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1 Introduction

The supersymmetric localization [1] has brought great advances in quantum field theories

in diverse dimensions and given direct and exact physical understandings to the nontrivial

issues. One of applications of this technique is the supersymmetric Rényi entropy (SRE)

Ssusy
q defined by [2]

Ssusy
q =

1

1− q
log

∣∣∣∣
Zq

(Z1)
q

∣∣∣∣ , (1.1)

where Z1 and Zq is the supersymmetric partition function on the d-dimensional round

sphere Sd and on the branched sphere Sd
q which is a q-covering space exhibiting conical

singuralities, respectively. This is the supersymmetric extension of the Rényi entropy

usually evaluated by the replica trick. We can quantitatively interpret this definition from

the geometrical viewpoint in the conformal field theories as follows: we consider the Rényi

entropy on the flat space R
1,d−1 with a q-covering spherical entangling surface. Then, this

geometry can be mapped to R × H
d−1, where H

d−1 is a (d − 1)-dimensional hyperbolic

space, due to conformal symmetry, and the evaluation of the Rényi entropy is translated
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into that of a thermal partition function on R × H
d−1 with a temperature set by q [3].

Further, we compactify the time direction R with a radius proportional to q and again

can comformally map to the q-branched sphere Sd
q . The (supersymmetric) Rényi entropy

define by the density matrix on the original space may be rewritten in terms of the partition

function on Sd
q based on this geometrical transition. The q-covering structure in the original

setup is seen as the conical singularities on the poles of the sphere. The SRE was originally

discussed in three dimensions [2] and used to do the precision test of AdS4/CFT3 in [4, 5].

In this context, the SRE is perfectly dual to the entropy of the charged topological black

hole (TBH), hence this type of the duality is called TBHd+1/qSCFTd as which we refer to

the superconformal field theory on Sd
q . The extensions of this correspondence to d = 4 and

5 have been nontrivially established in [6–9].

The focus of interest in this paper is d = 2. We exactly derive the partition function on

S2
q using the localization as done on S2 [10, 11] and the squashed sphere S2

b [12]. We reveal

that the final partition function does not depend on the branching parameter q, which

is not the case of other dimensions. This fact means that the SRE in two dimensions is

nothing but the standard entanglement entropy and is consistent with a single interval case,

that is, the two-point function in [13] where the SRE have been computed in terms of the

correlation function of supersymmetric twisted chiral fields. In addition, it is known that

the SRE can be described in terms of the codimension-2 defects keeping supersymmetry

placed on nonsingular geometry as discussed in [2]. In comparison with exact computations

with the defects for the dynamical gauge field accomplished in [14], we also observe that

the defect interpretation can work on the effects from the conical singularities on S2
q , which

substantiates connection of the defects and geometrical singularities.

In the rest of the paper, we calculate the exact partition function on the branched

sphere and argue the SRE in two dimensions in section 2. In section 3, we discuss these

exact results by comparing with the partition function in the presence of the defects on the

sphere. In section 4, we comment on some open questions and future works. Convension

and the detail of the localization are summarized in appendix A and B. Appendix C contains

the calculation of correct R-charges in some N = (2, 2) superconformal theories in order

to justify the defect interpretation.

2 Exact results on the branched sphere

2.1 Supersymmetry

Branched and resolved sphere. We start with the q-branched two-sphere S2
q whose

metric is given by

ds2q = ℓ2
(
dϑ2 + q2 sin2 ϑdτ2

)
, (2.1)

where ϑ ∈ [0, π] and τ ∈ [0, 2π]. This space has conical singularities on the north and south

pole, that is, its scalar curvature Rq exhibits the delta function behavior at both poles:

Rq =
2

ℓ2

[
1 +

1
q − 1

sinϑ
(δ(ϑ) + δ(π − ϑ))

]
. (2.2)
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We need to impose suitable boundary conditions on the fields at the singularities, but it

is technically hard to treat with them in computing some physical quantities. Instead, we

would like to put the theory on the sphere smoothing the conical singularities which we

call the resolved two-sphere S2
ǫ defined by

ds2ǫ = ℓ2
(

1

fǫ(ϑ)
dϑ2 + q2 sin2 ϑdτ2

)
, (2.3)

where a resolving function fǫ(ϑ) satisfies

fǫ(ϑ) =





1

q2
for ϑ → 0, π,

1 for ϑ ∈ (ǫ, π − ǫ),

(2.4)

with a small ǫ. The zweibein ea and the spin connection ωab on S2
ǫ are given by

e1 =
ℓ√
fǫ
dϑ, e2 = ℓq sinϑdτ,

ω12 = −ω21 = −q
√
fǫ cosϑdτ.

(2.5)

The curvature Rǫ on S2
ǫ turns to be a nonsingular function due to the resolving function,

Rǫ =
2

ℓ2

(
fǫ −

1

2
cotϑf ′

ǫ

)
, (2.6)

where f ′
ǫ represents the derivative with respects to ϑ. Therefore, we consider the theory

on S2
q as on S2

ǫ with taking the limit ǫ → 0. Note that, for conformal field theories, the

branched and the resolved two-sphere are thought of as the special cases of the squashed

one. We can construct N = (2, 2) supersymmetry on S2
ǫ by making use of the results on

the squashed two-sphere S2
b [12].

Killing spinors. Killing spinors, ξ, ξ̄, on S2
ǫ can be obtained from the construction on

general two-dimensional curved spaces discussed in [15, 16]. They have studied N =

(2, 2) supersymmetric gauge theories with a vector-like R-symmetry and introducing the

supergravity background (or the topological counterpart). In this setup, the generalized

Killing spinor equations are acquired by the variations of gravitinos as

(∇µ + iVµ) ξ = −1

2
Hγµξ −

i

2
Gγµγ

3ξ,

(∇µ − iVµ) ξ̄ = −1

2
Hγµξ̄ +

i

2
Gγµγ

3ξ̄,

(2.7)

where ∇µ is the standard spin connection, V is a background gauge field for the R-

symmetry, and H,G are supergravity background fields. Now, we choose

H = − i
√
fǫ
ℓ

, G = 0. (2.8)

Another choice also reproduces the corresponding Killing spinor equations on S2
ǫ . Note

that the supergravity background fields for unitary theories should be real in Lorentzian
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backgrounds. In Euclidean signature, however, they would be complex generally to keep

supersymmetry. Therefore, the Killing spinor equations on S2
ǫ can be written by

Dµξ = (∇µ + iVµ) ξ = +
i
√
fǫ

2ℓ
γµξ,

Dµξ̄ = (∇µ − iVµ) ξ̄ = +
i
√
fǫ

2ℓ
γµξ̄.

(2.9)

Then, we set V to be

V =
1− q

√
fǫ

2
dτ, (2.10)

and consequently, the equations (2.9) have the solutions

ξ = e−i τ
2

(
sin θ

2

−i cos θ
2

)
, ξ̄ = ei

τ
2

(
cos θ

2

i sin θ
2

)
, (2.11)

which are nothing but the Killing spinors on the round two-sphere S2 [10] normalized as

ξ̄ξ = −1. In other words, we can utilize (2.11) even on S2
ǫ by choosing the specific value

of V (2.10). In this paper, we treat the Killing spinors as Grassmann-odd variables. Note

that the covariant derivative acts on the field components generically as

Dµ = ∂µ +
1

4
ωab
µ γab − iQ̃Aµ − iR̃Vµ, (2.12)

where Q̃ is a charge for the gauge symmetry, and R̃ is a R-charge (the gauge field parts

are replaced with its commutators when we consider a field in an adjoint representation).

One can verify that V is compatible with the integrability condition

[Dµ,Dν ]ξ =

(
1

4
Rµνabγ

ab + iVµν

)
ξ, (2.13)

where V is the field strength of V .

Supersymmetry variations. The vector multiplet consists of a gauge field A, two real

scalars σ, ρ, 2-component Dirac spinors λ, λ̄, and an auxiliary scalar D. On the other hand,

the chiral multiplet contains two complex scalars φ, φ̄, 2-components Dirac spinors ψ, ψ̄,

and auxiliary scalars F, F̄ . N = (2, 2) supersymmetry for the vector multiplet on S2
ǫ can

be constructed as

δAµ = − i

2

(
ξ̄γµλ− λ̄γµξ

)
,

δρ = − i

2

(
ξ̄γ3λ− λ̄γ3ξ

)
,

δσ =
1

2

(
ξ̄λ− λ̄ξ

)
,

δλ = iγ3ξ

(
1

2
εµνFµν + i[σ, ρ]−

√
fǫ
ℓ

ρ

)
− ξD + iγµξDµσ − γ3γ

µξDµρ,

δλ̄ = iγ3ξ̄

(
1

2
εµνFµν − i[σ, ρ]−

√
fǫ
ℓ

ρ

)
+ ξ̄D − iγµξ̄Dµσ − γ3γ

µξ̄Dµρ,

δD = − i

2
ξ̄γµDµλ+

i

2
[ξ̄λ, σ] +

1

2
[ξ̄γ3λ, ρ]−

i

2
Dµλ̄γ

µξ +
i

2
[λ̄ξ, σ] +

1

2
[λ̄γ3ξ, ρ],

(2.14)
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ξ ξ̄ Aµ σ η λ λ̄ D φ φ̄ ψ ψ̄ F F̄

scale −1
2 −1

2 1 1 1 3
2

3
2 2 ∆

2
∆
2

∆+1
2

∆+1
2

∆+2
2

∆+2
2

R̃ −1 1 0 0 0 −1 1 0 ∆ −∆ ∆− 1 1−∆ ∆− 2 2−∆

Table 1. The scaling weights and R-charges for the field contents.

where F12 =
1
2ε

µνFµν is the field strength of A, and for the chiral multiplet,

δφ = ξ̄ψ,

δφ̄ = ψ̄ξ,

δψ = iγµξDµφ+ iξσφ+ γ3ξρφ− ∆

2ℓ

√
fǫξφ+ ξ̄F,

δψ̄ = iγµξ̄Dµφ̄+ iξ̄φ̄σ − γ3ξ̄φ̄ρ−
∆

2ℓ

√
fǫξ̄φ̄+ ξF̄ ,

δF = ξ

(
iγµDµψ − iσψ + γ3ρψ − iλφ+

∆

2ℓ

√
fǫψ

)
,

δF̄ = ξ̄

(
iγµDµψ̄ − iψ̄σ − γ3ψ̄ρ+ iφ̄λ̄+

∆

2ℓ

√
fǫψ̄

)
,

(2.15)

where we assign the R-charge ∆ to the lowest component of the chiral multiplet (see

table 1). When we treat supersymmetry as δ = δξ + δξ̄ which explcitly represent the

transformations with respects of the corresponding Killing spinors, it is found that the

supersymmetry algebra is closed as

[δξ, δξ̄] = δv + δΛ + δRV
, (2.16)

where δv, δΛ, and δRV
are the traslation, the gauge transformation, and R-rotation, respec-

tively, whose precise actions are summarized in appendix B.1. In addition, the remaining

commutators vanish,

[δξ1 , δξ2 ] = [δξ̄1 , δξ̄2 ] = 0, (2.17)

except for

[δξ1 , δξ2 ]F = −∆ξ[2γ
µγνDµDνξ1]φ+ i∆ξ[2γ

µνξ1]Vµνφ,

[δξ̄1 , δξ̄2 ]F̄ = −∆ξ̄[2γ
µγνDµDν ξ̄1]φ̄− i∆ξ̄[2γ

µν ξ̄1]Vµν φ̄.
(2.18)

These commutators vanish if the Killing spinors satisfy

γµγνDµDνξ = −1

2
(R− 2iγµνVµν) ξ,

γµγνDµDν ξ̄ = −1

2
(R+ 2iγµνVµν) ξ̄.

(2.19)

These sufficient conditions provide constraints to fǫ as

1

ℓ2

(
i

2
f ′
ǫγ

1 − fǫ

)
ξ = −1

2
(R− 2iγµνVµν) ξ,

1

ℓ2

(
i

2
f ′
ǫγ

1 − fǫ

)
ξ̄ = −1

2
(R+ 2iγµνVµν) ξ̄.

(2.20)
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With our supersymmetry (2.14), we can show that the Lagrangian LSYM for the vector

multiplet is SUSY-exact, and the Fayet-Iliopoulos (FI) term LFI and the theta term Ltop

are SUSY-invariant but not exact:

• The super-Yang-Mills (SYM) Lagrangian

LSYM = −δξδξ̄Tr

[
1

2
λ̄λ− 2Dσ +

√
fǫ
ℓ

σ2

]

=
1

2
Tr

[(
1

2
εµνFµν −

√
fǫ
ℓ

ρ

)2

+DµσDµσ +DµρDµρ− [σ, ρ]2 +D2

+ i
(
λ̄γµDµλ

)
+ iλ̄[σ, λ] + λ̄γ3[ρ, λ]

]
. (2.21)

• The FI term with a FI parameter ζ

LFI = iζTr

[
D −

√
fǫ
ℓ

σ

]
. (2.22)

• The theta term with a theta parameter θ

Ltop = −i
θ

2π
Tr [F12] . (2.23)

There also are the SUSY-exact Lagrangian Lch for the chiral multiplet and its mass term:

• The matter Lagrangian

Lch = −δξδξ̄

[
ψ̄ψ − 2iφ̄σφ+

(∆− 1)
√
fǫ

ℓ
φ̄φ

]

= Dµφ̄Dµφ+ φ̄σ2φ+ φ̄ρ2φ+ iφ̄Dφ+ F̄F + i
(∆− 1)

√
fǫ

ℓ
φ̄σφ+

∆(2−∆)fǫ
4ℓ2

φ̄φ

− iψ̄γµDµψ + iψ̄σψ − ψ̄γ3ρψ + iψ̄λφ− iφ̄λ̄ψ − ∆
√
fǫ

2ℓ
ψ̄ψ. (2.24)

• The mass term for the chiral multiplet

Lmass =

[
φ̄m2φ+ φ̄

(
2σ + i

(∆− 1)
√
fǫ

ℓ

)
mφ+ iψ̄mψ

]
. (2.25)

We can introduce the twisted mass m for the chiral multiplet associated with the

flavor symmetry Gf in the supersymmetric way [10, 11]. As in other dimensions, we

can accomplish it by weakly gauging Gf with the background gauge field, coupling

the chiral multiplet to that gauge field, and tuning on the expectation value for the

background fields. This is simply shifting the expectation value of the scalar field σ

by the constant one taken in the Cartan subalgebra of Gf . Namely, we turn on the

twisted mass by

σ → σ +m, (2.26)
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where we omit the index for the flavor symmetry. Substituting this into (2.24) leads

to the above mass term. As a result, the supersymmetry algebra enlarges to in-

clude this flavor symmetry. Since the background vector multiplet obeys the same

supersymmetry transformations as (2.14), the mass term (2.25) becomes δ-exact by

construction.

Let us comment on the imaginary constant shift of σ. This just corresponds to the

R-charge, and if we turn off ∆ in supersymmetry (2.15) and instead take

σ → σ + i
∆

2ℓ
, (2.27)

then we obtain the same Lagrangian as the original one (2.24). Note that the flavor

symmetry Gf is determined by the representation R of the gauge group under which the

chiral multiplet transforms and the choice of the superpotential because it breaks the

enhanced symmetry down to Gf . For example, when R contains Nf copies of an irreducible

representation and there is the trivial superpotential, the theory has U(Nf ) as part of the

flavor symmetry. Accordingly, we have Nf twisted masses −→m = (m1,m2, · · · ,mNf
) and

Nf U(1) R-charges
−→
∆ = (∆1,∆2, · · · ,∆Nf

). To summarize, we can insert the holomorphic

combination

mI + i
∆I

2ℓ
(2.28)

into the Lagrangian by shifting the expectation value of σ. In this paper, however, we

think of the R-charge ∆ as an independent free parameter even in the presence of possible

superpotentials.

2.2 Partition function

Locus. The localized configuration for the field components can be derived from the

positive definiteness of the SUSY-exact Lagrangians. The saddle point equations for the

vector multiplet are found from LSYM as

0 = F12 −
√
fǫ
ℓ

ρ = Dµσ = Dµρ = [σ, ρ] = D. (2.29)

The solution of these equations can be generically obtained as

A = Amon, ρ =
s

ℓq
, σ = −a, D = λ = λ̄ = 0, (2.30)

where a is a constant diagonal matrix, and Amon is the GNO monopole configuration

defined by

Amon = s (κ− cosϑ) dτ, κ =

{
+1 for ϑ ∈ [0, π/2],

−1 for ϑ ∈ [π/2, π].
(2.31)

The matrix s for the magnetic charge is taken in the Cartan subgroup of the gauge group

with all half-integer components {si} ∈ Z/2.

In contrast, the locus of the chiral multiplet read from Lch is trivial, that is, all field

contents vanish:

φ = φ̄ = ψ = ψ̄ = F = F̄ = 0. (2.32)
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One-loop determinants. In computing the one-loop determinants, the boson and

fermion eigenmodes which make a pair under a certain map give the trivial contribu-

tion because they are completely cancelled. The point of the calculation is to find the

eigenmodes annihilated by such map but still satisfying the eigenvalue equations. To do

that, we will accept the method that we directly solve the differential equations for the

unpaired eigenmodes obtained by the eigenvalue equations as worked in [12, 17, 18].

Here, we only line up the final results of the one-loop determinants. The details for

derivation are briefed in appendix B.2 and B.3. The one-loop determinant Zvec
1-loop for the

vector multiplet by combining (B.26) and (B.27) is given by

Zvec
1-loop =

det∆f
vec

det δbvec

≃
∏

α>0
α(s) 6=0

[
(α(a)ℓq)2 + α(s)2

]
, (2.33)

where ≃ represents the equality up to the phase, and α is the root. Similarly, bring-

ing (B.44) and (B.45) together results in the one-loop determinant Zch
1-loop for the chiral

multiplet as

Zch
1-loop =

det∆f
ch

det∆b
ch

=
∏

w

∏

j≥0

j + 1 + iw(a)ℓq + |w(s)| − ∆
2

j − iw(a)ℓq + |w(s)|+ ∆
2

, (2.34)

where w is the wight vector. As in these works, to regulate the diverge product (2.35),

we use the Hurwitz zeta function which is one of the generalizations of the Riemann zeta

function defined by (A.8). Consequently, the one-loop determinant for the chiral multiplet

is written by

Zch
1-loop =

∏

w

Γ
(
∆
2 − iw(a)ℓq + |w(s)|

)

Γ
(
1− ∆

2 + iw(a)ℓq + |w(s)|
) . (2.35)

Moreover, there is an additional phase factor for the contribution of the chiral multiplet

derived by the index theorem [10, 11]

(−1)w(s)+|w(s)| . (2.36)

In fact, this can be absorbed into the Gamma functions in (2.35) so that the absolute value

symbol can be removed, and the simplified one-loop determinant is

Zch
1-loop =

∏

w

Γ
(
∆
2 − iw(a)ℓq − w(s)

)

Γ
(
1− ∆

2 + iw(a)ℓq − w(s)
) . (2.37)

Surely, these contributions (2.33) and (2.37) are almost the same results as on the round

sphere S2 [10, 11], but they include an extra geometrical data q on the q-covering space.

This q-dependence can be considered as the specific effect from the conical singularities.

– 8 –



J
H
E
P
0
3
(
2
0
1
6
)
0
5
8

Exact partition function. We write down the remaining factors to finalize the partition

function. The magnetic flux breaks the gauge symmetry G down to the subgroup Hs, and

the integral reduces to the one over the Cartan subalgebra t. This argument generates the

Jacobian J called the Vandermonde determinant in the integration measure [10, 11],

J (a, s) =
1

|W (Hs)|
∏

α>0
α(s)=0

α(a)2, (2.38)

where W (Hs) is the Weyl group of Hs.

The FI term and the theta term also contribute to the partition function as classical

ones evaluated only by substituting the locus (2.30),

SFI = iζ

∫
d2x

√
g Tr

[
D −

√
fǫ
ℓ

σ

]
= 4iπζℓqTr [a] , (2.39)

Stop = −i
θ

2π

∫
d2x

√
g Tr [F12] = −2iθTr [s] . (2.40)

Accordingly, the partition function Zq on the branched two-sphere S2
q combining all factors

is obtained as

Zq(ζ, θ,∆) =
∑

{si}∈Z/2

1

|W (Hs)|

∫

t

[da]e−4iπζℓqTr[a]+2iθTr[s]
∏

α>0

[
(α(a)ℓq)2 + α(s)2

]

×
∏

I,wI

Γ
(
∆
2 − iwI(a)ℓq − wI(s)

)

Γ
(
1− ∆

2 + iwI(a)ℓq − wI(s)
) , (2.41)

where the index I runs for the number of flavors. The expression (2.41) includes the branch-

ing parameter q since the one-loop determinants themselves depend on it, but actually we

can remove it (up to the overall constant) by rescaling the Coulomb moduli such that

a → a/q. We notice that if the twisted mass is added as explained in (2.26), q multiplied

by the mass remains in the partition function. This point become much clear when we

move to the formula by Higgs branch localization shown below.

Vortex partition function. The partition function on S2 computed by Coulomb branch

localization is found to be equivalent to the vortex partition function [19] which results

from Higgs branch localization [10, 11]. To see this observation on S2
q , let us consider an

U(1) gauge theory with Nf fundamental and Na anti-fundamental matters. The partition

function of this theory is given by

Z(Nf ,Na)
q (ζ, θ;m, m̃)

=
∑

s∈Z/2
e2iθs

∫
da

2π
e−4iπζaq

Nf∏

i=1

Γ(−iaq − imiq − s)

Γ(1 + iaq + imiq − s)

Na∏

ı̄=1

Γ(iaq − im̃ı̄q + s)

Γ(1− iaq + im̃ı̄q + s)
, (2.42)

where we set (∆, ℓ) = (0, 1) for simplicity, and mi (m̃ı̄) is a twisted mass of each fundamen-

tal (anti-fundamental). Now, suppose Nf > Na, or Nf = Na and ζ > 0. The l-th tower of

poles coming from the numerator of the contributions for the fundamentals are

al,kq = −mlq − ik − i|s|, (2.43)
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with k ∈ Z≥0. Evaluating the residues at the poles (2.43) with setting M l
i = mi −ml and

M̃ l
ı̄ = m̃ı̄ +ml results in the partition function in the factorized form,

Z(Nf ,Na)
q (ζ, θ;m, m̃) =

Nf∑

l=1

e4iπζqmlZ
(l)
1-loop(qM

l
i , qM̃

l
ı̄ ) (2.44)

× Z
U(1)
vortex(−z, 1,−iqM l

i( 6=l),−iqM̃ l
ı̄ )Z

U(1)
vortex(−z̄,−1, iqM l

i( 6=l), iqM̃
l
ı̄ ),

where z := e−2πζ+iθ, and the last three factors are given by

Z
(l)
1-loop(qM

l
i , qM̃

l
ı̄ ) =

Nf∏

i=1
i 6=l

Γ(−iM l
i )

Γ(1 + iM l
i )

Na∏

ı̄=1

Γ(−iM̃ l
ı̄ )

Γ(1 + iM̃ l
ı̄ )
, (2.45)

Z
U(1)
vortex(z, ε,mi, m̃ı̄) =

∑

k≥0

zk

ε(Nf−Na)kk!

∏Na

ı̄=1

(
m̃ı̄

ε

)
k∏Nf−1

i=1

(
mi

ε − k
)
k

, (2.46)

with the shifted factorial (a)k :=
∏k−1

n=0(a + n). The contribution (2.46) is nothing

but the vortex partition function for an U(1) gauge group with (Nf , Na) flavors in Ω-

background [10, 19]. All results from the calculation above are basically compatible with

literature, and the extra parameter q appears as an effect of the conical singularities at the

north and the south pole if we switch on the twisted masses.1

2.3 Supersymmetric Rényi entropy

We use the exact partition function Zq on the branched sphere to obtain the supersym-

metric Rényi entropy Ssusy
q (1.1) in two dimensions as mentioned in Introduction. For

our result (2.41), the branching parameter q appears always in the way to attach to the

Coulomb moduli a, but the redefinition of a as a → a/q can remove q-dependence from the

partition function (up to the overall constant from the integration measure), and also Zq

of the system without the vector multiplet does not depend on q since q is attached only

with the Coulomb moduli. On the other hand, as described above, introducing the twisted

mass brings q-dependence into the partition function. We should stress that our results

are physically secure only in CFTs, which means that the scaling dimension of the field is

allowed to be a certain value. Because the presence of the twisted mass in general breaks

conformal invariance, we do not take it into account in discussing the physical quantity.

Therefore, Zq does not essentially depend on q and is equal to Zq=1 on the round sphere.

Actually, this might be expected because it is shown that physical quantities respecting the

conformal symmetry do not depend on the deformation parameter of the two-sphere [12].

That observation means that the supersymmetric Rényi entropy simply reduces to the or-

dinary entanglement entropy in two dimensions. The result we got is just consistent with

the one of main results in [13] that the SRE with a single interval on the spatial direction is

independent of the number of sheets used in the replica trick and equivalent to the standard

entanglement entropy. This is because the SRE on the branched sphere can be regarded

as the one mapped conformally from one-dimensional space with one interval.

1The author would like to thank Bruno Le Floch for indicating a typo here in the first version.
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3 Defect interpretation

In this section, we would like to give the defect operator interpretation to our calculation

on the branched sphere S2
q as explained in [2]. In this picture, the defects are located on the

entangling surface, namely, they are codimension-2 and set singular boundary conditions on

the fields near them. We can see the nontrivial effect of the defects in free field theories [20]

as follows. We split a filed Φ defined on the q-covering space into {Φn}qn=1 on each sheet.

The field Φn on the right side of each sheet should be simply connected with Φn+1 on the

left side of the next sheet. These boundary conditions are written in an unified form as a

matrix T . In fact, the matrix T can be diagonarized by fields {Φ̃n}qn=1 defined from {Φn}qn=1

twisted by monodromy around the defects placed on the entangling surface. Therefore, the

one-loop determinant for Φ may be recast as the contributions of q fields Φ̃n in the defect

background.

To confirm this interpretation of our results, we start with briefly summarizing the

sphere partition functions in the presence of the defects conjecturally derived from the

orbifolding action on the squashed sphere [14]. Then, we show interpolating the effect of

the defects and the conical singularities in terms of the one-loop determinants.

3.1 Partition function with defects

In this paper, we concentrate only on the defects for a dynamical gauge field A, which

located on the north (N) and the south (S) pole of a two-sphere in order to keep super-

symmetry (see [21] for the argument of the defects for a background gauge field). Those

are expressed as the non-vanishing profile of A at the poles [14],

A ≃
{
η

Ndϕ at ϑ = 0,

η
Sdϕ at ϑ = π,

⇒ F12 ≃
{
+2πηNδ2N,

−2πηSδ2S ,
(3.1)

where δ2N,S := δ2N,S(xi) is a delta function on the pole with local Cartesian coordinates

(x1, x2). The matrices ηN,S are holonomies (called vorticities) around the poles which are

embedded into the Cartan subgroup of the gauge group. This fact is concluded by the

gauge invariance to connect the north and south patch of the sphere.

Twisted boundary conditions. The defects we are considering are just local singular-

ities corresponding to the excitation of local operators with infinite masses. Consequently,

it is natural to think that the theory with the defects can be described as the one defined

on a background with some singularities at the poles instead of the defects. Actually,

the equivalence between the gauge theories containing the defects and the ones defined

on manifolds divided by orbifolds has been proposed by [22]. This idea roughly can be

understood in terms of the boundary condition imposed on the fields as follows [14]: to

make the discussion comprehensive, we focus on an U(1) gauge group and the special value

ηN = ηS = η =
r

K
, (3.2)
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where r = 0, 1, · · · ,K − 1, and K ∈ Z. For these charges, we can remove the singularity of

the gauge field at the poles by implementing the unusual gauge transformation

A → A′ = A− ηdϕ. (3.3)

This leads to breaking the single-valuedness of the charged matter, namely, the matter

Φ(ϑ, ϕ) with gauge charge +1 obeys the twisted boundary condition

Φ(ϑ, ϕ+ 2π) = e−2πiηΦ(ϑ, ϕ). (3.4)

As a result, the η-dependence is naturally encoded into the one-loop determinant. On the

other hand, in the gauge theories on the orbifolded sphere S2/ZK , the ZK symmetry acts

on the charged matter Φ as a gauge rotation such that

Φ

(
ϑ, ϕ+

2π

K

)
= e−2πi r

KΦ(ϑ, ϕ). (3.5)

This is a similar observation as with the defects (3.4), then it is reasonable that we expect

that the defects on the poles can be recast as geometrical singularities on there.

From this point of view, the partition function on the squashed sphere S2
b in the

presence of the defects could be obtained as the one on the orbifolded sphere S2/ZK

by identifying the SUSY-preserving twisted boundary conditions for the fields (eq. (4.14)

in [14]). Indeed, such boundary conditions are sensitive to R-charges and spins of the fields

as well as gauge charges since the Killing spinors are charged under the Zk rotation. This

twisting brings nontrivial effects into the one-loop determinant for the chiral multiplet.

Exact results with defects. As explained in [14], we can deal with the general situation

η
N 6= η

S where the twisting effects of these vorticities are differently encoded into the

boundary condition. For the vector multiplet, we take an U(N) gauge symmetry as a

concrete example, and the vorticities are expressed by

η
N = diag(ηN

1 , η
N

2 , · · · , ηN

N ), η
S = diag(ηS

1, η
S

2, · · · , ηS

N ) (3.6)

subjected to the flux quantization condition 2s − η
N + η

S ∈ Z
N . Then, the one-loop

determinant for the vector multiplet is obtained as

Zvec
1-loop(η

N,ηS) = (−1)
1
2
N(N−1)(−1)(N−1)Tr(2s−η

N+η
S)

× σ(ηN)σ(ηS)
∏

a<b
ηN
ab
=0

(sab − iℓaab)
∏

a<b
ηS
ab
=0

(−sab − iℓaab), (3.7)

where Xab := Xa −Xb, and the parity factor σ(η) of the unique permutation π(a) acts on

η such that

π(a) < π(b) ⇒
(
ηπ(a) < ηπ(b)

)
or

(
ηπ(a) = ηπ(b) for a < b

)
. (3.8)

We would like to comment on two things about the vector multiplet sector. The first one

is to note that the one-loop determinant Zvec
1-loop(η

N,ηS) does not contain the dependence
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on the vorticities inside the products because we remove the singularities of the gauge field

by the gauge transformation (3.3). The second one lies in the degeneration of eigenvalues

of ηN,S. As one can see, Zvec
1-loop(η

N,ηS) shows nontrivial contributions if some of the eigen-

values of ηN,S degenerate, that is, ηN,S

ab = 0. This is in fact related to which Levi subgroup

L preserved by the defects we choose.

The localization calculation under the twisted boundary conditions provides the one-

loop determinant for the chiral multiplet

Zch
1-loop(η

N,ηS) = (−1)
∑

w[w(ηS)]∆
∏

w

Γ
(
∆
2 + w(s)− w(ηN)− iw(a)ℓ+ [w(ηN)]∆

)

Γ
(
1− ∆

2 + w(s) + w(ηS) + iw(a)ℓ− [w(ηS)]∆
)

= (−1)
∑

w{2w(s)+w(ηS)−w(ηN)}(−1)[w(ηN)]∆

×
∏

w

Γ
(
∆
2 − w(s)− w(ηS)− iw(a)ℓ+ [w(ηS)]∆

)

Γ
(
1− ∆

2 − w(s) + w(ηN) + iw(a)ℓ− [w(ηN)]∆
) , (3.9)

where the symbol [η]∆ represents an integer-valued function combining a ceiling function

and a floor function as

[η]∆ =

{
⌈η − ∆

2 ⌉ for ∆ < 1,

⌊η − ∆
2 + 1⌋ for ∆ > 1.

(3.10)

Note that the sign factor in (3.9) is selected in the way that the antipodal map under which

the sign of s is flipped and η
N,S are exchanged is still an anomalous symmetry. In what

follows, we accept the second line of (3.9) for our purpose to compare the contributions in

the presence of the defects with the results on the branched sphere.

3.2 Interplay of defects and conical singularities

Let us revisit the exact results on the branched sphere S2
q and indicate how the defect

interpretation of them works.

Vector multiplets. We can easily see that the one-loop determinant (2.33) for the vector

multiplet in the U(N) gauge group combined with the Vandermonde determiant (2.38) is

rewritten as

Zvec
1-loop =

∏

a<b

[
(ℓqaab)

2 + s2ab

]

=
∏

a<b

(iℓqaab + sab)
∏

a<b

(−iℓqaab + sab) . (3.11)

This is the vector contribution with the defects (3.7) up to the sign factor in the case where

the vorticities at the north and the south pole of S2
q are the same to be proportional to the

identity matrix 1,

η
N = η

S = η × 1. (3.12)

The condition (3.12) is natural to be taken since intensity of the conical singularities at

both poles is identical, and the scalar curvature is a value independent of the choice of
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the gauge group. The above expression contains only one vector multiplet, however, it is

seemingly not compatible with the situation explained in [2] where the contribution for the

vector on the q-covering space is given by gluing the contributions for q vector multiplets on

the defect background (eq. (4.18) in [2]). Nevertheless, we can recast (3.11) as that for the

vector with the existence of the defects. For the defects under consideration, we take away

the singularities of the gauge field by the irregular gauge transformation (3.3). Moreover,

the flux quantization condition is set on the q-covering space, which means that 2sa are still

integers and consistent with the condition on S2/ZK . Therefore, it still can be regarded

as the contribution (3.7) for a single vector multiplet consistently defined on the defect

background. Note that this discussion is special for two dimensions differently from higher

dimensions in which the codimension-2 defects are non-local. For general non-local defects,

we cannot naively take the higher form extension of the gauge transformation (3.3). In

summary, the vector multiplet on S2
q can be interpreted as the one on S2 with the defects

having the vorticities (3.12) under the gauge transformation (3.3).

Chiral multiplets. On the other hand, the one-loop determinant (2.37) for a single

chiral multiplet with R-charge ∆ can be re-expressed using the difference equation (A.12)

and the multiplication theorem (A.15) of the Gamma function so that

Zch
1-loop =

∏

w

Γ
(
∆
2 − iw(a)ℓq − w(s)

)

Γ
(
1− ∆

2 + iw(a)ℓq − w(s)
)

= q
∑

w{∆−2iw(a)ℓq−1}
q−1∏

k=0

∏

w

Γ
(

∆
2q − iw(a)ℓ− w(s)

q + k
q

)

Γ
(
1− ∆

2q + iw(a)ℓ− w(s)
q − k

q

) . (3.13)

Actually, as comparing with the result in the presence of the defects (3.9), the r.h.s. of (3.13)

is the collection of a contribution for a chiral multiplet on each sheet with a vorticity ηch,

η
N = η

S = ηch × 1,

ηch =
∆

2

(
1− 1

q

)
− k

q
, k = 0, 1, . . . , q − 1.

(3.14)

The ∆-dependence should be encoded into ηch because of twisting the supercharges by

introducing the background field V (2.10). Also, we can identify the factor (1 − 1
q ) with

the coefficient of the curvature singularity (2.2). Moreover, since we take the usual flux

quantization on the q-covering space, each contribution depends on a fractional magnetic

charge divided by q.

Although the conical singularities of S2
q may be translated into the language of the

vorticity, there are two obstructions remaining to claim the correspondence of the chiral

multiplets between in two pictures. One thing is that the function [η]∆ (3.10) could not

appear in the one-loop determinant (2.35) on S2
q . This discrepancy is originated from

the fact that the twisted boundary conditions are imposed on the fields on the defect

background, but not on the branched sphere.2 The other is the existence of the prefactor

2The author is thankful to Kazuo Hosomichi who has pointed out this.
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in the second line of (3.13) which includes the linear dependence on a. This dependence

actually changes the final value of the integral for the partition function. Note that the

linear ∆-dependence also appears in the prefactor, but because it is constant unlike the

a-dependence, we neglect it for the present.

To resolve these points, we should notice that our results on the branched sphere

S2
q computed by the localization may be available for the specific values of R-charges

corresponding to the theories which flow to superconformal field theories in IR. We expect

that the defect interpretation of our geometrical singularities works only in that case. To

confirm this statement, we calculate the R-charges for some gauged linear sigma models

(GLSMs) whose low energy theories describe Calabi-Yau (CY) manifolds as target spaces by

utilizing c-maximization [23, 24] in appendix C. It is found from simple computations that

such R-charges satisfy the condition 0 < ∆ < 1 in all cases, and, as a result, [ηch]∆ = 0 for

small ηch. This somehow supports the thing commented in [14] that the twisted boundary

conditions do not give the effect of introducing the factor [η]∆ in the one-loop determinant if

the vorticity is small. Thus, the defect expression (3.13) of our result should not contain the

integer-valued function [η]∆ in the region of the R-charge where the localization calculation

becomes reliable. Also, since these theories must be non-anomalous for the gauge symmetry,

the a-dependent part of the prefactor in (3.13) are completely cancelled out with combining

all matter contents. As a consequence, the contributions (2.33) and (2.37) for the field

contents on the S2
q can be translated into the languages of the defect background (3.7)

and (3.9) for the specific R-charge with which the theory exhibits superconformal symmetry.

In conclusion, we can provide the description of the superconformal field theories defined

on the branched sphere as in the presence of the defects with equal and small vorticities

located on the north and the south pole.

4 Discussions

We derive the exact formulas on the q-branched two-sphere. The one-loop determinant for

each multiplet itself has the dependence on the parameter q, whereas it is found that the

partition function is essentially independent of q. Consequently, the supersymmetric Rényi

entropy defined by it becomes equivalent to the usual entanglement entropy. We also give

the defect interpretation to our results and show that it can work when we consider the

theories with an appropriate R-charge which flow to superconformal theories. However,

there exists a subtlety about the prefactor in (3.13). Its linear dependence on ∆ which

we ignore looks like the anomaly contribution because a scaling dimension is a half of the

R-charge ∆. Although this part arises simply from rewriting the Gamma functions and

can be absorbed in the normalization factor, now we are not sure that this is really related

to c-anomaly.

As a future work, we will continue to investigate TBH3/qSCFT2. We naively expect

that the gravity background dual to qSCFT2 is the Bandos-Teitelboim-Zanelli (BTZ) black

hole [25] with some charge [26, 27]. In other words, the entropy of the charged BTZ

black hole as a solution in three-dimensional supergravity [28] might be independent of q

encoded as the periodicity of the Euclidean time direction, or we might see this expectation
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quantitatively in the framework of the supergravity embedded into the string theory as

discussed in [13]. We would like to understand more physically the q-independence of the

SRE from the gravitational point of view.
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A Preliminaries

Convention. We use the gamma matrices γa (a = 1, 2) and the chirality matrix γ3
defined by

γa = σa, γ3 = −iγ1γ2 = σ3, (A.1)

where σA (A = 1, 2, 3) are Pauli matrices, and a, b are indices of the local Lorentz flame.

In addition, we take charge conjugation as C = σ2 with C−1 = C. This matrix acts on the

gamma matrices such that

CγAC
−1 = −γTA. (A.2)

We define the inner product of spinors using C as

ǫλ := ǫαCαβλ
β = λǫ. (A.3)

We should note that the Fierz identity for the fermionic spinors3 is given by

ξ (ǭλ) = −1

2
[λ (ǭξ) + γµλ (ǭγ

µξ) + γ3λ (ǭγ3ξ)] . (A.5)

When ξ = λ and they are matrix-valued, we can obtain the following relations:

0 = [ǭλ, λ]− [ǭγ3λ, γ3λ]− [ǭγµλ, γµλ],

0 =
(
λ̄ǫ2

) (
λ̄ǫ1

)
−
(
λ̄γ3ǫ2

) (
λ̄γ3ǫ1

)
+
(
λ̄γµǫ1

) (
λ̄γµǫ2

)
.

(A.6)

For our Killing spinors (2.11), the significant bilinear of them is

ξ̄ξ = −1, ξ̄γAξ =
(
0 sin θ cos θ

)
. (A.7)

3For the bosonic spinors,

ξ
(

ǫ
†
λ
)

=
1

2

[

λ
(

ǫ
†
ξ
)

+ γµλ
(

ǫ
†
γ
µ
ξ
)

+ γ3λ
(

ǫ
†
γ3ξ

)]

. (A.4)
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The Hurwitz zeta function. The Hurwitz zeta function ζ(z, p) is defined by

ζ(z, p) =
∞∑

n=0

1

(p+ n)z
(A.8)

for z, p ∈ C and Re[z] > 1. The derivative of this function with respect to z,

∂

∂z
ζ(z, p) = −

∞∑

n=0

log (p+ n)

(p+ n)z
, (A.9)

has an useful formula

log Γ(p) =
∂

∂z
ζ(z, p)

∣∣∣
z=0

− d

dz
ζ(z)

∣∣∣
z=0

, (A.10)

where Γ(p) is the Gamma function, and ζ(z) is the standard zeta function. We apply (A.10)

to regulaitng the divergent product so that

∏

n≥0

(p+ n) →
√
2π

Γ(p)
. (A.11)

The Gamma function. The Gamma function satisfies the famous difference equations,

Γ(z + 1) = zΓ(z), Γ(1− z) = −zΓ(−z), (A.12)

where the second relation can be concluded by the important reflection formula

Γ(z)Γ(1− z) = −zΓ(z)Γ(−z) =
π

sinπz
. (A.13)

Another expression of the Gamma function is Euler’s infinite product formula

Γ(z) =
1

z

∞∏

n=1

(
1 +

1

n

)z (
1 +

z

n

)−1
, (A.14)

which is used to show the multiplication theorem of Gauss and Legendre [29]

Γ(nz) = (2π)
1−n
2 nnz− 1

2

n−1∏

k=0

Γ

(
z +

k

n

)
. (A.15)

B Localization

B.1 Supersymmetry algebra

As a consistency check for our supersymmetry to be well-defined on S2
ǫ , the supersymmetry

algebra for the vector multiplet closes as,
[
δξ, δξ̄

]
Aµ = (LA

v A)µ +DµΛ,[
δξ, δξ̄

]
ρ = LA

v ρ+ i[Λ, ρ],
[
δξ, δξ̄

]
σ = LA

v σ + i[Λ, σ],
[
δξ, δξ̄

]
λ = LA

v λ+ i[Λ, λ]− iRV λ,[
δξ, δξ̄

]
λ̄ = LA

v λ̄+ i[Λ, λ̄] + iRV λ̄,[
δξ, δξ̄

]
D = LA

v D + i[Λ, D],

(B.1)
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and for the chiral multiplet closes as,
[
δξ, δξ̄

]
φ = LA

v φ+ iΛφ+ i∆RV φ,[
δξ, δξ̄

]
φ̄ = LA

v φ̄− iφ̄Λ− i∆RV φ̄,[
δξ, δξ̄

]
ψ = LA

v ψ + iΛψ + i (∆− 1)RV ψ,[
δξ, δξ̄

]
ψ̄ = LA

v ψ̄ − iψ̄Λ− i (∆− 1)RV ψ̄,[
δξ, δξ̄

]
F = LA

v F + iΛF + i (∆− 2)RV F,[
δξ, δξ̄

]
F̄ = LA

v F̄ − iF̄Λ− i (∆− 2)RV F̄ ,

(B.2)

where we set the parameters corresponding to the symmetries,

translation : vµ = iξ̄γµξ,

gauge transformation : Λ = ξ̄ξσ − iξ̄γ3ξρ,

R-rotation : RV = −1

4

(
Dµξ̄γ

µξ − ξ̄γµDµξ
)
.

(B.3)

In the above algebra, LA
v is the gauge-covariant Lie derivative along the vµ acting on the

fields in the adjoint representation as

LA
v A = vµFµνdx

ν ,

LA
v σ = vµ (∂µσ − i[Aµ, σ]) ,

LA
v λ = vµ (∇µλ− i[Aµ, λ]) +

1

4
(∇µvν) γ

µνλ,

(B.4)

and on these in the representation R as

LA
v φ = vµ (∂µ − iAµ)φ,

LA
v ψ = vµ (∇µ − iAµ)ψ +

1

4
(∇µvν) γ

µνψ.
(B.5)

B.2 Vector multiplets

We can acquire the linearized SYM Lagrangian by expanding LSYM with fluctuations

around the locus (2.30). Certainly, it contains only quadratic terms, and we write the

field ϕ in the adjoint representation in terms of the Cartan-Weyl basis

ϕ =
∑

i∈Cartan

ϕiHi +
∑

α∈root
ϕαEα, (B.6)

where Hi are Cartan generators, and we use the nomalization Tr [EαEβ] = δα+β . Then,

from the linearized Lagrangian, we extract the differential operator ∆b
vec acting on the

bosonic fluctuations (A′, σ′, ρ′)T in the matrix form as

∆b
vec =




− ∗ D(0) ∗ D(0) + α(a)2 + α(s)2

ℓ2q2
iα(a)D(0) −iα(s)

ℓq
D(0) + ∗D(0)

√

fǫ
ℓ

iα(a) ∗ D(0)∗ − ∗ D(0) ∗ D(0) + α(s)2

ℓ2q2
α(s)
ℓq

α(a)

−iα(s)
ℓq

∗ D(0) ∗ −
√

fǫ
ℓ

∗ D(0) α(s)
ℓq

α(a) − ∗ D(0) ∗ D(0) + α(a)2 + fǫ
ℓ2


 ,

(B.7)

where ∗ is the Hodge dual, and D(0) means the covariant derivative defined with the locus

value. For later computation, we omit the prime representing the fluctuations.
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Gauge fixing. We actually need fixing gauge to obtain the correct one-loop determinant

for the vector multiplet. For this purpose, it can be found that the operator ∆b
vec has the

following unphysical modes satisfying its eigenvalue equation:

• Zero modes:


Aα

σα

ρα


 =




iD(0)ρ

−α(a)ρ
α(s)
ℓq ρ


 with eigenvalue 0. (B.8)

• Longitudinal modes:



Aα

σα

ρα


 =



−iα(a)D(0)ρ

∆̃
(0)
vecρ

α(s)
ℓq α(a)ρ


 with eigenvalue

(
∆̃(0)

vec + α(a)2
)
, (B.9)

where ∆̃
(0)
vec is the eigenvalue of the operator

∆(0)
vec := − ∗ D(0) ∗ D(0) +

α(s)2

ℓ2q2
. (B.10)

The zero modes correspond to the gauge symmetry whose gauge volume in the path integral

should be removed by introducing the Faddeev-Popov determinant. We follow the short-cut

for fixing this gauge explained in [17]. We should insert the factor
∏

i δ(xi) in the integration

measure to exclude the zero modes, where x represents a set of the eigenmodes. The

Faddeev-Popov derteminant ∆PF is taken as the Jacobian for the change of the variables

from xi to the zero mode ρ, which can be determined by

1 =

∫
DADσDρ exp

[
−1

2

∫
Tr

(
A−α∧∗Aα + σ−α∧∗σα + ρ−α∧∗ρα

)∣∣∣∣
zero modes

]

= ∆PF

∫
D′ρ exp

[
1

2

∫
Tr

(
ρ∧∗

(
− ∗ D(0) ∗ D(0) + α(a)2 +

α(s)2

ℓ2q2

)
ρ

)]
, (B.11)

where D′ means the integration excluding the zero modes. In fact, ∆PF exactly cancels the

one-loop contribution from the longitudinal modes [17].

The remaining problem to calculate the one-loop determinant for the vector multiplet

is to find the pairing structure, that is, which physical (transverse) bosonic and fermionic

eigenmodes can be mapped each other by the generators of supersymmetry, ξ, ξ̄. To do

this, it is useful to take a gauge [12]

∗D(0) ∗Aα = i
α(s)

ℓq
ρα, σα = 0, (B.12)

and then the differential operator ∆b
vec reduces to

∆b
vec =

(
− ∗ D(0) ∗ D(0) + α(a)2 + α(s)2

ℓ2q2
−iα(s)ℓq D(0) + ∗D(0)

√
fǫ
ℓ

−iα(s)ℓq ∗ D(0) ∗ −
√
fǫ
ℓ ∗ D(0) − ∗ D(0) ∗ D(0) + α(a)2 + fǫ

ℓ2

)
. (B.13)
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In addition to this gauge, as described in [12], we can make the eigenvalue problem of ∆b
vec

simpler by defining the operator δbvec satisfying

det∆b
vec =

(
det δbvec

)2
, (B.14)

provided that the eigenvalue of δbvec is −i(M − α(a)) with some value M . One can easily

find δbvec, and we also introduce the differential operator ∆f
vec acting on the fermionic

fluctuations as

δbvec =

(
iα(a)− iα(s)ℓq ∗ − ∗ D(0)

∗D(0) iα(s)−
√
fǫ
ℓ

)
, (B.15)

∆f
vec = iγµD(0)

µ − iα(a) +
1

ℓq
γ3α(s). (B.16)

Accordingly, what we should do is to discover M by solving the differential equations

derived from the action of the operator δbvec.

Pairing structure. As the next step, we need to find the boson and fermion eigenmodes

which can be mapped each other. For the fermion eigenmodes Σ, provided that

Σ =
(
γµAµ + γ3Υ

)
ξ, (B.17)

δbvecB = −iMB, (B.18)

where B = (A Υ)T, we can find the eigenvalue M such that

∆f
vecΣ = iMΣ. (B.19)

Similarly for the boson eigenmodes B, when we assume (B.19) and make the map

(
A
Υ

)
=

(
−iM ′ξ̄γµeµΣ+ iD(0)

(
ξ̄Σ

)

−iM ′ξ̄γ3Σ+ α(s)
ℓq ξ̄Σ

)
, (B.20)

where M ′ := M + α(a), we can derive the eigenvalue equation

δbvecB = −iMB. (B.21)

Thus, the pair of the eigenmodes (B.17) and (B.20) gives the trivial one-loop determinant.

Unpaired eigenmodes. To obtain the nontrivial contribution, we would like to find the

unpaired eigenmodes annihilated by the above maps. We take the ansatz for the unpaired

fermion and boson eigenmodes from the vanishing conditions of Υ and Σ, respectively,

namely,

Υ = 0 in (B.20) ⇒ Σ = g(ϑ, τ)

(
γ3ξ̄ − i

α(s)

M ′ℓq
ξ̄

)
, (B.22)

Σ = 0 in (B.17) ⇒
(
A
Υ

)
=

(
g̃(ϑ, τ)

(
e1 − i cosϑe2

)

ig̃(ϑ, τ) sinϑ

)
, (B.23)
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where g(ϑ, τ) and g̃(θ, τ) are functions with R-charge −2 and 0, respectively. This Σ (B.22)

must satisfy A = 0 and the eigenvalue equation (B.19) simultaneously. These conditions

seem to be in the overdetermined system because there is only one unknown function

g(θ, τ). However, one can find that the solution of A = 0 under the assumption (B.22) au-

tomatically satisfy the eigenvalue equation for Σ. The similar situation happens on (B.23):

one can check that these satisfy the eigenvalue equation (B.18) and the gauge-fixing con-

dition (B.12) simultaneously in the way that one condition automatically leads to others.

Then, the condition A = 0 and the substitution of (B.23) into the upper component

of (B.18) reduce to the differential equations for g(ϑ, τ) and g̃(ϑ, τ):

A = 0 with (B.22) ⇒





0 = i

(
M ′ +

i
√
fǫ
ℓ

)
cosϑg +

α(s)

ℓq
g −

√
fǫ
ℓ

sinϑ∂ϑg,

0 =

(
M ′ − i

α(s)

ℓq
κ+

i

ℓq

)
g +

1

ℓq
∂τg,

(B.24)

Upper component of (B.18)

with (B.23)
⇒





0 =

(
M ′ − i

√
fǫ
ℓ

)
cosϑg̃ − i

α(s)

ℓq
g̃ − i

√
fǫ
ℓ

sinϑ∂ϑg̃,

0 = i

(
M ′ − i

α(s)

ℓq
κ

)
g̃ +

i

ℓq
∂τ g̃.

(B.25)

Because these equations in (B.24) and (B.25) are completely separated in terms of the

coordinates, we now can set g(ϑ, τ) = eijτh(ϑ) and g̃(ϑ, τ) = eijτ h̃(ϑ) with j ∈ Z. Consid-

ering the regular conditions of h(ϑ) and h̃(ϑ) around the north pole (ϑ ∼ 0) and the south

pole (ϑ ∼ π) constraints the allowed values for j, and the corresponding eigenvalues M are

given by

(B.24) for fermions ⇒ Mℓq =

{
− i (j − iα(a)ℓq + |α(s)|) for α(s) 6= 0,

− i (j + 1− iα(a)ℓq) for α(s) = 0,
(B.26)

(B.25) for bosons ⇒ Mℓq = −i (j − iα(a)ℓq − |α(s)|) , (B.27)

where j ≥ 0 in (B.26) and j ≤ −1 in (B.27). Note that we do not take the limit ǫ → 0 in

the above process, which means the results can be naively regarded as these on S2
q .

One-loop determinant. Finally, combining (B.26) and (B.27) provides the one-loop

determinant for the vector multiplet (up to the sign factor represented by ≃)

Zvec
1-loop =

det∆f
vec

det δbvec

≃
∏

α


 ∏

α(s) 6=0

∏
j≥0 (j − iα(a)ℓq + |α(s)|)

∏
j≤−1 (j − iα(a)ℓq − |α(s)|)




 ∏

α(s)=0

∏
j≥0 (j + 1− iα(a)ℓq)
∏

j≤−1 (j − iα(a)ℓq)




≃
∏

α>0
α(s) 6=0

[
(α(a)ℓq)2 + α(s)2

]
(B.28)
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B.3 Chiral multiplets

As for the vector multiplet, we get the linearized Lagrangian by expanding Lch around the

locus (2.32) and define the differential operators

∆b
ch = −D(0)µD(0)

µ + w(a)2 +
w(s)2

ℓ2q2
+ i

(∆− 1)
√
fǫ

ℓ
w(a) +

∆(2−∆)fǫ
4ℓ2

, (B.29)

∆f
ch = −iγµD(0)

µ + iw(a)− 1

ℓq
γ3w(s)− ∆

√
fǫ

2ℓ
, (B.30)

acting on the bosonic and fermionic fluctuations, respectively.

Pairing structure. Again, we can construct the pairing map between boson eigenmodes

and fermion eigenmodes of the chiral multiplet. If we assume the following map from boson

Φ to fermion Ψ and the eigenvalue equation for Φ,
(
Ψ1

Ψ2

)
=

(
ξΦ

iγµξD(0)
µ Φ+ iξw(a)Φ + ξ

(
1
ℓqγ

3w(s)− ∆
√
fǫ

2ℓ

)
Φ

)
, (B.31)

∆b
chΦ = M

(
M − 2iw(a) +

∆− 1

ℓ

)
Φ, (B.32)

with the eigenvalue M , then we can obtain first order differential equations for Ψ1,2

∆f
chΨ1 =

(
2iw(a)− (∆− 1)

√
fǫ

ℓ

)
Ψ1 −Ψ2,

∆f
chΨ2 =

{
−M

(
M − 2iw(a) +

∆− 1

ℓ

)
ξ +

f ′
ǫ

4ℓ2 sin θ
ξγ3 − i

∆f ′
ǫ

4ℓ2
ξγ1

}
Φ.

(B.33)

To produce the results on the branched sphere, we now take the limit ǫ → 0, that is,

fǫ → 1 (or equivalently, picking up the zeroth order of ǫ). The equation (B.33) with the

limit results in the simple eigenvalue equation for Ψ in the matrix form

∆f
ch

(
Ψ1

Ψ2

)
=

(
2iw(a)− ∆−1

ℓ −1

−M
(
M − 2iw(a) + ∆−1

ℓ

)
0

)(
Ψ1

Ψ2

)
. (B.34)

Similarly, provided that

Φ = ξ̄Ψ, (B.35)

∆f
chΨ = MΨ, (B.36)

we can derive a differential equation for Φ

∆b
chΦ =

{
M2ξ̄ − 2iMw(a)ξ̄ +

(∆− 1)
√
fǫ

ℓ
Mξ̄

−i
(∆− 1)f ′

ǫ

4ℓ2
ξ̄γ1 +

1

4ℓ2
cot θf ′

ǫξ̄ −
(∆− 1)f ′

ǫ

4ℓ2 sin θ
ξ̄γ3

}
Ψ, (B.37)

which still mixes with Ψ. Actually, the limit ǫ → 0 reduces this to the eigenvalue equation

∆b
chΦ = M

(
M − 2iw(a) +

∆− 1

ℓ

)
Φ. (B.38)
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Unpaired eigenmodes. Let us turn to find the unpaired modes which cannot be mapped

under (B.31) and (B.35). For the unpaired fermion modes, we take an ansatz

Φ = 0 in (B.35) ⇒ Ψ = ξ̄g(ϑ, τ), (B.39)

where g(ϑ, τ) is a function with R-charge ∆− 2. For the unpaired boson modes, when two

fermion eigenmodes satisfy the relation

Ψ2 = MΨ1, (B.40)

there does not exist the map from the boson eigenmode Φ to these fermion eigenmodes.

This is because

∆f
ch

(
Ψ1

Ψ2

)
= −

(
M − 2iw(a) +

∆− 1

ℓ

)(
Ψ1

Ψ2

)
, (B.41)

that is, the eigenvalue of the fermion eigenmodes is −
(
M − 2iw(a) + ∆−1

ℓ

)
in this case, and

they are not independent each other via (B.40). Thus, the eigenvalue −M which does not

make a pair with that of the boson eigenmode can contribute to the one-loop determinant.

Substituting (B.39) and (B.40) into the eigenvalue equation (B.34) and the pairing

map (B.31), respectively, reduces to the differential equations for the unpaired modes

(B.34) with (B.39) ⇒





0 =

(
M − iw(a) +

(∆− 2)
√
fǫ

2ℓ

)
cosϑg +

w(s)

ℓq
g −

√
fǫ
ℓ

sinϑ∂ϑg,

0 = −i

(
M − iw(a) +

w(s)

ℓq
κ+

∆− 2

2ℓq

)
g +

1

ℓq
∂τg,

(B.42)

(B.31) with (B.40) ⇒





0 = −
(
M − iw(a) +

∆
√
fǫ

2ℓ

)
cosϑΦ− w(s)

ℓq
Φ−

√
fǫ
ℓ

sinϑ∂ϑΦ,

0 =

(
M − iw(a) +

w(s)

ℓq
κ+

∆

2ℓq

)
Φ+

i

ℓq
∂τΦ.

(B.43)

Obliviously, we can factorize the coordinate dependence of the functions such that g(ϑ, τ) =

eijτh(ϑ) and Φ(ϑ, τ) = eijτ h̃(ϑ) with j ∈ Z. As before, normalizability of h(ϑ) and h̃(ϑ)

imposes restrictions on the possible values of j, and then the eigenvalues M for the boson

and fermion modes are obtained as

(B.42) for fermions ⇒ Mℓq = j + 1 + iw(a)ℓq + |w(s)| − ∆

2
, (B.44)

(B.43) for bosons ⇒ Mℓq = j + iw(a)ℓq − |w(s)| − ∆

2
, (B.45)

where j ≥ 0 in (B.44) and j ≤ 0 in (B.45).
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One-loop determinant. Eventually, combining (B.44) and (B.45) results in the non-

trivial one-loop determinant for the chiral multiplet

Zch
1-loop =

det∆f
ch

det∆b
ch

=
∏

w

∏
j≥0

(
j + 1 + iw(a)ℓq + |w(s)| − ∆

2

)
∏

j≤0−
(
j + iw(a)ℓq − |w(s)| − ∆

2

)

=
∏

w

Γ
(
∆
2 − iw(a)ℓq + |w(s)|

)

Γ
(
1− ∆

2 + iw(a)ℓq + |w(s)|
) , (B.46)

where, in the last line, we regularize the infinite products by using the formula of the

Hurwitz zeta function (A.10).

C Examples of N = (2, 2) theories

In this appendix, we calculate R-charges ∆ for some 2d N = (2, 2) theories which flow

in the IR to nonlinear sigma models (NLSMs) describing CY manifolds as target spaces.

The results confirm the condition 0 < ∆ < 1, which means that the integer-valued function

[η]∆ (3.10) with vorticity (3.14) vanishes in the theories where our exact results are reliable.

The program which we apply to obtaining correct R-charges in SCFTs is proposed as c-

extremization [23, 24] which is analogue to a-maximization in 4d [30].

Example 1: the quintic.

U(1) U(1)R

Φa +1 ∆Φ

P −n ∆P

(C.1)

The first example is a GLSM describing a CY hyperplane in P
n−1 which contains the fields

Φa (a = 1, · · · , n) and P shown in (C.1). They are coupled through the superpotential

W = Pf(Φ) where f(Φ) is a polynomial of degree n in Φa. This superpotential sets the

constraint n∆Φ +∆P = 2, thus, the trial function c̃ is given by

c̃

3
= n(∆Φ − 1)2 + (∆P − 1)2 − 1

= n(∆Φ − 1)2 + (n∆Φ − 1)2 − 1. (C.2)

Then, the c-extremization procedure leads to the R-charges,

dc̃

d∆Φ
= 0 ⇒ ∆Φ = ∆P =

2

n+ 1
< 1. (C.3)

Example 2: K3.

U(1)1 U(1)2 U(1)R

Xa +1 0 ∆X

Yã 0 +1 ∆Y

P −2 −3 ∆P

(C.4)
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Another simple case is an U(1)1 × U(1)2 gauge theory describing an elliptically fibered

K3 as a NLSM at the low energy. There are three kinds of fields Xa (a = 1, 2), Yã (ã =

1, 2, 3), and P which form the superpotential W = Pf(X,Y ) with f(X,Y ) a polynomial

of degree (2, 3) in (Xa, Yã). Accordingly, W imposes the constraint on these R-charges as

2∆X + 3∆Y +∆P = 2. The trial function c̃ using this constraint is given by

c̃

3
= 2(∆X − 1)2 + 3(∆Y − 1)2 + (∆P − 1)2 − 2

= 2(∆X − 1)2 + 3(∆Y − 1)2 + (2∆X + 3∆Y − 1)2 − 2, (C.5)

then c-extremization provides the R-charges as solutions for simultaneous equations,

∂c̃

∂∆X
=

∂c̃

∂∆Y
= 0 ⇒ ∆X = ∆Y = ∆P =

1

3
< 1. (C.6)

Example 3: the resolved WP
4

1,1,2,2,2
[8].

U(1)1 U(1)2 U(1)R

Xa 0 +1 ∆X

Yã +1 0 ∆Y

Z +1 −2 ∆Z

P −4 0 ∆P

(C.7)

There is a simple but nontrivial example of a GLSM which describes a Calabi-Yau three-

fold (CY3) which is the resolution of a weighted degree 8 hypersurface in a 4d weighted

projective space WP
4
1,1,2,2,2[8] [31, 32]. The field contents are summarized in (C.7) (a = 1, 2

and ã = 1, 2, 3). The superpotential is set to be W = Pf(X,Y, Z) where f(X,Y, Z) is a

wighted homogeneous polynomial of degree (2, 3, 1) in (Xa, Yã, Z), which gives the con-

straint 2∆X + 3∆Y +∆Z +∆P = 2. The trial function c̃ is written by

c̃

3
= 2(∆X − 1)2 + 3(∆Y − 1)2 + (∆Z − 1)2 + (∆P − 1)2 − 2

= 2(∆X − 1)2 + 3(∆Y − 1)2 + (∆Z − 1)2 + (2∆X + 3∆Y +∆Z − 1)2 − 2. (C.8)

The c-extremization procedure gives simultaneous equations whose solutions are the precise

values of the R-charges,

∂c̃

∂∆X
=

∂c̃

∂∆Y
=

∂c̃

∂∆Z
= 0 ⇒ ∆X = ∆Y = ∆Z = ∆P =

2

7
< 1. (C.9)
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[arXiv:1401.6764] [INSPIRE].

[6] X. Huang and Y. Zhou, N = 4 super-Yang-Mills on conic space as hologram of STU

topological black hole, JHEP 02 (2015) 068 [arXiv:1408.3393] [INSPIRE].

[7] M. Crossley, E. Dyer and J. Sonner, Super-Rényi entropy & Wilson loops for N = 4 SYM
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