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1 Introduction

The conventional manner to obtain the superstring from the bosonic string is to generalize

the worldsheet conformal invariance generated by the Virasoro constraint ∂xm∂xm = 0 to

the worldsheet N=1 superconformal invariance generated by the super-Virasoro constraint

∂xmψm = 0 where ψm is the fermionic worldsheet superpartner of xm. This Ramond-

Neveu-Schwarz (RNS) construction of the superstring [1, 2] was developed in the 1970’s,

and although it is based on the simple geometrical idea of generalizing conformal invariance

to superconformal invariance, it has the disadvantage that spacetime supersymmetry is only

present after including both periodic and antiperiodic conditions for ψm and performing

a GSO projection [3] which truncates out states constructed from an even number of ψm

variables. This lack of manifest spacetime supersymmetry makes it difficult to compute

scattering amplitudes involving fermionic states and has prevented the RNS formalism

from being used to describe Ramond-Ramond backgrounds.

In the 1980’s, Green and Schwarz developed a new formalism [4, 5] for the super-

string in which spacetime supersymmetry is manifest and is constructed using a spacetime

spinor variable θα intead of the spacetime vector variable ψm of the RNS formalism. In

addition to worldsheet conformal invariance, their superstring action contains a fermionic

symmetry called “kappa symmetry” [6] which replaces the N=1 worldsheet superconfor-

mal invariance of the RNS formalism. However, the structure of kappa symmetry pre-

vented quantization of the Green-Schwarz formalism except in light-cone gauge, which

complicates the computation of scattering amplitudes and the quantum description of

Ramond-Ramond backgrounds.

Starting in 2000, a new formalism for the superstring has been developed in which

spacetime supersymmetry is manifest and which can be easily quantized in a covariant
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manner [7]. In addition to the fermionic spinor variable θα of the Green-Schwarz formalism,

this new formalism includes a bosonic spinor variable λα which satisfies the d=10 “pure

spinor” constraint

λγmλ = 0 (1.1)

for m = 0 to 9. Unlike the RNS and Green-Schwarz formalisms, it has been successfully

used to compute multiloop amplitudes involving both bosonic and fermionic states [8–10]

and to prove the quantum consistency of Ramond-Ramond backgrounds such as AdS5 ×
S5 [11–13].

However, unlike the RNS formalism, the geometric origin of this new formalism was

not understood. Physical states and scattering amplitudes are defined using a gauge-fixed

action and a nilpotent BRST operator Q constructed from the Green-Schwarz variables

and the pure spinor λα as

Q =

∫
dz λαdα, (1.2)

where dα is the fermionic Green-Schwarz-Siegel constraint [14] which generates kappa sym-

metry. But despite several attempts [15–18], this pure spinor BRST operator was not

obtained in a simple manner by gauge-fixing a worldsheet reparameterization invariant

action.

In this paper, an elegant geometrical origin for this formalism will be proposed and the

pure spinor BRST operator of (1.2) will be obtained by gauge-fixing a simple worldsheet

reparameterization invariant action. Surprisingly, this reparameterization invariant action

will be constructed entirely from bosonic worldsheet variables, and the fermionic worldsheet

variables θα and their conjugate momenta will come from ghosts and antighosts associated

with the gauge fixing.

The bosonic variables in the worldsheet action will consist of the usual d=10 spacetime

vector variable xm together with a spacetime spinor variable λα satisfying the d=10 pure

spinor constraint λγmλ = 0. The pure spinor constraint implies that only 11 of the 16

components of λα are independent, and after Wick-rotation to Euclidean signature, λα

parameterizes the eleven-dimensional complex space SO(10)
U(5) × C

∗ where C∗ is the complex

plane minus the origin [19].

Instead of generalizing the Virasoro constraint T = −1
2∂x

m∂xm = 0 to a super-

Virasoro constraint as in the RNS formalism, the Virasoro constraint T = 0 will instead

by replaced by the twistor-like constraint

Cα = −1

2
∂xm(γmλ)α = 0. (1.3)

Note that Cα = 0 implies T = 0 since T is equal to 1
λβλβ

Cα(γmλ)α∂xm where λα is any

spinor satisfying λαλα 6= 0. As discussed by several authors [20–29], pure spinors are the

natural generalization to higher dimensions of d=4 Penrose twistors [30], and (1.3) is the

d=10 stringy version [31–41] of the d=4 twistor constraint ( ∂
∂τ xaȧ)λ

a = 0 where a, ȧ = 1

to 2 and xaȧ(τ) is a d=4 light-like trajectory.
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The worldsheet reparameterization invariant action for xm and λα will be

S =

∫
d2z(det e)

(
1

2
∇xm∇xm + wα∇λα + LαCα + λαΛα

)
(1.4)

where ∇ = eJ−∂J , ∇ = eJ+∂J , eJ± is the usual two-dimensional vierbein, and Lα is a

Lagrange multiplier which enforces the constraint Cα = 0. In addition, the term λαΛα has

been included in the Lagrangian where Λα is a bosonic pure spinor of opposite chirality

to λα. If Λα is interpreted (in Euclidean signature) as the complex conjugate to λα, the

term λαΛα concentrates the functional integration over λα to the region near λα = 0 and

eliminates the divergence coming from functional integration over the non-compact zero

modes of λα.

To quantize this action, one needs to gauge-fix the invariances generated by the con-

straint Cα of (1.3). But because λγmλ = 0, only 5 of the 16 components of Cα are

independent. To gauge-fix, one should first restrict λα to a patch of pure spinor space

where λαλ
α 6= 0 for some fixed constant pure spinor λα. On this patch of pure spinor

space, one can restrict the Lagrange multiplier Lα to satisfy the 11 independent constraints

Lγmnλ = 0, and the remaining 5 components of Lα can be gauge-fixed in the usual manner

to produce 5 fermionic Faddeev-Popov ghosts and antighosts, fα and mα, which satisfy

the constraints fγmnλ = 0 and mγmnλ = 0.

On this same patch of pure spinor space, one can similarly gauge-fix Λα to be pro-

portional to the constant pure spinor λα. This gauge-fixing procedure produces additional

fermionic Faddeev-Popov ghosts and antighosts, gα and nα, which because of the pure

spinor constraint on Λα, are constrained to satisfy gγmλ = 0 and nγmλ = 0 so they each

have 11 independent components.

Note that there are no additional Faddeev-Popov ghosts and antighosts coming from

gauge-fixing worldsheet reparameterization invariance to conformal gauge since the Vira-

soro constaint T = 0 is already implied by the twistor-like constraint of (1.3). This explains

why the b ghost satisfying {Q, b} = T is not a fundamental worldsheet variable in the pure

spinor formalism, but is a composite operator constructed out of the other variables.

Although the constraints on the fermionic ghosts (fα, gα) and antighosts (mα, n
α) de-

pend on the choice of patch of pure spinor space, one can define an unconstrained fermionic

spinor variable θα and its conjugate momentum pα as

θα = fα + nα and pα = gα +mα (1.5)

which are independent of the choice of λα. In terms of these unconstrained fermionic

variables, the Faddeev-Popov ghost contribution to the action is∫
d2z(mα∂f

α + nα∂gα) =

∫
d2z pα∂θ

α, (1.6)

so the gauge-fixed action is

S =

∫
d2z

(
1

2
∂xm∂xm + wα∂λ

α + pα∂θ
α

)
. (1.7)
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And the resulting BRST operator is

Q =

∫
dz

(
λαpα + Cαθ

α − 1

8
(λγmθ)(θγm∂θ)

)
=

∫
dz λαdα, (1.8)

where dα is the supersymmetric Green-Schwarz-Siegel constraint [14] and the term

−1
8(λγmθ)(θγm∂θ) in Q comes from the non-abelian constraint algebra [Cα, Cβ] =

1
8(γmλ)[α(γm∇λ)β].

So the gauge-fixed action and BRST operator of the pure spinor formalism are ob-

tained by quantizing the simple worldsheet reparameterization invariant action of (1.4).

Since the fermionic worldsheet variables in the gauge-fixed action come from Faddeev-

Popov ghosts and antighosts, a natural question is how fermionic variables can appear

in light-cone gauge where ghosts are absent. This question can be studied by simplify-

ing to the d=10 superparticle [42] where the twistor-like constraint of (1.3) reduces to

Cα = −1
2P

m(γmλ)α = 0. Although Cα has 5 independent components, it implies a single

mass-shell constraint P 2 = 0 for the xm dependence. And since λα dependence is fixed by

the λαΛα term in the Lagrangian to be near λα = 0, there are 4 components of Cα which

overconstrain the classical worldsheet variables. These 4 extra constraints of Cα lead to 4

fermionic variables together with their conjugate momenta which are the usual 8 light-cone

Green-Schwarz fermions.

It is interesting to point out that this same phenomenon occurs for the d=11 pure

spinor description of the superparticle [43–46] which describes d=11 supergravity. In this

case, the bosonic variables are xM for M = 0 to 10 and λA for A = 1 to 32 where

λA satisfies the pure spinor constraint λγMλ = 0 that reduces its 32 components to 23

independent components. The twistor-like constraint CA = −1
2P

M (γMλ)A = 0 has 9

independent components, and implies the d=11 mass-shell constraint P 2 = 0. So there

are 8 components of CA which overconstrain the classical variables and lead to 8 fermionic

variables and their conjugate momenta in light-cone gauge.

After describing the worldsheet reparameterization invariant action of (1.4) and its

gauge invariances in sections 2 and 3 of this paper, the gauge-fixing procedure on a patch

where λαλ
α 6= 0 will be discussed in section 4. In section 5, the “minimal” version of the

pure spinor formalism will be derived using this procedure, and in section 6, the “non-

minimal” version of the pure spinor formalism [47, 48] will be derived by upgrading λα
from a constant pure spinor to a worldsheet variable.

Finally, a conjecture for generalizing this procedure to curved Type II supergravity

backgrounds including Ramond-Ramond fields will be proposed in section 7. Since all

fermionic variables in the worldsheet action arise from Faddeev-Popov ghosts, Ramond-

Ramond background fields will not directly appear in the reparameterization invariant

action and will only appear after performing the gauge-fixing procedure. The absence of

physical Ramond-Ramond fields from the classical action implies that there is non-trivial

BRST cohomology at nonzero ghost number where the ghosts (fα, gα) and antighosts

(mα, n
α) are defined to carry ghost-number +1 and −1. This fact is not surprising since

the patch-independent variables θα and pα of (1.5) do not have well-defined ghost number

when ghost number is defined in terms of (fα, gα) and (mα, n
α).
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2 Worldsheet action

The worldsheet variables in the reparameterization invariant action will include the space-

time xm variables (m = 0 to 9), the left-moving bosonic pure spinor λα variables (α = 1

to 16) and their conjugate momenta wα, and the right-moving bosonic pure spinor λ̂α̂

variables and their conjugate momenta ŵα̂. Because of the pure spinor constraints

λγmλ = λ̂γmλ̂ = 0, (2.1)

the conjugate momenta wα and ŵα̂ can only appear in combinations which are invariant

under the gauge transformations δwα = cm(γmλ)α and δŵα̂ = ĉm(γmλ̂)α̂ for arbitrary cm

and ĉm. Note that (xm, λα, λ̂α̂) are worldsheet scalars, and wα and ŵα̂ carry conformal

weight (1, 0) and (0, 1) respectively. For the Type IIA (or Type IIB) superstring, the

α̂ index on right-moving spinors denotes the opposite (or same) spacetime chirality as

the unhatted α index on left-moving spinors. And the heterotic superstring is obtained

by replacing the right-moving sector with the same right-moving sector as in the RNS

heterotic formalism.

The Type II worldsheet action in a flat background is

S =

∫
d2z (det e)

[
1

2
∇xm∇xm + wα∇λα + ŵα̂∇λ̂α̂ (2.2)

+LαCα + Λαλ
α + L̂α̂Ĉα̂ + Λ̂α̂λ̂

α̂ +
1

4
(Lγmλ)(L̂γmλ̂)

]
where ∇ = eJ−∂J , ∇ = eJ+∂J , eJ± is the worldsheet vielbein for J = 1 to 2, Cα and Ĉα̂ are

the twistor-like constraints

Cα = −1

2
∇xm(γmλ)α, Ĉα̂ = −1

2
∇xm(γmλ̂)α̂, (2.3)

Lα and L̂α̂ are Lagrange multipliers of conformal weight (0, 1) and (1, 0), and Λα and Λ̂α̂
are Lagrange multipliers of conformal weight (1, 1).

Just as λα and λ̂α̂ are pure spinors satisfying the constraint of (2.1), the Lagrange

multipliers Λα and Λ̂α̂ will also be required to be pure spinors satisfying the constraints

ΛγmΛ = Λ̂γmΛ̂ = 0, (2.4)

so that Λα and Λ̂α̂ each have 11 independent complex components. After Wick rotation to

Euclidean signature, pure spinors parameterize the complex space SO(10)
U(5) × C

∗ where C∗

denotes the complex plane minus the origin. So all components of a pure spinor cannot be

simultaneously zero. To globally paramaterize pure spinors, one therefore needs to divide

the space into 16 patches Oα for α = 1 to 16 where, on the patch Oα, the component λα

and Λα of the pure spinors are required to be nonvanishing [19].

In addition to acting as a Lagrange multiplier for the nonzero modes of λα, the zero

modes of Λα can be interpreted as a regulator for the zero modes of λα. In other words,

if the zero modes of Λα are interpreted (after Wick rotation) as the complex conjugate

– 5 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
2

of the λα zero modes, the term λαΛα in the action acts as a Gaussian regulator for the

functional integration over these non-compact pure spinor zero modes. Note that the pure

spinor constraint on Λα implies that it cannot be used to remove all λα dependence from

the action of (2.2). For example, the shift

Λα → Λα +∇wα +
1

2
∇xm(γmL)α (2.5)

which would naively remove λα dependence from the action is not allowed since it does not

preserve the constraint of (2.4).

To simplify notation, the right-moving sector will be ignored for the rest of this paper

when it plays an identical role to the left-moving sector.

3 Gauge invariances

Because of the first-class constraint Cα = −1
2∇x

m(γmλ)α, the worldsheet action of (2.2) is

invariant under the gauge transformation

δxm =
1

2
λγmf, δwα = −1

2
∇xm(γmf)α +

1

4
(L̂γmλ̂)(γmf)α, δLα = ∇fα, (3.1)

δΛα =
1

16(λΛ)
(γmγnΛ)α[∇(λγmf)(λγnL)−∇(λγmL)(λγnf)], (3.2)

where fα is an arbitrary infinitesimal parameter and the variation of δΛα is necessary since

[Cα, Cβ] = 1
8(γmλ)[α(γn∇λ)β] implies that

λαδΛα =
1

8
[(λγmL)∇(λγmf)− (λγmf)∇(λγmL)]. (3.3)

Although (3.3) does not uniquely determine (3.2), it will be later argued that any other δΛα
that satisfies (3.3) will lead to the same BRST operator up to a similarity transformation.

The gauge invariance xm ∼ xm+ 1
2λγ

mf of (3.1) is the d=10 generalization of the d=4

twistor symmetry [30]

xaȧ ∼ xaȧ + λaf ȧ where a, ȧ = 1 to 2 (3.4)

that identifies points on a self-dual plane and leaves the twistor variable µȧ = xaȧλa
invariant. So as discussed in [20–29], the d=10 pure spinor variable λα plays a similar role

to the d=4 twistor variable λa of Penrose.

The worldsheet action of (2.2) is also invariant under the gauge transformation gener-

ated by λα which is

δwα = gα, δΛα = ∇gα +
1

2(λΛ)
(gγm∇Λ)(γmλ)α, (3.5)

where gα is an arbitrary infinitesimal parameter of conformal weight (1, 0) satisfying

(gγmΛ) = 0 and the second term in δΛα is needed so that δΛγmΛ = 0. Furthermore,

since λγmλ = 0, (2.2) is invariant under the gauge transformations

δLα = cmn(γmnλ)α (3.6)
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for arbitrary cmn, which implies that 11 of the 16 components of Lα can be gauged away.

Finally, the worldsheet action is invariant under the usual worldsheet reparameteriza-

tions generated by the Virasoro constraint

T = −1

2
∇xm∇xm − wα∇λα. (3.7)

However, these reparameterizations are already included as a special case of the previous

gauge transformations. This can be seen from the fact that the Virasoro constraint of (3.7)

can be expressed as a linear combination of the other constraints Cα = −1
2∇x

m(γmλ)α
and λα as

T = Cα
∇xm(γmΛ)α

(λΛ)
+∇λα (λγmnw)(γmnΛ)α + 2(λw)Λα

8(λΛ)
. (3.8)

So all dependence of the action of (2.2) on off-diagonal components of the worldsheet

vierbein can be removed by an appropriate shift of the Lagrange multipliers (Lα,Λα)

and (L̂α̂, Λ̂α̂).

4 Gauge fixing

After shifting the Lagrange multipliers to eliminate the off-diagonal components of the

worldsheet vierbien, the worldsheet action can be expressed in conformal gauge where eJ±
is proportional to δJ± so that∇ → ∂ and∇ → ∂. One then needs to fix the gauge invariances

of (3.1), (3.5) and (3.6). The first step to perform this gauge fixing is to restrict the pure

spinor λα to a patch Oα where one of its components is required to be nonzero. This

patch can be defined by introducing a constant pure spinor λα and requiring that λαλ
α

is nonzero on the patch. Different choices of the constant pure spinor λα correspond to

different patches Oα, and consistency of the gauge fixing will require that the resulting

gauge-fixed action and BRST operator are independent of the choice of λα.

On the patch where λαλ
α is nonzero, the gauge invariance of (3.6) implies that one

can gauge fix Lγmnλ = 0, which fixes 11 of the 16 components of Lα. The remaining 5

components of Lα will be gauge-fixed to zero using the invariance of (3.1) in which the

gauge parameter fα is also constrained to satisfy

fγmnλ = 0. (4.1)

Finally, the gauge parameter gα of (3.5) can be used to gauge-fix the Lagrange multipler

Λα to satisfy

Λα = ελα (4.2)

where ε is a constant. Note that Λα cannot be gauge-fixed to zero since it is a pure spinor

taking values in SO(10)
U(5) × C

∗. In the gauge of (4.2), gα satisfies the constraint gγmλ = 0.

One can now follow the standard BRST procedure where the gauge parameters fα

and gα are interpreted as fermionic ghosts, and fermionic antighosts mα and nα are in-

troduced due to the gauge-fixing of the Lagrange multipliers Lα and Λα. But because

the Virasoro constraint T can be expressed in terms of Cα and λα as in (3.8), there is no

– 7 –
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need to introduce the usual Virasoro ghost and antighost, c and b, from gauge-fixing the

reparameterization invariance.1

The resulting gauge-fixed action is

S = S0 −
∫
d2z Q(mαL

α + nα(Λα − ελα))−
∫
d2z Q̂(m̂α̂L̂

α̂ + n̂α̂(Λ̂α̂ − ε̂λ̂α̂))

=

∫
d2z

[
1

2
∂xm∂xm + wα∂λ

α + ŵα̂∂λ̂
α̂

+LαCα + Λαλ
α + L̂α̂Ĉα̂ + Λ̂α̂λ̂

α̂ +
1

4
(Lγmλ)(L̂γmλ̂)

−MαL
α −Nα(Λα − ελα) +mα∂f

α

+nα
(
∂gα +

1

8
(γmL)α∂(λγmf)− 1

8
(γmf)∂(λγmL)

)
−M̂α̂L̂

α̂ − N̂ α̂(Λ̂α̂ − ε̂λ̂α̂) + m̂α̂∂f̂
α̂

+n̂α̂
(
∂ĝα̂ +

1

8
(γmL̂)α̂∂(λ̂γmf̂)− 1

8
(γmf̂)∂(λ̂γmL̂)

)]
(4.5)

where S0 is the action of (2.2) in conformal gauge, (Mα, N
α) are bosonic Nakanishi-Lautrup

fields associated with the gauge-fixing of Lα and Λα, and

Q =

∫
dz[λαgα + Cαf

α − 1

8
(nγmf)∂(λγmf)] (4.6)

is the BRST operator which generates the BRST transformations

Qxm =
1

2
λγmf, Qwα = gα + . . . , QLα = ∂fα, Qfα = 0,

Qgα = − 1

8
(γmf)α∂(λγmf), Qmα = Mα, Qnα = Nα,

QΛα = ∂gα +
1

16(λΛ)
(γmγnΛ)α[∂(λγmf)(λγnL)− ∂(λγmL)(λγnf)]. (4.7)

1If desired, one can treat the invariances generated by T as independent symmetries if one also includes

the gauge-for-gauge invariances implied by the relation of (3.8). In this case, the gauge-fixing procedure

will generate the usual fermionic (b, c) Virasoro ghosts of conformal wieght (2,−1) together with a set of

bosonic ghost-for-ghosts (β, γ) which also carry conformal weight (2,−1). Although it will not be verified

here, it is expected that these ghosts and ghost-for-ghosts will contribute to the BRST operator the terms

Q = Q0 +

∫
dz[γ(b−B) + c(T − b∂c− β∂γ − ∂(βγ)] (4.3)

where Q0 =
∫
dz(λadα + wαrα) is the usual non-minimal pure spinor BRST operator and

B = dα
(∂xm + 1

2
θγm∂θ)(γmλ)α

(λλ)
+ ∂θα

(λγmnw)(γmnλ)α + 2(λw)λα

8(λλ)
+ . . . (4.4)

is the composite ghost satisfying {Q0, B} = T with . . . denoting terms depending on the non-minimal

variables (rα, s
α). Note that Q = eU (Q0 + γb)e−U where U =

∫
dz(cB− c∂cβ) and that the structure of B

in (4.4) resembles the structure of (3.8).

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
2

Since Lγmnλ = 0 and ΛγmΛ = 0 imply that only 5 components of Lα and 11 components of

Λα are independent, one can choose the antighosts and Nakanashi-Lautrup fields to satisfy

the constraints

λγmnm = λγmnM = 0 and λγmn = λγmN = 0. (4.8)

5 Gauge-fixed pure spinor formalism

After integrating out the Lagrange multipliers and Nakanashi-Lautrup fields, one obtains

the equations

Lα = 0, Λα − ελα = 0,

Mα = Cα +
1

8
(γmn)α∂(λγmf) +

1

8
(γmλ)α∂(nγmf), Nα = λα, (5.1)

and the action

S =

∫
d2z

(
1

2
∂xm∂xm + wα∂λ

α + ŵα̂∂λ̂
α̂ +mα∂f

α + nα∂gα + m̂α̂∂f̂
α̂ + n̂α̂∂ĝα̂

)
. (5.2)

Since λα appears in the action of (5.2) and in the BRST operator of (4.6) through the

constraints on the ghosts and antighosts, this gauge fixing naively appears to depend on

the choice of patch Oα. However, after a cleverly chosen field redefinition, all dependence

on λα can be eliminated from the action and the BRST operator, and one can take the

limit ε→ 0 in the gauge-fixing condition Λα = ελα.

The field redefinition involves defining a new unconstrained fermionic variable θα and

its conjugate momentum pα in terms of the constrained variables (fα, gα,mα, n
α) as

θα = fα + nα and pα = eR(gα +mα)e−R (5.3)

where

R = − 1

24

∫
dz[(nγm∂n)(nγmf) + 3(nγm∂f)(nγmf)]. (5.4)

Note that

λαpα = eR(λαgα)e−R = λαgα +
1

8
(λγmf)(nγm∂n) +

1

4
(λγmf)(nγm∂f), (5.5)

and if one had chosen a different δΛα in (3.2) which also satisfied (3.3), the similarity

transformation R of (5.4) would be modified in a manner to leave the BRST operator

invariant when expressed in terms of θα and pα.

It is easy to verify that all 16 components of θα and pα in (5.3) are unconstrained

since the 5 independent components of fα and mα are in different directions from the 11

independent components of gα and nα. However, since (fα, gα) and (mα, n
α) are ghosts and

antighosts which carry conventional ghost number +1 and −1, θα and pα of (5.3) do not

have well-defined ghost number with respect to the conventional definition. Nevertheless,

one can define a new ghost number where (xm, θα, pα) carry zero ghost number and (λα, wα)

carry ghost number (+1,−1). With respect to this new ghost number, the worldsheet
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action will carry zero ghost number and the BRST operator will carry +1 ghost number

as desired.

After a suitable shift of wα to absorb terms proportional to ∂λα, the action and BRST

operator of (5.2) and (4.6) can be simply expressed in terms of θα and pα of (5.3) as

S =

∫
d2z

(
1

2
∂xm∂xm + wα∂λ

α + ŵα̂∂λ̂
α̂ + pα∂θ

α + p̂α̂∂θ̂
α̂

)
, (5.6)

Q =

∫
dz

(
λαpα −

1

2
∂xm(λγmθ)−

1

8
(λγmθ)(θγm∂θ)

)
=

∫
dzλαdα (5.7)

where

dα = pα −
1

2
∂xm(γmθ)α −

1

8
(γmθ)α(θγm∂θ) (5.8)

is the spacetime supersymmetric Green-Schwarz-Siegel constraint. So one recovers the

spacetime supersymmetric gauge-fixed action and BRST operator of the “minimal” pure

spinor formalism which is manifestly independent of the choce of λα.

6 Gauge-fixed non-minimal pure spinor formalism

To obtain the non-minimal pure spinor formalism [47, 48] from gauge fixing, one upgrades

the constant pure spinor λα to a worldsheet variable and constrains its conjugate momen-

tum wα to vanish by adding the term∫
d2z(wα∇λα + wαHα) (6.1)

to the action of (5.6) where Hα is a Lagrange multiplier for the constraint wα = 0. Since

only 11 components of wα are independent, the Lagrange multiplier needs to be constrained

to satisfy Hγmλ = 0.

When expressed in terms of θα and pα, the action of (5.6) is independent of λα in

the limit where the constant ε of Λα = ελα is taken to zero. To obtain the gauge-fixed

nonminimal formalism, one leaves ε nonzero and defines the non-minimal contribution to

the BRST transformations of (4.7) as

Qλα = −rα, QHα = ∇rα, Qsα = Sα, (6.2)

where rα is the fermionic ghost constrained to satisfy rγmλ = 0, and sα and Sα are the

antighost and Nakanishi-Lautrup field associated to Hα. Note that since θα and pα are

defined to be independent of λα, their BRST transformations do not involve rα and are

Qθα = λα, Qpα = Cα −
1

8
[(θγm∂θ)(γmλ)α − ∂(λγmθ)(γmθ)α − 2(λγmθ)(γm∂θ)α]. (6.3)

After gauge-fixing Hα = 0, the resulting gauge-fixed action and BRST operator are

S =

∫
d2z

[
1

2
∂xm∂xm + wα∂λ

α + ŵα̂∂λ̂
α̂ + pα∂θ

α + p̂α̂∂θ̂
α̂ (6.4)

+wα∂λα+ŵ
α̂
∂λ̂α̂+sα∂rα+ŝα̂∂r̂α̂+ε(λαλα + θαrα) + ε̂(λ̂α̂λ̂α̂ + θ̂α̂r̂α̂)

]
,

Q =

∫
dz(λαdα + wαrα), (6.5)
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where the term ε(λαλα + θαrα) = ε(λαλα + nαrα) in (6.4) comes from the gauge-fixing

term −Q(nα(Λα − ελα)) in (4.5). Equations (6.4) and (6.5) are the gauge-fixed action

and BRST operator of the non-minimal pure spinor formalism [47, 48] where the term

e−
∫
d2zε(λαλα+θαrα) in e−S plays the role of a BRST-invariant regulator for integration over

the zero modes of the pure spinors.

7 Generalization to curved backgrounds

The natural conjecture for generalizing the worldsheet reparameterization invariant action

of (2.2) to a curved Type II target-space background is

S =

∫
d2z(det e)

[
1

2
(gmn(x) + bmn(x))∇xm∇xn + wα∇λα + ŵα̂∇λ̂α̂ (7.1)

+Ωm
np(x)∇xm(wγnpλ) + Ω̂m

np(x)∇xm(ŵγnpλ̂)

+Rmnpq(x)(wγmnλ)(ŵγpqλ̂) + LαCα + Λαλ
α + L̂α̂Ĉα̂

+Λ̂α̂λ̂
α̂ +

1

4
(Lγmλ)(L̂γmλ̂)

]
where gmn(x) and bmn(x) are the target-space metric and Kalb-Ramond field,

Ωm
np = Γm

np +Hm
np and Ω̂m

np = Γm
np −Hm

np (7.2)

are the left and right-moving connections constructed as in the RNS action from the

Christoffel connection Γm
np and the torsion Hmnp = ∂[mBnp], Rmnpq is the Riemann cur-

vature tensor, γmαβ = Ema (x)γaαβ where a = 0 to 9 is a tangent-space index and Ema is the

target-space vierbein satisfying ηabEma E
n
b = gmn, and

Cα = −1

2
∇xm(γmλ)α and Ĉα̂ = −1

2
∇xm(γmλ̂)α̂ (7.3)

are the twistor-like constraints in the curved background.

Surprisingly, the action of (7.1) has the same structure as the RNS worldsheet action if

one replaces the left and right-moving pure spinor Lorentz currents (wγmnλ) and (ŵγmnλ̂)

in (7.1) with the left and right-moving RNS Lorentz currents ψmψn and ψ̂mψ̂n and replaces

the Lagrange multipliers (Lγmλ) and (L̂γmλ̂) in (7.1) with ξψm and ξ̂ψ̂m where ξ and ξ̂

are the RNS worldsheet gravitini and ψm and ψ̂m are the RNS fermionic vectors. Just as

the structure of the RNS action is determined by worldsheet supersymmetry, the structure

of (7.1) is determined by the requirement that Cα and Ĉα̂ in (7.3) generate symmetries of

the action.

Although the Ramond-Ramond background fields do not appear in (7.1), one expects

that consistency of the gauge-fixing procedure will require that they appear in both the

BRST transformations and in the gauge-fixed action. To be more specific, one needs to

follow the procedure of (5.3) and construct (θα, pα) and (θ̂α̂, p̂α̂) variables in terms of the

Fadeev-Popov ghosts and antighosts such that (θα, pα) and (θ̂α̂, p̂α̂) are independent of the
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choice of patch of pure spinor space. It is expected that this construction will necessarily

involve the Ramond-Ramond background fields and will imply equations of motion for

all of the background fields. So instead of obtaining the equations of motion for the NS-

NS background fields from quantum worldsheet superconformal invariance as in the RNS

formalism, it is conjectured that the equations of motion for all of the background super-

gravity fields (including the Ramond-Ramond fields) will be obtained in this formalism by

requiring that the gauge-fixed action and BRST operator are independent of the choice of

patch of pure spinor space.

For example, for the Ramond-Ramond plane-wave background, the classical action

of (7.1) is

S =

∫
d2z(dete)

[
1

2
∇xm∇xm +

1

2
µ2(∇x+)(∇x+)xjxj + wα∇λα + ŵα̂∇λ̂α̂ (7.4)

+µ2(xj∇x+(wγj+λ) + xj∇x+(ŵγj+λ̂) + (wγj+λ)(ŵγj+λ̂))

+LαCα + Λαλ
α + L̂α̂Ĉα̂ + Λ̂α̂λ̂

α̂ +
1

4
(Lγmλ)(L̂γmλ̂)

]
where j = 1 to 8, x± = x0 ± x9, and µ2 is the nonzero component R+j+j of the cur-

vature. Since the constraints Cα and Ĉα̂ of (7.3) are classically conserved, the action

of (7.4) is invariant under local symmetries analogous to the flat background symmetries

of (3.1) and (3.2). But combining the fermionic ghosts and antighosts for these symme-

tries into unconstrained patch-independent variables, (θα, pα) and (θ̂α̂, p̂α̂), is expected to

be more complicated than in (5.3) and to require Ramond-Ramond coupling terms such

as µ
∫
d2z(pγ+1234p̂) in the action. The complete consistency of this gauge-fixing proce-

dure is expected to lead to the conformally invariant pure spinor action for the plane-wave

background of [49].

For a general curved background, the gauge-fixing procedure of section 4 and construc-

tion of patch-independent (θα, pα) and (θ̂α̂, p̂α̂) variables is expected to imply a gauge-fixed

action and BRST operator which coincides with the pure spinor worldsheet action and

BRST operator of [50]

S =

∫
d2z[(GMN (x, θ, θ̂) +BMN (x, θ, θ̂))∂ZM∂ZN + . . .], (7.5)

Q =

∫
dz λαdα, Q̂ =

∫
dz λ̂α̂d̂α̂, (7.6)

where [GMN , BMN , . . .] are the Type II supergravity superfields described in [50], ZM =

(xm, θα, θ̂α̂) are the N=2 d=10 superspace variables, and pα and p̂α̂ are the canonical

momentum variables for θα and θ̂α̂ defined by

pα = dα −BαM (∂ZM − ∂ZM )− Ωα
mn(λγmnw)− Ω̂α

mn(λ̂γmnŵ), (7.7)

p̂α̂ = d̂α̂ −Bα̂M (∂ZM − ∂ZM )− Ωα̂
mn(λγmnw)− Ω̂α̂

mn(λ̂γmnŵ).

It would of course be very important to verify these conjectures for the curved Type

II supergravity background. The first step would be to study the physical states in an
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open string background which should include both the super-Yang-Mills gluon and gluino.

Since the gluino vertex operator is fermionic, it is absent from the reparameterization

invariant action which only depends on bosonic worldsheet variables. This means that one

should find non-trivial BRST cohomology at nonzero ghost number using the conventional

definition of ghost number where the ghosts (fα, gα) and antighosts (mα, n
α) carry ghost

number +1 and −1. After understanding how this works for the open superstring, it should

be straightforward to generalize to the Type II superstring by taking the left-right product

of two open superstrings.
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