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1 Introduction

Hidden symmetries of gravitational theories constitute a fascinating topic that finds its

roots in the remarkable papers [1–5] uncovering unanticipated symmetry groups much big-

ger than the expected ones upon dimensional reduction. Following this pioneering work,

it was conjectured that infinite-dimensional algebras of Kac-Moody type played a central

role in the description of the symmetries of gravitational theories [6–10]. The conjecture

received an enormous support through the work [10–15] connecting maximal supergrav-

ities to non-linear realizations of E11, and the work [16, 17] that reformulated the BKL
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oscillatory behaviour near a spacelike singularity of gravitational models [18–21] as a bil-

liard motion in the Weyl chamber of a hyperbolic Kac-Moody algebra, paving the way to

a different non-linear realization of the symmetry where space and time are on distinct

footings [22] (for reviews, see [23, 24]).1

Non-linear realizations of the infinite-dimensional conjectured symmetry spectacularly

encode the correct field content of the corresponding supergravity theories, as well as

the correct Chern-Simons couplings. In spite of these intriguing successes, however, it is

fair to say that the full conjecture remains far from being proven. Since one may view

the conjectured hidden symmetries as generalizations of p-form dualities and gravitational

duality, one may argue that one difficulty lies in the poor understanding of duality, and,

in particular, in how to make it manifest from the outset.

With this aspect of the problem in mind, we investigate here chiral supergravity in

six dimensions coupled to abelian vector multiplets and tensor multiplets [27–33]. These

models involve chiral 2-forms in a crucial way so that duality is an essential ingredient from

the very beginning.

The symmetry that appears upon dimensional reduction to 3 dimensions of pure chiral

supergravity is B3 and becomes F4 if one couples two abelian vector multiplets and two

tensor multiplets [34]. [Only the split real forms appear here, i.e., B3 ≡ B3,3 ≡ so(4, 3)

and F4 ≡ F4,4.] It is this enlarged version of the theory that we shall explore. It is natural

to conjecture that the hidden symmetry underlying this model is F++
4 (or F+++

4 ). A

preliminary billiard analysis indicates indeed that the relevant billiard table is the Weyl

chamber of F++
4 [35]. The fact that it is the exceptional Lie algebra F4 and its extensions

that are the underlying algebras provides one further motivation in itself for investigating

this model, since the hidden symmetries based on the other exceptional algebras (E8 and

the E-series, and G2 [36]) have been already analyzed, while the analysis of the dynamics

based on the overextension F++
4 has not been made yet.

One interesting feature of six-dimensional chiral supergravity is that the actions that

correctly describe the pure or extended models, i.e., such that the (anti-)self duality con-

ditions are manifestly built-in without having to be imposed externally by hand, are non-

manifestly spacetime covariant [37]. They contain as essential ingredient the actions for

chiral or anti-chiral 2-forms of [38]. These actions, although covariant, are not manifestly

so, illustrating the general tension that exists between manifest spacetime covariance and

manifest duality.2

It was shown in [14, 44, 45] that the nonlinear realization of F+++
4 reproduces correctly

the field content of chiral supergravity. The central goal of our paper is to study more

explicitly the dynamics. Our aim is to derive the geodesic motion on the coset space

1New insight on the hidden symmetries that appear in D = 4 and D = 3 spacetime dimensions has been

derived recently in the light cone gauge [25, 26]. It would be interesting to explore how that approach can

also provide insight on the conjectured infinite-dimensional symmetry.
2Spacetime covariance can be made manifest by introducing gauge and auxiliary fields that appear non

polynomially in the action as achieved in the interesting work [39–42]. One may take the point of view,

however, that there is a message to be learned from the tension between manifest spacetime covariance and

manifest duality invariance, and that duality might be more fundamental [43].
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F++
4 /K(F++

4 ) and to compare it with the solutions of the supergravity equations in a level

expansion similar to that introduced in [22], which turns out to be here a bi-level. Here,

K(F++
4 ) is the “maximal compact subalgebra” of F++

4 . It contains the maximal compact

subalgebra sp(3)⊕su(2) of F4. Our main result is to establish complete agreement between

the two models up to (but not including) the level that involves the dual graviton. In

particular, we find that the nonlinear sigma model encodes the self-duality of the chiral

two-form.

The model resembles in many respects the geodesic motion for type IIB supergrav-

ity [46], where there is a chiral 4-form, the self-duality condition of which is properly

incorporated in the sigma model formulation. The p-form content is, however, different

since F4 involves not just p-forms of even degree, but also p-forms of odd degree. The

difference in the p-form content is best described by comparing the “V -duality” Borcherds

superalgebras that control the respective p-form algebras [47, 48]. We compute the V -

duality Borcherds superalgebra for the F4 model and compare and contrast its Cartan

matrix with that relevant to type IIB.

Our paper is organized as follows. In the next section (section 2) we recall the La-

grangian of the bosonic sector of six-dimensional chiral supergravity coupled to two vector

multiplets and two tensor multiplets and write the equations of motion. We also provide

explicitly the Lagrangian for which the chirality condition is automatically implemented

and does not have to be imposed by hand from the outside. We study in section 3 the

hyperbolic Kac-Moody algebra F++
4 and give its low level roots in the decomposition with

respect to the subalgebra gl(5) ⊕ sl(2). We then turn in section 4 to the sigma model

formulation, for which we write the equations of motion. In section 5, we compare the

supergravity equations with those of the sigma model and provide the dictionary that make

these equations match up to the level of the dual graviton. In particular, we show how the

self-duality condition on the chiral 2-form is incorporated within the sigma model. We also

comment on the standard difficulties that appear at and above the dual graviton level. In

section 6, we determine the Borcherds structure of the p-form V -duality algebra. In that

analysis, we follow the method of [49] to eliminate some ambiguities, which requires the

determination of the V-duality algebras for the dimensionally reduced models in spacetime

dimensions lower than 6. Section 7 is devoted to the conclusions where further com-

ments on manifest duality symmetry are provided. We compare, in particular, the ways

in which the self-duality condition appears in the sigma model approach and in the field

theoretical description.

While the level decomposition of F++
4 has been studied previously in the F+++

4 con-

text [14], the explicit matching of the geodesic equations on the coset space F++
4 /K(F++

4 )

with the bosonic field equations for six-dimensional chiral supergravity coupled to two

vector multiplets and two tensor multiplets constitutes to our knowledge a new result, to-

gether with the determination of the corresponding Borcherds structure. Furthermore, the

self-contained Lagrangian for six-dimensional chiral supergravity, in which the self-duality

condition appears as an equation of motion, has not been written before as far as we know.
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2 Chiral supergravity

2.1 Lagrangian (standard formulation)

The bosonic field content ofD = 6,N = (1, 0) supergravity coupled to two tensor multiplets

and two vector multiplets consists of the metric g, two scalars φ (dilaton) and ψ (axion),

two vectors A± and two 2-forms B and C. The field strengths are given by

F+ = dA+ +
1√
2
χdA−, F− = dA− (2.1a)

H = dB +
1

2
A− ∧ dA−, G = dC − 1√

2
χH − 1

2
A+ ∧ dA− (2.1b)

and the Lagrangian reads explicitly:

L = R ? 1− ?dφ ∧ dφ− 1

2
e2φ ? dχ ∧ dχ− 1

2
eφ ? F+ ∧ F+ − 1

2
e−φ ? F− ∧ F−

−1

2
e−2φ ? H ∧H − 1

2
? G ∧G

− 1√
2
χH ∧G− 1

2
A+ ∧ F+ ∧H − 1

2
A+ ∧ F− ∧G, (2.2)

The self-duality condition ?G = G must be imposed after varying L to get the equations

of motion. As shown in [34], the D = 6 Lagrangian (2.2) can be viewed as the oxidation

endpoint of the theory with F4 symmetry in 3 spacetime dimensions, i.e., D = 3 gravity

coupled to the nonlinear sigma model F4/(Sp(3)× SU(2)).

2.2 Equations of motion

Extremizing the action with respect to the metric yields the Einstein equations:

Rµν −
1

2
gµνR = Tµν (2.3)

where the energy-momentum tensor reads

Tµν = ∂µφ∂νφ+
1

2
e2φ∂µχ∂νχ+

1

2
eφF+

µρF
+ ρ
ν +

1

2
e−φF−µρF

− ρ
ν

+
1

4
e−2φHµρσH

ρσ
ν +

1

4
GµρσG

ρσ
ν

− 1

2
gµν

[
∂ρφ∂

ρφ+
1

2
e2φ∂ρχ∂

ρχ+
1

4
eφF+

ρσF
+ρσ +

1

4
e−φF−ρσF

−ρσ

+
1

12
e−2φHρσλH

ρσλ +
1

12
GρσλG

ρσλ

]
. (2.4)

Since D = 6, an equivalent form of the Einstein equations is

Rµν = Tµν −
1

4
gµνT

ρ
ρ .
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For the other fields, one has the Bianchi identities

ddχ = ddφ = 0 (2.5a)

dF+ =
1√
2
dχ ∧ F−, dF− = 0 (2.5b)

dH =
1

2
F− ∧ F−, dG = − 1√

2
dχ ∧H − 1

2
F+ ∧ F− (2.5c)

and the equations of motion

d ? G = − 1√
2
dχ ∧H − 1

2
F+ ∧ F−, d

(
e−2φ ? H

)
=
√

2dχ ∧G− 1

2
F+ ∧ F+

(2.6a)

d
(
eφ ? F+

)
= −G ∧ F− −H ∧ F+ (2.6b)

d
(
e−φ ? F−

)
= e−2φ ? H ∧ F− −G ∧ F+ − 1√

2
eφdχ ∧ ?F+ (2.6c)

d
(
e2φ ? dχ

)
= − 1√

2
eφ ? F+ ∧ F− +

√
2G ∧H (2.6d)

d ? dφ = − 1

2
e2φ ? dχ ∧ dχ− 1

4
eφ ? F+ ∧ F+

+
1

4
e−φ ? F− ∧ F− +

1

2
e−2φ ? H ∧H (2.6e)

Note that the Bianchi identity for G and its equation of motion indeed consistently allow

for ?G = G.

Taking the Hodge dual of these equations and expressing them in components, we get

for the Bianchi identities

∂µ
(√
−g (?dφ)µνρστ

)
= 0 (2.7a)

∂µ
(√
−g (?dχ)µνρστ

)
= 0 (2.7b)

∂µ
(√
−g (?F−)µνρσ

)
= 0 (2.7c)

∂µ
(√
−g (?F+)µνρσ

)
= − 1

2
√

2
ενρσαβγ∂αχF−βγ (2.7d)

∂µ
(√
−g (?H)µνρ

)
=

1

8
ενραβγδF−αβF−γδ (2.7e)

∂µ
(√
−g (?G)µνρ

)
= ενραβγδ

(
− 1

6
√

2
∂αχHβγδ −

1

8
F+αβF−γδ

)
(2.7f)

and for the equations of motion

∂µ
(√
−g Gµνρ

)
= ενραβγδ

(
− 1

6
√

2
∂αχHβγδ −

1

8
F+αβF−γδ

)
(2.8a)

1√
−g

∂µ

(√
−g e−2φHµνρ

)
=
√

2Gνρα∂αχ−
1

8
√
−g

ενραβγδF+αβF+γδ (2.8b)
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1√
−g

∂µ

(√
−g eφF+µν

)
= −1

2
GναβF−αβ −

1

12
√
−g

εναβγδεHαβγF+δε (2.8c)

1√
−g

∂µ

(√
−g e−φF−µν

)
=

1

2
e−2φHναβF−αβ +

1√
2
eφF+να∂αχ−

1

2
GναβF+

αβ (2.8d)

1√
−g

∂µ

(√
−g e2φ∂µχ

)
=

1

2
√

2
eφF+

αβF
−αβ − 1

3
√

2
GαβγH

αβγ (2.8e)

1√
−g

∂µ
(√
−g ∂µφ

)
=

1

2
e2φ∂αχ∂

αχ+
1

8
eφF+

αβF
+αβ − 1

8
e−φF−αβF

−αβ

− 1

12
e−2φHαβγH

αβγ (2.8f)

Our conventions are

ε01...5 = 1, ε01...5 = −1, (?ω)ν1ν2...νq =

√
−g
p!

εν1ν2...νqµ1µ2...µpω
µ1µ2...µp . (2.9)

2.3 Lagrangian with self-duality built in

It is somewhat unsatisfactory to have to implement by hand the self-duality condition

?G = G on the two-form C. A satisfactory action principle should be self-contained. We

give such an action principle here. It generalizes the free action of [38] by including the

Chern-Simons couplings. The easisest way to derive it from the Lagrangian (2.2) is to

follow the steps of [50, 51].

We can write the Lagrangian (2.2) as

L = −1

2
? G ∧G+D ∧G+ L0, (2.10)

where the 3-form D is given by

D = − 1√
2
χH − 1

2
A+ ∧ dA− (2.11)

(see (2.1b)), and where L0 does not contain the 2-form C. We now:

• Go to the Hamiltonian formalism only for the 2-form C, while keeping the other

fields in second order form; i.e., perform the Legendre transformation only on the

time derivatives Ċij of C and the conjugate momenta πij ,

πij =
∂L
∂Ċij

(2.12)

• Solve the Gauss constraints ∂iπ
ij = 0 that follows from varying the action with

respect to the Lagrange multipliers C0i by introducing a second 2-form potential Zij ,

πij =
1

2
εijklm∂kZlm (2.13)

to get an action S[Cij , Zij ] that involves the two spatial 2-form potentials Cij and

Zij (plus
´
d6xL0 which remains unaffected by all these steps).

– 6 –
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• Make the change of variables

Cij =
√

2(C+
ij − C

−
ij ) (2.14a)

Zij =
√

2(C+
ij + C−ij ). (2.14b)

Under this change of variables, the action splits as a sum of an interacting action

for the chiral part C+
ij and a free action for the anti-chiral part C−ij . The free ac-

tion for the anti-chiral part C−ij can be consistently dropped, leaving one with the

action describing correctly the interacting chiral 2-form without superfluous degrees

of freedom.

If one follows this procedure, one gets the action

S =

ˆ
d6x

[
1

2
εijklm

(
(∂0C

+
ij +

1√
2
D0ij)∂kC

+
lm −N

pG+
pijG

+
klm

)
−1

3
N
√

ggipgjqgkrG+
ijkG

+
pqr +

1

6
√

2
εijklmD0ijG

+
klm + L0

]
, (2.15)

where

G+
mnr = 3∂[mC

+
nr] +

1√
2
Dmnr (2.16)

and where N is the lapse, Nk the shift, gij the spatial metric, and the convention for the

spatial ε tensor is ε12345 = 1.

It is useful, in order to keep track of the gauge symmetries, to introduce the time

components C+
0j in the kinetic term of (2.15) so as to make the invariant field strength G+

0ij

appear. This can be done at no cost because these extra components C+
0j drop out of the

action by integration by parts. One gets

S =

ˆ
d6x

[
1

6
εijklm(G+

0ijG
+
klm −N

pG+
pijG

+
klm)− 1

3
N
√

ggipgjqgkrG+
ijkG

+
pqr

+
1

6
√

2
εijklmD0ijG

+
klm −

1

6
√

2
εijklmG+

0ijDklm + L0

]
, (2.17)

where

G+
µνρ = 3∂[µC

+
νρ] +

1√
2
Dµνρ. (2.18)

Restoring the expressions for D and L0, and noticing that the expressionˆ
d6x

[
1

6
√

2
εijklmD0ijG

+
klm −

1

6
√

2
εijklmG+

0ijDklm

]
is equal to −

´
d6x

√
2

62
εµνρσλτDµνρG

+
σλτ =

´
d6x
√

2D ∧ G+, the final form of the action is

found to be

S =

ˆ
d6x

[
R ? 1− ?dφ ∧ dφ− 1

2
e2φ ? dχ ∧ dχ− 1

2
eφ ? F+ ∧ F+ − 1

2
e−φ ? F− ∧ F−

+
1

6
εijklm(G+

0ijG
+
klm −N

pG+
pijG

+
klm)− 1

3
N
√

ggipgjqgkrG+
ijkG

+
pqr

−1

2
e−2φ ? H ∧H − χH ∧G+ − 1

2
A+ ∧ F+ ∧H − 1√

2
A+ ∧ F− ∧G+

]
,

(2.19)
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where

G+ = dC+ − 1

2
χH − 1

2
√

2
A+ ∧ dA−. (2.20)

This action has the gauge symmetries:

δA+ = dε+, δA− = dε− (2.21a)

δB = dΛ− 1

2
ε−dA− (2.21b)

δC+ = dΞ +
1

2
√

2
ε+dA− (2.21c)

under which the field strengths are invariant. Here ε+ and ε− are 0-forms, while Λ and Ξ

are 1-forms. In addition to (2.21c), the action is also invariant under arbitrary shifts of C+
0i

which occurs only through a total derivative,

δC+
0i = Ψi. (2.22)

The gauge symmetries (2.21c) and (2.22) are of course not independent.

Contrary to the original action (2.2), the action (2.19) carries no superfluous degrees

of freedom that have to be eliminated by hand. It correctly describes, in a self-contained

manner, the coupling of a chiral 2-form with the other degrees of freedom of six-dimensional

chiral supergravity. It is the analog of the action of [52] for type IIB supergravity in

ten dimensions.

3 Level decomposition of F++
4

3.1 Dynkin diagram and Cartan matrix

The Dynkin diagram of F++
4 is:

α1 α2 α3 α4 α5 α6

corresponding to the Cartan matrix:

A =



2 −1 0 0 0 0

−1 2 −1 0 0 0

0 −1 2 −1 0 0

0 0 −1 2 −1 0

0 0 0 −2 2 −1

0 0 0 0 −1 2


(3.1)

We normalize the long real roots to have length squared equal to 2, e.g. (α1|α1) = 2.
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3.2 gl(5)-subalgebra

The first four roots of F++
4 define an A4-subalgebra with Chevalley generators

{hi, ei, fi|i = 1, 2, 3, 4}, which can be enlarged to a gl(5)-subalgebra by adding an appro-

priate combination of the Cartan generators h5 and h6 as follows.

The usual presentation of gl(5) is given in terms of the generators Ka
b , where a and b

go from 1 to 5, which satisfy the commutation relations

[Ka
b ,K

c
d ] = δcbK

a
d − δadKc

b . (3.2)

The invariant bilinear form is

(Ka
b |Kc

d ) = δadδ
c
b − δab δcd. (3.3)

The explicit embedding of gl(5) in F++
4 is given by

ei = Ki
i+1 (3.4a)

fi = Ki+1
i (3.4b)

hi = Ki
i −Ki+1

i+1 (3.4c)

for i = 1, 2, 3, 4 (this gives the embedding of sl(5)) and

h5 +
1

2
h6 = −1

2
(K1

1 +K2
2 +K3

3 +K4
4 ) +

3

2
K5

5 (3.5)

or conversely,
5∑

a=1

Ka
a = −4h1 − 8h2 − 12h3 − 16h4 − 10h5 − 5h6. (3.6)

One can take as basis of the Cartan subalgebra of F++
4 the five Ka

a and one additional

independent Cartan generator, which we choose to be h6 = K.

3.3 Definition of level

The algebra F++
4 can be decomposed in terms of irreducible representations of this subal-

gebra. We define the (bi-valued) level (l, l′) of a Cartan element to be (0, 0), and that of a

root vector eα associated with the root α by the formula

α =

4∑
i=1

miαi + lα5 + l′α6. (3.7)

Subspaces of F++
4 corresponding to definite values of (l, l′) are invariant subspaces under the

action of gl(5) and decompose under irreducible representations of gl(5). In fact, subspaces

corresponding to a definite value of l (with l′ unspecified) form representations of gl(5) ⊕
sl(2), where sl(2) is the subalgebra associated with the last node, generated by {h6, e6, f6}.
It will convenient, however, to fix both l and l′ to begin with, and consider how different

representations of gl(5) with same l and different l′ combine to form representations of

sl(2) only later.

At level (l, l′) = (0, 0), we have the gl(5)-subalgebra with Chevalley generators

{hi, ei, fi|i = 1, 2, 3, 4}, along with the extra Cartan generators h6.

– 9 –
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3.4 Low level decomposition of F++
4

Since our goal is to describe the coset space F++
4 /K(F++

4 ), we shall focus on positive roots

for which

mi ≥ 0, l ≥ 0, l′ ≥ 0.

The negative part of the algebra can be obtained by using the Chevalley involution. In

order to analyse the gl(5)-representation content of F++
4 , we follow the method of [22, 53].

The fundamental weights of A4 are defined by

(µi|αj) = δij i, j = 1, 2, 3, 4 (3.8)

(with µi in the linear span of the αj ’s). Explicitly,

µi =
∑
j

αjBji (3.9)

where the symmetric matrix (Bij) is the inverse matrix to the (symmetric) Cartan matrix

of A4,

(Bij) =
1

5


4 3 2 1

3 6 4 2

2 4 6 3

1 2 3 4

 . (3.10)

The scalar products of the fundamental weights (µi|µj) are given by

(µi|µj) = Bij . (3.11)

The root vector eα associated with the positive root α of F++
4 is a weight vector for

A4, i.e.,

[hi, eα] = µ(hi)eα, i = 1, 2, 3, 4, (3.12)

where µ is a linear combination of the fundamental weights µi. On the other hand

[hi, eα] = α(hi)eα (3.13)

which implies that α − µ is such that (α − µ)(hi) = 0, i.e., is orthogonal to the 4-plane

spanned by αi (i = 1, 2, 3, 4). If one denotes by ν the unit normal to that 4-plane in the

hyperplane spanned by αi and α5 such that (ν|α5) > 0, one easily finds ν =
√

5(α5 + µ4)

since (α5|α5) = 1 and (µ4|α5) = −4
5 . In other words,

α5 =
1√
5
ν − µ4. (3.14)

The A4-weight µ associated with the root α is thus α − l√
5
ν − l′α6 since the difference

α − µ = l√
5
ν + l′α6 is indeed orthogonal to the 4-plane spanned by αi (i = 1, 2, 3, 4).

Expanding µ in the basis of fundamental weights, µ = −
∑

i piµi, yields then the expression

m1α1 +m2α2 +m3α3 +m4α4 = −p1µ1 − p2µ2 − p3µ3 + (l − p4)µ4. (3.15)
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We thus have the relationships

m1 =
1

5
(l − 4p1 − 3p2 − 2p3 − p4) (3.16a)

m2 =
1

5
(2l − 3p1 − 6p2 − 4p3 − 2p4) (3.16b)

m3 =
1

5
(3l − 2p1 − 4p2 − 6p3 − 3p4) (3.16c)

m4 =
1

5
(4l − p1 − 2p2 − 3p3 − 4p4). (3.16d)

Now, among the vectors eα transforming in a given irreducible representation of A4,

there is one lowest weight vector annihilated by all the fi’s (i = 1, 2, 3, 4). The lowest

weight vectors are the easiest to identify. For instance e5 is a lowest weight vector since

[fi, e5] = 0. Accordingly, we shall determine the irreducible A4-representations that appear

in the decomposition of the positive Borel subalgebra of F++
4 by searching for their lowest

weights.

For a lowest weight µ, the integers pi’s are all non-negative and define the Dynkin

coefficients of the representation (this explains why we have taken the coefficients in the

expansion of µ to be −pi). In terms of Young tableaux, p1 is the number of columns of

height 4, p2 is the number of columns of height 3, p3 is the number of columns of height 2

and p4 is the number of columns of height 1.

Let Λ be a positive root of F++
4 defining a lowest weight of an A4-representation. The

constraints that the mi’s be non-negative integers and the condition (Λ|Λ) ≤ 2 arising from

the fact that Λ is a root read

1

5
(l − 4p1 − 3p2 − 2p3 − p4) ∈ N (3.17a)

1

5
(2l − 3p1 − 6p2 − 4p3 − 2p4) ∈ N (3.17b)

1

5
(3l − 2p1 − 4p2 − 6p3 − 3p4) ∈ N (3.17c)

1

5
(4l − p1 − 2p2 − 3p3 − 4p4) ∈ N (3.17d)

(Λ|Λ) =

4∑
i,j=1

Bijpipj +
1

5
l2 + l′2 − ll′ ≤ 2 (3.17e)

with pi ≥ 0 and N = {0, 1, 2, · · · } the set of non-negative integers.

These inequalities determine the low level roots. Solutions up to l = 4 are easily

verified to be given by table 1, where the brackets 〈. . . 〉 indicate projection on the Young

tableau symmetry corresponding to [0, 1, 0, 1].

The conditions (3.17) are necessary conditions for the set of integers [p1, p2, p3, p4] to

define a representation that appears in F++
4 . These conditions are also sufficient here

because F++
4 is hyperbolic so that one can apply Proposition 5.10 of [54] to verify that the

root lattice points labelled by the above (mi, l, l
′) are indeed roots. Since the real roots are

non degenerate, the representations for which the lowest state vector Λ has strictly positive

norm occur once and only once. This is also true for the representation [1, 0, 0, 0] with l = 4

– 11 –
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l l′ [p1, p2, p3, p4] (m1,m2,m3,m4) (Λ|Λ) F++
4 generators σ-model field

0 1 [0, 0, 0, 0] (0, 0, 0, 0) 1 E ψ

1 0 [0, 0, 0, 1] (0, 0, 0, 0) 1 Ea Aa

1 [0, 0, 0, 1] (0, 0, 0, 0) 1 E′a = [Ea, E] Ba

2 0 [0, 0, 1, 0] (0, 0, 0, 1) 2 Eab = [Ea, Eb] Aab

1 [0, 0, 1, 0] (0, 0, 0, 1) 1 E′ab = [Eab, E] Bab

2 [0, 0, 1, 0] (0, 0, 0, 1) 2 E′′ab = [E′ab, E] Cab

3 1 [0, 1, 0, 0] (0, 0, 1, 2) 1 Eabc = [E′ab, Ec] Aabc

2 [0, 1, 0, 0] (0, 0, 1, 2) 1 E′abc = [Eabc, E] Babc

4 1 [1, 0, 0, 0] (0, 1, 2, 3) 1 Eabcd = [Eabc, Ed] Aabcd

2 [0, 1, 0, 1] (0, 0, 1, 2) 2 Eabc|d = [E′〈abc, Ed〉] Aabc|d

[1, 0, 0, 0] (0, 1, 2, 3) 0 E′abcd = [Eabcd, E] Babcd

3 [1, 0, 0, 0] (0, 1, 2, 3) 1 E′′abcd = [E′abcd, E] Cabcd

Table 1. Low level decomposition of F++
4 .

and l′ = 2 for the following reason. The root α2 +2α3 +3α4 +4α5 +2α6, which has m1 = 0,

is the null root of the untwisted affine Kac-Moody algebra F+
4 and is degenerate a number

of times equal to the rank of F4, i.e., 4. It occurs three times as a non lowest state vector of

the representation [0, 1, 0, 1] with l = 4 and l′ = 2 characterized by a mixed Young tableau

with one column of three boxes and one column of one box (“dual graviton”). It must

therefore occur a fourth time in another representation with same values of l and l′, which

is precisely the representation [1, 0, 0, 0] with l = 4 and l′ = 2.

As we mentioned above, the representations that differ only in the value of l′ combine

to form representations of the subalgebra sl(2) corresponding to the last node 6 of the

Dynkin diagram. The generator E is the raising operator for those representations. So,

the representation at l = 0 is a sl(2)-singlet, the representations at l = 1 and l = 3 are

doublets, those at l = 2 form a triplet and finally, those at l = 4 form a triplet and a singlet.

The decomposition of the hyperbolic algebra F++
4 can be continued at higher levels

following the procedure of [53] but this will not be needed here. Note that table 1 matches

the level decomposition of F+++
4 given in [14, 44].

3.5 Commutation relations

The low-level commutation relations of F++
4 are easy to work out. First, the commutation

relations that involve the gl(5) generators Ka
b are, besides (3.2), simply given by the usual

action of gl(5) on tensors, for example

[Ka
b , E] = 0, [Ka

b , E
c] = δcbE

a, [Ka
b , Fcd] = −δacFbd − δadFcb, (3.18)

and so on. Here, Fab... = −τ(Eab...) where τ is the Chevalley involution.
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Second, the action of the Cartan generator K ≡ h6, which is a gl(5) scalar, reads

[K,E(l,l′)] = (2l′ − l)E(l,l′) (3.19)

for any generator E(l,l′) at level (l, l′).

Third, consider the commutation relations of the raising operators among themselves.

Some commutators are given by the defining relations in table 1. Some other commutators

are automatically zero because there is no generator with the required symmetry at the

required level, for example

[E′a, E] = 0 (no generator at level (1, 2)),

[E′(a, Eb)] = 0 (no symmetric generator at level (2, 1)),

[Eab, Ec] = 0 (no generator at level (3, 0)). (3.20)

The other commutators not in that list are computed using the Jacobi identity and the

above property. Up to level (4, 1), the nontrivial ones (=that cannot be obtained just by

using antisymmetry of the commutator and antisymmetry in the indices) are

[E′a, Eb] =
1

2
E′ab, [E′a, E′b] =

1

2
E′′ab, [Eab, E′c] = −Eabc

[E′ab, E′c] = −E′abc, [E′′ab, Ec] = 2E′abc, [E′ab, Ecd] = 2Eabcd. (3.21)

Similar commutators hold on the negative side of the algebra and are simply obtained

by using the Chevalley involution. The last class of commutation relations involving the

raising operators with the lowering operators and can also be recursively computed starting

from the Chevalley relations. Here are a few examples,

[Ea, Fb] = 2Ka
b −

1

2
δab

(
5∑
e=1

Ke
e+K

)
, [E,F ] = K, [Ea, F ] = 0

[E′a, F ] = Ea, [E′a, Fb] = −δabE, [E′a, F ′b] = [Ea, Fb]

[Eab, Fc] = 4E[aδb]c , [Eab, Fcd] = 16K
[a

[cδ
b]
d] − 4δ[a

c δ
b]
d

(
5∑
e=1

Ke
e +K

)
(3.22)

Some of the commutators between raising and lowering operators are automatically zero

because l and l′ must be of the same sign. For example, [Ea, F ] and [Eab, F ′c] would be on

level (1,−1), [Eab, F ] on level (2,−1) and so are necessarily zero.

3.6 Scalar products

To conclude, we give the scalar products between the generators of table 1 that we shall

need below. These are

(Ka
b |Kc

d ) = δadδ
c
b − δab δcd, (K|K) = 4

(E|F ) = 2, (Ea|Fb) = 2δab , (E′a|F ′b) = 2δab
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(Eab|Fcd) = 4.2! δ[a
c δ

b]
d , (E′ab|F ′cd) = 8.2! δ[a

c δ
b]
d , (E′′ab|F ′′cd) = 16.2! δ[a

c δ
b]
d

(Eabc|Fdef ) = 8.3! δ
[a
d δ

b
eδ
c]
f , (E′abc|F ′def ) = 8.3! δ

[a
d δ

b
eδ
c]
f ,

(Eabcd|Fefgh) = 8.4! δ[a
e δ

b
fδ
c
gδ
d]
h (3.23)

To derive the scalar products, one proceeds recursively using the invariance property.

4 Sigma model (up to level (4,1))

4.1 Lagrangian

To derive the Lagrangian for the coset space F++
4 /K(F++

4 ), we follow the standard method.

We recall that K(F++
4 ) is the subalgebra invariant under the Chevalley involution. In

the case of the split form of finite-dimensional algebras, this subalgebra is the maximal

compact subalgebra.

By a K(F++
4 )-transformation, one can always map an element of F++

4 on the non

negative part of the algebra. We will impose this condition except for the gravitational

subalgebra A4, for which we shall keep the negative components. In that (partial) “Borel”

(or “triangular”) gauge, the coset representative is thus chosen to be

V (t) = H(t)T (t) = exp

[
h b
a (t)Ka

b +
1

2
ϕ(t)K

]
exp [A(t)] (4.1)

where

A(t) =
1√
2

(
ψ(t)E +Aa(t)E

a +Ba(t)E
′a +

1

2!
Aab(t)E

ab +
1

2!
Bab(t)E

′ab

+
1

2!
Cab(t)E

′′ab +
1

3!
Aabc(t)E

abc +
1

3!
Babc(t)E

′abc +
1

4!
Aabcd(t)E

abcd

)
(4.2)

This expression defines the various fields of the theory up to level (4, 1). Truncation up to

that level is consistent for the same reasons as given in [22, 23] for E10. There are only

antisymmetric fields (“p-forms”) in the A-factor. Anticipating the comparison with chiral

supergravity, we shall call e b
a ≡

(
eh
) b

a
the “vielbein”, ϕ the “dilaton” and ψ the “axion”.

The dual graviton appears at level (4, 2) and will be discussed below. In terms of

P (t) =
1

2

[
∂V (t)V −1(t)− τ

(
∂V (t)V −1(t)

)]
(4.3)

(∂ is the time derivative), the Lagrangian is then

nL = (P |P ), (4.4)

where (·|·) is the invariant bilinear form on F++
4 given above and where n is the (rescaled)

lapse that implements the Hamiltonian constraint and ensures that the motion is a lightlike

geodesic [22, 23].

We have

∂V V −1 = ∂HH−1 +H(∂TT−1)H−1
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The term (∂H)H−1 differs from the usual purely gravitational contribution by the dila-

ton term
1

2
(∂ϕ)K.

As for (∂T )T−1, a direct but somewhat tedious computation yields

(∂T )T−1 =
1√
2

(
DψE +DAaEa +DBaE′a +

1

2!
DAabEab +

1

2!
DBabE′ab +

1

2!
DCabE′′ab

+
1

3!
DAabcEabc +

1

3!
DBabcE′abc +

1

4!
DAabcdEabcd

)
(4.5)

where the covariant derivatives are given by

Dψ = ∂ψ, DAa = ∂Aa, DBa = ∂Ba +
1

2
√

2
(Aa∂ψ − ψ∂Aa) (4.6)

for the axion ψ and the one-forms Aa, Ba, by

DAab = ∂Aab +
1√
2
A[a∂Ab] (4.7a)

DBab = ∂Bab +
1

2
√

2

(
−ψ∂Aab +A[a∂Bb] +B[a∂Ab] +Aab∂ψ

)
− 1

4
ψA[a∂Ab] (4.7b)

DCab = ∂Cab +
1

2
√

2

(
−ψ∂Bab +B[a∂Bb] +Bab∂ψ

)
+

1

12

(
ψ2∂Aab − ψA[a∂Bb] − 2ψB[a∂Ab] − ψ∂ψAab +B[aAb]∂ψ

)
+

1

16
√

2
ψ2A[a∂Ab] (4.7c)

for the two-forms Aab, Bab, Cab, by

DAabc = ∂Aabc +
3

2
√

2

(
−A[a∂Bbc] +B[a∂Abc] −A[ab∂Bc] +B[ab∂Ac]

)
+

1

4

(
ψA[a∂Abc] − 3A[aBb∂Ac] − 2A[aAbc]∂ψ + ψA[ab∂Ac]

)
(4.8)

and

DBabc = ∂Babc +
1

2
√

2

(
−ψ∂Aabc − 6A[a∂Cbc] + 3B[a∂Bbc] − 3B[ab∂Bc]

+6C[ab∂Ac] +Aabc∂ψ
)

+
1

4

(
3ψA[a∂Bbc] − 2ψB[a∂Abc] + ψA[ab∂Bc] − 3A[aBb∂Bc]

−3A[aBbc]∂ψ +B[aAbc]∂ψ
)

+
1

16
√

2

(
−3ψ2A[a∂Abc] + 10ψA[aBb∂Ac] + 4ψ∂ψA[aAbc] − ψ2A[ab∂Ac]

)
(4.9)

for the three-forms Aabc, Babc, and by

DAabcd = ∂Aabcd +
√

2
(
A[a∂Abcd] − 3A[ab∂Bcd] + 3B[ab∂Acd] +A[abc∂Ad]

)
+A[aBb∂Acd] − 2A[aAbc∂Bd] + 3A[aBbc∂Ad] + ψA[ab∂Acd]

– 15 –



J
H
E
P
0
3
(
2
0
1
5
)
0
5
6

−A[abBc∂Ad] −A[abAcd]∂ψ

+
1√
2
ψA[aAbc∂Ad] (4.10)

for the four-form Aabcd.

To compute H(∂TT−1)H−1 from eABe−A = eadAB, we use formula (3.19). The

Lagrangian is then found to be

nLF++
4 /K(F++

4 ) =
1

4

(
gacgbd − gabgcd

)
∂gab∂gcd + (∂ϕ)2

+
1

2
e2ϕ(Dψ)2 +

1

2
e−ϕDAaDAa +

1

2
eϕDBaDBa

+
1

2
e−2ϕDAabDAab +DBabDBab + 2e2ϕDCabDCab

+
1

3
e−ϕDAabcDAabc +

1

3
eϕDBabcDBabc

+
1

12
e−2ϕDAabcdDAabcd (4.11)

where the metric gab is related to the vielbein through

gab =
∑
c

e c
a e

c
b . (4.12)

4.2 Equations of motion

The equations of motion that follow from the Lagrangian are, with the gauge choice n = 1:

(i) 4-form:

∂
(
e−2ϕDAabcd

)
= 0 (4.13)

(ii) 3-forms:

∂(eϕDBabc) = 0, ∂
(
e−ϕDAabc

)
=

1√
2
eϕDBabcDψ +

1√
2
e−2ϕDAabcdDAd (4.14)

(iii) 2-forms

∂
(
e2ϕDCab

)
=

1√
2
eϕDBabcDAc (4.15)

∂DBab =
1√
2
e−2ϕDAabcdDAcd −

1√
2
eϕDBabcDBc +

1√
2
e−ϕDAabcDAc

+
√

2e2ϕDCabDψ (4.16)

∂
(
e−2ϕDAab

)
= −

√
2e−2ϕDAabcdDBcd −

√
2e−ϕDAabcDBc +

√
2DBabDψ (4.17)

(iv) 1-forms

∂(eϕDBa) =
√

2eϕDBabcDBcd +
√

2e−ϕDAabcDAbc + 2
√

2e2ϕDCabDBb

+
√

2DBabDAb (4.18)
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∂
(
e−ϕDAa

)
=

√
2

3
e−2ϕDAabcdDAbcd − 2

√
2eϕDBabcDCbc −

√
2e−ϕDAabcDBbc

+
√

2DBabDBb +
√

2e−2ϕDAabDAb +
1√
2
eϕDBaDψ (4.19)

(v) Axion

∂
(
e2ϕDψ

)
= −
√

2

3
eϕDBabcDAabc − 2

√
2e2ϕDCabDBab −

√
2DBabDAab

− 1√
2
eϕDBaDAa (4.20)

(vi) Dilaton

∂2ϕ =
1

2
e2ϕ(Dψ)2 − 1

4
e−ϕDAaDAa +

1

4
eϕDBaDBa − 1

2
e−2ϕDAabDAab

+ 2e2ϕDCabDCab −
1

6
e−ϕDAabcDAabc +

1

6
eϕDBabcDBabc

− 1

12
e−2ϕDAabcdDAabcd (4.21)

(vii) Metric

1

2
∂(gac∂gcb) =

1

4
δab

(
1

2
e−ϕDAcDAc +

1

2
eϕDBcDBc

+ e−2ϕDAcdDAcd + 2DBcdDBcd + 4e2ϕDCcdDCcd

+e−ϕDAcdeDAcde + eϕDBcdeDBcde +
1

3
e−2ϕDAcdefDAcdef

)
− 1

2
e−ϕDAaDAb −

1

2
eϕDBaDBb

− e−2ϕDAacDAbc − 2DBacDBbc − 4e2ϕDCacDCbc

− e−ϕDAacdDAbcd − eϕDBacdDBbcd −
1

3
e−2ϕDAacdeDAbcde (4.22)

Finally, the Hamiltonian constraint, obtained by extremizing the action with respect

to n, reads

0 =
1

4

(
gacgbd − gabgcd

)
∂gab∂gcd + (∂ϕ)2

+
1

2
e2ϕ(Dψ)2 +

1

2
e−ϕDAaDAa +

1

2
eϕDBaDBa

+
1

2
e−2ϕDAabDAab +DBabDBab + 2e2ϕDCabDCab

+
1

3
e−ϕDAabcDAabc +

1

3
eϕDBabcDBabc +

1

12
e−2ϕDAabcdDAabcd (4.23)
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5 Correspondence with the gravitational model up to level (4,1)

5.1 Homogeneous fields

We follow again the approach of [22]. The comparison between the supergravity field

equations and the sigma model equations should be thought of as being carried out in

some generalized (and still to be completely specified) form of spatial gradient expansion.

At lowest order in that expansion, the fields on the supergravity side are taken to be

spatially homogeneous, i.e., to depend only on time,

ds2 = −g(t)dt2 + gab(t)dx
adxb (g = det(gab)) (5.1a)

φ = φ(t) (5.1b)

∂µχ = ∂µχ(t), F±µν = F±µν(t) (5.1c)

Hµνρ = Hµνρ(t), Gµνρ = Gµνρ(t). (5.1d)

We also make the gauge choice N =
√

g for the lapse (corresponding to n = 1 on the sigma

model side) and Nk = 0 for the shift. Note that we allow both electric and magnetic com-

ponents for the axion and the p-form fields. This means that we go beyond the assumption

of spatially homogeneous potentials, which would yield only non-vanishing electric fields.

On the sigma model side, we truncate the equations by retaining fields only up to level

(4, 1), as we already did above. Had we kept only the electric fields on the supergravity

side, we should truncate the sigma model up to level (2, 0) (or (2, 1) depending on how one

views the field strength of the chiral 2-form). Keeping the magnetic fields enables one to

test the conjecture at higher levels.

5.2 Dictionary

Given these truncations, one finds that the equations of motion of chiral supergravity and

of the coset model perfectly match if we make the identifications

gab ←→ gab (5.2a)

φ←→ ϕ (5.2b)

χ̇←→ Dψ (5.2c)

F−0a ←→ −DAa (5.2d)

F+
0a ←→ +DBa (5.2e)

H0ab ←→ −
√

2DAab (5.2f)

G0ab = (?G)0ab =
g

3!
ε0abklmG

klm ←→ −
√

2DBab (5.2g)

(?H)0ab =
g

3!
ε0abklmH

klm ←→ 2
√

2e2ϕDCab (5.2h)
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(?F+)0abc =
g

2
ε0abcklF

+kl ←→ −2e−ϕDAabc (5.2i)

(?F−)0abc =
g

2
ε0abcklF

−kl ←→ −2eϕDBabc (5.2j)

(?dχ)0abcd = gε0abcdk∂
kχ←→ 2e−2ϕDAabcd (5.2k)

Not only do the dynamical equation of motion match, but also the Hamiltonian con-

straint does.

In particular, all the Chern-Simons couplings between the p-forms are exactly repro-

duced by the sigma model Lagrangian. This is remarkable because these couplings are

derived, in the standard approach, by using supersymmetry. This is one more instance of

the intriguing connection between the hidden symmetry and supersymmetry, which seem

to be independepent concepts but yet give identical predictions.

It is quite appealing that the self-duality condition on the field strength of the 2-form

C is naturally incorporated in the sigma model. How does this arise? For each non-chiral

p-form, the standard p-form potential and its dual potential appear simultaneously in the

field content of the sigma model. In the geodesic equations of motion, the electric fields

of both occur, and the electric field of the dual potential is identified with the magnetic

field of the standard potential. This is a familiar fact which actually holds already for the

E10 model. For the chiral 2-form, however, there is only one potential, so that one must

identify its electric and magnetic fields in the dictionary. This is what was done in (5.2g).

5.3 Beyond level (4,1)

Except for φ and g, whose duals appear at level (4, 2), the duals of all the supergravity

fields are present in the truncation up to level (4, 1). One can go beyond level (4, 1) by

including more spatial gradients on the supergravity side. One way to proceed is to replace

the abelian homogeneity group leading to the form (5.1) of the fields (“Bianchi type I”) by

a non-abelian group along the lines of [55], which allows non-vanishing spatial gradients in

a controlled way. Alternatively, one may consider the next terms in the gradient expansion

of the supergravity field around an arbitrarily chosen spatial point. Either way, one would

find that the matching extends up up to level (4, 2) and (4, 3), but this matching requires

some well-chosen gauge conditions in order for one to be able to consistently identify the

(3, 1)-mixed Young field with the dual gravity (through the spatial anholonomy) and in

that sense may be argued to be less understood. Even though we have not checked it

explicitely, we expect the details to work in the same way as for the E10 model [22].

Similarly, while the Hamiltonian constraints on both sides of the correspondence nicely

match, the other supergravity constraints must be implemented on the sigma model side.

This raises interesting questions which have been explored in the important work [56–58],

but which still needs further study. These other supergravity constraints are the momentum

constraints and the various Gauss’ laws.
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6 V -duality and Borcherds superalgebra

6.1 Cartan matrix

The structure of the equations discussed above is very similar to that encountered in type

IIB supergravity in D = 10 dimensions where there is a chiral 4-form, the curvature of

which is self-dual. This self-duality condition is also properly incorporated in the sigma

model formulation [46]. The p-form content is, however, different and this can best be

discussed in terms of the underlying Borcherds algebras [47, 48].

In the F++
4 spectrum, all forms can be constructed by successive commutation (and

antisymmetrization in the indices) of the Ea and E generators. From these, we construct

the raising generators of a Borcherds superalgebra as

e1 = Eaθa

e2 = E, (6.1)

where the θa’s are a basis of 1-forms that automatically implement the antisymmetrization.

Thus e1 is a fermionic (odd) generator while e2 is bosonic (even). In F++
4 , the index a

takes values from 1 to 5, but we shall lift that condition from now on and not specify the

dimension of space so as to investigate forms of higher rank. From the F++
4 commutation

relations, we find the only Serre relation

(ade2)2e1 = [e2, [e2, e1]] = 0. (6.2)

We now show how to extend the generators {e1, e2} to the Chevalley-Serre generators

of a Borcherds superalgebra. The Cartan subalgebra is spanned by the gl(5,R) trace

H ≡
∑

aK
a
a and the generator K. They have the following commutation relations with

the ei’s:

[H, e1] = e1, [H, e2] = 0

[K, e1] = −e1, [K, e2] = 2e2 (6.3)

If we take the linear combination

h1 =

(
k − 1

2

)
H − 1

2
K

h2 = K, (6.4)

where k is an arbitrary constant satisfying k < 0, then the hi, ei and fi = −τ(ei) generate

a Borcherds superalgebra with Cartan matrix

A =

(
k −1

−1 2

)
. (6.5)

The fact that k < 0 implies that there is no condition on the graded commutator (anti-

commutator) [e1, e1] (recall that the first root is fermionic). If k were to vanish, one would

have the Serre relation [e1, e1] = 0, but this relation does not hold in F++
4 .

The choice of the constant k does not affect the p-form spectrum; however, there is a

natural choice, k = −2, to be explained below.
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level (l, l′) multiplicity ml,l′

(0, 1) 1

(1, 0) 1

(1, 1) 1

(2, 0) 1

(2, 1) 1

(2, 2) 1

(3, 1) 1

(3, 2) 1

(4, 1) 1

(4, 2) 1

(4, 3) 1

(5, 1) 1

(5, 2) 2

(5, 3) 2

(5, 4) 1

(6, 1) 1

(6, 2) 3

(6, 3) 3

(6, 4) 3

(6, 5) 1

Table 2. p-form spectrum.

6.2 p-form spectrum

The reason that the exact value of k does not affect the p-form spectrum is that the only

Serre relation is [e2, [e2, e1]] = 0 not matter what k is (provided k < 0). Along with

the (graded) Jacobi identity, this Serre relation suffices to determine the p-form spectrum

by taking successive graded commutators, since only the relations between the raising

operators ei are needed. Each independent graded commutator containing l times e1 and

l′ times e2 correspond to a l-form in the spectrum at level (l, l′). The number of such forms

is written ml,l′ in the table below. The result is given by table 2, where the number of

such forms is written ml,l′ . For instance, the generator at level (1, 1) is [e1, e2], that at level

(2, 0) is [e1, e1] etc.

Note that the table agrees with the data given by the level decomposition of F+++
4

(see A.6 of [14] and [44, 45]). In particular, we can see in those tables that all p-forms with

p ≤ 5 indeed belong to F++
4 as expected from the truncation a = 1, 2, 3, 4, 5 for θa, while

the 6-forms are specific to F+++
4 , and indeed do have a non-vanishing coefficient along the
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very extended root. Moreover, we also see here that the generators fall into representations

of sl(2): at level l = 5, we have the representations 4 and 2, and at level l = 6, we have

the 5 and two times the 3, in agreement with [45].

Instead of constructing the generators at higher levels in a pedestrian fashion, which

is direct at low levels, one can apply the denominator formula (see e.g. [59]). In our case,

this formula reads∏
α∈∆+

0
(1− e−α)m(α)∏

β∈∆+
1

(1 + e−β)m(β)
= 1− e−α1 − e−α2 + e−α1−2α2 , (6.6)

where ∆+
0 (resp. ∆+

1 ) is the set of positive even (resp. odd) roots, m(α) is the multiplicity

of the root α (if α is not a root, then m(α) = 0), α1 and α2 are the simple roots of our

algebra (α1 is odd, α2 is even). This formula allows us to find all the desired multiplicities

ml,l′ = m(lα1 + l′α2).

To make it more useable, we note that the positive even roots are all of the form

α = 2kα1 + l′α2 and that the odd ones are of the form β = (2k + 1)α1 + l′α2, where k

and l′ are nonnegative integers. Defining the formal variables x = e−α1 and y = e−α2 , the

denominator identity takes the form

∞∏
k,l′=0

(1− x2kyl
′
)m2k,l′

(1 + x2k+1yl′)m2k+1,l′
= 1− x− y + xy2 (6.7)

The expansion of the left-hand side in a power series allows us to read off the numbers

ml,l′ . This gives the results of the table.

Explicitely, up to l = 2:

• l = 0: We need only keep the terms that contain no x: this gives

∞∏
l′=0

(1− yl′)m0l′ = 1− y

from which we see that m01 = 1 while m0l′ = 0 for all l′ ≥ 2.

• l = 1:
∞∏
l′=0

(1− y)(1 + xyl
′
)−m1l′ = 1− y − x− xy2

We see that m1l′ = 0 for all l′ ≥ 3, since there are no terms of the form xyl
′

with

l′ ≥ 3 on the right hand side. Forgetting all terms of order x2 and higher, we expand

the left hand side as

(1− y)(1 + x)−m10(1 + xy)−m11(1 + xy)−m12

= (1− y)(1−m10x)(1−m11xy)(1−m12xy
2)

= 1− y −m10x+ (m10 −m11)xy + (m11 −m12)xy2 +m12xy
3

and we read off the numbers m10 = 1, m11 = 1, m12 = 0.
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• l = 2:
∞∏
l′=0

(1− y)(1 + x)−1(1 + xy)−1(1− x2yl
′
)m2l′ = 1− y − x− xy2

Up to order x2, the first three factors are

(1− y)(1 + x)−1(1 + xy)−1 = (1− y)(1− x+ x2)(1− xy + x2y2)

= 1− y − x+ xy2 + x2 − x2y3

and we have, keeping only the x2 terms,

∞∏
l′=0

(1− y − x+ xy2 + x2 − x2y3)(1−m2l′x
2yl

′
)

= x2 − x2y3 +

∞∑
l′=0

(−m2l′x
2yl

′
+m2l′x

2yl
′+1).

We see that m2l′ = 0 for all l′ ≥ 3. As there are no x2 terms on the right hand side

of the denominator formula, this gives

(1−m20)x2+(−m21 +m20)x2y+(−m22 +m21)x2y2+(−1−m23 +m22)x2y3 = 0

so that m20 = m21 = m22 = 1 and m23 = 0.

This can be continued up to arbitrary l, each time using the information gained at smaller

l.

6.3 Comparing with type IIB

To compare the Borcherds superalgebra describing the V -duality of chiral supergravity in

six dimensions with the Borcherds algebra describing the V -duality of type IIB supegravity

in ten dimensions, we first need to determine k.

To that end, we follow the method of [49], which consists in starting from the Borcherds

superalgebra in lower dimensions where there is no ambiguity and oxidizing according to

a well-defined procedure.

We start in three spacetime dimensions, where the symmetry is F4 with simple roots

denoted βi (i = 1, 2, 3, 4). Their matrix of scalar products is

βi · βj =


2 −1 0 0

−1 2 −1 0

0 −1 1 −1/2

0 0 −1/2 1

 . (6.8)

The relevant Borcherds superalgebra is obtained by adding a null fermionic root γ0, con-

nected only to β1 in the Dynkin diagram of F4, i.e. γ0 · γ0 = 0, γ0 · β1 = −1, γ0 · βi = 0 for

i = 2, 3, 4 [48]. This gives the Borcherds symmetry in 3 dimensions, which we can oxidize

up to 6 dimensions. We get successively:
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• D = 4: the roots of the algebra are γ1 = γ0 + β1, β2, β3 and β4. We have γ1 · γ1 = 0,

γ1 · β2 = −1, γ1 · βi = 0 for i = 3, 4.

• D = 5: the roots are γ2 = γ1 + β2, β3 and β4. We have γ2 · γ2 = 0, γ2 · β3 = −1,

γ2 · β4 = 0.

• D = 6: the roots are γ3 = γ2 + β3 and β4. We have γ3 · γ3 = −1 and γ3 · β4 = −1/2.

We end up with a Borcherds superalgebra that contains a fermionic root γ3 and a bosonic

root β4. Their matrix of scalar products is(
−1 −1/2

−1/2 1

)
. (6.9)

This is the Cartan matrix of a Borcherds algebra with generators h̄i, ei and fi, which is

isomorphic to our algebra. To put this matrix in the form (6.5), we make the rescaling

hi = 2h̄i to get the Cartan matrix (
−2 −1

−1 2

)
, (6.10)

which fixes k = −2. This is the Cartan matrix of a Borcherds algebra with generators h̄i,

ei and fi, which is isomorphic to our algebra.

It turns out that this Cartan matrix is very similar to the Cartan matrix for type IIB

obtained by following the same procedure [49] in the sense that both contain one timelike

simple root and one spacelike simple root. A difference lies in the grading of the generators.

In the first case there is one fermionic generator (one-form) and one bosonic generator

(zero-form) so it is a genuine superalgebra, while in the second case, both generators are

bosonic (a two-form and a zero-form). The tight connection between the two theories has

of course already been noticed before. We see here that it also appears when one considers

the V -dualities.

7 Concluding remarks

In this paper, we have investigated the equations for the geodesic motion on the coset space

F++
4 /K(F++

4 ) and shown their equivalence with the equations of motion of six-dimensional

chiral supergravity with two vector multiplets and two tensor multiplets, up to the level

where the matching starts being less understood. While this agreement was expected from

existing experience with other supergravity models, it was interesting to see how the self-

duality condition on the field strength of the chiral two-form emerged on the coset model

side. The way it is implemented can be summarized as follows. Only “electric fields”

(covariant time derivatives of the sigma model fields) appear in the (1 + 0)-sigma model

formulation since there is no room for explicit spatial derivatives. Non-chiral forms are

described by two potentials, namely, their standard potential and its dual. One recovers

the magnetic fields as the electric fields of the duals. For the chiral form, there is, however,

only one potential. The magnetic field must then be set equal to the electric field in

the dictionary.
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The same phenomenon had been described earlier in the context of type IIB super-

gravity in ten dimensions [46]. This motivated us to compare the two models through

their p-form spectrum, encoded in a Borcherds superalgebra structure. We have compared

the corresponding Cartan matrices and found rather close connections between the two

V -duality algebras.

Although the self-duality condition on the field strength of the chiral 2-form is correctly

accounted for in the sigma model, it should be noted, however, that the equations of

motion of the sigma model are of second order in the time derivatives. One does not

get the self-duality condition as an equation of motion but rather as a translation rule

in the dictionary that connects the sigma model variables with the supergravity fields.

This raises the possibility that the sigma model Lagrangian may not provide the final

word on the question of exhibiting explicitly the F++
4 symmetry of the (possibly extended)

supergravity model.

Finally, it remains a rather mysterious fact that the hidden symmetry and super-

symmetry, although a priori unconnected, yield identical predictions on the structure of

the Lagrangian (spectrum, coefficients of Chern-Simons terms). To shed light on this

ill-understood issue, it would be of interest to include the fermions and discuss how super-

symmetry is realized in the sigma model. It is planned to return to this problem.
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