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plings accessible at the Large Hadron Collider. New fermions that affect Higgs couplings

lead to vacuum instability of the Higgs potential. Above the scale of vacuum instability,

bosonic states must stabilize the potential, implying a cut-off to the pure fermion model.

Conservatively tuning the models to produce the maximal cut-off for a given Higgs coupling

effect, we show that observing a deviation in the Htt, H-diphoton, or H-digluon coupling,

larger than 20%, would require that new bosons exist in order to stabilize the Higgs po-

tential below about 100 TeV. For generic parameter configurations, and unless the new

fermions are made as light as they can possibly be given current experimental constraints,

observing a 10% deviation in any of these couplings would suggest an instability cut-off

below 10–100 TeV. Similarly, if new bosons are absent up to a high scale, then a deviation

in the Hbb or Hττ coupling, larger than about 20%, should be accompanied by a sizable

deviation in the Zbb or Zττ couplings that can be conclusively tested with electroweak

precision measurements at planned lepton colliders.
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1 Introduction

The large hadron collider (LHC) Run-I gave us the Higgs boson, but the weak scale hi-

erarchy problem does not seem closer to a solution than it did decades ago. This may

change with new experimental information in Run-II, of which improved Higgs coupling

measurements [1–6] are a guaranteed outcome. A natural question to ask, is whether this

Higgs particle that was found is the only one of its kind, namely, the only scalar particle

up to very high energies.
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Indeed, proposed solutions to the hierarchy problem include new bosonic states beyond

the Standard Model (SM). Examples are the scalar super-partners of the SM fields in

supersymmetry [7] and the bosonic resonances in composite Higgs models [8, 9]. In these

examples, the scale at which the new bosonic states become dynamical marks the cut-off

of the quadratic divergence in the quantum corrections to the Higgs mass.

In this paper we show that measuring deviations in Higgs couplings at the LHC can

establish the presence of new bosonic states, even if these bosons do not directly affect any

Higgs coupling and are beyond reach of direct production. To show this, we proceed by

elimination: we analyze the possibility that Higgs coupling modifications arise due to new

fermionic states, without any new bosons up to a scale ΛUV. Our task is then to derive an

upper bound on ΛUV. As we show, this upper bound is found from vacuum stability.

To explain the logic, note that the only way to couple new fermions to the Higgs is

through Yukawa couplings. New Yukawa interactions can certainly affect Higgs couplings

to SM states, e.g. through new fermions running in the Hγγ or HGG loop amplitudes,

or mixing with the SM leptons or quarks at tree level. However, as we shall show, the

new Yukawa couplings must be sizable to generate a measurable deviation. Large Yukawa

couplings have a definite effect in the renormalization group evolution (RGE) of the Higgs-

self quartic coupling, driving the quartic negative and leading to an instability in the

effective potential [10]. To fix this instability, at least within the domain of validity of a

perturbative analysis, new bosonic states are needed.1

Vacuum stability has been invoked as a constraint on the SM effective theory in the

past (for an early review see, e.g. [11]). A point that drew much attention in the days

prior to the Higgs discovery and the precise measurement of the top quark mass, was the

fact that measuring a heavy top quark or a light Higgs would have indirectly but robustly

excluded the SM and required new physics to enter around a cut-off scale Λ that, for certain

(then plausible) values of mt and mh, could have been within reach of collider experiments

such as the (then futuristic) LHC [12–18]. Our paper can be thought of as an update

circa-2015 of this logic. Today, having measured both the top and the Higgs masses to

impressive accuracy (establishing that the SM Higgs potential is consistent with vacuum

stability up to very high scales [19–21]), the missing crucial experimental information is

the precise values of the Higgs couplings.

By the end of the LHC 14 TeV program we expect uncertainties in the ballpark of 5-

10% on Hbb, Hττ , Hγγ, HGG, Htt, HZZ, HWW with 300 fb−1 of data [22]. Postponing

more details to the body of the paper, our generic quantitative statement here is that a

deviation at the O(10%) level in any of the Hγγ, HGG, or Htt couplings would imply that

new bosonic states must stabilize the Higgs potential below a scale ΛUV ∼ 100 TeV. An

O(10%) deviation in the Hbb or Hττ coupling should be accompanied by a corresponding

deviation in the Zbb or Zττ couplings at the permille level, well within the expected

resolution of planned GigaZ machines such as the international linear collider (ILC) or

1An alternative logical possibility is that the Higgs scalar itself ceases to exist as a fundamental state

above a cut-off scale ΛUV. This alternative is even more exciting but we are not aware of a framework

in which this happens without new bosonic degrees of freedom (fundamental or composite) becoming

dynamical close to the same scale.
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circular electron-positron colliders in China or at CERN; ruling out this corresponding Z-

pole deviation would rule out pure fermion models. In addition, while we do not report a

detailed analysis of this point here, applying our results to the HWW and HZZ couplings

suggests strong vacuum stability constraints, strong enough to imply that observing a

deviation in one of these channels at the LHC would rule out pure fermion models.

Our results can be turned around to serve as generic prediction for the Higgs couplings

in theories that do not contain new bosonic states up to very high scales, such as split

supersymmetry [23–26] and its variants. According to our analysis, this general class of

models predicts that Higgs coupling modifications will not be discoverable (or just very

barely) at the LHC. This is not a trivial point because low-lying fermions, protected by

chiral symmetries, could in principle be accommodated in these theories and couple to

SM fields.

Our results are relevant to the high-luminosity LHC as well as to a future lepton collider

such as the ILC, the electron-positron mode of the future circular collider FCC-ee (formerly

known as TLEP) and the circular electron positron collider (CEPC), that promise percent

and even sub-percent accuracy on Higgs coupling measurements [22, 27–31].

The body of this paper deals with the calculation of the cut-off scale ΛUV that could

be inferred from measuring a deviation in the Higgs couplings to SM states. Since our

derivation requires that we add only new fermions but no scalars or vector bosons, and

since exotic chiral fermions are either ruled out already or, where they are not, require

very large Yukawa couplings and so make our instability analysis trivial, we will only be

dealing with new vector-like fermion representations. The fact that a sizable deviation in

Higgs couplings in a pure-fermion theory renders the Higgs potential unstable was noted

in several works [32–37] (for related analyses in the context of theories with extra new

physics scalars, see e.g. [38–51]). None of these works, however, have made the instability

issue their primary quantitative focus. The closest in spirit to our current analysis are

refs. [52] and [53], where the instability calculation was done for the specific channels of

Hγγ and HGG. Here we expand on these works significantly by refining the instability

calculation (using the one-loop, two-loop RGE-improved Coleman-Weinberg potential) and

by generalizing to additional Higgs couplings.

The rest of this paper is organized as follows. In section 2 we consider Higgs couplings

to SM fermions Hff . We begin by analyzing the Hbb coupling in section 2.1, and use this

first example to illustrate our calculation of the Higgs effective potential and our definition

of the vacuum instability scale ΛUV. We then proceed with the Hττ and Htt analyses in

sections 2.2 and 2.3. We survey all of the new physics vector-like fermion representations

that could mix with SM fermions at tree level, inducing Higgs-SM fermion coupling modi-

fications. Analyzing together the Higgs and Z-boson couplings, we show that the Hff and

Zff coupling deviations are correlated. This leads to strong constraints on the Hbb and

Hττ couplings. In section 2.2.1 we devote special attention to validating our analytical

results with numerical calculations for the case of light vector-like fermions. In section 3

we analyze the Hγγ and HGG couplings. We conclude in section 4. Appendix A provides

details of our calculation of the Higgs effective potential. Appendix B contains details of

the Higgs-fermion coupling analysis, surveying all of the relevant vector-like fermion rep-
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resentations that can mix with the SM states and presenting some useful formulae derived

using effective field theory. In appendix C we give a rough, but rather inclusive, assessment

of the collider constraints on new physics fermions, based on the results of Run-I of the

LHC. This survey of the current experimental constraints is important in particular for the

Htt, HGG, and Hγγ analyses.

2 Higgs couplings to fermions

Our task in this section is to consider the possible ways in which new vector-like fermions

could mix with the SM fermions f , inducing δrf 6= 0 where

δrf ≡
(
ghff − gSM

hff

)
/gSM
hff . (2.1)

Only a few vector fermion representations can mix with the SM fermions. In ap-

pendix B we survey these representations, as well as define our notation for the SM and

new physics fields. Higgs couplings and electroweak observables in some of these models

have been studied extensively in the literature [33, 34, 54–56]. LEP and LHC constraints

imply that new charged fermions cannot be too light. In appendix C we summarize the

existing collider constraints, finding that M > 600 GeV is a conservative lower limit on the

mass scale of b and t quark partners in all cases of interest to us. This relatively heavy mass

scale justifies the use of effective field theory (EFT) in analyzing the induced modifications

to Higgs-quark couplings. For non-colored fermions the collider bounds are weaker, and

we will devote some effort to extend the EFT analysis when dealing with Higgs-lepton

couplings.

Integration-out of heavy vector fermions up to non-renormalizable operators of dimen-

sion six is done in appendix B. From this exercise one finds that the effective Higgs and

Z-boson couplings to the SM fermions exhibit correlated modifications: large deviations in

the effective Hff couplings imply sizable deviations in the Zff couplings. This leads to

vacuum stability constraints that can be very relevant for the interpretation of upcoming

Hbb and Hττ data, as we show in detail below. In addition, for the top quark, the fact that

the SM top Yukawa coupling is O(1) implies that large new physics effects are required to

deform the Htt vertex appreciably, leading again to a strong vacuum stability constraint

in the case of pure fermion models.

2.1 Hbb

To analyze the vacuum stability constraints on the effective Hbb coupling, and the interplay

with precision Zbb data, we begin with a concrete model example. Consider the vector-like

fermion representation

Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
, D(3, 1)− 1

3
, Dc(3̄, 1) 1

3
(2.2)

with the potential

VNP =YQdcH
†Qdc + YqDcH

†qDc + YQDcH
†QDc + YQcDH

T εQcD

+MQQ
T εQc +MDDD

c + cc. (2.3)

This representation is denoted as rep’ DI in appendix B.

– 4 –
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Figure 1. The one-loop Higgs effective potential, shown for the SM (blue) and in the presence of

the vector-like fermions of eqs. (2.2)–(2.3) (orange). We set MQ = MD = 1 TeV, YQcD = 1.25, and

YQDc = YqDc = YQdc = 0, defined at the scale µ = 1 TeV.

Figure 2. The Higgs quartic coupling in the SM (blue) and with the model example of figure 1

(orange).

Given a concrete example we can study the Higgs effective potential Veff in the presence

of the new fermions. In figure 1 we plot Veff as a function of the classical field hc. We

set MQ = MD = 1 TeV, YQcD = 1.25, and YQDc = YqDc = YQdc = 0, defined at the

scale µ = 1 TeV. The details of the calculation of Veff are given in appendix A. The

vacuum instability corresponds to the negative runaway of the effective potential, seen in

figure 1 (orange curve) to occur about an order of magnitude above the vector-like fermion

mass scale.

The vacuum instability depicted in figure 1 can be understood as due to the negative

RGE running of the Higgs quartic coupling in the presence of extra fermions. In figure 2

we plot the Higgs quartic coupling λ for the same model example of figure 1. In the plot,

the blue line shows the SM running of λ and the orange line gives λ with the new fermions

included. The jump at µ = 1 TeV is due to the threshold correction in matching the SM

EFT below the vector mass scale to the full theory above it. Figures 1–2 demonstrate that

the field content of eq. (2.2) cannot be considered as a complete theory, if implemented

– 5 –
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Figure 3. The effective Higgs quartic coupling in the SM (blue) and with the model example of

figure 1 (orange). The horizontal green line marks λeff = −0.07 indicating a rough criterion for

vacuum instability.

with a large Yukawa coupling at the vector-like fermion scale. Other fields, coupled to the

Higgs, must be added in order to eliminate the runaway of the effective potential. Adding

more fermions would make the instability worse, so the new fields need to be bosons.

A precise determination of the mass scale at which the new bosons need to be intro-

duced, given an apparent runaway in the effective potential as in figure 1, is beyond the

scope of this paper. Instead, here and in the rest of the paper we define a scale ΛUV at

which the effective potential should be stabilized, based on a rough approximation that is

described as follows. At large values of the classical Higgs field hc, we can safely set all of the

dimensional parameters in the effective potential to zero, leaving only the Higgs field itself:

Veff → λeff
4 h4

c . The effective coupling λeff defined in this way encodes the loop corrections

to Veff and can be computed for the model of eqs. (2.2)–(2.3) as well as for each of the other

theories that we will encounter in the remaining of the paper. For a potential V = λ
4h

4
c

with λ < 0, a tree level estimate of the tunneling probability [57] through true vacuum

bubbles of nucleation size 1/Λ is p ∼ (Λ/H0)4e−S , where S = 8π2

3|λ| and H0 ∼ 10−42 GeV

is the Hubble constant. Setting p = 1 gives λ ≈ −0.065 (1 + 0.02 log10 (Λ/1 TeV))−1. The

leading loop corrections are incorporated by letting λ follow it’s RGE and include the one-

loop corrections to the effective potential, λ → λeff(Λ). Based on this estimate, we define

the scale ΛUV by the equation

λeff(ΛUV) = −0.07, (2.4)

that can, again, be readily computed for each of the models that we encounter in the paper.

In figure 3 we plot λeff for the same example of figures 1–2.

We note that our results would remain qualitatively the same if we chose to define the

instability scale ΛUV somewhat differently; for instance, by the scale at which the effective

potential turns around and begins to decrease (first maximum of Veff), by the scale at which

Veff = 0, etc. These different choices translate to O(1) modifications to ΛUV in any given

theory. Our main message in this paper, as we show in a broader context later on, is that

– 6 –
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Figure 4. ΛUV/M1 vs. the Yukawa coupling Y = YQcD. The model is the vector-like quarks of

eqs. (2.2)–(2.3). Smooth (dotted) lines show the results fixing YQDc , an additional Yukawa coupling

in the model, to YQDc = 0 (YQDc = 1). Blue (green) lines are for MQ = MD = 1 TeV (5 TeV).

using vector-like fermions to induce sizable Higgs coupling modifications results with an

effective potential that takes the basic runaway form shown by the orange curve in figure 1.

While our quantitative definition of ΛUV roughly indicates the scale at which the runaway

needs to be stabilized, the main point is that the effective potential in figure 1 is unphysical

and needs to be modified in the neighborhood of ΛUV, so that any detailed calculation of

the tunneling rate that does not take into account this unavoidable modification would be

of questionable utility. For this reason we do not attempt a more precise analysis of the

tunneling rate (see e.g. [58]).

The scale ΛUV, or any similar characteristic scale parametrizing the potential runaway,

depends on the size of the Yukawa couplings. For YQcD slightly larger than unity, as in the

case depicted in figures 1–3, we find ΛUV about an order of magnitude above the vector-like

fermion mass scale. Larger values of YQcD within the perturbative window (|Y | . 4π/
√
N ,

with N = 4Nc = 12 in the current case) change ΛUV by an order one amount. Similarly,

turning on, in addition to YQcD, some of the other Yukawa couplings in the model, also

has a modest order one effect. To substantiate this point, in figure 4 we plot the ratio

ΛUV/M1, where M1 is the lightest vector-like fermion mass eigenstate, vs. the Yukawa

coupling YQcD. In obtaining the green (blue) smooth lines, we set Y = YQcD, all other

Yukawa couplings to zero, and MQ = MD = 1 TeV (5 TeV). In the dotted lines we repeat

the same values for MQ,MD, but turn on the additional Yukawa coupling YQDc = 1. We

have verified that varying MQ 6= MD does not change the results.

The bottom line is that allowing any of the Yukawa couplings in eq. (2.3) to become

larger than ∼ 1.5 would render the vector-like fermion model inconsistent right above

the new fermion mass scale. However, it is also apparent in figure 4 that if the Yukawa

coupling is made sufficiently small, then the instability can be pushed up to high energies.

This decoupling of ΛUV, that occurs as the Yukawa couplings are made small, is important

because it means that for certain parameter configurations the vector-like fermion model

can form a consistent EFT up to a high scale, in which case the vacuum stability argument

looses phenomenological relevance.

– 7 –
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The next step is to exhibit the relation with Hbb and Zbb measurements. Integrating

out the heavy fields we find (see [33, 34] for related analysis)

δrb ≈ −2δgAb +
2|YQcD|v√

2mb

√∣∣δg2
V b − δg2

Ab

∣∣eiφ, (2.5)

where φ is a complex phase (to be explained shortly) and δgV b and δgAb are the modification

to the vector and axial Zbb couplings, respectively, defined in the usual way (see, e.g. [59])

and constraint by LEP data to be in the ballpark of a few percent [60]. In appendix B (see

table 3) we give a derivation of eq. (2.5) by integrating out the heavy states in an expansion

to leading order in Y 2v2/M2, where Y is any of the Yukawa couplings in the problem and

M = MQ,D. At leading order in Y 2v2/M2, as done in appendix B, the phase φ is given

by φ = arg
(
YQcDYqDcYQdcy

∗
bM
∗
QM

∗
D

)
. However, and usefully for our purpose, eq. (2.5) is

actually valid to good accuracy even when the vector-like states are light and allowing the

Yukawa couplings in the vector-like sector to be large, namely Y 2
QDcv

2/M2, Y 2
QcDv

2/M2 =

O(1). To see this, note that one could also derive eq. (2.5) expanding in the mixing

couplings YqDc , YQdc , and in the mostly-SM bottom Yukawa coupling yb, but keeping all

orders in YQcD and YQDc . The couplings yb, YQdc , YqDc are guaranteed to be good expansion

parameters because of the smallness of the bottom quark mass (combined with the fact that

δrb is constrained to be smaller than unity by existing LHC data) and by the experimental

constraints on δgAb,V b. Following this route and allowing Y 2
QDcv

2/M2, Y 2
QcDv

2/M2 = O(1),

we find that eq. (2.5) remains valid as is, and the only modification that needs to be done is

a generalization of the phase φ = arg
(
YQcDYqDcYQdcMQMD

|M||M2×2|

)
, where |M| is the determinant

of the 3 × 3 mass matrix given by eq. (2.3) and |M2×2| = MQMD − YQcDYQDcv
2/2 is

the determinant of the vector-like 2 × 2 sub-matrix. In section 2.2.1, devoted to vector-

like leptons but dealing essentially with the same formula, we demonstrate the validity of

eq. (2.5) for very light vector-like states with a numerical analysis.

Eq. (2.5) shows that a large deviation in Hbb requires some corresponding deviation in

the Zbb couplings. This correlation can be relaxed, but only at the cost of a sizable Yukawa

coupling, YQcD in our example. To make a quantitative estimate, note that for |δrb| & 0.2 or

so, we can neglect the −2δgAd contribution on the r.h.s. of eq. (2.5). Setting |δgV d, δgAd| .
10−3, within the expected resolution of future lepton collider experiments, we have |δrb| ≈
0.1|YQcD|

(√∣∣δg2
V b − δg2

Ab

∣∣/10−3
)

. Thus, given our analysis above summarized in figure 4,

vacuum stability can make a powerful discriminator for a consistent explanation of Higgs

couplings deviations, once the Zbb couplings have been determined to about a permille

accuracy.

In figure 5 we demonstrate our results quantitatively. On the x- and y-axes we plot

δgV b and δgAb, respectively. Inside the orange-shaded region, the coupling |YQcD| needs to

be larger than 1 in order to induce an Hbb deviation of δrb ≥ 0.2. Inside the gray-shaded

region, |YQcD| needs to be larger than 1.5 to achieve the same δrb. To compare with current

Zbb data, the blue contour shows the 95%CL allowed range for δgV b,Ab, using the reduced

covariance matrix from ref. [59] that includes the anomalous LEP result for AFBb . The

green contour shows the 95%CL allowed region, obtained, ignoring correlations, using the

measurements for Rb and Ab as taken from [60], and omitting the measurement of AFBb .

– 8 –
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Figure 5. Left panel: blue solid, green solid and black dashed contours mark the 95%CL allowed

region in the δgV b, δgAb plane, considering current LEP Zbb data including AFBb , LEP data omitting

AFBb and future precision measurements from an experiment such as the ILC, respectively. Inside

the orange-shaded (gray-shaded) region, the coupling |YQcD| needs to be larger than 1 (1.5) in order

to induce an Hbb deviation of δrb ≥ 0.2. Right panel: close-up of the same results.

We learn that the current Zbb coupling measurements still allow a significant Hbb

deviation consistent with vacuum stability. Indeed, in vector-like quark interpretations of

the AFBb anomaly [54], an Hbb deviation would be generically expected.2 Improved exper-

imental determination of the Zbb couplings, in the ballpark of planned future experiments,

can sharpen these results and test conclusively a fermionic interpretation. To compare

with future Zbb data, the dashed black contour shows an estimate of the 95%CL allowed

region following future measurements at the ILC or another experiment of comparable pre-

cision, for which we adopt the SM central values for Rb and Ab and assume σRb = 0.00014,

σAb = 0.001 [61] (to be compared with the current σRb ≈ 0.0007 and σAb ≈ 0.02 from

LEP data [60]). The right panel shows an expanded version of the left. The fact that the

dashed black error ellipse is completely contained in the orange shaded region, signaling

low scale vacuum instability, shows the potential power of the vacuum stability argument

to constrain Higgs coupling deviations in conjunction with improved Zbb data.

Before we conclude this section, we pause to generalize the results to other vector-like

fermion representations that can mix with the SM b quark. These representations are col-

lected in appendix B, table 1. For all of these cases, the vacuum stability analysis proceeds

in a similar manner, leading to results similar to what we have shown in figure 4. Consid-

ering the Zbb couplings, models DII −DIV in table 1 possess the same basic structure as

in eqs. (2.2)–(2.3) and produce relations between the Hbb and Zbb effective couplings, that

are analogous to eq. (2.5) and that were illustrated in figure 5. For completeness, we sum-

marize the Hbb and Zbb relations for all of these models in table 3. In contrast, model DV

2Note, however, that for mh ≈ 125 GeV vacuum stability analysis indicates that the models of [54, 55]

exhibit instability on scales much lower than the scale of gauge coupling unification.

– 9 –
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provides only one vector-like fermion state that mixes with the SM right-handed b quark,

with no corresponding partner for the left-handed SM quark. As a result, the Hbb coupling

and the Zbb coupling are directly correlated in model DV , predicting δrb ≈ −2δgV b. Using

the current LEP constraints, model DV is limited to induce at most |δrb| . 0.1 at 95%CL.

This discussion makes clear why we do not devote attention, in the context of the Hbb

coupling, to vector-like fermion representations in which only either the left-handed SM

quark or the right-handed SM quark mixes with new fermions, but not both. Examples

for such models are given by simply deleting, e.g., either the pair Q,Qc or the pair D,Dc

in eq. (2.2), and similarly for the other cases DII −DIV . For all such vector-like fermion

models, the Hbb deviation is directly tied to a corresponding Zbb deviation, implying that

|δrb| > 0.1 is ruled out by existing precision Z-pole data.

Finally we comment on loop corrections to eq. (2.5), that was derived at tree level. The

dominant loop effect is due to the renormalization of the bottom quark Yukawa coupling

from the scale mb to the scale mh, relevant for h → bb decay. This effect is captured by

using the running MS bottom quark mass mb(mh) ≈ 3 GeV in eq. (2.5). Another effect is

the RGE evolution, within the SM EFT, of the nonrenormalizable operators produced by

integrating out the vector-like quarks at their mass threshold down to the scale mh [62–65].

This running corrects eq. (2.5) at the 10% level, in the direction of suppressing the right-

hand side of eq. (2.5) compared to its value when using |YQcD| as given at the vector-like

quark mass threshold.

To summarize: if a pure-fermion model produces a deviation & 20% in Hbb, it should

also produce an observable deviation in Zbb. If the former if found without the latter, then

bosonic states should exist in the spectrum not far above the fermion mass scale.

2.2 Hττ

Our analysis of Hττ follows closely the Hbb discussion of the previous section. Again, we

work out the details for one representative model example, assuming the field content

L(1, 2)− 1
2
, Lc(1, 2) 1

2
, E(1, 1)−1, E

c(1, 1)1 (2.6)

and the potential

VNP =YLecH
†Lec + YlEcH

†lEc + YLEcH
†LEc + YLcEH

T εLcE

+MLL
T εLc +MEEE

c + cc. (2.7)

We consider the Higgs vacuum stability first. In figure 6 we plot the ratio ΛUV/M1,

where M1 is the lightest vector-like fermion mass eigenstate, vs. the Yukawa coupling YLcE .

In obtaining the green (blue) smooth lines, we set Y = YLcE , all other Yukawa couplings

zero, and ML = ME = 1 TeV (5 TeV). In the dotted lines we repeat the same values for

ML,ME , but turn on YLEc = 1. Varying ML 6= ME does not change the results. We see

that allowing any of the Yukawa couplings in eq. (2.7) to become larger than ∼ 2 would

render the vector-like fermion model inconsistent right above the new fermion mass scale.
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Figure 6. ΛUV/M1 vs. the Yukawa coupling Y = YLcE . The model is the vector-like leptons of

eqs. (2.6)–(2.7). Smooth (dotted) lines show the results fixing YLEc , an additional Yukawa coupling

in the model, to YLEc = 0 (YLEc = 1). Blue (green) lines are for ML = ME = 1 TeV (5 TeV).

We next explore the relation with precision Zττ measurements. Integrating out the

heavy fields, we find (see appendix B, table 6)

δrτ ≈ −2δgAτ +
2|YLcE |v√

2mτ

√∣∣δg2
V τ − δg2

Aτ

∣∣eiφ. (2.8)

The Zττ coupling deviations δgV τ and δgAτ are constrained by LEP data to be in the

ballpark of a few permille [60]. In analogy with our results in section 2.1, eq. (2.8) is valid

to good accuracy even when the vector-like states are light and the Yukawa couplings YLcE
and YLEc are O(1), the only subtlety being the proper definition of the phase φ. When the

vector-like states are heavy we have φ = arg (YLcEYlEcYLecy
∗
τM

∗
LM

∗
E), while if one allows

light vector-like states then φ needs to be generalized in exact analogy with the discussion

in section 2.1. In the rest of this section we first use the analytical result in eq. (2.8), and

subsequently turn to a numerical verification for very light vector-like states.

In figure 7 we illustrate the vacuum stability constraint vs. Zττ data, computed using

eq. (2.8), in the δgV τ , δgAτ plane. Inside the orange-shaded (gray-shaded) region, the

coupling |YLcE | needs to be larger than 1.5 (2) in order to induce an Hττ deviation of

δrτ ≥ 0.2. The green solid contour shows the 95%CL allowed range for δgV τ,Aτ , using the

measurements for Rτ and Aτ at LEP [60]. To compare the result with future Zττ data,

the black dashed contour shows an estimate of the 95%CL allowed region from future

measurements at the ILC/GigaZ or another experiment of comparable precision, for which

we adopt the SM central values for Rτ and Aτ and assume σRτ = 0.004, σAτ = 0.001 (to

be compared with the current σRτ ≈ 0.045 and σAτ ≈ 0.004 from LEP data [60]). The

estimate of future σRτ at the ILC/GigaZ is taken from ref. [66]. There is no discussion of

σAτ at future lepton colliders in the literature; here we simply assume a value of 1/3 of the

current systematic error of Aτ . We expect that future lepton collider measurements would

reduce the statistical error to be negligible compared to the systematic error. Changing

the phase of δrτ does not appreciably affect the results.

– 11 –
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Figure 7. Green and black contours mark the 95%CL allowed region in the δgV τ , δgAτ plane,

considering current LEP Zττ data, and future precision measurements from an experiment such

as the ILC, respectively. Inside the orange-shaded (gray-shaded) region, the coupling |YLcE | needs

to be larger than 1.5 (2) in order to induce an Hττ deviation of δrτ ≥ 0.2, indicating vacuum

instability.

To summarize: a new physics Yukawa coupling |Y | > 1.1 implies that the Higgs effec-

tive potential goes unstable on a scale about three orders of magnitude (or less) above the

vector-like lepton masses; |Y | > 2 leads to instability about one order of magnitude above

the vector-like lepton scale. Absence of signals in future Z-pole precision measurements

would exclude the pure fermion model from generating |δrτ | > 0.2.

2.2.1 Numerical verification for very light vector-like states

Vector-like leptons, especially if they only mix with the τ and not with the electron or

muon, are experimentally allowed to be quite light (see appendix C). We therefore turn

to examine numerically the validity of eq. (2.8) for very light vector-like states, with the

goal of validating figure 7. To do this, we numerically scan over the parameter space of the

model in eq. (2.7). To make the scan efficient, we reparameterise the model by writing the

3× 3 lepton mass matrix M as

−L =
(
l− L−E−

)
M

 ec+

Ec+

Lc+

 , M = V DU, (2.9)

V = eiθvΛ7eiγvΛ3eiβvΛ2eiφΛ3 , U = eiβuΛ2eiγuΛ3eiθuΛ7 ,

where D = diag (mτ ,M1,M2) is a positive-definite eigenvalue matrix (with M2 ≥M1) and

V and U are unitary diagonalization matrices that we express using a convenient basis of

the Gell-Mann matrices Λ, with real parameters βv,u, θv,u, γv,u, φ. This parametrization is

convenient and minimal, making use of the [SU(2)×U(1)]2 global symmetry of the gauge-

kinetic terms in the action. It allows us to enter physical mass eigenvalues as input, and

because the physical Zττ couplings are given simply by δgL = 1
2 |V31|2 and δgR = −1

2 |U13|2,
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Figure 8. Same as in figure 7, but showing in blue points the results of the scan described in the

text to validate the EFT analysis for low-mass vector-like states, where we impose |Y | < 1.5. We

scan on the parameter space of the model, allowing the lightest vector-like fermion state to be as

light as 200 GeV.

allows us to skip phenomenologically unacceptable model points from the outset. Moving

back and forth between the basis we use for the numerical scan, eq. (2.9), and the basis

of eq. (2.7) is straightforward, and we do it to evaluate the size of the Yukawa couplings

as defined in eq. (2.7) in order to make the connection with vacuum stability. In the scan

we omit CP-violating phases, setting φ = γv = γu = 0. Besides from this simplification,

we scan over the physical heavy mass eigenvalues M1 and M2 and over the angles θv,u and

βv,u. For each point in the scan, we evaluate δrτ and δgV τ,Aτ numerically, and, in addition,

find the value of the maximal Yukawa coupling as given in the basis of eq. (2.7).

The results of the scan are given in figure 8, where we repeat the calculation of figure 7

and superimpose as blue points all of the scan points in which δrτ > 0.2, the maximal

Yukawa coupling is smaller than 1.5, and the Zττ couplings are consistent with current

data at the 95%CL. Thus, the scan points in figure 8 should complement the orange shaded

region, within the 95%CL contour. As can be seen from the plot, the results of the analytical

study are confirmed by the numerical scan, and apply also for very light vector-like lepton

states, here allowed to be as light as 200 GeV, with sizable Yukawa couplings.

As final comments, we note that the occurrence of the scan points in the top region in

figure 8 is due to the exact relations δgV = 1
2

(
|V31|2−|U13|2

)
and δgA = 1

2

(
|V31|2+|U13|2

)
.

Other vector-like lepton representations that mix with the tau satisfy analogous expressions

to eq. (2.8), that can be found in appendix B, table 6. Requesting a large δrτ and imposing

an upper bound to the Yukawa couplings, all of these representations are also restricted to

specific regions in the δgV τ , δgAτ plane: rep’ LI and LIII populate the top region shown

by the blue points in figure 8; rep’ LII and LIV populate the middle-right region, with

δgV τ ≥ 0 and δgAτ around zero; and rep’ LV populates the middle-left with 0 ≥ δgV τ and

δgAτ around zero. In all cases, the shaded orange or gray regions of figure 7 indicate large

Yukawa couplings and, therefore, vacuum instability.
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The numerical analysis that we report here applies with obvious changes to the Hbb

case as well, and demonstrates the validity of eq. (2.5) on which we based the discussion

in section 2.1.

2.3 Htt

The top quark Yukawa coupling in the SM is O(1). Combined with the existing collider

limits on fermion top partners, this means that large Yukawa couplings are necessary to

give appreciable corrections to the Htt vertex through mixing with vector-like fermions,

implying a strong vacuum stability constraint.

Consider the vector-like fermion representation

Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
, U(3, 1) 2

3
, U c(3̄, 1)− 2

3
(2.10)

with the potential

VNP =YQucH
T εQuc + YqUcH

T εqU c + YQUcH
T εQU c + YQcUH

†QcU

+MQQ
T εQc +MUUU

c + cc. (2.11)

This is rep’ UI in appendix B. Due to LHC constraints, the vector masses MQ, MU must

be larger than about 700 GeV. Integrating out the heavy fields, we find

δrt ≈ −v2

(
|YqUc |2

2|MU |2
+
|YQuc |2

2|MQ|2
+
YQcUYQucYqUc

MQMU

)
, (2.12)

which implies

|δrt| . 0.06

(∣∣∣∣YqUc (700 GeV)

MU

∣∣∣∣2+

∣∣∣∣YQuc (700 GeV)

MQ

∣∣∣∣2+ 2|YQcU |
∣∣∣∣YQucYqUc (700 GeV)2

MQMU

∣∣∣∣
)
.

(2.13)

We can make a conservative estimate of the maximum deviation in Htt, consistent

with a pure fermion model, by letting all of the new Yukawa couplings be ∼ 1, tuning

their phases to interfere constructively as in eq. (2.13), and at the same time allowing

MQ,MU ∼ 700 GeV. This gives |δrt| < 0.25 and, judging from figure 4 that represents

similar RGE, implies ΛUV . 100 TeV.

Note that the representation above gives a non-minimal example in terms of the field

content. In contrast to the Hbb and Hττ cases, where this possibility is precluded by the

stringent Z-pole constraints, here we could omit one of the pairs of vector-like fermions

(either the Q,Qc or the U,U c pair) and still produce a potentially sizable deviation in the

Htt vertex.3 The result would correspond to eq. (2.13) with one of YQuc or YqUc set to

zero. This does not change the conclusion. Finally, all of the vector-like fermion models

listed in appendix B yield similar results to the example we analyzed here.

3Ref. [67] derived indirect constraints on the Ztt couplings that read |δgV t|, |δgAt| . 0.1. Thus a partial

vector-like fermion model with either Q,Qc or U,Uc, but not both, could in principle induce |δrt| ∼ 0.2,

compatible with electroweak precision data, but at the cost of vacuum instability as shown in the text.
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3 Higgs couplings to massless gauge bosons

We now study the implications of vacuum stability constraints on HGG and Hγγ coupling

modifications induced by vector-like fermions. In this section, we ignore the mixing of the

new fermions with the SM fermions, which was analyzed in section 2. Vacuum stability

constraints in vector-like fermion models modifying Hγγ and HGG were considered in [52]

and [53]. Our results here refine those analyses using the two-loop RG improved Coleman-

Weinberg potential, as described in appendix A.

The leading-log contribution of the new fermions to the HGG and Hγγ amplitudes

can be derived from the Higgs low energy theorem [68, 69]. For a fermion carrying electric

charge Q, and transforming under SU(3)c in a representation of dimension D with Dynkin

index T , we have

δrγ ≈
4Q2D

3AγSM

(
∂ log ||M ||
∂ log v

)
, (3.1)

δrG ≈ 2T

(
∂ log ||M ||
∂ log v

)
, (3.2)

where ||M || is the absolute value of the determinant of the fermion mass matrix M and

AγSM ≈ −6.5 is the SM Hγγ amplitude. Our convention is such that T (3) = 1/2.

The minimal building block of interest for our vector-like fermion representation

is [52]4,5

ψ(D, 2)−Q+ 1
2
, ψc(D̄, 2)Q− 1

2
, χ(D̄, 1)Q, χ

c(D, 1)−Q, (3.3)

with the mass matrix for charge Q states

VNP =
(
ψ−Q χc−Q

)( Y v√
2
−mψ

mχ −Y cv√
2

)(
χ+Q

ψc+Q

)
, (3.4)

corresponding to the potential given in appendix A, eq. (A.2). In what follows we ignore

the physical complex phase arg(m∗ψm
∗
χY Y

c) and assume a basis where all of the parameters

are real. We further choose mψ,mχ to be positive. Denoting the mass eigenvalues as M1

and M2 with 0 < M1 ≤M2, the log-determinant derivative is given by(
∂ log ||M ||
∂ log v

)
= −Y Y

cv2

M1M2
sign (|M |) . (3.5)

Note that |M | = mψmχ − v2

2 Y Y
c, so that a negative sign for |M | in our basis requires

large Yukawa and small vector-like fermion masses. For mχ,mψ > 174 GeV, the product

Y Y c must be larger than unity to have negative |M |, so that such configurations are

automatically associated with low-scale vacuum instability.

Before proceeding to the numerical results, we comment on the effects of NLO cor-

rections. The first NLO effect involves two-loop diagrams that contribute to the Wilson

4For real color representations and Q = 0 or Q = 1
2
, we could set χ = χc or ψ = ψc.

5We could promote χ and χc to SU(2)W triplets, which would add more fields to the RGE and would

not change our conclusions.
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coefficients of the effective dimension six |H|2GG and |H|2FF operators at the vector-like

fermion mass threshold. These corrections may be sizable, of order tens of percent, espe-

cially for the HGG case (see, e.g. [70] for the analogous effect in the integration out of the

SM top quark). However, note that as long as we restrict our discussion to fermions in the

fundamental representation of color, the dominant effect is a multiplicative factor that acts

on the SM top quark amplitude and new physics LO contribution alike, and so drops out in

the relative correction to the HGG vertex that we discuss here.6 Once we consider higher

color representations (in the second part of section 3.1 below), the NLO K-factor ceases to

be a common multiplicative effect for the SM and new physics contributions, and would

alter our results to some extent. The second NLO effect pertains to the RGE running of

the nonrenormalizable operators from the vector-like fermion mass scale down to mh in

the SM EFT [71]. We have checked that the corresponding correction is limited to a few

percent, and we omit it in what follows.

3.1 HGG

In figure 9 we show the maximal deviation δrG as a function of the vacuum instability scale

ΛUV, assuming a vector-like pair of fermions in the fundamental representation of SU(3)c.

The smooth purple, red, and orange curves correspond to setting the mass of the lighter

colored fermion M1 to 0.5, 0.7 and 1 TeV, respectively.

In producing figure 9 we use the following method. Typically, the most conservative

vacuum stability constraint (largest ΛUV) is achieved when the new Yukawa couplings are

as small as possible for fixed δrG and M1. Considering δrG > 0, we see that eqs. (3.2)

and (3.5) require Y Y c < 0. The smallest consistent choice for |Y | and |Y c|, that we employ

in figure 9, then corresponds to Y ≈ −Y c, with M1 ≈ M2 and as small as is allowed by

direct collider searches for colored fermions. Considering δrG < 0, we need Y Y c > 0. The

most conservative configuration for the vacuum stability analysis is different than that in

the δrG > 0 case, due to the inequality

(M2 −M1)2 ≥ (Y + Y c)2 v2

2
(3.6)

which can be derived from eq. (3.4). Due to eq. (3.6) we cannot tune Y ≈ Y c and M1 ≈M2

at the same time. Instead, the most conservative configuration for the stability analysis

in this case, that we employ in figure 9, corresponds to saturating eq. (3.6) with Y ≈

Y c, |Y | ≈
√
− δrGM1M2

2T v2 , and M2 = M1

[
1− δrG

2T +

√
− δrG

2T

(
2− δrG

2T

)]
. This explains the

asymmetry of ΛUV for fixed in figure 9 between positive and negative values of δrG.

We comment that the intuition by which larger ΛUV corresponds to smaller Yukawa

couplings, that we used to fix the model parameters in figure 9, holds well as long as the

instability threshold occurs sufficiently far from the vector-like fermion mass threshold.

When the instability occurs immediately above the vector-like fermion mass scale, we find

in some cases that larger Yukawa couplings can lead to a slightly higher instability scale,

6For an NNLO computation in a related model (partial vector-like quark representations), confirming

these statements, see [56].
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Figure 9. The maximum HGG coupling deviation vs. the corresponding instability scale ΛUV,

obtained by adding vector-like fermions in the 3 representation of SU(3)c. Purple, red, and orange

lines correspond to fixing M1 = 0.5, 0.7 and 1 TeV, respectively. The dashed line, that is only visible

for the M1 = 1 TeV case at large negative δrG, demonstrates the sensitivity of the result in this

parameter region to our criterion for perturbativity; see text for details.

due to threshold effects. We stress, however, that these effects only become relevant when

the instability scale is very low in the first place, ΛUV < 10 TeV. We comment about these

effects further in the next section.

In producing figure 9, we restrict our calculation to the region of parameter space where

perturbation theory is under reasonable control by imposing |Y |, |Y c| < 4π√
4D

. For fermions

with D = 3 we thus impose |Y |, |Y c| < 3.6. For most of the curves shown in figure 9, all

of the couplings remain perturbative at all RGE scales up to the vacuum instability scale

ΛUV. An exception occurs for the M1 = 1 TeV example with large negative δrG < −0.1.

Here we find that Y and Y c run large with increasing RGE scale, and cross the perturba-

tivity threshold defined above before our nominal criterion for vacuum instability applies.

When this happens, we redefine ΛUV as the scale where the perturbativity threshold was

crossed, which leads to the kink in the plot. Of course, this procedure is somewhat arbi-

trary; the main lesson is that for such large negative δrG, the model runs strongly-coupled

quickly, making our perturbative estimates less reliable. To highlight the sensitivity of

our results in this parameter region to changing the perturbative prescription, we super-

impose as a dashed line the result obtained when modifying the numerical perturbativity

threshold by 20%.

Higher color representations have a larger Dynkin index and thus reduce the size of

the Yukawa couplings needed for a given δrG, relaxing the vacuum stability constraint. At

the same time, collider constraints on M1 become stronger (see appendix C), balancing the

effect to some extent.

In figure 10 we show the vacuum stability bound for vector-like fermions in the D = 6

(T = 5/2, left panel) and D = 8 (T = 3, right panel) representations, using eq. (3.3) with

Q = 1, and taking M1 = 1.2, 1.5 and 2 TeV. We do not consider representations of D > 8,

as these cause the SU(3)c gauge coupling g3 to run strong quickly and hit a Landau pole

on scales very close to the vector-like fermion mass.
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Figure 10. The maximum HGG coupling deviation vs. the corresponding instability scale ΛUV,

obtained by adding vector-like fermions in the 6 representation of SU(3)c (left) and in the 8 rep-

resentation of SU(3)c (right). Purple, red, and orange lines correspond to fixing M1 = 1.2, 1.5 and

2 TeV, respectively. The dashed lines correspond to reducing the perturbativity constraint by 20%.

Once again, in figure 10 we restrict our calculation to the region of parameter space

where |Y |, |Y c| < 4π√
4D

. For δrG > 0, all couplings are perturbative according to this cri-

terion up to the vacuum instability scale. For large negative δrG, however, in both the

D = 6 and D = 8 examples, the Yukawa couplings run strong and cross our perturbative

reliability criterion at a scale lower than the vacuum instability. We indicate where this

happens by showing, in dashed lines, the results obtained while modifying the perturba-

tivity criterion by 20%.

3.2 Hγγ

The largest effect in Hγγ at a given stability cut-off ΛUV is obtained with color singlet

fermions. This is because LHC searches put strong mass constraints on exotic colored

fermions, whereas color singlets are still allowed to be quite light (see appendix C). For

example, an exotic color octet vector-like representation would give D = 8 in eq. (3.1),

but this would come at the price of a large mass suppression, M1 & 1 TeV implying∣∣∣(∂ log ||M ||
∂ log v

)∣∣∣ . 0.06 even with large Yukawa couplings Y, Y c ∼ 1. In contrast, vector-like

leptons with D = 1 are still allowed with M1 ∼ 200 GeV and
∣∣∣(∂ log ||M ||

∂ log v

)∣∣∣ ∼ 1 for the

same Y, Y c ∼ 1. The increase in
(
∂ log ||M ||
∂ log v

)
more than compensates for the decrease in D.

Therefore in what follows we focus on color singlet representations.

Given a value for Q and having set D = 1, we can calculate the maximal ΛUV for

a given δrγ in analogy with the δrG case. Typically, the maximal instability scale for

δrγ < 0 is obtained for Y ≈ −Y c and M1 ≈ M2, while for δrγ > 0 we have it for Y ≈ Y c

and M2 = M1

(
1 + x+

√
x (2 + x)

)
with x =

∣∣3AγSMδrγ/4Q
2D
∣∣. We comment again that

these relations are borne out in our calculation as long as the instability scale is sufficiently

far from the vector-like fermion mass threshold, and imply simply that larger Yukawa

couplings trigger an earlier vacuum instability. In the extreme case in which the instability

scale occurs very close to the vector-like mass, we find that threshold effects can conspire

to make a slightly higher instability scale pair with slightly larger Yukawa couplings.
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Figure 11. Left panel: the maximum Hγγ coupling deviation vs. the corresponding instability

scale ΛUV, obtained by adding vector-like leptons with charged states carrying Q = 1. Purple, red,

and orange lines correspond to fixing M1 = 200, 400 and 600 GeV, respectively. The dashed lines

correspond to modifying the perturbativity constraint by 20%. Right panel: same as on the left,

but for Q = 2 and M1 = 400, 600 and 800 GeV.

In the left panel of figure 11 we plot δrγ vs. ΛUV for a vector-like lepton representation,

given by eq. (3.3) with D = 1 and Q = 1. Purple, red, and orange lines correspond to

fixing M1 = 200, 400 and 600 GeV, respectively. In the right panel we set Q = 2 and plot

the results for M1 = 400, 600 and 800 GeV. The general trend seen in figure 11 is that

increasing |δrγ | implies a lower instability scale ΛUV. When the instability scale is very

low, however — lower than 10 TeV in these examples — we note that some of the lines in

figure 11 curve backwards and indicate a slightly larger ΛUV for larger value of δrγ . This

is the threshold effect that was mentioned in the previous paragraph; again, this behavior

is only apparent where ΛUV is very low in the first place.

As already seen in the case of colored fermions, when the Yukawa couplings defined

at the vector-like fermion threshold scale are sufficiently large, then their subsequent RGE

leads to a break down of our perturbative calculation on a scale smaller than the nominal

vacuum instability scale. When this happens, we repeat our procedure of the previous

section and define ΛUV as the scale at which either |Y | or |Y c| reaches a magnitude 4π√
4D

.

This is visible in the left panel of figure 11 for M1 = 400 and 600 GeV and δrγ & 0.1

and 0.2 respectively. The dashed lines show the results when modifying the perturbativity

benchmark 4π/
√

4D by 20%.

4 Conclusions

In this paper we studied constraints on theories beyond the Standard Model, containing new

physics fermions but no new scalar or vector-boson particles up to a very high scale. The

basic constraint we discuss is due to the vacuum stability of the Higgs effective potential.

In the presence of new fermions coupled to the SM through Yukawa interactions, the

renormalization group evolution of the Higgs quartic coupling is negative definite, leading

to vacuum instability.
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We surveyed Higgs couplings to the bottom and top quarks, to the tau lepton, and to

gluons and photons, focusing on one particular coupling at a time. Our results imply that

measuring a deviation at the level of 10% or so in any of these couplings (combined with

null detection of Z coupling deviations in the Hbb or Hττ case) would suggest a low cut-off

scale ΛUV for pure fermion models, below about 100 TeV, where new bosonic states must

stabilize the Higgs potential. While we did not investigate here the question of the actual

mass scale for these bosons,7 the decoupling theorem [73] leads us to expect that these

states should occur not far above ΛUV. For large deviations [still at the O(10%) level],

the vacuum instability occurs essentially immediately above the fermion mass threshold,

implying that the pure fermion model is not self consistent even as an effective theory.

Our main numerical results are summarized below. To derive these results, that are

expressed as consistency relations between Higgs coupling deviations and the vacuum sta-

bility cut-off ΛUV for pure fermion models, we have judiciously tuned the parameters of the

models in order to obtain conservative estimates, namely, maximal ΛUV per given Higgs

coupling effect. For more generic parameter configurations we would expect the vacuum

instability scale to occur earlier than these conservative estimates.

• Hbb and Hττ

– For pure fermion models, vacuum stability constraints imply that measuring an

Hbb deviation |δrb| & 0.2 would require a corresponding deviation in the Zbb

couplings at the permille level, well within the expected sensitivity of future

precision experiments with ILC-like capabilities. Finding a large Hbb deviation

without an accompanying deviation in Zbb can therefore be used to rule out

pure fermion models. The result for the Hττ coupling is similar.

– Currently available Z-pole data from LEP imply that partial vector-like fermion

representations — models in which new fermions mix with either the SM left-

handed quark, or the SM right-handed quark, but not both — cannot induce

|δrb| > 0.1. This result is independent of vacuum stability arguments. The

result for the Hττ coupling is similar.

• Htt

– Vacuum stability constraints imply an upper bound on the possible Htt coupling

deviation in pure fermion models that we estimate, conservatively, as |δrt| . 0.25

for ΛUV > 100 TeV.

– In contrast to the Hbb and Hττ examples, current precision electroweak data

put only mild constraints on the effective Ztt coupling, meaning that a partial

vector-like fermion representation, mixing with either left- or right-handed SM

quarks but not both, could still induce a sizable Htt deviation. In such case,

however, there should be a corresponding comparable deviation in Ztt.

7See, e.g. [72].
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• HGG

– Vacuum stability constraints on HGG deviations induced by pure fermion mod-

els depend crucially on the experimental mass limits on the new states. Allowing

for color triplet fermions as light as 500 GeV, we find that imposing that the

vacuum instability scale ΛUV > 100 TeV implies |δrG| . 0.2. If the new states

are more massive than 1 TeV, imposing ΛUV > 100 TeV implies |δrG| . 0.05.

– High color representations are also constrained. Allowing color octets or sextets

as light as 1.2 TeV, we find that ΛUV > 100 TeV implies δrG . 0.2, with some-

what weaker constraints on the magnitude of negative δrG. If the new states

are more massive than 2 TeV, the same ΛUV bound implies |δrG| . 0.1.

• Hγγ

– Considering new fermions with electromagnetic charge |Q| ≤ 1, and allowing for

states as light as 200 GeV, we find that ΛUV > 100 TeV implies −0.3 . δrγ .
0.15. If the new states are more massive than 400 GeV, the same ΛUV bound

implies −0.1 . δrγ . 0.05.

– Considering new fermions with exotic charge |Q| = 2, and allowing for states as

light as 400 GeV, we find that ΛUV > 100 TeV implies δrγ . 0.2, with somewhat

weaker constraints on the magnitude of negative δrγ . If the new states are more

massive than 800 GeV, the same ΛUV bound implies |δrγ | . 0.1.

Finally, a few comments are in order. The experimentally accessible signal strength

(production cross section times decay branching fraction) in various analysis channels de-

pends on more than one underlying effective Higgs coupling. For example, the HGG

coupling affects the signal strength in H → γγ measurements by modifying the gluon

fusion production cross section, and the Hbb coupling affects all other signal strength

measurements through its effect on the total width and thus on the respective branching

fractions. Clearly, moreover, a realistic new physics scenario may involve true deviations

in a number of different Higgs couplings, adding to the complexity. In this paper we chose

to ignore this complication in the interpretation of Higgs data, assuming simply that the

various degeneracies can be resolved sufficiently well. Our theoretical vacuum stability

constraints apply therefore to each underlying coupling individually, and should be cast

into constraints on signal strengths once new data becomes accessible, during Run-II of

the LHC or with future colliders.

Our calculation of the vacuum stability constraints relied on perturbation theory. In

some models and some corners of the parameter space, the renormalization of the Yukawa

couplings leads to a breakdown of the perturbative calculation on scales below the naively

deduced vacuum instability scale. We indicated where this happens in the relevant sections

of the HGG and Hγγ analyses. In practice, when this happens, the relevant scales are

very low, in the ballpark of 10 TeV.

We did not investigate the possibility of adding several different (non-minimal) vector-

like fermion representations, and using them, e.g., to add a multiplicity factor in the HGG
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or Hγγ analyses or to cancel some of the correlations between Higgs and Z observables in

the Hbb or Hττ analyses. Some considerations along these lines can be found in [52]. Since

adding more fermions and more Yukawa couplings tends to make the instability problem

more severe, we expect that, without significant accidental cancelations, such non-minimal

models would result in vacuum stability constraints that are comparable to or stronger

than those we derived here for minimal models.

Our account of the experimental constraints on the various vector-like fermion mod-

els was partial, omitting potentially important constraints from, e.g., electroweak oblique

parameters (see e.g. [33, 34, 52, 56]) and precision flavor data. Including these additional

constraints can only make our results stronger.

Lastly we comment on deviations to the HWW and HZZ couplings. In a pure fermion

model, contributions to the effective HWW and HZZ couplings arise at the loop level.

In contrast to the HGG and Hγγ cases, however, where we have analyzed the analogous

loop contributions, here to estimate the Higgs coupling deviation one should compare a

tree level coupling with a loop-suppressed effect. This means that the vacuum stability

constraints on pure fermion models are strong, sufficiently strong to imply that observing

modifications to the HZZ or HWW couplings with the precision expected at the LHC

would most likely rule out any pure fermion model interpretation.
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A The effective potential

In this section we describe our calculation of the Higgs effective potential in the presence

of the canonical vector-like fermion representation

ψ(D, 2)−Q+ 1
2
, ψc(D̄, 2)Q− 1

2
, χ(D̄, 1)Q, χc(D, 1)−Q, (A.1)

adding to the SM the potential

VNP = Y H†ψχ+ Y cHT εψcχc +mψψ
T εψc +mχχχ

c + cc. (A.2)

For simplicity, we do not include mixing of the heavy vector-like fermions with SM fermions.

While this mixing is important for Higgs coupling deviations, the vacuum stability con-

straints that we are concerned with in this section are easier to derive without it, and pro-

vide constraints that are easily generalized to the mixing case in the phenomenologically

interesting regimes. We also restrict our analysis to the case where all of the parameters

mψ,mχ, Y, and Y c are real.

We use the MS one-loop Coleman-Weinberg (CW) potential in the Landau gauge

improved by two loop RGE (see e.g. [15, 18]). Our problem involves two distinct physical
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scales — the SM electroweak scale, that we fix here at Mt ' 173 GeV, and the vector-like

fermion mass scale, denoted by M , that we define as

M ≡
√

(m2
ψ +m2

χ)/2. (A.3)

In most of our analysis, M �Mt. We thus need to implement explicitly the decoupling of

heavy states in the calculation of the effective potential, as we now explain.

The one-loop effective potential is a function of the classical Higgs field hc and the

MS renormalization scale µ. We implement the decoupling of heavy states by defining two

versions of the theory, one valid at µ < M and the other valid at µ > M , and matching

between these theories at µ = M . In both of the regimes, µ < M and µ > M , we define

V = V0 + V1, (A.4)

where the tree level piece is given by

V0 = Ω(t)−
m2
h(t)

2
h2 +

λ(t)

4
h4. (A.5)

For the one-loop contribution, on scales µ > M we use

V1 =
∑
i

ni
64π2

m4
i (h, t) log

(
m2
i (h, t)

µ2eCi

)
, (A.6)

where the sum on i includes W,Z, t, the Higgs h and Goldstone bosons G0,±, and the

heavy vector-like fermions. The MS constants Ci are equal to 5/6 for vector bosons and

3/2 for fermions and scalars. The effective number of degrees of freedom ni are nZ = 3,

nW = 6, nh,G0 = 1, nG± = 2, nt = −12 and n = −4D for each new fermion mass eigenstate

transforming under SU(3)c in representation D. All couplings are running as function of

the RGE parameter t = log (µ/Mt) with two loop RGE that we derive using the package

provided by [74–77] (see also [78] for related useful code). The renormalized Higgs field is

h(t) = ζ(t)hc with ζ(t) = e−
∫ t
0 dt
′γ(t′), where γ is the Higgs anomalous dimension.

On scales µ < M , we replace eq. (A.6) by

V1 =
∑
i⊂SM

ni
64π2

m4
i (h, t) log

(
m2
i (h, t)

µ2eCi

)
+ c6h

6. (A.7)

Here, the sum on i runs over the SM states, excluding the heavy vector-like fermions. The

couplings run with beta functions and anomalous dimensions obtained with the SM RGE

equations. The c6h
6 term contains the leading non-renormalizable dimension six operator

induced by integrating out the heavy states. To obtain it, we expand the contribution of

the heavy fermions to eq. (A.6) in powers of the Higgs field h, fixing µ = M , and reading

off the coefficient of h6. The full expression for c6 is not particularly illuminating; in the

case mχ = mψ = M and Y c = Y , for example, it is given by c6 = DY 6/(960π2M2). We

have verified that adding higher order operators (i.e. c8h
8) does not affect our results.

While we use the same symbols for the parameters λ,m2
h, and Ω in eq. (A.5), above and

below the matching scale µ = M , their numerical values are different due to the one-loop
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threshold corrections. Writing λ(µ = M+) = λ(µ = M−) + ∆λ, m2
h(µ = M+) = m2

h(µ =

M−)+∆m2
h, and Ω(µ = M+) = Ω(µ = M−)+∆Ω, we have ∆λ = −4c4, ∆m2

h = 2c2, and

∆Ω = −c0, where the corrections cn are given again by the coefficient of hn on expanding

the vector-like fermion contribution to eq. (A.6) in powers of h. In the case mχ = mψ = M

and Y c = Y , for example, we have c0 = 3DM4/(4π)2, c2 = 2DY 2M2/(4π)2, and c4 =

−DY 4/(12π2).

We fix the RGE initial conditions for the SM couplings at the scale µ = Mt. While our

calculation only requires one-loop matching, for convenience we use the two-loop values

for the SM parameters at µ = Mt as given in ref. [79]. For m2
h(t) and λ(t) we include the

non-renormalizable c6 contribution through the correction

λ(0) = λ(SM)(0) +
1

2v2

[
1

v

(
∂∆V1

∂h

)
h=v

−
(
∂2∆V1

∂h2

)
h=v

]
, (A.8)

m2
h(0) = m

2(SM)
h (0) +

3

2v

(
∂∆V1

∂h

)
h=v

− 1

2

(
∂2∆V1

∂h2

)
h=v

, (A.9)

with ∆V1 = c6h
6 and where λ(SM)(0) and m

2(SM)
h (0) are taken from ref. [79]. Lastly, for the

vacuum energy Ω, we set Ω(0) = 0. This guarantees Ω(t) ≈ 0 up to logarithmic corrections

at all t.

The input values for the vector-like fermion parameters appearing in eq. (A.2) are

taken to be defined at the scale µ = M . We note that, in principle, we should run the

non-renormalizable c6 contribution at µ < M using the SM anomalous dimension, as well

as include insertions of c6 in the RGE for the SM couplings [62–65]. In practice, our interest

in the effective potential mainly concerns scales µ > M , where vacuum instability occurs,

and where the non-renormalizable operators are replaced by the full one-loop contribution

that we evolve properly using the two-loop RGE. The contribution of c6 is thus mainly in

setting the initial conditions for the running of λ. Here, however, the running of c6 would be

a two-loop correction to the one-loop matching that our approximation requires, and so we

omit it. Concerning the insertion of c6 in the running of λ, using the results of refs. [63–65]

we verified that including this effects leads to negligible corrections to our results.

Now that we have the effective potential V (hc, µ) defined for all µ, the final step in

the calculation is the RGE improvement, that amounts to letting µ be a function of hc in

order to control large logs far in field space. We set µ = hc.

Finally we note that in some of the analyses in the body of the paper, in parameter

regions allowing for very light fermions, the vector-like mass scale M comes out lower

than the SM top quark mass Mt (in practice, this only happened for the M1 = 200 GeV

curve in the left panel of figure 11, and only for δrγ < 0). In this case, instead of the

matching procedure described above, we used the full theory effective potential and RGE

starting from Mt and setting the RGE initial conditions based on eqs. (A.8)–(A.9) with

∆V1 replaced by the full m4 logm2 contribution of the new fermions.
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representation VNP

DI Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
YQdcH

†Qdc+YqDcH†qDc+YQDcH†QDc+YQcDH
T εQcD

D(3, 1)− 1
3
, Dc(3̄, 1) 1

3
+MQQ

T εQc+MDDD
c+cc

DII Q′(3, 2)− 5
6
, Q

′c(3̄, 2) 5
6

YQ′dcH
T εQ′dc+YqDcH†qDc+YQ′DcHT εQ′Dc+YQ′cDH

†Q
′cD

D(3, 1)− 1
3
, Dc(3̄, 1) 1

3
+MQ′Q

′T εQ
′c+MDDD

c+cc

DIII Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
YQdcH

†Qdc+YqD′cH
†σq ·D

′c+YQD′cH
†σQ ·D

′c+YQcD′HT εσQc ·D′

D′(3, 3)− 1
3
, D

′c(3̄, 3) 1
3

+MQQ
T εQc+MD′D′ ·D

′c+cc

DIV Q′(3, 2)− 5
6
, Q

′c(3̄, 2) 5
6

YQ′dcH
T εQ′dc+YqD′cH

†σq ·D
′c+YQ′D′cH

T εσQ′ ·D
′c

D′(3, 3)− 1
3
, D

′c(3̄, 3) 1
3

+YQ′cD′H
†σQ

′c ·D′+MQ′Q
′T εQ

′c+MD′D′ ·D
′c+cc

UI Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
YQucHT εQuc+YqUcHT εqUc+YQUcHT εQUc+YQcUH

†QcU

U(3, 1) 2
3
, Uc(3̄, 1)− 2

3
+MQQ

T εQc+MUUU
c+cc

UII Q
′′

(3, 2) 7
6
, Q

′′c(3̄, 2)− 7
6

YQ′′
ucH

†Q
′′
uc+YqUcHT εqUc+YQ′′

UcH
†Q

′′
Uc+YQ′′cUH

T εQ
′′cU

U(3, 1) 2
3
, Uc(3̄, 1)− 2

3
+MQ′′Q

′′T εQ
′′c+MUUU

c+cc

UIII Q(3, 2) 1
6
, Qc(3̄, 2)− 1

6
YQucHT εQuc+YqU′cH

T εσq · U
′c+YQU′cH

T εσQ · U
′c

U ′(3, 3) 2
3
, U

′c(3̄, 3)− 2
3

+YQcU′H†σQc · U ′ +MQQ
T εQc+MU′U ′ · U

′c+cc

UIV Q
′′

(3, 2) 7
6
, Q

′′c(3̄, 2)− 7
6

YQ′′
ucH

†Q
′′
uc+YqU′cH

T εσq · U
′c+YQ′′

U
′cH

†σQ
′′
· U

′c

U ′(3, 3) 2
3
, U

′c(3̄, 3)− 2
3

+YQ′′cU′H
T εσQ

′′c · U ′ +MQ′′Q
′′T εQ

′′c+MU′U ′ · U
′c+cc

DV Q′(3, 2)− 5
6
, Q

′c(3̄, 2) 5
6

YQ′dcH
T εQ′dc+YQ′D′′cH

†σQ′ ·D
′′c+YQ′cD′′HT εσQ

′c ·D
′′

D
′′

(3, 3)− 4
3
, D

′′c(3̄, 3) 4
3

+MQ′Q
′T εQ

′c+MD′′D
′′
·D

′′c+cc

UV Q
′′

(3, 2) 7
6
, Q

′′c(3̄, 2)− 7
6

YQ′′
ucH

†Q
′′
uc+YQ′′

U
′′cH

T εσQ
′′
· U

′′c+YQ′′cU′′H†σQ
′′c · U

′′

U
′′

(3, 3) 5
3
, U

′′c(3̄, 3)− 5
3

+MQ′′Q
′′T εQ

′′c+MU′′U
′′
· U

′′c + cc

Table 1. Vector-like fermion representations that can mix with SM quarks.

B EFT analysis of deviations in Z and Higgs couplings to SM fermions

We examine the vector-like fermion representations that can modify the effective Higgs

Yukawa couplings at tree level (for related analyses see, e.g. [34, 80, 81]). Before we

introduce the new fermion fields, we first describe our conventions for the SM effective

theory below the vector-like fermion scale.

Our notation for the SM Higgs and fermion representations is H(1, 2) 1
2
, q(3, 2) 1

6
,

dc(3̄, 1) 1
3
, uc(3̄, 1)− 2

3
, l(1, 2)− 1

2
, ec(1, 1)1. The first and second numbers in parenthesis

denote the SU(3)c and SU(2)W representation, respectively, and the subscript denotes the

hypercharge. The fermion sector of the SM Lagrangian is

LSM = iq̄σ̄µDµq + idcσ̄µDµdc + iucσ̄µDµuc + il̄σ̄µDµl + iecσ̄µDµec

−
{
ydH

†qdc + yuH
T εquc + yeH

†lec + cc
}

(B.1)

with ε12 = −ε21 = 1. In unitary gauge H = (0 h)T /
√

2, with 〈h〉 = v ' 246.22 GeV.

Integrating out heavy fermions leads to effective Hff and Zff couplings that are

modified compared to their SM values. The main effect is captured by considering non-
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Effective operators

DI chd = − |YQdc |2
2|MQ|2 , c′hq = chq = − |YqDc |2

4|MD|2 , cY d =
yd|YqDc |2
2|MD|2 +

yd|YQdc |2
2|MQ|2 −

YQcDYQdcYqDc

MQMD

DII chd =
|YQdc |2
2|MQ|2 , c′hq = chq = − |YqDc |2

4|MD|2 , cY d =
yd|YqDc |2
2|MD|2 +

yd|YQdc |2
2|MQ|2 +

YQcDYQdcYqDc

MQMD

DIII chd = − |YQdc |2
2|MQ|2 , 3c′hq = −chq =

3|YqDc |2
4|MD|2 , cY d =

yd|YqDc |2
2|MD|2 +

yd|YQdc |2
2|MQ|2 −

YQcDYQdcYqDc

MQMD

DIV chd =
|YQdc |2
2|MQ|2 , 3c′hq = −chq =

3|YqDc |2
4|MD|2 , cY d =

yd|YqDc |2
2|MD|2 +

yd|YQdc |2
2|MQ|2 +

YQcDYQdcYqDc

MQMD

UI chu =
|YQuc |2
2|MQ|2 , c′hq = −chq = − |YqUc |2

4|MU |2 , cY u =
yu|YqUc |2

2|MU |2 +
yu|YQuc |2

2|MQ|2 +
YQcUYUdcYqUc

MQMU

UII chu = − |YQuc |2
2|MQ|2 , c′hq = −chq = − |YqUc |2

4|MU |2 , cY u =
yu|YqUc |2

2|MU |2 +
yu|YQuc |2

2|MQ|2 −
YQcUYUdcYqUc

MQMU

UIII chu =
|YQuc |2
2|MQ|2 , 3c′hq = chq =

3|YqUc |2
4|MU |2 , cY u =

yu|YQuc |2
2|MQ|2 −

yu|YqUc |2
2|MU |2 −

YQcUYUdcYqUc

MQMU

UIV chu = − |YQuc |2
2|MQ|2 , 3c′hq = chq =

3|YqUc |2
4|MU |2 , cY u =

yu|YQuc |2
2|MQ|2 −

yu|YqUc |2
2|MU |2 +

YQcUYUdcYqUc

MQMU

Table 2. Contributions to the non-renormalizable operators involving SM quarks, listed in

eq. (B.3).

renormalizable operators [82, 83],

∆Leff = ciOi + cc. (B.2)

Following ref. [84] and adding operators that affect Yukawa couplings, we list the operators

of interest as follows,8

Ohl = iH†DµH l̄σ̄µl, O′hl = i
(
H†DµσH

)
·
(
l̄σ̄µσl

)
, Ohe = iH†DµH ecσ̄µe

c

Ohq = iH†DµH q̄σ̄µq, O′hq = i
(
H†DµσH

)
· (q̄σ̄µσq)

Ohd = iH†DµH dcσ̄µd
c, Ohu = iH†DµH ucσ̄µu

c

OY d = |H|2H†qdc, OY u = |H|2HT εquc, OY e = |H|2H†lec. (B.3)

For fermion f , we define the modification to the Higgs coupling as δrf ≡
(
ghff − gSM

hff

)
/gSM
hff . We find (see also [59])

δrd = − v3

√
2md

cY d, δgV d = −v
2

2

(
chq + c′hq − chd

)
, δgAd = −v

2

2

(
chq + c′hq + chd

)
,

δru = − v3

√
2mu

cY u, δgV u = −v
2

2

(
chq − c′hq − chu

)
, δgAu = −v

2

2

(
chq − c′hq + chu

)
,

δre = − v3

√
2me

cY e, δgV e = −v
2

2

(
chl + c′hl − che

)
, δgAe = −v

2

2

(
chl + c′hl + che

)
,

δgV ν = −v
2

2

(
chl − c′hl

)
, δgAν = −v

2

2

(
chl − c′hl

)
. (B.4)

8Note that our definitions for the operators Ohd, Ohu, and Ohe differs by a sign compared to the

corresponding operators in ref. [84]. In addition, we define v = 246 GeV while ref. [84] works with v =

174 GeV.
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Coupling deviations

DI δrd ≈ −2δgAd +
2|YQcD|v√

2md

√
|δg2

V d − δg2
Ad|eiφ, δgAd = v2

2

(
|YqDc |2
2|MD|2 +

|YQdc |2
2|MQ|2

)
,

δgV d = v2

2

(
|YqDc |2
2|MD|2 −

|YQdc |2
2|MQ|2

)
DII δrd ≈ −2δgV d − 2|YQcD|v√

2md

√
|δg2

V d − δg2
Ad|eiφ, δgAd = v2

2

(
|YqDc |2
2|MD|2 −

|YQdc |2
2|MQ|2

)
,

δgV d = v2

2

(
|YqDc |2
2|MD|2 +

|YQdc |2
2|MQ|2

)
DIII δrd ≈ −2δgV d − 2|YQcD|v√

2md

√
|δg2

V d − δg2
Ad|eiφ, δgAd = v2

2

(
|YqDc |2
2|MD|2 +

|YQdc |2
2|MQ|2

)
,

δgV d = v2

2

(
|YqDc |2
2|MD|2 −

|YQdc |2
2|MQ|2

)
δgAu = δgV u = v2

2
|YqDc |2
|MD|2

DIV δrd ≈ −2δgAd +
2|YQcD|v√

2md

√
|δg2

V d − δg2
Ad|eiφ, δgAd = v2

2

(
|YqDc |2
2|MD|2 −

|YQdc |2
2|MQ|2

)
,

δgV d = v2

2

(
|YqDc |2
2|MD|2 +

|YQdc |2
2|MQ|2

)
δgAu = δgV u = v2

2
|YqDc |2
|MD|2

UI δru ≈ 2δgAu − 2|YQcU |v√
2mu

√
|δg2

V u − δg2
Au|eiφ, δgAu = − v

2

2

(
|YqUc |2
2|MU |2 +

|YQuc |2
2|MQ|2

)
,

δgV u = −v
2

2

(
|YqUc |2
2|MU |2 −

|YQuc |2
2|MQ|2

)
UII δru ≈ 2δgV u +

2|YQcU |v√
2mu

√
|δg2

V u − δg2
Au|eiφ, δgAu = −v

2

2

(
|YqUc |2
2|MU |2 −

|YQuc |2
2|MQ|2

)
,

δgV u = −v
2

2

(
|YqUc |2
2|MU |2 +

|YQuc |2
2|MQ|2

)
UIII δru ≈ −2δgV u +

2|YQcU |v√
2mu

√
|δg2

V u − δg2
Au|eiφ, δgAu = −v

2

2

(
|YqUc |2
2|MU |2 +

|YQuc |2
2|MQ|2

)
,

δgV u = − v
2

2

(
|YqUc |2
2|MU |2 −

|YQuc |2
2|MQ|2

)
δgAd = δgV d = −v

2

2
|YqUc |2
|MU |2

UIV δru ≈ −2δgAu − 2|YQcU |v√
2mu

√
|δg2

V u − δg2
Au|eiφ, δgAu = −v

2

2

(
|YqUc |2
2|MU |2 −

|YQuc |2
2|MQ|2

)
,

δgV u = − v
2

2

(
|YqUc |2
2|MU |2 +

|YQuc |2
2|MQ|2

)
δgAd = δgV d = −v

2

2
|YqUc |2
|MU |2

Table 3. EFT contributions to Higgs and Z couplings to SM quarks. The complex

phase φ has a similar structure in all cases; for example, in model DI it is given by φ =

arg
(
YQcDYqDcYQdcy

∗
dM
∗
QM

∗
D

)
.

In addition, for any f , the coupling yf of eq. (B.1) is constrained by

yf =

√
2mf

v

(
1−

δrf
2

)
. (B.5)

Eqs. (B.4)–(B.5) are valid to O
(
Y 2v2/M2

)
, where M represents the heavy vector-like

fermion mass scale and Y is a Yukawa coupling.

Vector-like fermion representations that can mix with SM quarks are given in table 1.

Integrating out the heavy fields we collect contributions to effective operators of interest

in table 2. This is further summarized in terms of relations between the Hff and Zff
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representation VNP

LI L(1, 2)− 1
2
, Lc(1, 2) 1

2
YLecH

†Lec + YlEcH†lEc + YLEcH†LEc + YLcEH
T εLcE

E(1, 1)−1, E
c(1, 1)1 +MLL

T εLc +MEEE
c + cc

LII L′(1, 2)− 3
2
, L

′c(1, 2) 3
2

YL′ecH
T εL′ec + YlEcH†lEc + YL′EcHT εL′Ec + YL′cEH

†L
′cE

E(1, 1)−1, E
c(1, 1)1 +ML′L

′T εL
′c +MEEE

c + cc

LIII L(1, 2)− 1
2
, Lc(1, 2) 1

2
YLecH

†Lec + YlE′cH
†σl · E

′c + YLE′cH
†σL · E

′c + YLcE′HT εσLc · E′

E′(1, 3)−1, E
′c(1, 3)1 +MLL

T εLc +ME′E′ · E
′c + cc

LIV L′(1, 2)− 3
2
, L

′c(1, 2) 3
2
YL′ecH

T εL′ec+YlE′cH
†σl · E

′c+YL′E′cH
T εσL′ · E

′c+YL′cE′H
†σL

′c · E′

E′(1, 3)−1, E
′c(1, 3)1 +ML′L

′T εL
′c +ME′E′ · E

′c + cc

LV L(1, 2)− 1
2
, Lc(1, 2) 1

2
YLecH

†Lec+YlE′cH
T εσl · E

′′c+YLcE
′′H†σLc · E

′′
+YLE′′cH

T εσL · E
′′c

E
′′

(1, 3)0, E
′′c(1, 3)0 +MLL

T εLc +ME′′E
′′
· E

′′c + cc

Table 4. Vector-like fermion representations that can mix with the SM leptons.

Effective operators

LI che = − |YLec |2
2|ML|2 , c′hl = chl = − |YlEc |2

4|ME |2 , cY e = Ylec |YlEc |2
2|ME |2 + Ylec |YLec |2

2|ML|2 − YLcEYLecYlEc

MLME

LII che = |YLec |2
2|ML|2 , c′hl = chl = − |YlEc |2

4|ME |2 , cY e = Ylec |YlEc |2
2|ME |2 + Ylec |YLec |2

2|ML|2 + YLcEYLecYlEc

MLME

LIII che = − |YLec |2
2|ML|2 , 3c′hl = −chl = 3|YlEc |2

4|ME |2 , cY e = Ylec |YlEc |2
2|ME |2 − YLcEYLecYlEc

MLME
+ Ylec |YLec |2

2|ML|2

LIV che = |YLec |2
2|ML|2 , 3c′hl = −chl = 3|YlEc |2

4|ME |2 , cY e = Ylec |YlEc |2
2|ME |2 + YLcEYLecYlEc

MLME
+ Ylec |YLec |2

2|ML|2

LV che = − |YLec |2
2|ML|2 , 3c′hl = chl = 3|YlEc |2

4|ME |2 , cY e = Ylec |YLec |2
2|ML|2 + Ylec |YlEc |2

|ME |2 − 2YLcEYLecYlEc

MLME

Table 5. Contributions to the non-renormalizable operators involving SM leptons, listed in

eq. (B.3).

effective couplings in table 3. Note that the expressions in table 3 include an expansion in

|δgA| and |δgV |, and are valid to leading order in the δg’s.

Vector-like fermion representations that can mix with SM leptons are given in table 4.

Integrating out the heavy fields, we further summarize the contributions of the effective

operators in table 5 and the modifications to the Hff and Zff effective couplings obtained

via the EFT analysis in table 6, again valid to leading order in |δgA,V |. These results are

used in section 2, where we also comment on cases in which some of the expressions derived

here using EFT remain valid even for Y 2v2/M2 = O(1).

We comment that the derivative operators in eq. (B.3), for which we have highlighted

the effect on Zff couplings, also enter into Higgs tt̄ associated production and h→ bb, ττ

decays. However, in contrast to the modified Yukawa couplings [parametrized by the δrf
terms in eq. (B.4)], the contribution due to the derivative operators does not interfere with

the leading SM contribution to the Higgs decay or production matrix element. Thus, for

the Htt, Hbb, and Hττ couplings of interest to us in this paper, their contribution to the

respective signal strength is suppressed in comparison to the δrf terms, and we neglect it

here and in the main text.
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Coupling deviations

LI δre ≈ −2δgAe + 2|YLcE |v√
2me

√
|δg2

V e − δg2
Ae|eiφ, δgAe = v2

2

(
|YlEc |2
2|ME |2 + |YLec |2

2|ML|2

)
,

δgV e = v2

2

(
|YlEc |2
2|ME |2 −

|YLec |2
2|ML|2

)
LII δre ≈ −2δgV e − 2|YLcE |v√

2me

√
|δg2

V e − δg2
Ae|eiφ, δgAe = v2

2

(
|YlEc |2
2|ME |2 −

|YLec |2
2|ML|2

)
,

δgV e = v2

2

(
|YlEc |2
2|ME |2 + |YLec |2

2|ML|2

)
LIII δre ≈ −2δgV e − 2|YLcE |v√

2me

√
|δg2

V e − δg2
Ae|eiφ, δgAe = v2

2

(
|YlEc |2
2|ME |2 + |YLec |2

2|ML|2

)
,

δgV e = v2

2

(
|YlEc |2
2|ME |2 −

|YLec |2
2|ML|2

)
δgAν = δgV ν = v2

2
|YlEc |2
|ME |2

LIV δre ≈ −2δgAe + 2|YLcE |v√
2me

√
|δg2

V e − δg2
Ae|eiφ, δgAe = v2

2

(
|YlEc |2
2|ME |2 −

|YLec |2
2|ML|2

)
,

δgV e = v2

2

(
|YlEc |2
2|ME |2 + |YLec |2

2|ML|2

)
δgAν = δgV ν = v2

2
|YlEc |2
|ME |2

LV δre ≈ 2δgV e + 2|YLcE |v√
2me

√
|δg2

V e − δg2
Ae|eiφ, δgAe = v2

2

(
− |YlEc |2
|ME |2 + |YLec |2

2|ML|2

)
,

δgV e = v2

2

(
− |YlEc |2
|ME |2 −

|YLec |2
2|ML|2

)
δgAν = δgV ν = −v

2

4
|YlEc |2
|ME |2

Table 6. EFT contributions to Higgs and Z couplings to SM leptons. The complex

phase φ has a similar structure in all cases; for example, in model LI it is given by φ =

arg (YLcEYlEcYLecy
∗
eM
∗
LM

∗
E).

C Collider constraints

We discuss here the collider bounds on vector-like quarks and leptons. We also include

limits on states with exotic color or electromagnetic charge assignments that can be relevant

for the Hγγ and HGG analyses.

Unless specified otherwise, we list constraints on a single Dirac fermion at 95% C.L.,

taking into account the color multiplicity, but ignoring additional constraints due to e.g.

isospin multiplicity. For the vector-like fermion models at hand, these constraints are

conservative since they ignore the contributions due to some of the states. Thus our

bounds are weaker, for example, than those derived in [35, 85, 86] for vector-like leptons.

We discuss the constraints on states that are either stable or decay promptly on col-

lider time scales, separating the discussion for colored and color singlet fermions. We do

not discuss the constraints on states that decay non-promptly but yet within the tracker

volume. We comment however that for cτ & 0.1 cm the constraints on such non-prompt

decays are typically comparable to or stronger than the constraints obtained in either the

stable or prompt cases (see, e.g. [87, 88]).

We stress that the broad summary of constraints presented here, that applies to nu-

merous different vector-like fermion models, is only intended to provide a rough estimate

for the mass scales of such fermions still allowed after Run-I of the LHC. For the purpose

of the current paper we find these rough estimates sufficient; a more careful analysis will be

motivated in the case that Higgs coupling deviations end up being discovered at the LHC.
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C.1 Colored particles

As discussed in section 3.1 we are interested only in states transforming as 3, 6 or 8 of

SU(3)c. For the vector-like models we deal with here, higher color representations induce

a Landau pole in αs on scales close to the vector-like fermion masses. To obtain the mass

bounds quoted in the following, for the color 3 we use the t′ cross section computed in [89]

using HATHOR [90] and for the 8 we compute it at NLO+NLL using NLLfast [91–95]. The

mass bounds for the 6 and 8 representations are similar [96].

C.1.1 Stable states

If we are interested only in HGG or Hγγ deviations we can imagine that the new fermions

possess a conserved quantum number that prevents them from decaying into SM states. In

this case we are looking for stable colored particles that travel inside the detector and can

form charged bound states. The strongest bounds on heavy stable charged particles are

set by the CMS search that exploits mainly their long time of flight and their anomalous

energy loss per unit length [97]. The behavior of heavy colored particles inside the detector

is subject to large uncertainties, so we quote a range for the mass exclusion given by the

different hadronization models considered by the collaboration [98–100]. The bounds we

quote here refer to a combination of the CMS tracker and time of flight (TOF) analyses.

Similar bounds are obtained from the tracker analysis alone.

The CMS collaboration considered colored particles with Q = 0 and Q = 2/3. If we

use the cross section limit obtained by the collaboration on gluino pair production, we find

the mass bounds m3 > 1050± 30 GeV and m8 > 1295± 35 GeV for a single Dirac fermion

and m3 > 1165±35 GeV and m8 > 1390±35 GeV for three Dirac fermions (corresponding

to a vector-like doublet and a singlet with the same mass). The bounds are the same for

Q = 2/3 and Q = 0 states. We expect the limit on the 6 to be similar to that on the 8.

This procedure is partially justified by the fact that the cross section limit for stops (i.e.

Nc = 3 and Q = 2/3) converges to the one for gluinos (Q = 0 and Nc = 8) at high masses.

However it can overestimate the bound for particles with Q = 0 and Nc = 3, 6 and a more

thorough collider study is needed to go beyond this very rough estimate. We expect similar

bounds for other electromagnetic charges, including e.g. Q = 1/3.

C.1.2 States decaying promptly to first and second generation quarks

Wq, Zq and hq final states. Vector-like quarks with mass mixing with the first or

second generation SM quarks can decay to W,Z or h plus one jet. This situation could be

relevant for the HGG and Hγγ analyses, where mixing with third generation quarks is not

guaranteed. Bounds on pair produced heavy quarks for these final states were examined

in [101]. The corresponding experimental analyses where not updated since the 7 TeV run,

and the leading explicit constraint we find is mq′ > 350 GeV from ATLAS [102], where the

search was performed on WW+2 jets final states and the bound assumes BR(q′→Wq)=1.

For three Dirac copies of q′, the ATLAS search would exclude mq′ > 420 GeV. ATLAS also

reported a multijet search for RPV gluinos [103] that is a counting experiment, does not

exploit the shape of the jet invariant masses and can be reinterpreted in the context of
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our models. A possible caveat is that in most cases, ATLAS finds that requiring a seventh

jet improves the bounds. Our signal, that includes WWjj, ZZjj and hhjj final states,

would has a different probability of radiating an extra jet with respect to a pair of gluinos,

but we ignore this correction for the purpose of the current rough estimate. In the case

BR(q′ → Wq) = 1, no b-quarks are produced and the RPV gluino search yields a weaker

bound than the one we obtain from [102] discussed above. Instead for BR(q′ → hq) = 1 we

get for three Dirac fermions mq′ > 700 GeV while for BR(q′ → Zq) = 1, mq′ > 450 GeV.

The ZZjj and hhjj final states could also be constrained by the 8 TeV CMS multilepton

search performed with an integrated luminosity of 19.5 fb−1 [104]. For BR(q′ → hq) = 1 we

find that the mass bounds for three Dirac fermions is mq′ > 540 GeV, which is weaker than

the multijet bound quoted above, while for BR(q′ → Zq) = 1, mq′ > 650 GeV, stronger

than the multijet bound.

Dijet decays. Both the 3 and the 6 could couple to an SM quark and a gluon via

nonrenormalizable magnetic interactions, allowing dijet decays. However we find somewhat

unlikely for the dijet mode to be the dominant one, as producing the nonrenormalizable

magnetic interaction requires flavor changing scalar or boson loop diagrams. If the operator

is formed with a W boson loop (relevant for the 3), then we expect the irreducible q′ →Wq

to dominate and lead to the bound discussed in the previous paragraph. For the 6, new

bosons with masses larger than ΛUV must be involved and we expect a tree level three-jet

decay (discussed below) with branching fraction comparable or larger than the dijet mode.

However from the the CMS search for pairs of dijet resonances [105] we can make a rough

estimate m3 > 500 GeV, valid for a single Dirac fermion, with a somewhat stronger limit

on the 6.

Three jet, and higher jet multiplicity decays. Limits on this final state were set by

the ATLAS multijet search discussed above [103], with somewhat weaker bounds reported

by CMS [106]. For a single Dirac 8 we find m8 > 1.1 TeV, while for three copies of equal

mass we obtain a limit stronger than m8 > 1.2 TeV. The latter bound is conservative,

since what prevented us from quoting a higher number is simply the fact that the ATLAS

exclusion plot extends only up to 1.2 TeV. The constraints on the 6 representation are the

same. For the 3 representation, we find essentially no bound from [103]. However, our

new fermions necessarily include electromagnetically charged states, leading to irreducible

three jet plus weak gauge boson (or Higgs) decays which translate with O(1) branching

fraction into five jet modes. From the 10 jet bin of the general purpose analysis in [107],

we find m3 > 850 GeV or so. In addition to the five jet channel, leptonic modes [with an

O(10%) branching fraction] suggest even stronger bounds of order a TeV.

C.1.3 States decaying promptly to third generation quarks

The discussion here is aimed to address vector-like quarks mixing with the third generation

SM quarks, relevant to the Hbb and Htt coupling analyses. The constraints in this case are

generally stronger than those discussed above for decays to W,Z, h+ q, involving only first

or second generation quarks. We focus on the CMS searches for pair production. CMS
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results are presented as a function of branching ratios and can be directly read off the

tables in [89, 108, 109]. ATLAS bounds are comparable [110–113].

In the case of a t′, the weakest bound is mt′ > 700 GeV, obtained for BR(t′→Wb) ≈
1 [89]. Adding a finite BR(t′ → Zt) or BR(t′ → ht) makes the bound a few tens of GeV

stronger. For a b′ the situation is reversed, since top rich final states are easier to distinguish

from the background. The most constraining case corresponds to BR(b′ → Wt) ≈ 1 and

mb′ > 730 GeV, while the weakest bound reads mb′ > 600 GeV, obtained for BR(b′ →
Wt) = 0 and BR(b′ → hb) ≈ BR(b′ → Zb) [108, 109].

Even if the lightest state has an exotic charge, the bounds do not change dramatically.

For a quark with charge 5/3, we have BR(t5/3 → Wt) = 1 and mt5/3 & 800 GeV [114].

A charge 4/3 quark will decay to Wb, and the limit is the same as in the t′ case dis-

cussed above.

C.2 Leptons

We focus on pair production pp→ L1L1 where L1 stands for the lightest new lepton, that

in our minimal models is always electromagnetically charged if Higgs coupling deviations

are to be induced. Our limits on this single state are less stringent than those set on

complete models by [35, 85, 86], and should be thought of as conservative estimates. We

consider separately the cases in which L1 is mostly an SU(2)W singlet, doublet or triplet.

We compute the relevant cross sections at QCD NLO with Pospino [115] decoupling all

supersymmetric partners except for Winos (Higgsinos) when considering SU(2)W triplets

(doublets). The singlet Drell-Yan production cross section was computed at LO in [97]

using PYTHIA v6.426 [116] and CTEQ6L1 PDFs [117]. For doubly charged leptons we

generate the models in UFO format [118] using FeynRules [119, 120] and compute the

cross section at LO with Madgraph5 [121].

We first discuss the case in which the lightest charged lepton is stable, relevant to the

Hγγ analysis, and then consider the case in which it decays to the SM states. For the

latter possibility, the decay channels of L1 are Wν,Zτ(`), hτ(`) with branching fractions

depending on its electroweak quantum numbers. For instance, if L1 is mostly an SU(2)W
singlet or triplet and mL1 � mh, it will decay to Wν,Zτ(`), hτ(`) with ratio 2 : 1 : 1. If

L1 is mostly an SU(2)W doublet, it will decay to Zτ(`), hτ(`) with equal probability, but

not to Wν, again for mL1 � mh. In the following we use these ratios of decay probabilities

to set our bounds. Note however that near kinematical thresholds there can be important

differences. In particular, ifWν is the only allowed decay mode, LHC constraints essentially

vanish, as discussed in section C.2.4.

While quoting mass limits on Q = 1 fermions we distinguish between singlets, doublets

and triplets, referring to Y = 1 singlets, Y = 1/2 doublets and Y = 0 triplets. Bounds

on Y = 3/2 doublets can be inferred from the numbers presented here by increasing the

Y = 1/2 doublets cross section by ≈ 50%. Q = 1 fermions from Y = 1 triplets instead

have the same production cross section as Q = 1 singlets.

In general we expect multiple leptons in the final state and we find that the strongest

constraints at the moment come from the 8 TeV CMS multilepton search performed with

an integrated luminosity of 19.5 fb−1 [104]. We compute the asymptotic CLs defined in the
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appendix of [52] in each individual signal region of the search to constrain σ×ε where σ is the

production cross section and ε includes acceptance, trigger and identification efficiencies,

efficiencies of the kinematical cuts and the branching ratio of the vector-like lepton. In

evaluating ε, we computed the branching ratio for each signal region and assumed a flat

70% efficiency times acceptance for electrons and muons, and an hadronic tau identification

efficiency of 35%, based on [122–125]. We also assume a flat 70% efficiency for identifying

a b-quark [104]. We always quote the bound from the most constraining search region.

Clearly, stronger bounds could be derived in a more refined analysis by combining the

results in different regions.

C.2.1 Stable states

The same CMS search relevant to stable colored states also sets the strongest bound on

stable leptons [97]. For Q = 1, the limits read mL1 > 574 GeV for singlets, mL1 > 670 GeV

for doublets and mL1 > 800 GeV for triplets. For Q = 2 we find mL++ > 705 GeV for a

singlet or doublet, and mL++ > 790 GeV for a triplet.

C.2.2 Prompt decays to charged first and second generation leptons

Considering Q = 1 states, a singlet L1 that only mixes with the first two generation leptons

must have mL1 > 140 GeV, from the 4 lepton search region with missing ET < 50 GeV,

HT < 200 GeV, one pair of leptons from a Z decay, no hadronic τ and no b jets. When

L1 is mostly a doublet the bound is mL1 > 260 GeV, from the 4 lepton search region with

missing ET < 50 GeV, HT < 200 GeV, two pairs of opposite-sign same-flavor leptons where

at least one pair originates from Z decays, no hadronic τ and at least one b jet. For a triplet

we find mL1 > 230 GeV from the same search region. For the case of doublet Q = 2 states

decaying to W`, ref. [35] obtains mL++ & 460 GeV. We expect the bound on singlets and

triplets to be comparable.

C.2.3 Prompt decays to charged third generation leptons

Considering Q = 1 states, in the singlet case, if L1 only mixes with the τ , the multilepton

search bound on mL1 is below 100 GeV, weaker than the LEP bound. If L1 is mostly a

doublet we have mL1 > 170 GeV from the 4 lepton search region with missing ET < 50 GeV,

HT < 200 GeV, one pair of leptons from a Z decay, no hadronic τ and no b jets. If the

lightest charged lepton is dominantly an SU(2)W triplet the mass bound is mL1 > 185 GeV

from the same search region. For the case of doublet Q = 2 states decaying to W`, ref. [35]

obtains mL++ & 320 GeV. We expect the bound on singlets and triplets to be comparable.

C.2.4 Prompt decays to a W and missing energy

It is possible to add to our minimal models a SM singlet N (a sterile neutrino or a bino)

mixing with the doublets L,Lc via Yukawa interactions. This can improve the agreement

with electroweak precision tests [52], though the additional Yukawa couplings imply some-

what more stringent vacuum stability constraints than would be obtained from the minimal

models. In this setting the lightest charged L1 lepton can decay predominantly to WN and

N can be stable. If the decay is prompt, LEP still sets the most stringent constraint for
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small mass splittings between the neutral and charged fermion, giving mL1 & 100 GeV [60]

for mL1 −mN > 3 GeV. The ATLAS search for charginos is also relevant [126], excluding

masses up to 180 GeV for triplets, provided that mN < 20 GeV. If N is stable it could

be searched for in mono-jet and mono-boson final states but current LHC bounds are not

strong enough to constrain electroweak production.

C.2.5 Prompt cascade decays of Q = 2 fermions

In case of small mixing with the SM and largish mass difference between the new leptons,

L++ → L+
1 W

+ can be the dominant decay mode. Assuming BR(L++ → L+
1 W

+) = 1 and

that L1 only decays to the third generation SM leptons, we used the CMS multilepton

search [104] to obtain mL++ > (140− 250) GeV for a singlet and mL++ > (180− 300) GeV

for a triplet. The lower end of the range is achieved when BR(L+
1 → Wν) = 1 while the

upper end of the range is achieved when BR(L+
1 → Zτ) = 1 or BR(L+

1 → hτ) = 1. If

L1 only decays to the first two generation SM leptons, we have mL++ > (140 − 420) GeV

for a singlet and mL++ > (180 − 490) GeV for a triplet, where the lower end of the range

is achieved when BR(L+
1 → Wν) = 1 while the upper end of the range is achieved when

BR(L+
1 → h`) = 1.
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