆3D̆ΦI − F̆ I = 0 , (3.33)

D̆
2LI − g2fIJ

LfKL
MΦJΦKLM = 0 , (3.34)

⋆3dω −
{

HdM −MdH + 3
√
2(ΦI

D̆LI − LID̆ΦI)
}

= 0 . (3.35)

For symmetric real special manifolds we can use eq. (3.8) to write the metric function

f̂ explicitly in terms of the tensor CIJK and the functions M,H,ΦI , LI :

f̂−3 = 33CIJKLILJLK + 34 · 23CIJKCKLMLILJΦ
LΦM/H

+ 3 · 26LIΦ
ICJKLΦ

JΦKΦL/H2 + 29
(

CIJKΦIΦJΦK
)2

/H3 .
(3.36)
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Let us compare the above formulae with those of the ungauged case (in ref. [19] in

our conventions). It is easy to see that all the functions M,H,ΦI , LI become standard

harmonic functions in E
3. Furthermore, the functions ΦI are related to the functions KI

used in that reference by

ΦI = +
1

2
√
2
KI . (3.37)

3.1.2 Dimensional reduction of the timelike supersymmetric solutions with

one isometry

The supersymmetric solutions that admit an additional isometry can be dimensionally

reduced to supersymmetric solutions of N = 2, d = 4 supergravity using the formulae in

appendix A.13 Performing explicitly this reduction will allow us to simplify the tasks of

oxidation and reduction of supersymmetric solutions.

First of all, the metric of the 4-dimensional solutions obtained through the dimensional

reduction takes the conventional conformastationary form of the timelike supersymmetric

solutions of the N = 2, d = 4 theory

ds2 = e2U (dt+ ω)2 − e−2Udxrdxr , (3.38)

where the 1-form ω = ωrdx
r is precisely the 1-form given in eq. (3.25) and the metric

function e−2U is given by

e−2U = 2

√

(f̂ −1H)3 − (ω5H2)2

4H2
. (3.39)

We can compare the equations satisfied by the building blocks of the timelike super-

symmetric solutions of gauged N = 1, d = 5 supergravity (3.31)–(3.35) with the equa-

tions satisfied by the building blocks of the timelike supersymmetric solutions of gauged

N = 2, d = 4 supergravity ref. [3, 13], which we rewrite here for convenience adapting

slightly the notation to avoid confusion with the different accents used to distinguish the

different gauge fields:

− 1√
2
⋆3 D̆IΛ − F̆Λ = 0 , (3.40)

D̆
2IΛ − 1

2
g2fΛΣ

Ωf∆Ω
ΓIΣI∆IΓ = 0 , (3.41)

⋆3dω − 2
[

IΛD̆IΛ − IΛ
D̆IΛ

]

= 0 , (3.42)

where D̆ is the gauge covariant derivative associated to the modified gauge connection in E
3

ĂΛ
m ≡ AΛ

m − ωmAΛ
t . (3.43)

The notation that we are using has implicit the identification of the gauge potentials

Ă coming from 5 and 4 dimensions, except for Λ = 0. Using the formulae in appendix A

13These formulae are valid for any field configuration, supersymmetric or not.
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with the modifications explained in the last paragraph we can identify14

χm = −2
√
2Ă0

m , (3.44)

which leads to the identifications

ΦI = − 1√
2
II+1 , LI =

2

3
II+1 , H = 2I0 , M = −I0 . (3.45)

These are the only formulae we need to relate timelike supersymmetric solutions inN =

1, d = 5 supergravity with one additional isometry to timelike supersymmetric solutions in

cubic model of N = 2, d = 4 supergravity with I0 6= 0.15

For symmetric real special scalar manifolds we can use the explicit form of f̂ in

eq. (3.36) together with the expression for ω5 in eq. (3.28) to get

e−2U = 2

{

33

4
HCIJKLILJLK − 27/2MCIJKΦIΦJΦK + 2 · 34CIJKCKLMLILJΦ

LΦM

−32

2

(

LIΦ
I
)2 − 3√

2
HMLIΦ

I − 1

4
M2H2

}1/2

. (3.46)

Then, using the identifications eqs. (3.45) together with the second of eqs. (A.1) we get

e−2U = 2

{(

dijkIjIl −
2

3
I0Ii

)(

dilmI lIm +
2

3
I0Ii

)

+
4

9
I0I0IiIi

− (I0I0 + IiIi)2
}1/2

.

(3.47)

3.2 Null supersymmetric solutions

The general form of the null supersymmetric solutions of N = 1, d = 5 SEYM is quite

involved [1], but it simplifies dramatically when one assumes the existence of an additional

isometry so that all the fields are independent of the two null coordinates u and v. These

are the solutions which will become timelike supersymmetric solutions of N = 2, d = 4

SEYM upon dimensional reduction and, therefore, we are going to describe only these.

3.2.1 u-independent null supersymmetric solutions

The metric of the general null supersymmetric solutions of N = 1, d = 5 SEYM can always

brought into the form [1]16

ds2 = 2ℓdu(dv +Kdu+
√
2ω)− ℓ−2dxrdxr , (3.48)

where the functions ℓ,K and the 1-form ω = ωrdx
r are v-independent. We are going to

assume also u-independence of all the fields throughout.

14The 0th components are never gauged if the dimensional reduction is simple (not generalized).
15Those with I0 = 0 are related to null supersymmetric 5-dimensional solutions.
16We have changed the notation and normalization with respect to [1] to avoid possible confusions between

the objects that appear in the null and timelike cases.
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After the partial gauge fixing AI
v = 0, the gauge fields are decomposed as17

AI = AI
udu− 2

√
6ĂI , ĂI = ĂI

rdx
r , (3.49)

and the vector field strengths take the form18

F I = (
√

2/3ℓ2hI ⋆3 dω − ψI) ∧ du+
√
3 ⋆3 D̆(hI/ℓ) , (3.50)

where the ψI are some 1-forms in E
3 satisfying

hIψ
I = 0 , (3.51)

to be determined and D̆ is the gauge-covariant derivative on E
3 with respect to the con-

nection ĂI .

Finally, the scalar fields will be determined by the equations obeyed by the scalar

functions hI , which follow from the equations of motion.19

Let us start by analyzing the Bianchi identities of the vector field strength. They lead

to the following two sets of equations:

− 1

2
√
2
⋆3 D̆(hI/ℓ)− F̆ I = 0 , (3.52)

D̆AI
u −

√

2/3ℓ2hI ⋆3 dω + ψI = 0 .‘ (3.53)

Eq. (3.52) is the Bogomol’nyi equation on E
3 and, thus, we define the Higgs field

ΣI ≡ − 1

2
√
2
hI/ℓ . (3.54)

Multiplying eq. (3.53) by hI and using eq. (3.51) together with hIh
I = 1 we get the

equation that defines ω

dω =
√

3/2ℓ−2 ⋆3

{

hID̆AI
u

}

. (3.55)

Defining the functions

KI ≡ CIJKΣJAK
u , (3.56)

the above equation takes a much more familiar form

dω = 4
√
6 ⋆3

{

ΣI
D̆KI −KID̆ΣI

}

, (3.57)

whose integrability condition is

ΣI
D̆

2KI = 0 . (3.58)

Given the functions ΣI ,KI and the gauge fields ĂI we can solve this equation for ω.

It should be possible to find the functions AI
u in terms of ΣI ,KI

20 and, plugging these

result in eq. (3.53), compute directly the 1-forms ψI .

17As the notation suggests, the gauge fields ĂI are the same as the N = 2, d = 4 fields denoted with the

same symbols, according to the general formulae of appendix A. The same is true of the 1-form ω.
18All the operators in the r.h.s. are defined in E

3.
19The field configurations that we have just described are automatically supersymmetric, but not neces-

sarily solutions of all the equations of motion and Bianchi identities [1].
20This will certainly be the case for the particular model we are going to study, but we have not found

(even for just the symmetric case) a general way of solving eq. (3.56) for AI
u.
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From the Maxwell equations one obtains the equations that determine the functions

KI :

D̆
2KI − g2fIJ

LfKL
MΣJΣKKM = 0 , (3.59)

from which the integrability condition eq. (3.58) follows automatically.

Finally, defining

N ≡ K −
√
2AI

uKI , (3.60)

the last non-trivial equation of motion, from the Einstein equations, takes the simple form

∇2N = 0 . (3.61)

Summarizing: we have identified a set of u-independent functions ΣI ,KI , N and

1-forms ω, ĂI on E
3 in terms of which we can write all the building blocks of the

5-dimensional u-independent null supersymmetric solutions, assuming we can solve

eq. (3.56) for AI
u, as follows:

hI/ℓ = −2
√
2ΣI , (3.62)

K = N +
√
2AI

uKI , (3.63)

AI = AI
udu+ 2

√
6ĂI , (3.64)

F I = D̆AI
u ∧ du+

√
3 ⋆3 D̆(hI/ℓ) , (3.65)

provided the following equations are satisfied:21

⋆3D̆ΣI − F̆ I = 0 , (3.66)

D̆
2KI − g2fIJ

LfKL
MΣJΣKKM = 0 , (3.67)

dω − 4
√
6 ⋆3

{

ΣI
D̆KI −KID̆ΣI

}

= 0 , (3.68)

∇2N = 0 . (3.69)

Using eq. (2.1), we find a general expression for ℓ:

ℓ−3 = −29/2CIJKΣIΣJΣK . (3.70)

3.2.2 Dimensional reduction of the u-independent null supersymmetric solu-

tions

Using the general formulae in appendix A, the u-independent solutions that we have con-

sidered can be dimensionally reduced to timelike supersymmetric solutions of N = 2, d = 4

SEYM along the spacelike coordinate z defined by

u =
1√
2
(t+ z) , v =

1√
2
(t− z) , (3.71)

with metrics of the form eq. (3.38) where the 1-form ω = ωrdx
r is precisely the 1-form

given in eq. (3.48) and the metric function e−2U is given by

e−2U =
√

ℓ−3(1−K) =

√

−29/2CIJKΣIΣJΣK(1−N −
√
2AI

uKI) . (3.72)

21The gauge coupling constant is the 4-dimensional one.
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In order to express entirely the metric function in terms of the functions KI ,Σ
I , N we

need to solve eq. (3.56) for AI
u as a function of KI ,Σ

I , which we do not know how to do

in general. We can still compare the equations satisfied by these functions (3.66)–(3.69)

with those satisfied by IΛ, IΛ in N = 2, d = 4 SEYM (3.40)–(3.42) knowing that the vector

fields ĂI and the 1-form ω are the same objects. We find that

ΣI = − 1√
2
II+1 , KI = − 1

2
√
3
II+1 , (3.73)

while N must be proportional to either I0 or I0. Since a wave moving in the internal z

direction should give rise to a 4-dimensional electric charge, it must be

N ∼ I0 , (3.74)

but the precise coefficient cannot be determined from this comparison alone. We have to

find a more explicit expression for e−2U .

4 5-dimensional supersymmetric non-Abelian solutions of the SU(2)-

gauged ST[2, 5] model

In this section we are going to consider a particular model of N = 1, d = 5 supergravity

that admits an SU(2) gauging. This model is related to the SU(2)-gauged ST[2, 5] model

of N = 2, d = 4 supergravity some of whose solutions we have studied in ref. [12]. We will

use the relations derived in the previous section to find relations between the non-Abelian

supersymmetric solutions of both theories.

We start by describing the 4- and 5-dimensional models and their SU(2) gauging.

4.1 The models

The ST[2, 5] model is a cubic model of N = 2, d = 4 supergravity coupled to 5 vector

multiplets i.e. a model with a prepotential of the form

F = − 1

3!

dijkX iX jX k

X 0
, i = 1, 2 · · · , 5 (4.1)

where the fully symmetric tensor dijk has as only non-vanishing components

d1αβ = ηαβ , where (ηαβ) = diag(+− · · ·−) , and α, β = 2, · · · , 5 . (4.2)

The 5 complex scalars parametrize the coset space

SL(2,R)

SO(2)
× SO(2, 4)

SO(2)× SO(4)
, (4.3)

and the group SO(3) acts in the adjoint on the coordinates α = 3, 4, 5. These are the

directions we are going to gauge and we will denote them with capital A,B, . . .. This is the

only information we need in order to construct supersymmetric solutions, but more details
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on the construction of this theory can be found in ref. [12]. We will need the form of the

metric function in terms of the functions IM :

e−2U = 2
√

(IαIβηαβ + 2I0I1)(IαIβηαβ − 2I1I0)− (I0I0 − I1I1 + IαIα)2 . , (4.4)

The models of the ST[2, n] family are related to the effective theory of the Heterotic

string and compactified on T 6 by a consistent truncation: the 10-dimensional effective

theory is N = 1, d = 10 supergravity coupled to 16 10-dimensional vector multiplets with

gauge group U(1). Upon dimensional reduction on a generic T 6 one gets N = 4, d = 4

supergravity coupled to 16 + 6 = 22 vector multiplets, whose duality group is

SL(2,R)

SO(2)
× SO(6, 22)

SO(6)× SO(22)
. (4.5)

Observe that SO(6) acts on the 6 vectors in the supergravity multiplet and SO(22) on

the 22 matter vector fields. The coset SL(2,R)/SO(2) is parametrized by the only scalar

in the supergravity multiplet. A consistent truncation to N = 2, d = 4 eliminates 4 vectors

from the N = 4 supergravity multiplet and one of the remaining two vectors becomes a

matter vector field from the N = 2 point of view and comes in the same multiplet as the

complex scalar that parametrizes the coset space SL(2,R)/SO(2). The result is a ST[2, 23]

model from which one can consistently eliminate vector multiplets to arrive to the ST[2, 5]

model we are dealing with.

This is the story at a generic point in the moduli space of the Heterotic strings on T 6.

At certain points, though, there is an enhancement of gauge symmetry usually associated

to an increase in the number of massless vector fields that we must take into account in the

effective theory. Our SU(2)-gauged model of N = 2, d = 4 supergravity can be interpreted

as the effective theory describing the simplest of these situations in which the enhancement

of gauge symmetry arises in the sector of the 16 original 10-dimensional vector fields.

The ST[2, 5] model is related to a model of N = 1, d = 5 supergravity coupled to 4

vector multiplets determined by the tensor Ci−1,j−1,k−1 = 1
6dijk so its only non-vanishing

components are

C0xy =
1

6
ηxy ,where (ηxy) = diag(+− · · ·−) , and x, y = 1, · · · , 4 . (4.6)

The 4 real scalars in the vector multiplets parametrize the coset space

SO(1, 3)

SO(3)
. (4.7)

Now the group SO(3) acts in the adjoint on the coordinates x = 2, 3, 4 and, if we gauge it,

the theory goes to the gauged 4-dimensional model we just discussed. It should be obvious

after the 4-dimensional discussion that this model can be interpreted as a truncation of the

effective theory of the Heterotic string compactified on T 5.

Again, we do not need many more details of the theory in order to construct super-

symmetric solutions. For timelike supersymmetric solutions admitting an additional isom-

etry we will need the metric function, which follows directly from the generic expression
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eq. (3.36)

f̂ −1 = H−1

{

1

4
(6HL0 + 8ηxyΦ

xΦy)
[

9H2ηxyLxLy + 48HΦ0LxΦ
x

+64(Φ0)2ηxyΦ
xΦy

]

}1/3 (4.8)

This metric function and the 4-dimensional one e−2U are related by eq. (3.39) using

eq. (3.28) and the relations between the functions IM and H,M,LI ,Φ
I in eqs. (3.45),

which we rewrite for this specific pair of models for convenience:

H = 2I0 , Φ0 = − 1√
2
I1 , Φ1 = − 1√

2
I2 , ΦA = − 1√

2
IA ,

M = −I0 , L0 =
2

3
I1 , L1 =

2

3
I2 , LA =

2

3
IA ,

(4.9)

For u-independent null supersymmetric solutions we first need to solve eq. (3.56) for

AI
u. For this model, we find

A0
u = 6

ΣxKx − Σ0K0

(ηΣΣ)
, Ax

u = 6
ηxyKy(ηΣΣ)− Σx(ΣyKy − Σ0K0)

Σ0(ηΣΣ)
, (4.10)

where (ηΣΣ) ≡ ηxyΣ
xΣy, so that

e−2U = 2
√

(IαIβηαβ)[IαIβηαβ + I1(1−N)]− (−I1I1 + IαIα)2 . , (4.11)

and we arrive at the following identifications

0 = I0 , Σ0 = − 1√
2
I1 , Σ1 = − 1√

2
I2 , ΣA = − 1√

2
IA ,

N = 1 + 2I0 , K0 = − 1

2
√
3
I1 , K1 = − 1

2
√
3
I2 , KA = − 1

2
√
3
IA .

(4.12)

4.2 The solutions

We are ready to put to work the machinery developed in the previous sections. We are

going to consider the simplest cases first.

4.2.1 A simple 5d black hole with non-Abelian hair

In order to add non-Abelian fields to our solutions it is exceedingly useful to consider

metrics with one additional isometry, because, then, we can make use of our knowledge

of the spherically symmetric solutions of the Bogomol’nyi equations of the SU(2) YMH

system found by Protogenov in ref. [16]. However, this isometry cannot be translational

if we want to find spherically-symmetric black holes because, then, the full 5-dimensional

solution will have a translational isometry. Thus, we will start with the choice H = 1/r

(r2 = yryr)22 which, as we have shown in ref. [4], relates the colored monopole solution23

to the the BPST instanton, which is spherically symmetric in E
4.

22We need to distinguish between the Cartesian coordinates in E
3, which we will denote by yr and the

Cartesian coordinates in E
4, which we will denote by xm. The former are not a simple subset of the latter.

23This monopole is characterized by a vanishing magnetic charge.
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We are, thus, going to consider a configuration with the following non-vanishing func-

tions:

H =
1

r
, L0 = A0 +

q0
4r

, L1 = A1 +
q1
4r

, ΦA = −f(r)δAry
r , (4.13)

where q0, q1 are electric charges in some convenient normalization, A0, A1 are constants to

be determined through the normalization of the metric and the scalar fields at infinity and

f(r) is the function (not to be mistaken by f̂) that characterizes the Higgs field in the

spherically-symmetric monopole solutions of ref. [16]24).

The next step consists in finding the 1-forms χ, ĂI , ω and functions LI that satisfy

eqs. (3.32)–(3.35) for the above non-vanishing functions. ω is closed and can be set to zero,

the functions LI can also be set to zero while25

χ = cos θdψ , ĂA = h(r)εArsy
rdys , (4.14)

where h(r) is the function that characterizes the gauge field of the monopole solution (see

appendix B)). The spacetime metric is, then,

ds2 = f̂ 2dt2 − f̂ −1

[

r(dϕ+ cos θdψ)2 +
1

r
(dr2 + r2dΩ2

(2))

]

, (4.15)

where

dΩ2
(2) = dθ2 + sin2 θdψ2 , (4.16)

and, upon the change of coordinates r = ρ2/4, it becomes

ds2 = f̂ 2dt2 − f̂ −1dxmdxm , where dxmdxm = dρ2 + ρ2dΩ2
(3) . (4.17)

For this configuration, the metric function eq. (4.8) is given by

f̂ −1 = 3 3

√

1

2

(

L0 −
4

3
r3f2

)

(L1)2 , (4.18)

and it immediately follows that in order for the solution to be asymptotically regular, the

monopole must be the colored one for which r3f2
λ ∼ 1/r, because for all the rest r3f2 ∼ r

(see appendix B). With this choice,26 as shown in ref. [4],27 the gauge field ÂA = ÂA
mdxm

that follows from the use of eq. (3.29) is that of a BPST instanton in E
4:

ÂA =
1

g̃

1

1 + λ2ρ2/4
vAL , (4.19)

where vAL are the SU(2) left-invariant Maurer-Cartan 1-forms.28 Since the scalar func-

tions hA vanish for this configuration, the full 5-dimensional vector fields are, according to

24See appendix B in which we have written all of Protogenov’s solutions.
25The choice of angular coordinates is conditioned by the relation between the monopole and instanton

as explained in ref. [4]. We will identify the compact coordinate z with the angular coordinate ϕ.
26We are going to study the consequences of the other choices in section 4.2.3.
27More specifically, the gauge field one gets is Â

A(+)
L .

28In our conventions, these are given by














v1L = sinψ dθ − sin θ cosψ dϕ ,

v2L = − cosψ dθ − sin θ sinψ dϕ ,

v3L = −(dψ + cos θ dϕ) ,

and dvAL +
1

2
ǫABC vBL ∧ vCL = 0 . (4.20)
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eq. (3.12), given by

A0 =
35/2

2
(L1)

2f̂ 3dt ,

A1 = 35/2L1

(

L0 −
4

3
r3f2

λ

)

f̂ 3dt ,

AA =
1

g̃

1

1 + λ2ρ2/4
vAL .

(4.21)

Finally, the only non-vanishing scalar is given by by

φ ≡ h1/h0 =
L1

L0 − 4
3r

3f2
λ

. (4.22)

The integration constants are readily identified in terms of the asymptotic value of the

scalar as

A0 =
21/3

3
φ−2/3
∞

, A1 =
21/3

3
φ1/3
∞

, (4.23)

while the mass and the area of the event horizon are given by

M = 2−1/331/2
[

φ2/3
∞

q0 + 2φ−1/3
∞

q1

]

, (4.24)

A

2π2
=

√

33

2

(

q0 −
27

g̃2

)

(q1)2 . (4.25)

This solution can be understood as the result of the addition of a BPST instanton to a

standard 2-charge Abelian solution. This addition does not produce any observable effects

at spatial infinity, like, for instance, a change in the mass, but does produce a change in

the near-horizon geometry and in the entropy.

The metric function of the 4-dimensional solution e−2U that one obtains by dimensional

reduction is related to the metric function of the 5-dimensional solution by

e−4U =
1

r
f̂−3 , (4.26)

which implies that the 4- and 5-dimensional solutions cannot be asymptotically flat at

the same time. In particular, with the choice made above (corresponding to a colored

monopole in d = 4) e−2u ∼ r−1/2 at spatial infinity, a behavior that does not correspond to

any known vacuum. With the monopoles we discarded, however, we get an asymptotically-

flat solution. The near-horizon behavior is simultaneously good in d = 4 and d = 5.

4.2.2 A rotating 5d black hole with non-Abelian hair

In the context of timelike supersymmetric solutions of N = 1, d = 5 supergravity rotation

can be added by switching on the harmonic function M [26]. More specifically, we add to

the static solution we just constructed the harmonic function

M =
J/2

4r
, (4.27)
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which only appears in eq. (3.28). The metric of the new solution is

ds2= f̂ 2

[

dt+
J/2

4r
(dϕ+ cos θdψ)

]2

−f̂ −1

[

r(dϕ+ cos θdψ)2 +
1

r
(dr2 + r2dΩ2

(2))

]

, (4.28)

where the metric function f̂ is still given by eq. (4.18). The scalar field φ and the non-

Abelian vector field AA take the same value as in the static solution while the two Abelian

vector fields are modified by the change

dt −→ dt+
J/2

4r
(dϕ+ cos θdψ) , (4.29)

which describes the presence of a magnetic dipole moment associated to the rotation.

Asymptotically, the only novelty is the off-diagonal term ∼ J/ρ2dt(dϕ+cos θdψ) which

corresponds to identical values of the two Casimirs of the angular momentum, both pro-

portional to J , so this solution is a non-Abelian generalization of the Breckenridge-Myers-

Peet-Vafa (BMPV) spinning black hole [27, 28]. The mass has the same expression in terms

of the charges as in the static case.

In the near-horizon limit, if the behavior of the metric function f̂ is

f̂−1 ∼ R2/r , (4.30)

for some constant R, the metric can be rewritten in the form

ds2 ∼ R2dΠ2
(2) −R2dΩ2

(2) −R2
[

cosα(dϕ+ cos θdψ)− sinα
r

R2
dφ

]2
, (4.31)

where φ is the rescaled time coordinate, defined as follows

φ ≡ t/X , X/R ≡
√

1− [J/(2R)3]2 ≡ cosα , (2R)3 ≡
√

33

2

(

q0 −
27

g̃2

)

(q1)2 , (4.32)

and dΠ2
(2), dΩ

2
(2) are the metrics of the 2-dimensional Anti-de Sitter and sphere of unit

radius

dΠ2
(2) ≡

( r

R2

)2
dφ2 − dr2

r2
. (4.33)

The constant-time sections of the event horizon are squashed 3-spheres with metric

− ds2 = R2
{

cos2 α(dϕ+ cos θdψ)2 + dΩ2
(2)

}

, (4.34)

and area

A

2π2
=

√

33

2

(

q0 −
27

g̃2

)

(q1)2 − J2 . (4.35)

4.2.3 A more general solution

In section 4.2.1 we used the colored monopole solution in order to obtain an asymptotically

flat black-hole solution in the simplest way. However, we can also use the monopoles in

the 2-parameter family, for which, asymptotically, r3f2 ∼ r if we switch on additional
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harmonic functions and choose the values of the integration constants appropriately so

that the metric functions f̂(r), ω5, ω give an asymptotically-flat solution.

Throughout the following discussion, it is convenient to have the explicit form of these

functions for H = 1/r, ΦA = −f(r)δAry
r and LA = 0 at hand:

f̂ −3 = 27

[

1

2
L0 +

2

3
r[(Φ1)2 − r2f2]

] [

(L1)
2 +

16

3
rΦ0L1Φ

1 +
64

9
(rΦ0)2[(Φ1)2 − r2f2]

]

,

ω5 = M + 8
√
2 r2Φ0[(Φ1)2 − r2f2] + 3

√
2 rLiΦ

i ,

⋆3dω =
1

r
dM −Md

1

r
+ 3

√
2
(

ΦidLi − LidΦ
i
)

,

(4.36)

where i = 0, 1. Apart from the functions H and ΦA, we are going to consider the following

non-vanishing harmonic functions

{Φ0,Φ1, L0, L1,M} , (4.37)

with

Φ0,1 = A0,1 +
p0,1

4r
, L0,1 = A0,1 +

q0,1
4r

, M = a+
b

4r
. (4.38)

f̂−3 is a product of two factors. Our strategy will be to make the constant piece of Φ1,

A1, cancel the constant piece in rf(r), µ/g so that [(Φ1)2−r2f2] is asymptotically O(1/r):29

A1 = µ/g . (4.39)

This ensures that the second term in f̂−3 diverges asymptotically at most as O(r) while

the first is asymptotically constant. This constant can be made to vanish by choosing the

constant piece of L0, A0, to be

A0 = −8

3

µ

g

(

1

g
+

p1

4

)

, (4.40)

and now the first term is asymptotically O(1/r) and f̂−3 is asymptotically constant.

Next, we require that all the O(r2), O(r) and O(1) terms in ω5 vanish.30 This gives

two new relations31 between the constants Ai, A
i and a. The vanishing of ω gives another

relation between the same constants. Thus, requiring asymptotic flatness fixes the values of

all these constants in terms of the Abelian charges pi, qi and µ and g. Finally the normal-

ization of the metric at infinity also fixes the value of µ and the solution has no free moduli!

29We choose the positive sign for simplicity.
30Observe that this does not imply the complete vanishing of ω5: there are O(1/r) terms that give angular

momentum (which could be cancelled by the integration constant b in M) and also O(e−4µr) terms that

cannot be cancelled. Therefore, the metric is not static even if the angular momentum is set to zero.
31The above values of A0 and A1 make the O(r2) term vanish.
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The values of the integration constants A0, A
1 has been given above and the values of

the rest are32

A1 = −88

3
A0

(

1

g
+

p1

4

)

,

A0 =







(

16p0 + 4gp0p1 + gq1
) (

4 + gp1
)

−1

40
(

3q0 + (p1)2 − 16
g2

)(

q0 + 2(p1)2 − 32
g2

)







1/3

,

µ = A0

[

32− 2g2(p1)2 − g2q0
16p0 + 4gp0p1 + gq1

]

,

a =
√
2A0

[

48

g2
+

22p1

g
+

5(p1)2

2
− 3q0

4

]

−
√
2

[

22µp0

g2
+

11µp0p1

2g
+

3µq1
4g

]

,

b = J/2− 6
√
2

[

p0(p1)2

2
+

p0q0 + p1q1

8
− 8

p0

g2

]

,

(4.41)

where J is the angular momentum.

The mass of this solution is given by

M=
πA0

2G

[

3q0+(p1)2− 16

g2

] [

3
µ

g
q1+8

(

1

g
+
p1

4

)(

10A0

(

24

g
+5p1

)

−9
µ

g
p0
)]

. (4.42)

and the area of the horizon is

A

2π2
=

√

1

2

[

3q0 + (p1)2 − 16

g2

] [

3q1 + 2p1p0 − 8p0

g

] [

3q1 + 2p0p1 +
8p0

g

]

− J2 . (4.43)

4.2.4 Null supersymmetric non-Abelian 5d solutions from 4d black holes and

global monopoles

Using the general results of the preceding sections it is very easy to construct null

supersymmetric solutions by uplifting 4-dimensional timelike supersymmetric solutions

with I0. In particular, we can uplift the black-hole and global-monopole solutions of the

ST[2, 5] model recently constructed in ref. [12]. In this paper we will focus on the single

center solutions only.

The 4-dimensional solutions depend on the following non-vanishing IM

I1 = A1 +
p1/

√
2

r
, I2 = A2 +

p2/
√
2

r
, IA =

√
2 δApx

pf(r) ,

I0 = A0 +
q0/

√
2

r
,

(4.44)

where f(r) is the function fµ,s or fλ in appendix B corresponding to one of the

spherically-symmetric BPS SU(2) monopoles, p1, p2, q0 are magnetic and electric charges

and A1, A2, A0 integration constants to be determined in terms of the asymptotic values

of the scalars and the metric.

32We have not reexpressed the 4-dimensional gauge coupling constant g in terms of the 5-dimensional, g̃

to have simpler expressions.
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The 5-dimensional metric is that of an intersection of a string lying along the z direction

and a pp-wave propagating along the same direction:

ds2 = 2ℓdu(dv +Kdu)− ℓ−2d~x2(3) , (4.45)

where

ℓ−3 = 4I1[(I2)2 − 2r2f2] , K = 1 + 2I0 . (4.46)

The scalar fields, defined by φx ≡ hx/h0, are given by

φ1 = I2/I1 , φA = −δApx
pf(r)/I1 , (4.47)

and the vector fields are given by

A0,1 = −2
√
6p1,2A , AA = 2

√
6h(r)ǫArsx

rdxs , (4.48)

where A is the vector field of a Dirac magnetic monopole of unit charge, satisfying

dA = ⋆3d
1
r and h(r) is the function hµ,s or hλ in appendix B corresponding to one of

the spherically-symmetric BPS SU(2) monopoles.

The 4-dimensional electric charge q0 corresponds to the momentum of the 5-

dimensional gravitational wave in the z direction and none of the scalar and vector fields

depend on it. For the sake of simplicity we are going to set it to zero (q0 = 0 and I0 = −1/2

so K = 0) and we are going to analyze the string solutions with the above scalar and vector

fields and with metric

ds2 = ℓ(dt2 − dz2)− ℓ−2d~x2(3) , (4.49)

with the metric function ℓ given as above.

The metric will be regular in the r → 0 limit if ℓ ∼ r or ℓ ∼ constant. These two

behaviors are, respectively, those of extremal black strings in the near-horizon limit and

those of global monopoles. Let us consider each case separately.

Global string-monopoles. These are the string-like solutions that, upon dimensional

reduction along z, give the spherically-symmetric global monopoles constructed in

ref. [12]. They can be constructed with f(r) = fµ,s=0(r) (the BPST ’t Hooft-Polyakov

monopole) and with p1 = p2 = 0, so that

ℓ−3=4A1[(A2)2−2r2f2
µ, s=0] , φ1=A2/A1 , φA=−

√
2δArx

rfµ,s=0(r)/A
1 , (4.50)

and the only non-trivial vector field is AA.

The integration constants A1,2, µ are given by

A1 =
1

χ
1/3
∞

, A2 =
φ1
∞

χ
1/3
∞

, µ =
g|φ∞|
√
2χ

1/3
∞

, χ∞ ≡ 4[(φ1
∞
)2 − |φ∞|2] , (4.51)

where |φ∞|2 is the asymptotic value of the gauge-invariant combination φAφA, and

the string’s tension (simply defined as minus the coefficient of 1/r in the large-r

expansion of gtt) is given by [29, 30]

Tmonopole =
32|φ∞|
√
3χ

2/3
∞

1

|g̃| . (4.52)
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These are globally regular solutions with no horizons, like their 4-dimensional

analogues.

Black strings. They must necessarily have non-vanishing magnetic charges p1,2 in order

to have a regular horizon. This horizon will be a 2-dimensional surface characterized

by being normal to 2 linearly independent null vectors. The mass and entropy of

the black string will depend on the choice of monopole.

Let us first consider the BPST ’t Hooft-Polyakov monopole (or equivalently, let us

add magnetic charges p1,2 to the above global monopole). In this case, the relation

between the integration constants A1,2, µ and the asymptotic values of the scalars

will be the same as before. The string’s tension and the area of the horizon contain

contributions from the magnetic charges p1, p2:

T =
1

3
√
2
χ1/3
∞

[

p1 + 8
φ1
∞

χ∞

p2
]

+ Tmonopole , (4.53)

A

4π
= 2

[

p1(p2)2
]2/3

. (4.54)

When we consider the more general ’t Hooft-Polyakov-Protogenov monopole we find

that the area of the horizon receives a contribution from the non-Abelian charge,

A

4π
= 2

{

p1
[

(p2)2 − 2

g2

]}2/3

. (4.55)

5 Conclusions

In this paper we have studied the general procedure to construct timelike and null super-

symmetric solutions of N = 1, d = 5 SEYM theories that can be dimensionally reduced

to timelike solutions of N = 2, d = 4 SEYM theories. These solutions, therefore, can also

be constructed by oxidation of the 4-dimensional solutions and we have striven to clarify

this procedure and find the relations between the 4- and 5-dimensional fields and the 4-

and 5-dimensional equations they satisfy. The relation between instantons in 4-dimensional

hyperKähler spaces and monopoles satisfying the Bogomol’nyi equation in E
3 found by Kro-

nheimer plays a crucial role in this relation and, in combination with the results obtained in

ref. [4], it allows us to construct spherically-symmetric 5-dimensional solutions that contain

YM instantons. The standard oxidation of monopoles gives rise to 5-dimensional solutions

that have an additional translational isometry and cannot be spherically symmetric.

We have exploited the general results to construct the first 5-dimensional black-hole

and black-string solutions with non-Abelian YM fields. The simplest black-hole solutions

contain the field of a BPST instanton in the so-called base space and their behavior is

similar to that of the colored black holes found in 4-dimensional SEYM theories [17, 25]:

the non-Abelian YM field cannot be “seen” at spatial infinity, it does not contribute to

the mass, but it can be seen in the near-horizon limit and it contributes to the entropy.

One can compare the entropies of the simplest non-Abelian black hole with that of another

black hole with the same Abelian charges and moduli (and, henceforth, with the same
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mass). The entropy of the former is always smaller, so it is entropically favorable to lose

the non-Abelian field. It is not clear by which mechanism this can happen.

We have also found more complicated black-hole solutions which contain the field of

the instantons that one obtains by oxidizing Protogenov monopoles in the so-called base

space. Those instantons are not regular in flat space and, in general, the spacetime metrics

they give rise to are not asymptotically flat. We have shown that a judicious choice of

the integration constants (and, hence, of the moduli) in terms of the charges produces a

metric that is not only asymptotically flat with positive mass but also has a regular horizon.

Thus, at special points in the moduli space of the scalar manifold, additional non-Abelian

black-hole solutions are possible. In these solutions, the YM fields do contribute to the

mass and to the entropy.

Finally, we have also found black-string solutions by conventional oxidation of non-

Abelian black-hole solutions from 4 dimensions. One of them is a globally-regular string-

monopole solution and the rest are more conventional solutions.

It is clear that the new solutions that we have constructed need further study. Their

string-theoretic interpretation could be very interesting. The model we have chosen to

construct explicit solutions is a truncation of the effective theory of the heterotic string

compactified to 5 dimensions and can, alternatively, be seen as associated to the compact-

ification of the type IIB theory in K3 times a circle. This should simplify a bit the task

and, perhaps, open the way to a microscopic interpretation of entropies that depend on

parameters that do not appear at infinity. Work in this direction is in progress.
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A Dimensional reduction of N = 1, d = 5 SEYM theories

N = 1, d = 5 supergravity coupled to vector multiplets gives N = 2, d = 4 supergravity

coupled to vector multiplets upon dimensional reduction over a spacelike circle.33 If some

non-Abelian subgroup of the isometry group of the scalar manifold of the 5-dimensional

theory has been gauged, and we perform a simple (as opposed to a generalized) dimensional

reduction, the 4-dimensional theory will have exactly the same non-Abelian subgroup of

the (now bigger) isometry group gauged. Thus N = 1, d = 5 and N = 2, d = 4 SEYM

theories are related by dimensional reduction over a spacelike circle.

33See, for instance, refs. [31] and references therein.
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It should be clear that, under the above conditions, the relation between the 5- and

4-dimensional fields in the gauged theories is exactly the same as in the ungauged one and

is, therefore, well known. In the conventions we follow here34 the relation between the

bosonic fields of an N = 1, d = 5 supergravity model defined by CIJK (tilded) and the

bosonic fields of a cubic model of N = 2, d = 4 supergravity defined by the symmetric

tensor dijk (untilded) are35

gµν = |g̃zz|
1
2
(

g̃µν − g̃µz g̃νz/g̃zz
)

, dijk = 6Ci−1 j−1 k−1,

A0
µ =

1

2
√
2
g̃µz/g̃zz , Ai

µ = − 1

2
√
6

(

Ãi−1
µ − Ãi−1

z g̃µz/g̃zz

)

,

Zi =
1√
3
Ãi−1

z + i|g̃zz|
1
2 h̃i−1 ,

(A.1)

and the inverse relations are

g̃zz = −k2 , ÃI
z =

√
3ℜeZI+1 ,

g̃µz = −2
√
2k2A0

µ , ÃI
µ = −2

√
6
(

AI+1
µ −ℜeZI+1A0

µ

)

,

g̃µν = k−1gµν − 8k2A0
µA

0
ν , h̃I = k−1ℑmZI+1 .

(A.2)

In these relations it has been taken into account that, if nv denotes the number of

vector multiplets in d = 5, then, the 4-dimensional theory has nv + 1 vector multiplets

so that I, J,K = 0, · · · , nv, i, j, k = 0, · · · , nv + 1. The additional 4-dimensional vector

multiplet is the i = 0 one and, therefore, the 5-dimensional vector labeled by I corresponds

to the 4-dimensional vector labeled by i = I + 1.

While this is the whole story for the fields, it is important to realize that the factor that

related the 4- and 5-dimensional gauge fields changes the standard form of the covariant

derivatives and gauge field strengths and it must be absorbed into a redefinition of the

gauge coupling constant. Thus, we also have

g̃ = −2
√
6g . (A.3)

Observe that this result has been obtained using the orientation ε0123z = +1, which

is not the one we are using in the main text (ε0z123 = +1). However, in practice, the

result can be adapted to that orientation by reversing the sign of each z tensor index. This

operation only changes the sign of A0
µ and ℜeZi.

B Spherically-symmetric solutions of the SU(2) Bogomol’nyi equations

in E
3

The equations of motion of the SU(2) Yang-Mills-Higgs (YMH) theory in the Bogomol’nyi-

Prasad-Sommerfield (BPS) limit in which the the Higgs potential vanishes read

DµF
Aµν = −gεBC

AΦB
D

νΦC , (B.1)

34That is, the conventions used in refs. [1, 14, 19] for the N = 1, d = 5 theories and in the conventions

used in refs. [2–4, 12, 13, 17, 25, 32, 33] for the N = 2, d = 4 theories.
35See, for instance, ref. [7] which follows the conventions used here.
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D
2ΦA = 0 . (B.2)

Static configurations satisfying the first-order Bogomol’nyi equations [15]

FA
rs = εrstDtΦA , (B.3)

can be seen to satisfy all the above second-order YMH equations of motion.

BPS magnetic monopole solutions such as the (BPS) ’t Hooft-Polyakov monopole found

by Prasad and Sommerfield in ref. [34] satisfy the Bogomol’nyi equations and, therefore,

it is of some interest to identify all their solutions. In the spherically-symmetric case this

problem was solved by Protogenov in ref. [16] and his solution can be described as follows:

the Higgs and gauge field can always be brought to this form (hedgehog ansatz )

ΦA = −δAsf(r)y
s , AA

r = −εArsy
sh(r) , (B.4)

in which they are characterized by just two functions, f(r), h(r) of the radial coordinate

r =
√
ysys. There is only a 2-parameter family for which these functions, denoted by

(fµ,s, hµ,s), are given by

rfµ,s =
1

gr
[1− µr coth (µr + s)] , rhµ,s =

1

gr

[

µr

sinh (µr + s)
− 1

]

, (B.5)

and a 1-parameter family for which these functions, denoted by (fλ, hλ), are given by

rfλ =
1

gr

[

1

1 + λ2r

]

, rhλ = −rfλ . (B.6)

The BPS ’t Hooft-Polyakov monopole [34] is the only globally regular solution and corre-

sponds to fµ,s=0. The fµ,s=∞ solution is given by

− rfµ,∞ =
µ

g
− 1

gr
, rhµ,∞ = − 1

gr
, (B.7)

and, for µ = 0, it is the Wu-Yang monopole [35]. The latter solution is also recovered in

the 1-parameter family for fλ=0.

The asymptotic behavior of rf(r) (which is the combination that occurs in the metrics

we study) for the different solutions is

rfµ,s ∼ −µ

g
+

1

gr
+O(e−4µr) , −rfλ ∼ 1

gλ2r2
+O(r−3) , (B.8)

and the behavior near the origin (where the black-hole horizons may be in the metrics

under study) are

rfµ,0 ∼ −µ2

2g
r+O(r3) , rfµ,s ∼

1

gr
− µ

g
coth s+O(r) , rfλ ∼ 1

gr
− λ2

g
r+O(r3) . (B.9)

If we define the magnetic monopole charge by

p ≡ 1

4π

∫

S2
∞

Tr(Φ̂F ) , Φ̂ ≡ Φ
√

|Tr(Φ2)|
, (B.10)

then, we always find p = 1/g except in the 1-parameter family for finite λ, for which we

find p = 0. As we have argued in ref. [12], the λ 6= 0 colored monopoles can be seen as a

magnetic monopole placed at the origin whose charge is completely screened at infinity.
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