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Itajubá, MG 37500-903, Brazil
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1 Introduction

After the recent discovery of the Higgs boson, interest on the physics of massive scalar

fields became rather more phenomenological and less academic. As is well known, there

are models involving scalar fields in cosmology and high energy physics where a natural

protagonist is the Higgs boson (see e.g. ref. [1]). If one adds that primordial hot radiation

permeates the universe and that modern colliders recreates the extremely hot conditions

just after the big bang, in this scenario it seems pertinent to study the thermal properties

of a massive scalar field in great detail.

The tools to study scalar radiation at temperature T in an infinite cavity do not differ

from those used in dealing with the familiar electromagnetic blackbody radiation. One can

for example identify the scalar radiation in the cavity with an ideal gas of bosons with zero

chemical potential, leading to the well known distribution

np =
1

exp
{

β
√

(pc)2 + (Mc2)2
}

− 1
, (1.1)

where β := 1/kBT as usual. Setting M = 0 and considering integrations over phase space

and momentum, eq. (1.1) yields the familiar Planckian expressions for the energy density

ρ and pressure P ,

ρ =
π2

30

(kBT )
4

(~c)3
, P =

ρ

3
, (1.2)
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corresponding to the following uniform and isotropic stress-energy-momentum tensor

〈Tµν〉 = diag(ρ, P, P, P ). (1.3)

One might also consider the situation that, although still dealing with an infinite

cavity, the interest is in the scalar radiation near, say, a plane wall of the cavity (with

the other walls at infinity). Applying local techniques of field theory at finite temperature

T , assuming that the scalar field is massless, conformally coupled (i.e., with curvature

coupling parameter ξ = 1/6) and that it satisfies the Dirichlet boundary condition on the

wall, Kennedy, Critchley and Dowker [2] have found the following ensemble average near

the infinite wall lying on a Cartesian plane,

〈Tµν〉 = diag

(

ρ

9
, P,−P

3
,−P

3

)

, (1.4)

where ρ and P are those in eq. (1.2) and subleading contributions (that vanish when

the distance to the plane wall vanishes) have been neglected. In fact, only the second

component in eq. (1.4) — pressure on the wall — is strictly uniform as have been shown

by Tadaki and Takagi [3].

The source of apparent conflict between eqs. (1.3) and (1.4) is that by assuming the

distribution (1.1) one is ignoring the presence of walls. Boundaries “deform” the vacuum

(Casimir-like effects [4, 5]) and modify ensemble averages. It follows that 〈Tµν〉 in eq. (1.3)

is correct only if one is considering scalar radiation deep in the bulk, i.e., far away from

the walls of the cavity (or, equivalently, at high temperature) [2, 3].

By investigating hot radiation near curved boundaries, Balian and Duplantier [6] have

shown that similar kind of non trivial local effects also arise with the electromagnetic

radiation. In particular they have shown that the energy density presents a non integrable

divergence when a curved wall of a perfect conductor is approached. Boundary divergences

were also investigated by DeWitt in the classic text [7] concluding that even near a reflecting

plane wall the vacuum expectation value 〈Tµν〉 of a non conformally coupled scalar field

diverges at the wall. In fact, for an arbitrary ξ eq. (1.4) is replaced by [3]

〈Tµν〉 = diag

(

ρ0 +
(1− 4ξ)ρ

3
, P,−ρ0 − (1− 4ξ)P,−ρ0 − (1− 4ξ)P

)

, (1.5)

where the vacuum energy density

ρ0 := −(1− 6ξ)~c

16π2x4
(1.6)

carries the non integrable divergence arising when the Dirichlet wall is approached (x → 0).

Boundary divergences were interpreted by Deutsch and Candelas [8] as a consequence

of oversimplification of real boundaries, and that has at some extend been confirmed along

the years by further investigations [9–16]. To keep these divergences under control one can

use certain “cut-off procedures” according to which vacuum expectation values such as ρ0
in eq. (1.6) hold close, but not that close to the wall. An alternative and interesting way of

dealing with boundary divergences is the “renormalization procedure” suggested in ref. [2]

– 2 –
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(see also ref. [17]). Within this approach ρ0 in eq. (1.6) hides a δ-function contribution

which, after integration over space, gives rise to a surface energy that kills off the divergent

contribution in the formal expression for the total vacuum energy, resulting that the latter

becomes finite. The “renormalization procedure” was extended to the electromagnetic field

in ref. [18], and to deal with more general boundary conditions for the massless scalar field

on plane boundaries in ref. [19]. Also worth mentioning is a “cut-off procedure” (possibly re-

lated with the “renormalization procedure” just considered) that has been proposed by Ford

and Svaiter [20]. It consists of taking into account the quantum nature of the boundary,

resulting that the “width” of the boundary’s wave packet becomes a regulator parameter.

Investigations on the global thermal behaviour of the scalar field in backgrounds with

boundaries go back to the 1970’s [21, 22] and since then the subject has been much consid-

ered in the literature (see reviews [4, 5] and refs. [23–30]), unlike its local thermal behaviour

that has been much less studied. Early investigations on the local thermal behaviour of a

scalar field near a reflecting wall have been restricted to massless fields [2, 3]. The present

paper extends the study to examine a massive field. In so doing, the philosophy in the

work by Brown and Maclay [31] to deal with the electromagnetic field between conducting

plates is followed. Namely, the ensemble average of a quantity A will be written as,

〈A〉 = 〈A〉
vacuum

+ 〈A〉
mixed

+ 〈A〉
thermal

, (1.7)

where 〈A〉
vacuum

is the vacuum expectation value of A (obtained by setting the temperature

equal to zero in eq. (1.7)), 〈A〉
thermal

is the blackbody contribution (that obtained by using

eq. (1.1)), and 〈A〉
mixed

is a “mixed” contribution (with vacuum-thermal nature) that

connects the two others such that it vanishes at zero temperature and far away from the

reflecting wall.

To arrive to 〈A〉 for a massive and arbitrarily coupled scalar field φ, the “point-

splitting” approach [32, 33] is applied to the Schwinger “proper time” representation of

the Feynman propagator (see e.g. ref. [8]) at finite temperature. The latter is calculated

in appendix A for a flat N -dimensional spacetime containing an infinite plane wall where

φ satisfies the Dirichlet (or Neumann) boundary condition. In section 2, the Feynman

propagator is renormalized giving rise to an expression involving infinite sums of modified

Bessel functions of the second kind Kν(z), where ν is fixed by the dimensionality N of the

spacetime. The ensemble averages
〈

φ2
〉

and 〈Tµν〉 are found and investigated in sections 3

and 4, respectively. In section 5, the leading order behaviours of
〈

φ2
〉

and 〈Tµν〉 for an

“ultralight” scalar field (i.e., the corresponding massless expressions) are briefly addressed.

(It should be pointed out that 〈Tµν〉 for hot massless scalar radiation near a reflecting wall

has been studied previously [2, 3, 34]; whereas no record was found on
〈

φ2
〉

.) In section 6,

the arguments developed in the previous sections for the Dirichlet boundary condition are

extended to consider Neumann’s boundary condition, and a parallel between the corre-

sponding thermal behaviours is drawn. Section 7 contains a summary and some remarks

on the ensemble averages found in the text, ending with proposals on further study of a lo-

cal version of the dimensional reduction, noted in this work, which relates vacuum averages

in N − 1 dimensions to (in general “non-classical”) corrections to blackbody expressions in

– 3 –



J
H
E
P
0
3
(
2
0
1
5
)
0
9
6

N dimensions. Appendix B contains alternative expressions that turned out to be useful

in the text. (Unless stated otherwise, dimensions are such that kB = ~ = c = 1.)

2 Renormalized propagator

Consider an infinite cavity in an N -dimensional flat spacetime (cf. eq. (A.1)). One of the

walls of the (N − 1)-dimensional cavity coincides with the plane x = 0, and the other walls

are at infinity. A point in the spacetime is labelled by flat coordinates (t, x, y, z, · · · ) where
|x| is the distance to the plane wall. Due to the obvious symmetry of the background, x

is taken to be non negative in the rest of the text. A neutral scalar field φ with mass M

is assumed to be confined to the cavity and in thermodynamic equilibrium with the walls

at temperature T . To prevent fluxes through the plane wall, a typical boundary condition

used is Dirichlet’s which will be taken here. Thus φ = 0 at x = 0. (Neumann’s boundary

condition is addressed in sections 6 and 7.)

In order to obtain the Feynman propagator GF (x, x
′) at finite temperature T one solves

(

�x +M2
)

GF (x, x
′) = −δ

(

x− x′
)

, (2.1)

observing the usual prescription (see e.g. ref. [35]) of continuing time t to imaginary values,

taking it periodic with period 1/T . This is done in appendix A, and the result is

GF (x, x
′) = − i

(2π)N/2
M

N−2

2

×
∞
∑

n=−∞

[

(−σ−)
2−N

4 KN−2

2

(

M
√−σ−

)

− (−σ+)
2−N

4 KN−2

2

(

M
√−σ+

)

]

, (2.2)

where σ± := (t − t′ − in/T )2 − (x ± x′)2 − (y − y′)2 − (z − z′)2 − · · · . Recalling that for

small argument and ν > 0,

Kν(z) = 2ν−1Γ(ν)z−ν + · · · , (2.3)

by setting M → 0 in eq. (2.2) the massless propagator is recovered [34].

By studying eq. (2.2), one sees that the term corresponding to n = 0 and involving σ−
is simply the familiar vacuum propagator in Minkowski spacetime G0(x, x

′). That corre-

sponding to n = 0 but now involving σ+ is the vacuum propagator in the presence of the

Dirichlet wall Gvacuum(x, x
′). The first sum

∑

n 6=0 in eq. (2.2) yields the thermal propagator

in Minkowski spacetime Gthermal(x, x
′), while the second sum

∑

n 6=0 yields a propagator

Gmixed(x, x
′) of a mixed (vacuum-thermal) nature. Therefore eq. (2.2) can be cast as

GF (x, x
′) = G0(x, x

′) +Gvacuum(x, x
′) +Gmixed(x, x

′) +Gthermal(x, x
′). (2.4)

Since spacetime is flat one renormalizes by removing the zero temperature Minkowski con-

tribution, resulting the renormalized propagator,

G(x, x′) = Gvacuum(x, x
′) +Gmixed(x, x

′) +Gthermal(x, x
′). (2.5)

– 4 –
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As averages can formally be obtained by linear operations in the renormalized propaga-

tor [32, 33], the expression for the ensemble average 〈A〉 in eq. (1.7) follows from eq. (2.5).

Taking into account that for large argument Kν(z) falls exponentially, the following limits

can be readily verified,

lim
T→0

G(x, x′) = Gvacuum(x, x
′), lim

x,x′→∞
G(x, x′) = Gthermal(x, x

′). (2.6)

In both these limits Gmixed(x, x
′) vanishes, and all that still holds if the field is massless

with N > 3. (For N ≤ 3 when M = 0, divergences typical of lower dimensions appear [35].

More on that in section 5.)

3 Mean square field fluctuation

The ensemble average
〈

φ2
〉

measures how much the scalar field φ fluctuates around 〈φ〉 = 0.

It is obtained from eq. (2.5) simply by considering
〈

φ2
〉

= iG(x, x),

〈φ2〉(N) = 〈φ2〉(N)
vacuum

+ 〈φ2〉(N)
mixed

+ 〈φ2〉(N)
thermal

, (3.1)

where the superscript (N) is not an exponent but simply indicates dimensionality, which

will play special role below. The last term in eq. (3.1) is the uniform blackbody contribu-

tion,

〈φ2〉(N)
thermal

=
1

π

(

MT

2π

)
N−2

2
∞
∑

n=1

n
2−N

2 KN−2

2

(

Mn

T

)

. (3.2)

(For a quick check of eq. (3.2) one sets N = 4 and M → 0 observing eq. (2.3), then the

sum yields ζ(2) leading to the familiar expression T 2/12.) The first term is the vacuum

fluctuation,

〈φ2〉(N)
vacuum

= − 1

2N−1πN/2

(

M

x

)
N−2

2

KN−2

2

(2Mx) , (3.3)

where by setting N = 4 andM → 0 one recovers the well known expression −1/16π2x2 [33].

Equation (3.3) also reproduces the result in ref. [36] where the Schrödinger formalism to

obtain vacuum averages for massive scalar fields near a reflecting wall has been used.

The mixed fluctuation in eq. (3.1) is given by

〈φ2〉(N)
mixed

= − 1

π

(

MT

2π

)
N−2

2
∞
∑

n=1

[

(2Tx)2 + n2
]
2−N

4 KN−2

2

(

M

T

√

(2Tx)2 + n2

)

. (3.4)

It is a kind of non uniform “thermal” contribution that satisfies

〈φ2〉(N)
mixed

= −〈φ2〉(N)
thermal

, x = 0. (3.5)

Since
〈

φ2
〉

and 〈Tµν〉 share many common features, it is pedagogical to study
〈

φ2
〉

more closely. Unlike the vacuum fluctuation in eq. (3.3) that diverges as x2−N (see eq. (2.3))

when the wall is approached, the mixed contribution is free from boundary divergences (cf.

eq. (3.5)). (Note that the thermal contribution is also divergence free since it is uniform.)

– 5 –
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As mentioned earlier, if one is interested in obtaining global quantities by integranting local

quantities over space, then “cut-off procedures” are required to regulate integrations. It

should be pointed out however that, whichever the “cut-off procedure” used, expressions

for vacuum expectation values, such as that in eq. (3.3), are reliable as long as one is not

too close to the reflecting wall.

By moving deep in the bulk of the cavity (i.e., x → ∞), clearly the only contribution

left behind in eq. (3.1) is the blackbody contribution 〈φ2〉(N)
thermal

. On the other hand, by

progressively approaching the wall (x → 0) only the (divergent) 〈φ2〉(N)
vacuum is left at the end

(see eqs. (3.1) and (3.5)). It should be stressed that the effects resulting of moving deep

in the bulk and near the wall are equivalent, respectively, to those obtaining by keeping

x fixed raising the temperature (T → ∞) and lowering it (T → 0). Note that all these

features are consistent with the asymptotic behaviour of the renormalized propagator (see

eq. (2.6) and text just following it).

In order to find the leading correction to 〈φ2〉(N)
vacuum when Tx ≪ 1 (low temperature or

near the wall), the expression for 〈φ2〉(N)
mixed

in eq. (3.4) is expanded in powers of Tx whose

leading term is that in eq. (3.5). By considering derivatives of Kν(z), identities relating

these functions [37], and omitting terms of higher powers, eq. (3.1) leads to

〈φ2〉(N) = 〈φ2〉(N)
vacuum

+ 4πx2〈φ2〉(N+2)
thermal

, Tx ≪ 1. (3.6)

Thus, at low temperature or near the wall, the leading correction to the vacuum fluctuation

in N dimensions is determined from the thermal fluctuation in N + 2 dimensions (see

eq. (3.2)).

The leading correction to 〈φ2〉(N)
thermal

when Tx ≫ 1 (high temperature or deep in the

bulk) can be obtained by replacing the sum in eq. (3.4) by an integration. The latter can

be evaluated [37], resulting in

〈φ2〉(N) = 〈φ2〉(N)
thermal

+ 〈φ2〉(N)
class

, Tx ≫ 1, (3.7)

where after reintroducing dimensionful ~ and c,

〈φ2〉(N)
class

:= 〈φ2〉(N−1)
vacuum

T

~c
. (3.8)

It should be pointed out that eq. (3.7) is exact up to exponentially small corrections

which vanish as Tx → ∞ (note that 〈φ2〉(N)
vacuum in eq. (3.1) is cancelled by the subleading

contribution in eq. (3.4)), and that it holds also for N = 2 by considering N = 1 in

eq. (3.3). The behaviour corresponding to eqs. (3.7) and (3.8) is the first example in this

paper of a local version of dimensional reduction. As will be seen in the next section, such

a dimensional reduction will also be present in the behaviour of 〈Tµν〉.
As the dimensionful factor 1/~c appears in eq. (3.8), accordingly eq. (3.3) must be

multiplied by ~
2−N/2cN/2 and the argument of the corresponding Bessel function in eq. (3.3)

must be multiplied by c/~. Taking into account these amendments, it is easy to verify from

eq. (3.8) that in general the correction 〈φ2〉(N)
class

depends on ~, and will be “classical” only

if the field is massless: if M → 0, because of eq. (2.3), massless 〈φ2〉(N)
vacuum will depend on ~

– 6 –
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and c only through an overall factor ~c which will cancel that in eq. (3.8). To illustrate this

fact one sets N = 4 in eq. (3.8) noting that K1/2(z) =
√

(π/2z) exp(−z). It follows then

〈φ2〉(N=4)
class

= − T

8πx
exp

(

−2Mcx

~

)

, (3.9)

which will clearly be classical only if M = 0. At this point it should be remarked that in

the study of the high temperature behaviour of massless fields, “classical” corrections linear

in the temperature to blackbody expressions are a long known feature [6, 25, 26, 31]. The

result above suggests that the designation “classical” for such corrections is not appropriate

when the field has non-vanishing mass.

4 Stress-energy-momentum tensor

The local content of energy and momentum, as well as the stresses, of the hot scalar

radiation in the infinity cavity are given by the ensemble average 〈Tµν〉, which can be

formally obtained by acting with the differential operator

Dµν(x, x′) := (1− 2ξ)∂µ∂ν′ − 2ξ∂µ∂ν + (2ξ − 1/2)ηµν∂λ∂λ′ + 2M2ηµν(1/4− ξ) (4.1)

on the renormalized propagator in eq. (2.5),

〈Tµν〉 = i lim
x′→x

Dµν(x, x′) G(x, x′)

= 〈Tµν〉
vacuum

+ 〈Tµν〉
mixed

+ 〈Tµν〉
thermal

, (4.2)

resulting,

〈Tµν〉(N) = diag(ρ(N), P
(N)
⊥ , P

(N)
‖ , · · · , P (N)

‖ ), (4.3)

where the terms in eq. (4.2) are all diagonal and each one of the elements in eq. (4.3) has

the form in eq. (1.7). Accordingly, the energy density ρ(N) is given by

ρ(N) = ρ(N)
vacuum

+ ρ
(N)
mixed

+ ρ
(N)
thermal

, (4.4)

with the blackbody energy density ρ
(N)
thermal

and the isotropic blackbody radiation pressure,

P
(N)
⊥ thermal

≡ P
(N)
‖ thermal

= 2π〈φ2〉(N+2)
thermal

, (4.5)

related by the equation of state

ρ
(N)
thermal

= (N − 1)P
(N)
⊥ thermal

+M2〈φ2〉(N)
thermal

. (4.6)

Observing eq. (2.3), by setting N = 4 and M → 0 in eqs. (4.5) and (4.6) one repro-

duces eq. (1.2) as it should. Note that eq. (4.5) relates blackbody radiation pressure in N

dimensions with thermal fluctuation in N + 2 dimensions (see eq. (3.2)).

The vacuum energy density in eq. (4.4) can be written in terms of vacuum fluctuations

in eq. (3.3),

ρ(N)
vacuum

= 8π(1−N)(ξ − ξN )〈φ2〉(N+2)
vacuum

+M2(1− 4ξ)〈φ2〉(N)
vacuum

, (4.7)

– 7 –
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with (ξ = ξN is the conformal coupling)

ξN :=
N − 2

4(N − 1)
, (4.8)

and it satisfies the following equation of state,

P
(N)
‖ vacuum

= −ρ(N)
vacuum

, (4.9)

agreeing again with early calculations [36, 38] (it should be reported that an overall −1

factor is missing in eq. (B.11) of ref. [36]). Note that, at the wall, the vacuum energy

density diverges as x−N if ξ 6= ξN , and as x2−N if ξ = ξN with M 6= 0.

To complete the expression for the energy density in eq. (4.4), the mixed contribution

is (see also eq. (B.1))

ρ
(N)
mixed

= 2

(

MT

2π

)N/2 ∞
∑

n=1

[

(2Tx)2 + n2
]−(N+4)/4

×
{

4
[

(N − 1)(ξ − ξN )
(

4T 2x2 + n2
)

− ξNn2
]

KN
2

(

M

T

√

(2Tx)2 + n2

)

+
M

T

[

(4Tx)2(ξ − 1/4)− n2
]
√

(2Tx)2 + n2KN−2

2

(

M

T

√

(2Tx)2 + n2

)}

. (4.10)

As happens to all the mixed contributions in this paper, ρ
(N)
mixed

is finite at the wall (x = 0).

In particular, corresponding to eq. (3.5), it satisfies

ρ
(N)
mixed

= −ρ
(N)
thermal

, ξ = 1/4, x = 0. (4.11)

The vacuum contribution and the mixed contribution in P
(N)
⊥ vanish identically, result-

ing that the pressure on the wall is the only component in eq. (4.3) which is uniform, i.e.,

P
(N)
⊥ = P

(N)
⊥ thermal

, (4.12)

where the blackbody pressure in eq. (4.12) is given as in eq. (4.5). Finally,

P
(N)
‖ = P

(N)
‖ vacuum

+ P
(N)
‖ mixed

+ P
(N)
‖ thermal

, (4.13)

where the thermal and vacuum contributions are given by eqs. (4.5) and (4.9). The mixed

contribution is given by (see also eq. (B.2))

P
(N)
‖ mixed

= −2

(

MT

2π

)N/2 ∞
∑

n=1

[

(2Tx)2 + n2
]−(N+4)/4

×
{

4
[

(N−1)(ξ−ξN )
(

4T 2x2+n2
)

−(ξ−1/4)Nn2
]

KN
2

(

M

T

√

(2Tx)2+n2

)

+16MTx2(ξ − 1/4)
√

(2Tx)2 + n2KN−2

2

(

M

T

√

(2Tx)2 + n2

)}

. (4.14)

Corresponding to eqs. (3.5) and (4.11),

P
(N)
‖ mixed

= −P
(N)
‖ thermal

, ξ = 1/4, x = 0. (4.15)

– 8 –
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One can check the consistency of the formulas just obtained for the components of

〈Tµν〉 by calculating its trace 〈Tµ
µ〉. Since the background is flat the stress-energy-

momentum tensor is expected to be traceless when ξ = ξN and M = 0. Indeed, a

straightforward calculation yields

〈Tµ
µ〉(N)

thermal
= M2

〈

φ2
〉(N)

thermal
, (4.16)

and

〈Tµ
µ〉(N)

vacuum
= M2

〈

φ2
〉(N)

vacuum
, 〈Tµ

µ〉(N)
mixed

= M2
〈

φ2
〉(N)

mixed
, ξ = ξN . (4.17)

Using now eq. (4.2), one gets

〈Tµ
µ〉(N) = M2

〈

φ2
〉(N)

, ξ = ξN , (4.18)

with the mean square field fluctuation given in eq. (3.1).

The asymptotic behaviour at low temperature (or near the wall) of ρ(N) and P
(N)
‖

in eq. (4.3) can be obtained by simply setting Tx = 0 in the expressions for their mixed

contributions. After some algebra it results,

P
(N)
‖ = −ρ(N) = −ρ(N)

vacuum
− (1− 4ξ)P

(N)
⊥ thermal

, Tx ≪ 1, (4.19)

up to zeroth order in Tx. It should be pointed out that, unlike eq. (3.6), the correction to

the vacuum contribution in eq. (4.19) does not depend on x. This can be understood by

recalling that 〈Tµν〉 is obtained from a propagator by applying to the latter a differential op-

erator (see eq. (4.2)). Regarding P
(N)
⊥ , eq. (4.12) holds everywhere and at all temperatures.

The asymptotic behaviour of the energy density ρ(N) in eq. (4.3) at high temperature

(or deep in the bulk) can be found by proceeding as in deriving eqs. (3.7) and (3.8).

Namely, noting eq. (4.4), the sums in the expression for the mixed contribution in eq. (B.1)

are replaced by integrations that can be solved [37]. Up to exponentially small corrections

one finds,

ρ(N) = ρ
(N)
thermal

+ ρ
(N)
class

, Tx ≫ 1, (4.20)

where

ρ
(N)
class

= (1− 4ξ)
[

2π(N − 2)〈φ2〉(N+1)
vacuum

+M2〈φ2〉(N−1)
vacuum

]

T, (4.21)

holding also for N = 2. Observing now the expression for the vacuum energy density in

eq. (4.7), it follows from eq. (4.21) when N > 2,

(ξ − ξN−1) ρ
(N)
class

= (ξ − 1/4)

[

ρ(N−1)
vacuum

− M2c2

(N − 2)~2
〈φ2〉(N−1)

vacuum

]

T

~c
. (4.22)

Note that ξN−1 in eq. (4.22) is the conformal coupling in N − 1 spacetime dimensions

(cf. eq. (4.8)), and that dimensionful ~ and c were reintroduced (as in eq. (3.8)) to study

the “classical” nature of ρ
(N)
class

shortly. The statement in eq. (4.22) is another instance in

the paper of a local dimensional reduction, i.e., corrections to N -dimensional blackbody

expressions are obtained from (N − 1)-dimensional vacuum expectation values of local

quantities.
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Turning now to the nature of ρ
(N)
class

in eq. (4.22), by considering eq. (4.7) and that

when M = 0 the vacuum fluctuation 〈φ2〉(N)
vacuum depends on ~ and c only through the overall

factor ~c (see discussion in the paragraph containing eq. (3.9)), it follows that ρ
(N)
class

will

be classical only if the field is massless: by setting M → 0 in eq. (4.22), the overall factor

~c that arises in ρ
(N−1)
vacuum will cancel that in T/~c.

The same line of reasoning applied to eqs. (4.13) and (B.2) yields, up to exponentially

small corrections,

P
(N)
‖ = P

(N)
‖ thermal

+ P
(N)
‖ class

, Tx ≫ 1, (4.23)

where,

P
(N)
‖ class

= P
(N−1)
‖ vacuum

T

~c
(4.24)

(see eqs. (4.5) and (4.9)). Again, local dimensional reduction operates and P
(N)
‖ class

is

classical only if the field is massless.

Noticing eqs. (3.8), (4.9), (4.22) and (4.24), it follows the equation of state,

(ξN−1 − ξ) ρ
(N)
class

= (ξ − 1/4)

[

P
(N)
‖ class

+
M2

N − 2
〈φ2〉(N)

class

]

, (4.25)

relating corrections to the blackbody contributions. If one is interested in N = 2, eq. (4.25)

must be multiplied by N − 2 before setting N = 2 (cf. eq. (4.21)).

Before ending this section it should be remarked that, because of eq. (4.12),

P
(N)
⊥ class

= 0, (4.26)

which is consistent with dimensional reduction since P
(N)
⊥ vacuum

= 0 for arbitrary N . If the

wall parallel to that at x = 0 were brought from infinity to a finite distance, the zero in

eq. (4.26) should give place to the well known thermal Casimir pressure [4, 31, 39].

5 Ultralight scalar radiation

When T ≫ M , the leading order expressions for
〈

φ2
〉(N)

and 〈Tµν〉(N) in eqs. (3.1) and (4.3)

can be obtained simply by taking M → 0 and considering eq. (2.3). For completeness, the

relevant quantities are given below. They are the masless expressions,

〈φ2〉(N)
vacuum

= − 1

(2π1/2)N
Γ

(

N − 2

2

)

x2−N ,

〈φ2〉(N)
mixed

= − 1

2πN/2
Γ

(

N − 2

2

)

TN−2
∞
∑

n=1

[

(2Tx)2 + n2
](2−N)/2

,

〈φ2〉(N)
thermal

=
1

2πN/2
Γ

(

N − 2

2

)

ζ(N − 2)TN−2, (5.1)

and

ρ
(N)
mixed

=
4

πN/2
Γ

(

N

2

)

TN
∞
∑

n=1

[

(2Tx)2 + n2
]−(N+2)/2

×
[

(N − 1)(ξ − ξN )
(

4T 2x2 + n2
)

− ξNn2
]

,
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P
(N)
‖ mixed

= − 4

πN/2
Γ

(

N

2

)

TN
∞
∑

n=1

[

(2Tx)2 + n2
]−(N+2)/2

×
[

(N − 1)(ξ − ξN )
(

4T 2x2 + n2
)

− (ξ − 1/4)Nn2
]

. (5.2)

Any component of massless 〈Tµν〉(N) (cf. ref. [34]) can be obtained by using eqs. (5.1)

and (5.2) in the general expressions found in the previous section. It is worth remarking

that, noticing
〈

φ2
〉(N)

given by eq. (3.1) and the functional dependence on N in eqs. (5.1),

one must have N > 3 in order to avoid divergences in the mean square field fluctuation of

hot massless scalar radiation (if T = 0, one must have N > 2).

6 Neumann’s boundary condition

Another boundary condition also used to prevent fluxes through the plane wall is Neu-

mann’s. Instead of taking φ itself to vanish at the wall, one takes,

∂φ

∂x
= 0, x = 0. (6.1)

Accordingly, the new Feynman propagator GF (x, x
′) at finite temperature T is obtained by

solving again eq. (2.1), but now observing eq. (6.1) (see appendix A). The corresponding

expression for GF (x, x
′) can be obtained from that in eq. (2.2) by replacing the minus

sign between the terms containing the modified Bessel functions by a plus sign. It fol-

lows then that eq. (2.4) holds with G0(x, x
′) and Gthermal(x, x

′) still denoting the vacuum

and the thermal propagators in Minkowski spacetime, respectively, whereas Gvacuum(x, x
′)

and Gmixed(x, x
′) are the negative of the Dirichlet ones. Noting these modifications the

renormalized propagator is given as in eq. (2.5). Consequently the ensemble average of a

quantity A (cf. eq. (1.7)) near the Neumann wall can be obtained as follows,

〈AN 〉 = −〈AD〉vacuum − 〈AD〉mixed + 〈A〉
thermal

, (6.2)

where 〈AD〉vacuum and 〈AD〉mixed are expressions for Dirichlet’s wall. It is worth remarking

that eq. (6.2) generalizes to finite temperature T the well known identity,

〈AN 〉
vacuum

= −〈AD〉vacuum . (6.3)

As T → 0, eq. (6.2) leads to eq. (6.3). Clearly

〈AN 〉
mixed

= −〈AD〉mixed (6.4)

also holds.

Considering eq. (6.2) and the corresponding Dirichlet expressions computed in the pre-

vious sections, one can determine the asymptotic thermal behaviours of
〈

φ2
〉

and 〈Tµν〉 for
the Neumann boundary condition at the plane wall. In order to simplify the notation and

to allow ready comparison with the Dirichlet boundary condition, in the rest of the section

expressions denoted as 〈A〉, 〈A〉
vacuum

and 〈A〉
mixed

correspond to those for Neumann’s

boundary condition (cf. eqs. (6.3) and (6.4)).
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Begining with the mean square field fluctuation, now 〈φ2〉(N)
mixed

= 〈φ2〉(N)
thermal

at x = 0,

replacing eq. (3.5) and leading to

〈φ2〉(N) = 〈φ2〉(N)
vacuum

+ 2〈φ2〉(N)
thermal

, Tx ≪ 1. (6.5)

Thus eq. (6.5) shows that, unlike the Dirichlet 〈φ2〉 (cf. eq. (3.6)), the thermal behaviour

of 〈φ2〉 near the Neumann wall is (in leading order) uniform, namely, twice that of a

blackbody. Perhaps it should be noted that Neumann vacuum fluctuations are plagued by

the same boundary divergences as their Dirichlet counterparts (more precisely, they differ

by a minus sign).

When Tx ≫ 1 (high temperature or deep in the bulk), because of eqs. (6.3) and (6.4)

one can see that the local version of dimensional reduction also operates in the bulk of a

“Neumann cavity”. Regarding 〈φ2〉, eqs. (3.7) and (3.8) still apply, with the vacuum expec-

tation value in eq. (3.8) corresponding now to Neumann’s boundary condition (cf. eq. (6.3)).

The ensemble average of the stress-energy-momentum tensor is given again by the sum

of diagonal terms as in eq. (4.2), resulting in eq. (4.3) now adapted for Neumann’s bound-

ary condition at the plane wall (see eqs. (6.2), (6.3) and (6.4)). Clearly eqs. (4.7), (4.9)

and (4.12) remain unchanged, whereas eqs. (4.11) and (4.15) are replaced by (for ξ = 1/4

and x = 0) ρ
(N)
mixed

= ρ
(N)
thermal

and P
(N)
‖ mixed

= P
(N)
‖ thermal

. Regarding traces, one sees that

eqs. (4.17) and (4.18) still hold.

At low temperature (or near the Neumann wall), ρ(N) and P
(N)
‖ are given by,

ρ(N) = ρ(N)
vacuum

+ (2N − 3 + 4ξ)P
(N)
⊥ thermal

+ 2M2〈φ2〉(N)
thermal

, Tx ≪ 1, (6.6)

and

P
(N)
‖ = −ρ(N)

vacuum
+ (3− 4ξ)P

(N)
⊥ thermal

, Tx ≪ 1,

up to zeroth order in Tx. These equations replace eq. (4.19). It should be noted in par-

ticular that the first equality in eq. (4.19) no longer holds near the Newmann wall. As

mentioned earlier in this section “local dimensional reduction” also operates for the Neu-

mann boundary condition, i.e., eqs. (4.20) and (4.22) hold with the vacuum expectation

values corresponding to Neumann’s vacuum (cf. eqs. (6.3)). Perhaps this is a good place

to remark that by setting N = 4 and M = 0, the expressions in this section reproduce

consistently the results in refs. [2, 3].

It is worth mentioning that a curiosity spotted in ref. [2] is associated to the fact

that the “local dimensional reduction” operates for both boundary conditions at the plane

wall. Quoted from ref. [2]: “... the correction to the Planckian energy density at high

temperature is for minimal coupling, ... , exactly three times that for conformal coupling,

irrespective of the boundary conditions ... ”. Noting that eq. (4.21) applies equally to both

boundary conditions, it follows that,

ρ
(N)
class

(ξ = 0) = (N − 1) ρ
(N)
class

(ξ = ξN ). (6.7)

Now one sees that the curiosity spotted in ref. [2] is the content of eq. (6.7) for N = 4.

Comparison of dρ(N)/dT for the Dirichlet and Neumann boundary conditions (denoted

below by cD and cN , respectively) reveals contrasting features. For simplicity a massless
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scalar field will be considered (i.e., M = 0). Noting eqs. (4.19), (6.6) and (4.6), it follows

that,

cD =
1− 4ξ

N − 1
cV , cN =

2N − 3 + 4ξ

N − 1
cV , Tx ≪ 1, (6.8)

where cV := dρ
(N)
thermal

/dT is the familiar (nonnegative) blackbody specific heat per unit of

volume. By examining eq. (6.8) one sees that when ξ > 1/4, cD < 0 and cN > 0. The

physical interpretation of these inequalities is as follows. When ξ > 1/4, for increasing

temperature T , the energy density near the Dirichlet wall decreases, whereas near the

Neumann wall it increases. Deep in the bulk, both cD and cN behave in leading order as

cV (cf. eq. (4.20)), i.e., the energy density increases as the temperature increases.

7 Conclusion

Blackbody radiation of a massive scalar field is a topic of interest both in cosmology and

high energy physics. This work examined the local behaviour (in contrast to the usual

global approach) of hot scalar radiation near infinite plane Dirichlet and Neumann walls

in flat spacetime with N dimensions. The Dirichlet boundary condition (which is confor-

mal invariant) and the Neumann boundary condition (which is not conformal invariant)

aimed to model the real reflecting wall of a large cavity. The scalar field φ was taken to

be neutral, with mass M , and arbitrarily coupled to the absent curvature (arbitrary ξ).

Using the “point-splitting” procedure and the Schwinger “proper time” representation of

the Feynman propagator at finite temperature T , new formulas for
〈

φ2
〉

and 〈Tµν〉 were

derived, and those for 〈Tµν〉 were shown to reproduce known results when N = 4, M = 0,

and ξ = 0 or 1/6.

The ensemble averages
〈

φ2
〉

and 〈Tµν〉 were expressed as in eq. (1.7) where the vac-

uum contributions revealed divergences at the wall that are typical of the use of idealized

boundary conditions. It was mentioned that divergences of these kind do not affect the

other contributions in eq. (1.7), both depending on T and vanishing when T = 0. It is

worth recalling that if the distribution in eq. (1.1) were used to compute averages, only

the thermal contribution (the blackbody contribution) would appear in eq. (1.7). The

term denoted by “mixed” in eq. (1.7) has hybrid nature, and connects the vacuum and the

blackbody contributions. Such a hybrid nature is the ingredient responsible for contrasts in

the thermal behaviour corresponding to the Dirichlet and Neumann boundary conditions.

The asymptotic behaviours of
〈

φ2
〉

and 〈Tµν〉 at low (Tx ≪ 1) and high (Tx ≫ 1)

temperature were thoroughly studied. At low temperature, the dependence on T was shown

to be given by the leading correction to the Dirichlet or Neumann vacuum contributions.

Regarding the regime of high temperature, it was shown that corrections to the blackbody

contributions carry Planck’s constant if M 6= 0 (i.e., they are not “classical”, in general).

Another feature spotted is a “local dimensional reduction” by means of which one can

say the corrections to blackbody contributions by looking at vacuum contributions in one

less dimension. At this point it should be stressed that the “local dimensional reduction”

is present for massless and massive fields, and for both boundary conditions considered,

suggesting that it may be a common feature of more general setups.

– 13 –



J
H
E
P
0
3
(
2
0
1
5
)
0
9
6

It is worth remarking that although nowhere in the text any restriction on the values

of the curvature coupling parameter ξ was imposed, under certain plausible assumptions

thermodynamic arguments in ref. [34] suggest that not all values of ξ are consistent with

stable thermodynamic equilibrium.

An extension of this work would be to look at the generality of the “local dimensional

reduction” when the background is not strictly flat (especially when an event horizon

is present). Another pertinent extension would be to study how the “local dimensional

reduction” operates when the plane wall is replaced by a spherical shell. The study of a

charged scalar, as well as of fields of higher spins, may also reveal new interesting effects.

A Finite temperature propagator

The geometry of the N -dimensional spacetime is given by

ds2 = dt2 − dx2 − dy2 − dz2 − · · · . (A.1)

The coordinate x1 := it is taken to be real with period β := 1/T . By convenience x0 := ix

is also analytically continued to real values. Considering further x2 := y and x3 := z,

eq. (A.1) becomes,

ds2 = dx20 − dx21 − dx22 − dx23 − · · · − dx2N−1, (A.2)

which with the boundary condition,

ψ(x0, x1, x2, · · · , xN−1) = ψ(x0, x1 + β, x2, · · · , xN−1), (A.3)

characterizes a cylindrical spacetime. The Dirichlet boundary condition at x = 0 is imple-

mented by taking,

ψ(x0 = 0, x1, x2, · · · , xN−1) = 0. (A.4)

Since �x := ∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 − · · · − ∂2
N−1, the eigenfunctions of the operator �x +M2

are given by

ψω,k(x) = η sin(ωx0) exp (ik · x), (A.5)

x := (x1, x2, · · · , xN−1), and where η, ω as well as the components of k :=

(k1, k2, · · · , kN−1) are constants. The corresponding eigenvalues are

Eω,k = k · k− ω2 +M2, (A.6)

and due to eq. (A.3) k1 = 2πn/β with n an integer. The sine function in eq. (A.5) ensures

that eq. (A.4) holds.

One can check now that the Feynman propagator is given by

GF (x, x
′)=−i

∞
∑

n=−∞

∫ ∞

0
dτ

∫ ∞

0
dω

∫ ∞

−∞
dk2 · · ·

∫ ∞

−∞
dkN−1e

−iτEω,kψω,k(x)ψ
∗
ω,k(x

′), (A.7)
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simply by applying �x +M2 to eq. (A.7),

(

�x +M2
)

GF (x, x
′) =

∞
∑

n=−∞

∫ ∞

0
dω

∫ ∞

−∞
dk2 · · ·

∫ ∞

−∞
dkN−1ψω,k(x)ψ

∗
ω,k(x

′)

×
∫ ∞

0
dτ

d

dτ
e−iτEω,k . (A.8)

To make the integration over the “proper time” τ in eq. (A.8) convergent, M2 in eq. (A.6)

is taken to have an infinitesimal negative imaginary part, resulting that the integration

over τ yields minus unity. By considering eq. (A.5) in eq. (A.8) with η such that

|η|2 = 23−Nπ1−Nβ−1, (A.9)

the integrations over the components of k give the usual representation of the δ-function.

Noting that x and x′ are at the same side of the wall, using Poisson’s formula,

∞
∑

n=−∞

δ(λ− 2πn) =
1

2π

∞
∑

n=−∞

e−inλ, (A.10)

and that [40]
2

π

∫ ∞

0
dω sin(ωx) sin(ωx′) = δ(x− x′)− δ(x+ x′),

one sees that the right hand side of eq. (A.8) is indeed minus the delta function in the

N -dimensional cylindrical spacetime (cf. eqs. (A.2) and (A.3)).

In order to arrive in eq. (2.2), eq. (A.5) is used in eq. (A.7) noticing eq. (A.9). In so

doing a factor arises that can be conveniently manipulated as follows,

∞
∑

n=−∞

e−iτ(4π2n2/β2)+i(2πn/β)(x1−x′

1
) =

∞
∑

n=−∞

∫ ∞

−∞
dλ δ(λ− 2πn) e−iτ(λ2/β2)+i(λ/β)(x1−x′

1
)

=
1

2π

∞
∑

n=−∞

∫ ∞

−∞
dλe−iτ(λ2/β2)+i(λ/β)(x1−x′

1
−nβ),

where eq. (A.10) has been used in the last step. Now all integrations other than that over

τ can be promptly evaluated, and the final integration over τ yields the modified Bessel

functions [37]. The expression in eq. (2.2) is obtained by analytically continuing back to

reall values of t = −ix1 and x = −ix0, and after going back to the original coordinates in

eq. (A.1).

Instead of eq. (A.4), the Neumann boundary condition in eq. (6.1) is implemented by

taking
∂ψ

∂x0
= 0, x0 = 0.

Accordingly, the eigenfunctions of the operator �x +M2 are now given by

ψω,k(x) = η cos(ωx0) exp (ik · x), (A.11)

replacing eq. (A.5). Considering eq. (A.11), one follows the same line of reasoning as above,

ending with eq. (2.2) but now with the minus sign into the square bracket giving place to

a plus sign.
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B Alternative expressions for certain averages

The following formulas are alternative expressions to ρ
(N)
mixed

and P
(N)
‖ mixed

given in eqs. (4.10)

and (4.14),

ρ
(N)
mixed

= 2

(

MT

2π

)N/2 ∞
∑

n=1

[

(2Tx)2 + n2
]−N/4

{

2(1− 2ξ)KN
2

(

M

T

√

(2Tx)2 + n2

)

+
M

T

[

(4Tx)2(ξ−1/4)−n2
]

[(2Tx)2+n2]−1/2KN+2

2

(

M

T

√

(2Tx)2+n2

)}

, (B.1)

and

P
(N)
‖ mixed

= −2

(

MT

2π

)N/2 ∞
∑

n=1

[

(2Tx)2 + n2
]−N/4

{

2(1− 2ξ)KN
2

(

M

T

√

(2Tx)2 + n2

)

+16MTx2(ξ − 1/4)[(2Tx)2 + n2]−1/2KN+2

2

(

M

T

√

(2Tx)2 + n2

)}

. (B.2)

They lead to those in the text containing Kν(z) of lower ν by considering known identities

relating Bessel functions of different orders [37].
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