
J
H
E
P
0
3
(
2
0
1
5
)
0
7
9

Published for SISSA by Springer

Received: December 31, 2014

Accepted: February 13, 2015

Published: March 16, 2015

Stability of cylindrical thin shell wormhole during

evolution of universe from inflation to late time

acceleration

M.R. Setarea and A. Sepehrib

aDepartment of Science, Campus of Bijar, University of Kurdistan,

Bijar, Iran
bFaculty of Physics, Shahid Bahonar University,

P.O. Box 76175, Kerman, Iran

E-mail: rezakord@ipm.ir, alireza.sepehri@uk.ac.ir

Abstract: In this paper, we consider the stability of cylindrical wormholes during evolu-

tion of universe from inflation to late time acceleration epochs. We show that there are two

types of cylindrical wormholes. The first type is produced at the corresponding point where

k black F-strings are transited to BIon configuration. This wormhole transfers energy from

extra dimensions into our universe, causes inflation, loses it’s energy and vanishes. The

second type of cylindrical wormhole is created by a tachyonic potential and causes a new

phase of acceleration. We show that wormhole parameters grow faster than the scale factor

in this era, overtake it at ripping time and lead to the destruction of universe at big rip

singularity.

Keywords: Strings and branes phenomenology, Phenomenology of Large extra dimensions

ArXiv ePrint: 1412.8666

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2015)079

mailto:rezakord@ipm.ir
mailto:alireza.sepehri@uk.ac.ir
http://arxiv.org/abs/1412.8666
http://dx.doi.org/10.1007/JHEP03(2015)079


J
H
E
P
0
3
(
2
0
1
5
)
0
7
9

Contents

1 Introduction 1

2 The birth and death of cylindrical wormholes during inflation 2

3 The birth and death of cylindrical wormhole during late time

acceleration 8

4 Summary and discussion 13

1 Introduction

The idea of spacetime wormhole was introduced in 1930s by Einstein and Rosen [1] and

then extended and popularized by Morris, Thorne [2] and Visser [3]. One of important

types of these objects that may help us learn more about extra dimensions are thin shell

wormholes (TSW). These objects are constructed by Visser from an energy-momentum

at the throat through cut-and-paste technique satisfying the proper junction conditions.

Visser proposed the first construction of thin shell wormholes in a 3 + 1-dimensional flat

Minkowski space-time [3] and then extended it to the Schwarzschild spacetime [4, 5].

Now, the main question arises what is the origin of these wormholes in different epochs

of universe? We answer to this question in BIonic model [6–10] which allows us to take into

account the wormhole in addition to tachyons in brane-antibrane system. In this model,

at the corresponding point where k black fundamental strings are transited to BIon, two

universe-branes and one thin shell wormhole are born. This wormhole is a channel for

flowing energy from anti-universe-brane to our universe and has the main role in making the

inflation. After a short period of time, wormhole loses it’s energy, vanishes, inflation ends

and deceleration era begins. With decreasing separation between universe branes, tachyon

is created and causes formation of the second type of unstable thin shell wormholes, named

as tachyonic TSWs. At this stage, universe evolved from a non-phantom deceleration era

to a phantom acceleration phase and ends up in a big rip singularity.

To construct expansion history of universe in BIon, we make use of thin shell wormholes

that have a cylindrical symmetry. Until now, less discussions have been made on cylin-

drically symmetric thin shell wormholes [11–18]. For example, some authors presented a

model for the dynamics of non rotating cylindrical thin-shell wormholes. They calculated

the time evolution of the throat of special type of wormhole whose metric has the form

associated to local cosmic strings [11, 12]. Also, they extended their calculations and built

this type of wormholes within the framework of the Brans Dicke scalar-tensor theory of

gravity [13]. Some other authors constructed cylindrical, traversable wormholes by gluing
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two copies of a cosmic strings manifold with a positive cosmological constant [14]. In an-

other scenario, authors showed that the existence of wormholes with cylindrical topology

does not require violation of the weak or null energy conditions near the throat [15, 16].

Some other investigators discussed that the wormhole and the cosmic string geometries are

locally indistinguishable, although, their global properties are different [17]. In a recent

work, researchers investigated the stability of cylindrical thin shell wormholes in parallel to

the method used in spherically symmetric thin shell wormholes [18]. We will extend these

calculations to string theory and will show that these wormholes are unstable both with

the main causes of inflation and with a late time acceleration.

The outline of the paper is as follows. In section 2, we will consider the evolution of

cylindrical thin shell wormholes and their annihilation during the inflation era of universe.

In section 3, we will introduce a new type of cylindrical thin shell wormhole, named as

tachyonic TSWs. These objects were born due to a tachyonic potential between brane-

antibranes. The last section is devoted to summary and conclusion.

2 The birth and death of cylindrical wormholes during inflation

In this section, we will show that cylindrical wormholes are born at the beginning of

inflation and vanish at the end of this epoch. We obtain the location of throat in terms of

BIonic parameters.

First let us consider a general cylindrical metric which is given by [12]:

ds2 = B(r)
(
−dt2 + dr2

)
+ C(r)dφ2 +D(r)dz2 (2.1)

in which B (r), C (r) and D(r) are as a function of r only and r=V(t) is the location of the

throat. The standard energy momentum on the shell is:

ρ = −
(
D′

D
+
C ′

C

)√
∆

pz =
1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
C ′

C
∆

]
,

pφ =
1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
D′

D
∆

]
(2.2)

where ∆ = 1
B + V̇ 2. Now, we discuss the origin of wormhole in cosmic space. In our model,

coincided with the birth of universe, wormhole is born at corresponding point where the

thermodynamics of k non-extremal black fundamental strings has been matched to that

of the BIon configuration. The supergravity solution for k coincident non-extremal black

F-strings lying along the z direction is:

ds2 = H−1
(
−fdt2 + dz2

)
+ f−1dr2 + r2dΩ2

7

e2φ = H−1, B0 = H−1 − 1,

H = 1 +
r60 sinh2 α

r6
, f = 1− r60

r6
. (2.3)
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From this metric, the mass density along the z direction can be found [7, 8]:

dMF1

dz
= TF1k +

16(TF1kπ)3/2T 3

81TD3
+

40T 2
F1k

2π3T 6

729T 2
D3

. (2.4)

On the other hand, for finite temperature BIon, the metric is [6]:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
+

6∑
i=1

dx2i . (2.5)

Choosing the world volume coordinates of the D3-brane as {σa, a = 0 . . . 3} and defining

τ = σ0, σ = σ1, the coordinates of BIon are given by [6–8]:

t(σa) = τ, r(σa) = σ, x1(σ
a) = z(σ), θ(σa) = σ2, φ(σa) = σ3 (2.6)

and the remaining coordinates xi=2,...6 are constant. The embedding function z(σ) describes

the bending of the brane. Let z be a transverse coordinate to the branes and σ be the

radius on the world-volume. The induced metric on the brane is then:

γabdσ
adσb = −dτ2 +

(
1 + z′(σ)2

)
dσ2 + σ2

(
dθ2 + sin2 θdφ2

)
(2.7)

so that the spatial volume element is dV3 =
√

1 + z′(σ)2σ2dΩ2. We impose the two bound-

ary conditions z(σ)→ 0 for σ →∞ and z′(σ)→ −∞ for σ → σ0, where σ0 is the minimal

two-sphere radius of the configuration. For this BIon, the mass density along the z direction

can be obtained [7, 8]:

dMBIon

dz
= TF1k +

3πT 2
F1k

2T 4

32T 2
D3σ

2
0

+
7π2T 3

F1k
3T 8

512T 4
D3σ

4
0

. (2.8)

Comparing the mass densities for BIon to the mass density for the F-strings, we see that

the thermal BIon configuration behaves like k F-strings at σ = σ0. At this corresponding

point, σ0 should have the following dependence on the temperature:

σ0 =

(√
kTF1

TD3

)1/2√
T

[
C0 + C1

√
kTF1

TD3
T 3

]
(2.9)

where TF1 = 4kπ2TD3gsl
2
s , C0, C1, F0, F1 and F2 are numerical coefficients which can be

determined by requiring that T 3 and T 6 terms in eqs. (2.4) and (2.8) are consistent with

each other. At this point, two universes and one wormhole have been born. The metric of

these FRW universes is:

ds2Uni1 = ds2Uni2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
. (2.10)

We assume that universes are located on D3-branes and don’t have any contribution in

mass density along z direction. For this reason, we write:

pz=
dMF1

dz
→ 1√

∆

[
2V̈ +2

B′

B
V̇ 2+

B′

B2
+
C ′

C
∆

]
=TF1k+

16(TF1kπ)3/2T 3

81TD3
+

40T 2
F1k

2π3T 6

729T 2
D3

.

(2.11)
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Assuming B′(V0) = C ′(V0) = 0, we can solve the above equation:

V (t) = exp

(∫
P0dt

)
P0 = TF1k +

16(TF1kπ)3/2T 3

81TD3
+

40T 2
F1k

2π3T 6

729T 2
D3

. (2.12)

Using this equation and equation (2.9) and assuming that throat of a stringy wormhole is

equal to throat of a cylindrical wormhole V0 = σ0, we can derive the universe temperature

in terms of time:

V = σ0 →

exp

(∫
P0dt

)
=

(√
kTF1

TD3

)1/2√
T

[
C0 + C1

√
kTF1

TD3
T 3

]
→

T−1 ∼

[(
40TF1kπ

3

729

)2/3

t2/3+

(
40TF1kπ

3

729

)2/11

t2/11+ln

(
16TD3(TF1kπ)1/2

81
t

)]
,

V = σ0 = 0, C̄0 = −C0 → Tend =
C̄0

√
TD3

C1kTF1
→

tend ∼
C1kTF1

C̄0

√
TD3

[(
40TF1kπ

3

729

)2/11

+
16TD3(TF1kπ)1/2

81

]−1
. (2.13)

This equation shows that temperature was infinity at the beginning, decreased with time

and tended to Tend at large values of time (t = tend). Consequently, throat of a wormhole

is decreased with time and tends to zero at t = tend.

After that, wormhole transfers energy from extra dimensions into our universe and

causes inflation. Simultaneously, one stringy wormhole is formed in BIon. To compare

a stringy wormhole with a cylindrical wormhole, we will construct a stringy wormhole in

BIon. Putting k units of F-string charge along the radial direction and using equation (2.7),

we obtain [6–8]:

z(σ) =

∫ ∞
σ

dσ́

(
F (σ́)2

F (σ0)2
− 1

)− 1
2

. (2.14)

In finite temperature BIon F (σ) is given by

F (σ) = σ2
4 cosh2 α− 3

cosh4 α
(2.15)

where coshα is determined by the function:

cosh2 α =
3

2

cos δ3 +
√

3 sin δ
3

cos δ
(2.16)

with the definitions:

cos δ ≡ T 4

√
1 +

k2

σ4
, T ≡

(
9π2N

4
√

3TD3

)
T, κ ≡ kTF1

4πTD3

. (2.17)
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In above equation, T is the finite temperature of BIon, N is the number of D3-branes and

TD3 and TF1 are tensions of brane and fundamental strings respectively. Attaching a mirror

solution to eq. (2.13), we construct a wormhole configuration. The separation distance

∆̄ = 2z(σ0) between the N D3-branes and N anti D3-branes for a given brane-antibrane

wormhole configuration is defined by the four parameters N, k, T and σ0. We have:

∆̄ = 2z(σ0) = 2

∫ ∞
σ0

dσ́

(
F (σ́)2

F (σ0)2
− 1

)− 1
2

. (2.18)

In the limit of small temperatures, we obtain:

∆̄ =
2
√
πΓ(5/4)

Γ(3/4)
σ0

(
1 +

8

27

k2

σ40
T
8
)
. (2.19)

Let us now discuss the early inflationary model of universe in thermal BIon. For

this, we need to compute the contribution of the BIonic system with the four-dimensional

universe energy momentum tensor. The EM tensor for one BIonic system with N D3-branes

and k F-string charges is [7, 8],

T 00 =
2T 2

D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2
4 cosh2 α+ 1

cosh4 α

T ii = −γii
8T 2

D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2
1

cosh2 α
, i = 1, 2, 3

T 44 =
2T 2

D3

πT 4

F (σ)

F (σ0)
σ2

4 cosh2 α+ 1

cosh4 α
. (2.20)

This equation shows that with increasing temperature in BIonic system, the energy-

momentum tensors decreases. This is due to the fact that when spikes of branes and

antibranes are well separated, wormhole is not formed, so there isn’t any channel for flow-

ing energy from universe branes into extra dimensions and consequently the temperature

is very high, however when two universe branes are close to each other and connected by

a wormhole, the temperature is reduced to the lower values.

Also, in this model, we introduce two four dimensional universes that interact with

each other via a wormhole and form a binary system. In this model, z is the transverse

direction between two universes and only the wormhole has a momentum in this direction.

To obtain the energy-momentum tensor in this system, we use the Einstein’s field equation

in presence of fluid flow that reads as:

Rij −
1

2
gijR = kTij . (2.21)

Using this equation, we can obtain the energy momentum tensor for the universe-wormhole:

T 00 = 6
ȧ2

a2
+

(
D′

D
+
C ′

C

)√
∆

T ii = 4
ä

a
+ 2

ȧ2

a2
+

1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
D′

D
∆

]
, i = 1, 2, 3

T 44 =
1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
C ′

C
∆

]
. (2.22)
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On the other hand, such a higher-dimensional stress-energy tensor is assumed to be that

of a perfect fluid and of the form

T ji = diag [−p,−p,−p,−p̄,−p,−p,−p, ρ] , (2.23)

where p̄ is the pressure in the extra space-like (z) dimension. Using the energy momen-

tum tensor of equations (2.20) and (2.22) in the conservation law of equations (2.21) and

employing (2.23), we write:

ρ = ρUni1 + ρUni2 + ρwormhole = ρBIon

pi,tot = pi,Uni1 + pi,Uni2 + pi,wormhole = pi,BIon, i=1,2,3

pz,tot = pz,wormhole = pz,BIon . (2.24)

By using equations (2.20), (2.22) and (2.24), we obtain:

6
ȧ2

a2
+

(
D′

D
+
C ′

C

)√
∆ =

2T 2
D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2
4 cosh2 α+ 1

cosh4 α

4
ä

a
+ 2

ȧ2

a2
+

1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
D′

D
∆

]
= −

8T 2
D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2
1

cosh2 α

1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
C ′

C
∆

]
= −

2T 2
D3

πT 4

F (σ)

F (σ0)
σ2

4 cosh2 α+ 1

cosh4 α
. (2.25)

Assuming D=C and with the help of equation (2.12), we solve the above equation and

obtain the explicit forms of a, B, C and D:

a(t) = exp

(∫
Udt

)
U = −8T 2

D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2 1

cosh2 α
+

2T 2
D3

πT 4

F (σ)

F (σ0)
σ2 4 cosh2 α+ 1

cosh4 α
→

U = −8T 2
D3

πT 4

σ4√
σ2 − σ2

0

 2T 4
√

1 + β2

σ4

3
√

3− T 4

√
1 + β2

σ4 −
√
3
6 T

8
(

1 + β2

σ4

)


2

+

2T 2
D3

πT 4

σ4

σ2
0

4 +

 2T 4
√

1 + β2

σ4

3
√

3− T 4

√
1 + β2

σ4 −
√
3
6 T

8
(

1 + β2

σ4

)


4→

U = −


8T 2

D3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π

σ4√
σ2 − σ2

0

×


2

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]−4√

1 + β2

σ4

3
√

3−t−8/3
√

1+ β2

σ4−
√
3
6

[(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)]−8(

1+ β2

σ4

)


2

+


2T 2

D3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π

σ4

σ2
0

4+

– 6 –
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 2
(

40TF1kπ
3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)

]−4
√

1+ β2

σ4

3
√

3−[t]−8/3
√

1+ β2

σ4−
√
3
6

(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)

]−8
(

1+ β2

σ4

)

4



D = C = exp

(∫
Edr

)
E = −2T 2

D3

πT 4

F (σ)

F (σ0)
σ2 4 cosh2 α+ 1

cosh4 α
+

46T 2
D3

πT 4

F (σ)√
F 2(σ)− F 2(σ0)

σ2 1

cosh2 α
→

E = −


2T 2

D3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π

σ4

σ2
0

4+

 2
(

40TF1kπ
3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)

]−4
√

1 + β2

σ4

3
√

3−[t]−8/3
√

1+ β2

σ4−
√
3
6

(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)

]−8
(
1+ β2

σ4

)

4



+


48T 2

D3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π

σ4√
σ2 − σ2

0

×


2

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]−4√

1 + β2

σ4

3
√

3−t−8/3
√

1+ β2

σ4−
√
3
6

[(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)]−8(

1+ β2

σ4

)

2

→ E ' −U

B = exp

(∫
wdr

)
w = −

(
1

1 + 2Ṗ 2

)(
2T 2

D3

πT 4

F (σ)

F (σ0)
σ2 4 cosh2 α+ 1

cosh4 α

)
− 2Ü →

w = −2Ü −


2T 2

D3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π

σ4

σ2
0

4+

 2
(

40TF1kπ
3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)

]−4
√

1 + β2

σ4

3
√

3−[t]−8/3
√

1+ β2

σ4−
√
3
6

(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)

]−8
(
1+ β2

σ4

)

4



→ w ' −U . (2.26)

This equation indicates that while the temperature is decreased, the parameters of worm-

hole are reduced to lower values and tended to zero at σ0 = V = 0 and t = tend (see figures 1

and 2). This means that the wormhole is disappeared at the end of inflation, however the

scale factor of universe is increased very fast and tended to large values in this epoch

(see figure 3).
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Figure 1. The wormhole parameter (D = C) for inflation era of expansion history as a function of

t where t is the age of universe. In this plot, we choose tbirth = 0, tend = 380000, Tbirth = 1032 and

Tend = 10
9

.

Figure 2. The wormhole parameter (B) for inflation era of expansion history as a function of

t where t is age of universe. In this plot, we choose tbirth = 0, tend=380000, Tbirth = 1032 and

Tend = 10
9

.

3 The birth and death of cylindrical wormhole during late time

acceleration

In this section, we discuss that with decreasing the separation distance between brane-

antibrane, a tachyon is born, grows very fast and causes formation of a new cylindrical

wormhole. This wormhole transfers energy from extra dimensions into our universe ac-

cording to which the second phase of acceleration takes place.

To construct a non-phantom model, we consider a set of D3-D3-brane pairs in the

background (2.7) which are placed at points z1 = l/2 and z2 = −l/2 respectively so

that the separation between the brane and antibrane is l. For the simple case of a single

– 8 –
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Figure 3. The scale factor (a) for inflation era of expansion history as a function of t where t is

age of universe. In this plot, we choose tbirth = 0, tend = 380000, Tbirth = 1032 and Tend = 10
9

.

D3-D3-brane pair with an open string tachyon, the action is [19–24]:

S = −τ3
∫
d9σ

2∑
i=1

V (TA, l)e−φ
(√
−detAi

)
(Ai)ab=

(
gMN−

TA2l2

Q
gMzgzN

)
∂ax

M
i ∂bx

M
i +F iab+

1

2Q
((DaTA)(DbTA)∗+(DaTA)∗(DbTA))

+ il(gaz+∂azigzz)(TA(DbTA)∗−TA∗(DbTA))+il(TA(DaTA)∗−TA∗(DaTA))×

(gbz + ∂bzigzz)

(
1− π2NT 4

6TD3

)
, (3.1)

where

Q = 1 + TA2l2gzz,

DaTA = ∂aTA− i(A2,a −A1,a)TA, V (TA, l) = gsV (TA)
√
Q,

eφ = gs

(
1 +

R4

z4

)− 1
2

, (3.2)

φ, A2,a and F iab are dilaton field, the gauge field and field strength on the world-volume

of the non-BPS brane respectively, TA is the tachyon field, τ3 is the brane tension and V

(TA) is the tachyon potential. The indices a,b denote the tangent directions of D-branes,

while the indices M,N run over the background of ten-dimensional space-time directions.

The Dp-brane and the anti-Dp-brane are labeled by i = 1 and 2 respectively. Then the

separation between these D-branes is defined by z2 − z1 = l. Also, in writing the above

equations we are using the convention 2πά = 1. A potential which has been used in most

papers is [25–27]:

V (TA) =
τ3

cosh
√
πTA

. (3.3)

Let us consider the only σ dependence of the tachyon field TA for simplicity and set the

gauge fields to zero. In this case, the action (3.1) in the region r > R and TA′ ∼ constant

– 9 –
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simplifies to

L ' −τ3
gs

∫
dσσ2V (TA)

(√
D1,TA +

√
D2,TA

)(
1− π2NT 4

6TD3

)
(3.4)

where

D1,TA = D2,TA ≡ DTA = 1 +
l′(σ)2

4
+ ˙TA

2 − TA′2 (3.5)

we assume that TAl � TA′. Now, we study the Hamiltonian corresponding to the above

Lagrangian. To derive this we need the canonical momentum density Π = ∂L
∂ ˙TA

associated

with the tachyon:

Π =
V (TA) ˙TA√

1 + l′(σ)2

4 + ˙TA
2 − TA′2

(
1− π2NT 4

6TD3

)
(3.6)

so that the Hamiltonian can be obtained as:

HDBI = 4π

∫
dσσ2Π ˙TA− L . (3.7)

By choosing ˙TA = 2TA′, this gives:

HDBI = 4π

∫
dσσ2

[
Π

(
˙TA− 1

2
TA′

)]
+

1

2
TA∂σ

(
Πσ2

)
− L . (3.8)

In this equation, we have in the second step integration by parts the term proportional

to ˙TA, indicating that a tachyon can be studied as a Lagrange multiplier imposing the

constraint ∂σ(Πσ2V (TA)) = 0 on the canonical momentum. Solving this equation yields:

Π =
β

4πσ2
(3.9)

where β is a constant. Using (3.9) in (3.8), we get:

HDBI =

∫
dσV (TA)

√
1 +

l′(σ)2

4
+ ˙TA

2 − TA′2FDBI,

FDBI = σ2
√

1 +
β

σ2

(
1− π2NT 4

6TD3

)
. (3.10)

The output of EOM for l(σ), calculated by varying (3.10), is l′FDBI

4

√
1 + l′(σ)2

4

′ = 0 . (3.11)

Solving this equation, we obtain:

(σ) = 2

(
l0
2
−
∫ ∞
σ

dσ

(
FDBI(σ)

FDBI(σ0)
− 1

)− 1
2

)
. (3.12)
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This solution, for non-zero σ0 represents a wormhole with a finite size throat. This equation

indicates that the separation distance between two branes is l0 at the birth of wormhole(σ0),

decreases with time and shrinks to zero at larger values of throat. On the hand, to ob-

tain the explicit form of a tachyon, we are using the equation of motion extracted from

action (3.4): (
1√
DTA

TA′(σ)

)́
=

1√
DTA

[
(V (TA)FDBI)

FDBIV (TA)′
(
DTA − TA′(σ)2

)]
(3.13)

with a solution

TA ∼

√
σ20

σ20 − σ2

(
1

1 + π2NT 4

6TD3

)
. (3.14)

This equation shows that a tachyon is zero before the birth of a wormhole( σ0 = 0) and

with a decrease in temperature and an increase in the throat of a wormhole it grows to

larger values.

At this stage, we consider the late time acceleration of universe in thermal BIon. To

achieve this, we calculate the contribution of a tachyonic wormhole to the four-dimensional

universe energy momentum tensor. We have:

T 00 = V (TA)FDBI

√
DTA,

T 44 = −V (TA)FDBI
1√
DTA

(
TA2l2 +

ĺ2

4

)

T ii = −V (TA)FDBI
Q√
DTA

, i = 1, 2, 3 . (3.15)

Setting the energy momentum tensor of equations (2.22) and (3.15) in the conservation

law of equations (2.21) and (2.24) and employing (2.23) yields:

6
ȧ2

a2
+

(
D′

D
+
C ′

C

)√
∆ = V (TA)FDBI

√
DTA (3.16)

4
ä

a
+ 2

ȧ2

a2
+

1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
D′

D
∆

]
= −V (TA)FDBI

Q√
DTA

1√
∆

[
2V̈ + 2

B′

B
V̇ 2 +

B′

B2
+
C ′

C
∆

]
= −V (TA)FDBI

1√
DTA

(
TA2l2 +

ĺ2

4

)
.

Solving these equations simultaneously, assuming (D=C), V (t) = exp
(
−
∫
P0dt

)
and using

equations (2.12), (3.12) and (3.14), we obtain the explicit form of wormhole parameters

and the scale factor of universe:

a(t) = exp

(∫
dtG(t)

)

G(t) = exp


6TD3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N

×
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
6TD3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N


√

σ2
0

σ2
0 − σ2

D = C = exp

(∫
Hdr

)

H =

√√√√√√√√1+

(
σ2
0

σ2
0 − σ2

)1+

π2N

[(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)]4

6TD3


2

×

exp


6TD3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N

×


6TD3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N

σ2

√
1 +

β

σ2

B = exp

(∫
Xdr

)

X=


[(

40TF1kπ
3

729

)2/3
t2/3+

(
40TF1kπ

3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)

1/2

81 t
)]2

4

(
l0
2 −
∫∞
σ
dσ
(
σ2

σ2
0
−1
)−1/2)2

√(
σ2
0

σ2
0−σ2

)
+

[(
40TF1kπ3

729

)2/3
t2/3+

(
40TF1kπ3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)1/2

81 t
)]2

+

σ2
0

σ2
0−σ2√(

σ2
0

σ2
0−σ2

)
+

[(
40TF1kπ3

729

)2/3
t2/3 +

(
40TF1kπ3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)1/2

81 t
)]2

×

exp


6TD3

[(
40TF1kπ

3

729

)2/3
t2/3 +

(
40TF1kπ

3

729

)2/11
t2/11 + ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N

×


6TD3

[(
40TF1kπ

3

729

)2/3
t2/3+

(
40TF1kπ

3

729

)2/11
t2/11+ln

(
16TD3(TF1kπ)

1/2

81 t
)]4

π2N

σ2

√
1+

β

σ2
. (3.17)

These solutions indicate that the wormhole parameters and also the scale factor are in-

creased with time and shrink to infinity at (σ = σ0, t = trip). In figures 4, 5 and 6, we

compare wormhole parameters and the scale factor. As can be seen from these figures, the

value of scale factor is higher than the corresponding values for the wormhole parameters at

the beginning of acceleration era. On the other hand, the rate of growth for the wormhole

parameters is more considerable. For this reason, we predict that these parameters overtake

the scale factor and lead to the destruction of universe at future big rip singularity [28].
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Figure 4. The wormhole parameter (D = C) for late time acceleration era of expansion history

as a function of t where t is age of universe. In this plot, we choose tlate = .4 Gyr, trip = 33 Gyr,

Tlate = 104 and Tend = 0.

Figure 5. The wormhole parameter (B) for late time acceleration era of expansion history as

a function of t where t is age of universe. In this plot, we choose tlate = .4 Gyr, trip = 33 Gyr,

Tlate = 104 and Tend = 0.

4 Summary and discussion

Recently, the stability analysis of cylindrical thin shell wormholes has been studied in

the literature. In this paper, we have proposed a new model that allows us to account

for dynamics of this wormhole during different epochs of cosmic history from inflation to

recent observed acceleration era. In this model, coincided with the birth of universe at

the corresponding point, the early wormhole is born. At this point, k black fundamental

strings are transited to BIon which is a configuration of a universe brane and a universe

anti-brane connected by a wormhole. This wormhole transfers energy from another universe

to our own universe and causes inflation. We have shown that two universe-branes can be

connected by an unstable cylindrical thin shell wormhole that vanishes very fast. After
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Figure 6. The scale factor (a) for late time acceleration era of expansion history as a function of

t where t is age of universe. In this plot, we choose tlate = .4 Gyr, trip = 33 Gyr, Tlate = 104 and

Tend = 0.

the wormhole death, there isn’t any channel for flowing energy into our universe brane,

inflation ends and a non phantom era begins. With decreasing the separation between

universe branes, the second type of cylindrical thin shell wormholes, named as tachyonic

wormholes are created. In this condition, two universe branes are connected again and

late time acceleration era is started. After that we have considered the stability of these

wormholes and came to a conclusion that they will vanish at a future singularity.
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